Science.gov

Sample records for national acid precipitation

  1. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  2. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  3. National Acid Precipitation Assessment Program annual report, 1988, to the President and Congress

    SciTech Connect

    Not Available

    1989-01-13

    The Acid Precipitation Act of 1980 (Title VII of the Energy Security Act of 1980, Public Law 96-294) established the Interagency Task Force on Acid Precipitation to develop and implement the National Acid Precipitation Assessment Program (NAPAP). The purpose of NAPAP is to increase the authors understanding of the causes and effects of acidic deposition, and to produce scientific information to support decisionmaking regarding acidic deposition control and abatement strategies. The Report, the Program's seventh, is divided into three major sections. The first section describes the Program's organizational structure, external coordination activities, peer reviews, and budgetary status. It also includes a discussion of the NAPAP assessment process, and provides a synopsis of NAPAP's plan and schedule for 1989 and 1990 assessment reports.

  4. National Acid Precipitation Assessment Program: Acidic deposition: An inventory of non-Federal research, monitoring, and assessment information

    SciTech Connect

    Herrick, C.N.

    1990-01-01

    The Acid Precipitation Act of 1990 (Title VII of the Energy Security Act of 1980, P.L. 96-294) established the Interagency Task Force on Acid Precipitation to develop and implement the National Acid Precipitation Assessment Program (NAPAP). The information included in the document was provided to NAPAP's Task Group Leaders and State-of-Science and State-of-Technology authors in July 1989. The early release was intended to assure that the authors would be aware of the information at an early phase in the assessment production process.

  5. National Acid Precipitation Assessment Program: 1990 Integrated Assessment report

    SciTech Connect

    Not Available

    1991-11-01

    The document, the 'Integrated Assessment,' is a summary of the causes and effects of acidic deposition and a comparison of the costs and effectiveness of alternative emission control scenarios. In developing the 'Integrated Assessment,' it was NAPAP's goal to produce a structured compilation of policy-relevant technical information. The Integrated Assessment is based on findings and data from a series of twenty-seven State-of-Science/Technology Reports (SOS/T) on acidic deposition published by NAPAP in 1990. The scope of the documents includes: (1) emissions, atmospheric processes and deposition; (2) effects on surface waters, forests, agricultural crops, exposed materials, human health, and visibility; and (3) control technologies, future emissions, and effects valuation.

  6. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  7. National Acid Precipitation Assessment Program annual report 1987 to the President and Congress

    SciTech Connect

    Not Available

    1988-04-01

    The document reports on 1987 research activities of the National Acid Precipitation Assessment Program (NAPAP). It outlines 1987 research highlights, future research activities, major deliverables, and the program's 1990 research objectives. Its seven substantive chapters cover NAPAP research in the areas of: Emissions and controls; Atmospheric chemistry; Atmospheric modeling and transport; Atmospheric deposition and air-quality monitoring; Terrestrial effects (on forests and crops); Aquatic effects; and Effects on materials and cultural resources. The document includes introductory materials on the National Program's organizational structure, efforts at research coordination, peer and program review activities, and budget. A complete listing of the program's 1987 publications is also included.

  8. Acid deposition: State of science and technology. Summary report of the U. S. National Acid Precipitation Assessment Program

    SciTech Connect

    Irving, P.M.; Smith, E.

    1991-09-01

    The twenty-seven State-of-Science and State-of-Technology (SOS/T) Reports, published in 1990 as the definitive scientific and technical synthesis of information obtained during the first decade of the U.S. national Acid Precipitation Assessment Program (NAPAP), are summarized in the document. In most cases, these summaries were the final chapter of the complete SOS/T Report.

  9. National Acid Precipitation Assessment Program Report to Congress: An Integrated Assessment

    SciTech Connect

    Uhart, M.; et al,

    2005-08-01

    Under Title IX of the 1990 Clean Air Act Amendments, Congress reauthorized the National Acid Precipitation Assessment Program (NAPAP) to continue coordinating acid rain research and monitoring, as it had done during the previous decade, and to provide Congress with periodic reports. In particular, Congress asked NAPAP to assess all available data and information to answer two questions: (1) What are the costs, benefits, and effectiveness of Title IV? This question addresses the costs and economic impacts of complying with the Acid Rain Program as well as benefit analyses associated with the various human health and welfare effects, including reduced visibility, damages to materials and cultural resources, and effects on ecosystems. (2) What reductions in deposition rates are needed to prevent adverse ecological effects? This complex questions addresses ecological systems and the deposition levels at which they experience harmful effects. The results of the assessment of the effects of Title IV and of the relationship between acid deposition rates and ecological effects were to be reported to Congress quadrennially, beginning with the 1996 report to Congress. The objective of this Report is to address the two main questions posed by Congress and fully communicate the results of the assessment to decision-makers. Given the primary audience, most of this report is not written as a technical document, although information supporting the conclusions is provided along with references.

  10. Acid deposition in Maryland: Implications of the results of the National Acid Precipitation Assessment Program

    SciTech Connect

    DeMuro, J.; Bowmann, M.; Ross, J.; Blundell, C.; Price, R.

    1991-07-01

    Acid deposition, commonly referred to as 'acid rain,' is a major global environmental concern. Acid deposition has reportedly resulted in damage to aquatic, terrestrial, and physical resources and has potentially adverse effects on human health. A component of the Maryland acid deposition program is the preparation of an annual report that summarizes yearly activities and costs of ongoing acid deposition research and monitoring programs.

  11. Acid Precipitation; (USA)

    SciTech Connect

    Rushing, J.W.; Hicks, S.C.

    1991-01-01

    This publication, Acid Precipitation (APC) announces on a monthly basis the current worldwide information on acid precipitation and closely related subjects, including wet and dry deposition, long-range transport, environmental effects, modeling, and socioeconomic factors. Information on the following subjects is included within the scope of this publication, but all subjects may not appear in each issue: Pollution sources and pollution control technology; atmospheric transport and chemistry; terrestrial transport and chemistry; aquatic transport and chemistry; biological effects; corrosive effects; and socioeconomics, policy, and legislation.

  12. Ammonia emission factors for the NAPAP (National Acid Precipitation Assessment Program) emission inventory. Final report, January 1985-December 1986

    SciTech Connect

    Misenheimer, D.C.; Warn, T.E.; Zelmanowitz, S.

    1987-01-01

    The report provides information on certain sources of ammonia emissions to the atmosphere for use in the National Acid Precipitation Assessment Program (NAPAP) emission inventories. Major anthropogenic sources of ammonia emissions to the atmosphere are identified, and emission factors for these sources are presented based on a review of the most recent data available. The emission factors developed are used to estimate nationwide emissions for base year 1980 and are compared to ammonia emission factors used in other emission inventories. Major anthropogenic source categories covered are cropland spreading of livestock wastes, beef cattle feedlots, fertilizer manufacture and use, fuel combustion, ammonia synthesis, petroleum refineries, and coke manufacture. Approximately 840,000 tons of ammonia is estimated to have been emitted in the U.S. in 1980; over 64% of which is estimated to have been from livestock wastes.

  13. National Acid Precipitation Assessment Program (NAPAP) Interim Assessment: the causes and effects of acidic deposition. Volume 2. Emissions and control

    SciTech Connect

    Not Available

    1987-01-01

    This volume on Emissions and Controls is the second in a four-volume set which comprises the NAPAP Interim Assessment. It contains three chapters, (1) Historical Emissions, (2) Emission Control Technologies, and (3) Future Emissions. Volume III, Atmospheric Processes and Deposition, contains chapters on (4) Atmospheric Processes, and (5) Acidic Deposition and Air Quality. The last volume, entitled, Effects of Acidic Deposition, covers (6) Agricultural Crops, (7) Forests, (8) Aquatics Systems, (9) 'Materials, and (10) Human Health and Visibility. Each of these chapters describes the National Program's research orientation and major conclusions within each of the ten primary areas of substantive concern. In order to learn how these first-order conclusions relate to the issue of acidic deposition in an overall, or synoptic, sense, the reader is directed to Volume I, Executive Summary, where the conclusions from each of the ten chapters are distilled in a manner that will allow interested parties to quickly reference the status of a variety of factors that pertain to the scientific understanding of acidic deposition.

  14. National Acid Precipitation Assessment Program (NAPAP) Interim Assessment: the causes and effects of acidic deposition. Volume 3. Atmospheric processes

    SciTech Connect

    Not Available

    1987-01-01

    This volume on Atmospheric Processes and Deposition is the third in a four volume set which comprises the NAPAP Interim Assessment. It contains two chapters dealing with (4) Atmospheric Processes, and (5) Acidic Deposition and Air Quality. Volume II, Emissions and Controls, contains chapters on (1) Historical Emissions, (2) Emission Control Technologies, and (3) Future Emissions. Volume IV, Effects of Acidic Deposition, contains chapters on (6) Agricultural Crops, (7) Forests, (8) Aquatic Systems, (9) Materials, and (10) Human Health and Visibility. Each of these chapters describes the National Program's research orientation and major conclusions within each of the ten primary areas of substantive concern. In order to learn how these first-order conclusions relate to the issue of acidic deposition in an overall, or synoptic, sense the reader is directed to Volume I, Executive Summary and Major Conclusions, where the conclusions from each of the ten chapters are distilled in a manner that will allow interested parties to quickly reference the status of a variety of factors that pertain to the scientific understanding of acidic deposition.

  15. Precipitation: its acidic nature.

    PubMed

    Frohliger, J O; Kane, R

    1975-08-01

    A comparison of the free hydrogen ion concentration and the total hydrogen ion concentration of rain samples shows that rain is a weak acid. The weak acid nature of rain casts doubt on the concepts that the acidity of rain is increasing and that these increases are due to strong acids such as sulfuric acid.

  16. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  17. Acid Precipitation: Causes and Consequences.

    ERIC Educational Resources Information Center

    Babich, Harvey; And Others

    1980-01-01

    This article is the first of three articles in a series on the acid rain problem in recent years. Discussed are the causes of acid precipitation and its consequences for the abiotic and biotic components of the terrestrial and aquatic ecosystems, and for man-made materials. (Author/SA)

  18. National Acid Precipitation Assessment Program (NAPAP) Interim Assessment: the causes and effects of acidic deposition. Volume 4. Effects of acidic deposition

    SciTech Connect

    Not Available

    1987-01-01

    This volume on Effects of Acidic Deposition is the last in a four-volume set which comprises the NAPAP Interim Assessment. It contains five individual chapters covering (6) Agricultural Crops, (7) Forests, (8) Aquatic Systems, (9) Materials, and (10) Human Health and Visibility. Volume III, Atmospheric Processes and Deposition, has two chapters on (4) Atmospheric Processes, and (5) Acidic Deposition and Air Quality. Volume II, Emissions and Controls, contains three chapters on (1) Historical Emissions, (2) Emission Control Technologies, and (3) Future Emissions. Each of these chapters describes the National Program's research orientation and major conclusions within each of the ten primary areas of substantive concern. In order to learn how these first-order conclusions relate to the issue of acidic deposition in an overall, or synoptic, sense, the reader is directed to Volume I, Executive Summary, where the conclusions from each of the ten subject chapters are distilled in a manner that will allow interested parties to quickly reference the status of a variety of factors that pertain to the scientific understanding of acidic deposition.

  19. Acid precipitation; an annotated bibliography

    USGS Publications Warehouse

    Wiltshire, Denise A.; Evans, Margaret L.

    1984-01-01

    This collection of 1660 bibliographies references on the causes and environmental effects of acidic atmospheric deposition was compiled from computerized literature searches of earth-science and chemistry data bases. Categories of information are (1) atmospheric chemistry (gases and aerosols), (2) precipitation chemistry, (3) transport and deposition (wet and dry), (4) aquatic environments (biological and hydrological), (5) terrestrial environments, (6) effects on materials and structures, (7) air and precipitation monitoring and data collection, and (8) modeling studies. References date from the late 1800 's through December 1981. The bibliography includes short summaries of most documents. Omitted are unpublished manuscripts, publications in press, master 's theses and doctoral dissertations, newspaper articles, and book reviews. Coauthors and subject indexes are included. (USGS)

  20. Acid Precipitation and the Forest Ecosystem

    ERIC Educational Resources Information Center

    Dochinger, Leon S.; Seliga, Thomas A.

    1975-01-01

    The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)

  1. Water resource baseline data and assessment of impacts from acidic precipitation, Acadia National Park, Maine. Technical report (Final)

    SciTech Connect

    Kahl, J.S.; Andersen, J.L.; Norton, S.A.

    1985-06-01

    The chemistries of 18 lakes and 23 streams were studied at Acadia National Park, Maine during 1982-84. ANP is located on granitic bedrock, with thin to non-existent soils and steep topography, resulting in poorly buffered, oligotrophic surface waters. Mean baseflow pH was 5.93, 6.48 and 6.39 for the first-order brooks, second-order streams, and lakes, respectively. Alkalinities were 56, 140, and 61 micro eq/1. During high flow events, pH and alkalinity were depressed, partly due to titration by strong acids; dilution was estimated to account for 24 to 60% of the alkalinity declines. At least twice, HCI unrelated to atmospheric deposition was responsible for depressing alkalinities. The HCI was apparently generated from an NaCI salt-effect in soils. However, metal stratigraphy of cores from 3 lakes indicates that air pollution and presumably acidic deposition, began more than 100 years ago.

  2. Acid precipitation and human health: Final report

    SciTech Connect

    Hoffman, S.

    1989-08-01

    This report, written for environmental managers in electric utilities, reviews potential indirect human health effects of acid precipitation. Possible exposure routes and materials examined in this review include drinking water contamination (aluminum and mercury), corrosion of metals (lead, cadmium, arsenic, selenium, copper, and zinc) and asbestos from water piping, bioaccumulation of mercury and other metals in fish and game, and uptake of mobilized metals in crops. No direct effects (e.g., skin or eye irritation) of human exposure to acid precipitation have been identified, and air pollutant impacts on health are not included in this review, because these pollutants are acid precipitation precursors, not acid precipitation per se. The literature is summarized, presenting results from researchers' studies to support their conclusions. The review discusses potential acid precipitation impacts on metal levels in drinking water and food, summarizes the health effects of ingestion of these materials, and identifies areas of needed research. Metal-metal interactions in humans that may be related to acid precipitation are identified. Current research programs and planned assessments of the indirect human health effects of acid precipitation are summarized. 136 refs., 38 figs., 17 tabs

  3. Effects of acid precipitation on Daphnia magna

    SciTech Connect

    Parent, S.; Cheetham, R.D.

    1980-08-01

    Pollutants derived from fossil fuel combustion and precipitated from the atmosphere have substantially increased in the past decades. These materials, precipitated in such industrialized areas as southeastern Canada, have caused considerable alterations in aquatic ecosystems. Precipitation over most of the eastern United States is presently 10 to 500 times more acidic than is natural. Most affected aquatic ecosystems contain oligotrophic waters in regions of thin poorly buffered soils. Zooplankton are an important link in food chains of aquatic ecosystems and their disappearance or decline could drastically affect trophic relationships. Declines in zooplankton density in response to acid precipitation have been reported and short term survival of Daphnia pulex between pH 4.3 and 10.4; however, its potential for reproduction was limited to a fairly narrow range. Anderson (1944) noted the advantages of using daphnia as test organisms, and concluded that Daphnia magna was representative of other abundant zooplankton in sensitivity to toxic substances.

  4. Acid neutralization of precipitation in Northern China.

    PubMed

    Wang, Yuesi; Yu, Wenpeng; Pan, Yuepeng; Wu, Dan

    2012-02-01

    There is an increasing concern over the impact of human-related emissions on the acid precipitation in China. However, few measurements have been conducted so far to clarify the acid-neutralization of precipitation on a regional scale. Under a network of 10 sites across Northern China operated during a 3-year period from December 2007 to November 2010, a total of 1118 rain and snow samples were collected. Of this total, 28% was acid precipitation with pH < 5.6. Out of these acid samples, 53% were found heavily acidic with pH value below 5.0, indicating significantly high levels of acidification of precipitation. Most of the acidity of precipitation was caused by H2SO4 and HNO3, their relative contribution being 72% and 28%, respectively. However; the contribution of HNO3 to precipitation acidity will be enhanced due to the increasing NO(x) and stable SO2 emissions in future. Neutralization factors for K+, NH4+, Ca2+, Na+, and Mg2+ were estimated as 0.06, 0.71, 0.72, 0.15, and 0.13, respectively. The application of multiple regression analysis further quantified higher NH4+ and Ca2+ contribution to the neutralization process, but the dominant neutralizing agent varied from site to site. The neutralization was less pronounced in the rural than urban areas, probably due to different levels of alkaline species, which strongly buffered the acidity. Presence of high concentrations of basic ions was mainly responsible for high pH of precipitation with annual volume-weighted mean (VWM) values larger than 5.6 at several sites. It was estimated that in the absence of buffering ions, for the given concentration of SO4(2-) and NO3-, the annual VWM pH of precipitation would have been recorded around 3.5 across Northern China. This feature suggested that emissions of particles and gaseous NH3 played very important role in controlling the spatial variations of pH of precipitation in the target areas.

  5. Primer on acid precipitation. A killing rain: the global threat of acid precipitation

    SciTech Connect

    Pawlick, T.

    1984-01-01

    This article reviews the book A Killing Rain: The Global Threat of Acid Precipitation by Thomas Pawlick which presents an overview of the problems associated with acid rain. The book covers the effects of acid rain on aquatic ecosystems, forests materials, and agriculture. It also deals with abatement technologies and sociopolitical topics associated with acid rain.

  6. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  7. Acid clouds and precipitation in eastern Colorado

    NASA Astrophysics Data System (ADS)

    Nagamoto, C. T.; Parungo, F.; Reinking, R.; Pueschel, R.; Gerish, T.

    Rain and snow samples were collected at the eastern foothills of the Rocky Mountains and analyzed for chemical composition. Many precipitation samples had pH values considerably more acidic than the 5.6 value of pure water containing only an equilibrium amount of atmospheric CO 2. Clear and considerable dependencies of the acidity on seasonal synoptic scale weather patterns are demonstrated. Cloud water samples, collected by aircraft over eastern Colorado, also showed low pH values. The acidity of clouds was greatest near the city of Denver.

  8. Acid Precipitation: A current awareness bulletin

    SciTech Connect

    Blackburn, P.S.

    1988-01-01

    Acid Precipition (APC) announces on a monthly basis the current worldwide information on acid precipation and closely related subjects, including wet and dry deposition, long-range transport, environmental effects, modeling, and socioeconomic factors. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Data Base (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or goverment-to-government agreements.

  9. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  10. Acid precipitation. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the causes, effects, sources, and controls of acid precipitation and acidification. Techniques and technology for measurement and analysis of acid precipitation are considered. (Contains 250 citations and includes a subject term index and title list.)

  11. Research on the variability of physico-chemical parameters characterising acid precipitation at the Jeziory Ecological Station in the Wielkopolski National Park (Poland).

    PubMed

    Walna, B; Siepak, J

    1999-10-01

    Here the water quality of precipitation at the Adam Mickiewicz University Ecological station is presented for the period 1992-1997 to examine one of the main factors causing the degradation of the natural environment of the Weilkopolski National Park. In the course of daily observations the amount of rainfall, its electrical conductivity and pH were measured. As much as 61% of the tested precipitation had a pH < 4.6, and 92% had a pH < 5.6; some very low pH values, even below 3.0, were occasionally observed. The annual volume-weighted average pH during the full period was 4.28 and the lowest yearly average was 3.92 (1994). The chemical composition of precipitation showed the dominance of sulphate and calcium ions. Fluoride ions also contributed significantly to the anion charge. There were also small amounts of heavy metals and polycyclic aromatic hydrocarbons. A chemical analysis of throughfall showed a considerably increased concentration of some ions, in particular potassium.

  12. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the acid mist that is formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. An acid mist can be formed whenever the flue gas temperature approaches the prevailing acid dew point. This commonly occurs when the gas is subjected to rapid adiabatic cooling in a wet scrubber system for flue gas desulfurization. Acid mists can also sometimes result from unexpected temperature excursions caused by air inleakage, load cycling, and start-up operations. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attach glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. Therefore, this program has been structured around the use of a compact, wet ESP to control acid mist emissions. Progress to date is discussed. 7 refs., 1 fig.

  13. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the acid mist that is formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. An acid mist can be formed whenever the flue gas temperature approaches the prevailing acid dew point. This commonly occurs when the gas is subjected to rapid adiabatic cooling in a wet scrubber system for flue gas desulfurization. Acid mists can also sometimes result from unexpected temperature excursions caused by air inleakage, load cycling, and start-up operations. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attack glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. Therefore, this program has been structured around the use of a compact, wet ESP to control acid mist emissions. 7 refs.

  14. Acid precipitation. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the wet and dry precipitation of acid, and the resultant acidification of land and water. Topics include composition, causes, effects, sources, measurements, and controls of acid precipitation. Some attention is focused upon the worldwide geographical distribution of acid precipitation and acidification. (Contains 250 citations and includes a subject term index and title list.)

  15. Acid precipitation. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning the research of acid precipitation, and the resultant acidification of land and water. Topics include composition, causes, effects, sources, measurements, and controls of acid precipitation. Worldwide geographical distribution of acid precipitation and acidification are covered. (Contains 250 citations and includes a subject term index and title list.)

  16. Acid precipitation. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the research of acid precipitation, and the resultant acidification of land and water. Topics include composition, causes, effects, sources, measurements, and controls of acid precipitation. Worldwide geographical distribution of acid precipitation and acidification are covered. (Contains 250 citations and includes a subject term index and title list.)

  17. Comment on acid precipitation in historical perspective and effects of acid precipitation

    SciTech Connect

    Richter, D.D.

    1983-01-01

    An overview is presented of the history of the problem of acid rain. Lake and stream water are classified as sensitive to acid rain largely on the basis of buffering capacity of soils and geological substrate. Evidence for acid precipitation causing the acidification of lakes and streams on a regional basis is not conclusive. However, soil genesis and forest development can be acidifying processes in humid climates. Acid rain is increasing soil aluminum solubility and leaching to surface water in concentrations toxic to fish. Under natural conditions of podzolization, aluminum is mobilized in surface soils and subsequently retained by spodic subsoils. Whether acid rain appreciably accelerates aluminum leaching from soils is hypothetical. It is concluded from one report that acid precipitation is related to increases in the accumulation and spatial variations of forest floors, soil acidification, exchangeable aluminum, aluminum released from clay, and internal ecosystem H/sup +/ ion production. But, these conclusions are based on limited sampling. 28 references.

  18. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Dahlin, R.S.

    1989-11-01

    Southern Research Institute is developing a compact, wet electrostatic precipitator (WESP) to control acid mist missions from high-sulfur coal combustion. The WESP is being developed as a retrofit technology for existing coal-fired power plants, particularly those equipped with wet flue gas desulfurization (FGD) scrubbers. Acid mist emissions can be a significant problem at these facilities because the sulfuric acid vapor in the flue gas is converted to a very fine mist that is not collected in the scrubber system. Conventional mist eliminators are not adequate in this application due to the very fine size of the mist droplets. The potential for corrosion also makes it difficult to use a fabric filter or a conventional, dry ESP in this application. Therefore, this research project has been structured around the development of a compact WESP that could be retrofit on top of an existing scrubber or within an existing flue gas duct. This paper describes the development and testing of a prototype WESP for the utility acid mist application. Testing was conducted with combustion of sulfur-doped gas to simulate the acid mist alone, and with a combination of coal and sulfur-doped gas to simulate the mixture of acid mist and fly ash downstream from a scrubber. The performance of the WESP test unit was modeled using two different cylindrical-geometry computer models: a current-seeking'' model and a current-specific'' model. 8 refs., 15 figs., 7 tabs.

  19. Comment on comment on ''acid precipitation in historical perspective and effects of acid precipitation''

    SciTech Connect

    Henriksen, A.; Richter, D.D.

    1984-01-01

    The author criticizes the fact that some soil scientists have difficulties in accepting that lakes and stream waters have become acid due to acid rain, because the natural production of acidity in ecosystems is large compared to the contribution from acid rain. He points out that Richter concludes that many of the reported changes, where real, may well result from natural processes with relatively minor contributions from acid precipitation. The author also disagrees with Krug and Frink who recently suggested that SO/sub 4/ from acid rain is exchanged with organic anions originally present in the water, leaving pH essentially unchanged. The author rebuts Henriksen who he says appears to have misunderstood the intent of the original correspondence, which was not to document evidence but rather to assert two generalities; (1) adverse effects of acid deposition on ecosystems are commonly overstated, and (2) the biogeochemistry of ecosystems is easily oversimplified, and natural sources of acidity are often ignored.

  20. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Dahlin, R.S.

    1991-04-01

    This report deals with the second part (Phase 2) of a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP was used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase 1 of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase 2, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the computer model to project the performance of retrofitted WESPs at both of the utility test sites. Phase 1 results showed that excellent electrical operating conditions could be achieved, but very high loadings of acid mist or the fine fly ash tended to degrade electrical operation because of space charge suppression of the corona current. Measurements made at the utility sites under Phase 2 showed that acid mist accounted for 40 to 57% of the total particulate mass, while fly ash and scrubber solids accounted for 40 to 55% and 1.0 to 3.4%. Impactor samples from both test sites showed an increase in acid content with decreasing particle size. 9 refs., 14 figs., 13 tabs.

  1. Ten-year study on acid precipitation nears conclusion

    SciTech Connect

    Olem, H. )

    1990-04-01

    Results from the National Acid Precipitation Assessment Program (NAPAP) are discussed. Final results are contained in 26 state of the science reports. Seven of the reports provide information on acid rain and aquatic ecosystems. They describe the current state of acidic surface waters, watershed processes affecting surface water chemistry, historical evidence for surface water acidification, methods for forecasting future changes, and the response of acidic surface water to liming. Six areas of the country were found to be of special interest: southwest Adirondacks, New England, forested areas of the mid-Atlantic highlands, the Atlantic coastal plain, the northern Florida highlands, parts of northeastern Wisconsin and the Upper Peninsula of Michigan. Environmental effects, mitigation efforts and possible legislation are briefly discussed.

  2. Acid rain and our nation`s capital: A guide to effects on buildings and monuments

    SciTech Connect

    McGee, E.

    1997-03-01

    This booklet focuses on acid rain and its impact on our Nation`s capital. This booklet will define acid rain, explain what effects it has on marble and limestone buildings, and show, on a walking tour, some of the places in our Nation`s capital where you can see the impact of acid precipitation.

  3. The influence of dust events on precipitation acidity in China

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Wang, Shigong; Xia, Junrong; Meng, Xiaoyan; Shang, Kezheng; Xie, Yueyu; Wang, Ruibin

    2013-11-01

    Acid rain and dust events are both serious environmental problems striking China nowadays. This study investigates the distribution and change of precipitation pH and discusses the influence of dust events on precipitation acidity qualitatively and quantitatively in China. Acid rain exhibits remarkable regionality with strong acidic in South China and the acidity gradually decreases from the South to the North. This distribution is decided not only by the concentration of SO2 in atmosphere but also has relationship to the occurrence of dust events. Comparing the monthly changes of precipitation pH in the semiarid region (which is influenced by dust events) with those in the humid region (which is acid rain areas), it is found that the variation trends are just opposite in the two regions and there is an obvious peak value of pH in spring in semiarid region which coincides with the increase of dust event days. Chemical analysis results of precipitation in Lanzhou (a semiarid city intruded by dust events frequently, especially in spring) indicate that the ratio of Ca2+ plus Mg2+ concentrations (indicators of soil dust) to the total cation concentrations is the highest in spring, and the Ca2+ and Mg2+ concentrations are 1.8 and 1.9 times higher in spring than in summer respectively. The acidity of precipitation can be restrained by dust events qualitatively by increasing alkaline materials in the atmosphere and precipitation. The analysis of daily dust events and precipitation data at 6 stations in Northwest China indicates that the pH of precipitation influenced by dust events is greater than the precipitation not influenced by dust events. The increase degrees are different between different stations and have lagging effects. The direct increases are from 0.03 to 0.91 for the precipitation pH. Dust events can promote the precipitation pH to a certain extent quantitatively.

  4. Acid Precipitation Awareness Curriculum Materials in the Life Sciences.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.

    1983-01-01

    Provides an outline of course content for acid precipitation and two acid rain activities (introduction to pH and effects of acid rain on an organism). Information for obtaining 20 additional activities as well as an information packet containing booklets, pamphlets, and articles are also provided. (JN)

  5. Acid Precipitation in the Pacific Northwest.

    ERIC Educational Resources Information Center

    Baldwin, John; Kozak, David

    1988-01-01

    Discusses the causes, sources, and problems associated with acid deposition in the Pacific Northwest. Includes a learning activity about acid rain, "Deadly Skies," which was adapted from the Project WILD Aquatic Supplement. (TW)

  6. Effects of acid precipitation on crops

    SciTech Connect

    Lee, J.J.

    1981-01-01

    The effects of acid rain on crop yield have been studied using field-grown and potted plants. Results have shown that the chemicals in acid rain can affect crop growth and yield at ambient concentrations. For many crops, the dose-response curve probably has at least one peak and crossover point from stimulatory to inhibitory response may depend on other environmental factors. Plant parts often are affected differently, suggesting that acid rain can change the allocation of energy within plants. Available experimental results are not transferable to agricultural situations. The characteristics of acid rain which have the greatest influence on crop yield have not been determined. Interactions between acid rain and other environmental factors have scarcely been studied. Before a believable assessment of the economic impact of acid rain on crops can be done, the mechanisms of response have to be studied and the predictive capability enhanced and validated.

  7. Acid Precipitation: Scientific Progress and Public Awareness.

    ERIC Educational Resources Information Center

    Cowling, Ellis B.

    1983-01-01

    Describes certain perspectives on scientific research and on the public debates about acid deposition and its effects. Although primary attention is given to European/North American research, the ideas developed are relevant in any world region sensitive to acid deposition resulting from intense industrialization. (Author/JN)

  8. Acid precipitation. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the measurement and analysis of acid rain and acidification of areas by precipitation. Both global and regionalized areas of acid rain effects are examined. Control techniques applicable to the sources and causes are discussed. (Contains a minimum of 187 citations and includes a subject term index and title list.)

  9. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the problem of acid mist formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. Acid mists can sometimes constitute a significant portion of the total particulate emissions from power plants burning high-sulfur coals. Complete condensation of 10 ppM of acid vapor produces a condensed acid mass loading of about 0.02 gr/dscf or 0.03 lb/MBtu, equivalent to the total allowable mass emissions under the revised (1979) New Source Performance Standards (2). The purpose of this project is to develop and demonstrated a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. The project is organized in two phases. Phase I involved the WESP fabrication, laboratory and pilot combustor testing, and computer modeling. Phase II involves the solicitation of a utility demonstration site, preliminary site measurements, and planning for the demonstration test program. Only Phase II work will be addressed in this discussion which includes: site selection, site measurements, computer modeling and demonstration plan, and phase II reporting. 9 refs., 11 figs., 7 tabs.

  10. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1989-01-01

    The purpose of this project is to develop and demonstrate a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. The following are project objectives: (1) fabrication of laboratory-version of the WESP; (2) optimization of the WESP performance through laboratory tests with a non-volatile simulant aerosol having a size distribution similar to the acid mist; (3) demonstration of adequate collection of actual acid mist in a pilot coal combustion facility under conditions simulating full-scale power plant burning high-sulfur coal; (4) development of computer model of the WESP process must be developed to assist in the process optimization, interpretation of test results, and extrapolation to full scale; and (5) solicitation of utility participation in a follow-on demonstration of the WESP concept at a full-scale power plant. The WESP fabrication, laboratory and pilot combustor testing, and computer modeling is discussed. 5 refs., 5 figs.

  11. West Virginia trout streams: target for acid precipitation

    SciTech Connect

    Gasper, D.C.

    1983-01-01

    West Virginia is greatly effected by the Ohio River Valley sources of sulfur because of the westerly winds. Estimates indicate that before 1930 the pH of precipitation was above 5.3, but now the average pH is 4.2. The effects of pollution on trout streams are discussed from two points of view. First, the streams have little ability to neutralize acid from any source, and they are very near (or below) the threshold of a trout's acid tolerance. Secondly, since stream nutrient levels are largely a product of drainage, the hypothesis is presented that if the air is cleaned up the trout streams will be lost. The increased acid activity is leaching from the soil the nutrients that are necessary to maintain the trout populations. Acid shock events are discussed in relation to water quality by acid rain. Present levels of acidity in precipitation threatens over 1/4 of West Virginia trout water with extinction.

  12. Effects of acidic precipitation on field crops

    SciTech Connect

    Evans, L.S.; Hendrey, G.R.; Lewin, K.F.; Gmur, N.F.

    1982-02-01

    The effects of acid rain on yields of field-grown soybeans has been investigated. Plants exposed to simulated rainfalls of pH 4.1, 3,3 and 2.7 had decreased seed yields of 10.6, 16.8 and 23.9% below yields of plants exposed to simulated rainfalls of pH 5.6. (ACR)

  13. Precipitation diagrams and solubility of uric acid dihydrate

    NASA Astrophysics Data System (ADS)

    Babić-Ivančić, V.; Füredi-Milhofer, H.; Brown, W. E.; Gregory, T. M.

    1987-07-01

    The solubility of uric acid dihydrate (UA·2H 2O) and the precipitation of UA·2H 2O and anhydrous uric acid (UA) from solutions containing sodium hydroxide and hydrochloric acid have been investigated. For the solubility studies, crystals of pure UA·2H 2O were prepared and equilibrated with water and with solutions of HCl or NaOH for 60 min or 20 h, respectively. The equilibrium pH (pH = 2-6.25) and uric acid concentration were determined. For the precipitation experiments, commercial UA was dissolved in NaOH in a 1:1.1 molar ratio and UA·2H 2O and/or UA were precipitated with hydrochloric acid. The precipitates and/or supernatants were examined 24 h after sample preparation. The results are represented in the form of tables, precipitation diagrams and "chemical potential" diagrams. Solubility measurements with 60 min equilibration times yielded the solubility products of UA·2H 2O, K sp(298 K) = (0.926 ± 0.025) × 10 -9mol2dm-6 and K sp(310 K) = (2.25 ± 0.05) × 10 -9mol2dm-6 and the first dissociation constants of uric acid, K 1(298 K) = (2.45 ± 0.07) × 10 -6moldm-3 and K 1(310 K) = (3.63 ± 0.08) × 10 -6moldm-3. Precipitation diagrams show that under the given experimental conditions, at 298 K, UA·2H 2O is stable for 24 h while at 310 K this was true only for precipitates formed from solutions of high supersaturations. At lower supersaturations, mixtures of UA·2H 2O and UA formed. Consequently, while the Ksp value determined from precipitation data obtained at 298 K (K sp = 1.04 × 10 -9mol2dm-6) was consistent with the respective solubility product, the 310 K precipitation boundary yielded an ion activity product, AP, the value of which fulfills the conditions Ksp(UA) < AP < Ksp (UA·2H 2O). Similar ion activity products were obtained from solubility measurements in pure water at 20 h equilibration time.

  14. Compositions and method for controlling precipitation when acidizing sour wells

    SciTech Connect

    Dill, W.R.; Walker, M.L.

    1989-12-19

    This patent describes an acidizing composition for treating a sour well. It comprises: a base acid solution having an initial ph below 1.9; an iron sequestering agent to combine with iron present in the solution comprising at least one compound selected from the group consisting of aminopolycarboxylic acids, hydroxycarboxylic acids, cyclic polyethers and derivatives of the acids and ethers present in an amount of from about 0.25 to about 5 percent by weight of the acid solution; and a sulfide modifier to combine with sulfides present in the solution comprising at least one member selected from the group consisting of an aldehyde, acetal, hemiacetal and any other compound capable of forming an aldehyde in solution, present in an amount of from about 1 to about 4 percent by weight of the acid solution, whereby precipitation of ferric hydroxide, ferrous sulfide and elemental sulfur is inhibited as acid spending occurs.

  15. Acidic precipitation: considerations for an air-quality standard

    SciTech Connect

    Evans, L.S.; Hendrey, G.R.; Stensland, G.J.; Johnson, D.W.; Francis, A.J.

    1980-01-01

    Acidic precipitation, wet or frozen deposition with a hydrogen ion concentration greatern than 2.5 ..mu..eq l/sup -1/ is a significant air pollution problem in the United States. The chief anions accounting for the hydrogen ions in rainfall are nitrate and sulfate. Agricultural systems are more likely to derive net nutritional benefits from increasing inputs of acidic rain than are forest systems when soils alone are considered. Agricultural soils may benefit because of the high N and S requirements of agricultural plants. Detrimental effects to forest soils may result if atmospheric H/sup +/ inputs significantly add to or exceed H/sup +/ production by soils. Acidification of fresh waters of southern Scandinavia, southwestern Scotland, southeastern Canada, and northeastern United States is caused by acid deposition. Areas of these regions in which this acidification occurs have in common, highly acidic precipitation with volume weighted mean annual H/sup +/ concentrations of 25 ..mu..eq l/sup -1/ or higher and slow weathering granitic or precambrian bedrock with thin soils deficient in minerals which would provide buffer capacity. Biological effects of acidification of fresh waters are detectable below pH 6.0. As lake and stream pH levels decrease below pH. 6.0, many species of plants, invertebrates, and vertebrates are progressively eliminated. Generally, fisheries are impacted below pH 5.0 and are completely destroyed below pH 4.8. There are few studies that document effects of acidic precipitation on terrestrial vegetation to establish an air quality standard. It must be demonstrated that current levels of precipitation acidity alone significantly injure terrestrial vegetation. In terms of documented damanges, current research indicates that establishing a standard for precipitation for the volume weighted annual H/sup +/ concentration at 25 ..mu..eq l/sup -1/ may protect the most sensitive areas from permanent lake acidification.

  16. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  17. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-12-05

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements.

  18. Teacher's Resource Guide on Acidic Precipitation with Laboratory Activities.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    The purpose of this teacher's resource guide is to help science teachers incorporate the topic of acidic precipitation into their curricula. A survey of recent junior high school science textbooks found a maximum of one paragraph devoted to the subject; in addition, none of these books had any related laboratory activities. It was on the basis of…

  19. Acidic precipitation, Vol. 2: Biological and ecological effects

    SciTech Connect

    Adriano, D.C.; Johnson, A.H.

    1989-01-01

    Acidic precipitation has its origin in emissions to the atmosphere of numerous compounds from both natural and man-made sources. The chapters in this volume cover a wide array of topics on the biological and ecological effects of acidic precipitation. A chapter on soil productivity emphasizes changes in biological and chemical characters of forest soils impacted by acidic deposition. Additional chapters discuss specific effects on soil microorganisms, trees, and crops. The importance of aluminum in this environmental issue is highlighted by a discussion on the mobility and phytotoxicity of this element in acidic soils. This chapter puts into perspective the biology of Al stressed plants. Two major chapters discuss the effect of acidic precipitation on forest ecosystems; one emphasizing North America, and the other Europe. Effects of soil acidification on key soil processes, including litter decomposition and depletion of essential plant nutrients in the soil profile are emphasized. Finally, three major chapters comprehensively cover limnological ecosystems and their response to acidic perturbation. These chapters discuss the response of stream and lake communities, both floral and faunal, to water acidification, including reduced biodiversity in these systems. Ten chapters have been processed separately for inclusion in the appropriate data bases.

  20. Acid precipitation impacts on agricultural soil management practices

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Coveney, E.A.; Lewin, K.F.; Rosenthal, R.E.

    1986-02-01

    Acid precipitation can have positive (reduced nitrogen fertilizer requirements) and negative (increased need to neutralize soil acidity) impacts on agricultural soil management practices. This paper compares the total annual deposition of nitrogen in acid precipitation with farmer applied fertilizer use and with nitrogen uptake for major crops. It also estimates the amount of lime needed to neutralize soil acidity originating from wet H/sup +/ deposition. First-order estimates indicate that the quantity of nitrogen annually deposited in the eastern US by wet acid deposition on croplands is 6% of the amount applied as fertilizer. Nitrogen deposited as wet deposition may be relatively important to unmanaged nonleguminous crops (e.g., hay) which are grown over extensive land areas. Soil acidity, which can be increased by natural (e.g., nitrogen fixation) and anthropogenic mechanisms (e.g., fertilizer application, acidic deposition) is often neutralized by the application of lime. Estimates indicate that in the eastern US, approx.2% of applied lime is used to neutralize acidity caused by wet acid deposition.

  1. Combined electrostatic precipitator and acidic gas removal system

    SciTech Connect

    Sparks, L.E.; Plaks, N.

    1989-12-05

    This patent describes a method of retrofitting an apparatus for removing acidic gas and particulate matter from air. The device to be retrofit including an electrostatic precipitator, lacking a precharger, positioned within a housing, a flue gas generating means outside the housing, an entry port in the housing and upstream of the electrostatic precipitator; an exit port in the housing and downstream of the electrostatic precipitator; and ductwork, outside the housing, leading from the generating means to the entry port. The retrofitting comprising the steps of: substituting electrostatic filtration units, for dry electrostatic precipitation, each comprising a precharger and a downstream particle collector having wires of from 1/4 to 1/2 inch in diameter for the electrostatic precipitator. The substituted units being designed so as to occupy less space in the housing that the electrostatic filter lacking a precharger, thereby leaving free space within the housing between a one of the prechargers which is first downstream from the entry port and the exit port and inserting an acidic gas removal means, within the housing.

  2. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-01

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. PMID:26705889

  3. Acidic precipitation: a technical amplification of NAPAP's findings

    SciTech Connect

    Lefohn, A.S.; Krupa, S.V.

    1988-06-01

    In September 1987, NAPAP released a 4-volume, 925 page interim report that summarized the effects of acidic precipitation on crops, forests, aquatic ecosystems, visibility, and human health. Following the release of the report, APCA coordinated an international conference to provide a forum for the technical amplification of the conclusions reached in NAPAP's report. Scientists from the United States and Canada were invited to participate in the conference. The focus of the meeting was concerned only with the technical aspects of the NAPAP report. At the conference, there were important research concepts presented that may require further attention before definitive, bottom line statements can be made concerning the effects of acid precipitation on the environment. The purpose of this paper is to summarize the key technical points made at the conference and provide NAPAP with additional scientific inputs as it begins to prepare for its 1990 Final Assessment Report.

  4. Precipitation polymerization of acrylic acid in supercritical carbon dioxide

    SciTech Connect

    Romack, T.J.; Maury, E.E.; DeSimone, J.M.

    1995-02-13

    Increasing concern regarding the dissemination of chemical waste (both aqueous and organic) into their environment has prompted considerable interest in new technologies aimed at reducing current waste streams. Processes utilizing carbon dioxide in lieu of conventional solvents for chemical manufacturing and processing provide a viable route to achieving near-zero waste production for these important industries. The authors report the successful precipitation polymerization of acrylic acid in supercritical carbon dioxide at pressure ranging from 125 to 345 bar utilizing AIBN as a free radical initiator. Analyses by gel permeation chromatography (GPC) and scanning electron microscopy (SEM) indicate that for the pressure range studied there is no appreciable effect on product molecular weight, molecular weight distribution, or particle size or morphology. In addition, effective molecular weight control was demonstrated for precipitation polymerizations of acrylic acid in CO{sub 2} through the use of ethyl mercaptan as a chain transfer agent.

  5. Impact of effects of acid precipitation on toxicity of metals.

    PubMed

    Nordberg, G F; Goyer, R A; Clarkson, T W

    1985-11-01

    Acid precipitation may increase human exposure to several potentially toxic metals by increasing metal concentrations in major pathways to man, particularly food and water, and in some instances by enhancing the conversion of metal species to more toxic forms. Human exposures to methylmercury are almost entirely by way of consumption of fish and seafood. In some countries, intakes by this route may approach the levels that can give rise to adverse health effects for population groups with a high consumption of these food items. A possible increase in methylmercury concentrations in fish from lakes affected by acid precipitation may thus be of concern to selected population groups. Human exposures to lead reach levels that are near those associated with adverse health effects in certain sensitive segments of the general population in several countries. The possibility exists that increased exposures to lead may be caused by acid precipitation through a mobilization of lead from soils into crops. A route of exposure to lead that may possibly be influenced by acid precipitation is an increased deterioration of surface materials containing lead and a subsequent ingestion by small children. A similar situation with regard to uptake from food exists for cadmium (at least in some countries). Human metal exposures via drinking water may be increased by acid precipitation. Decreasing pH increases corrosiveness of water enhancing the mobilization of metal salts from soil; metallic compounds may be mobilized from minerals, which may eventually reach drinking water. Also, the dissolution of metals (Pb, Cd, Cu) from piping systems for drinking water by soft acidic waters of high corrosivity may increase metal concentrations in drinking water. Exposures have occasionally reached concentrations which are in the range where adverse health effects may be expected in otherwise healthy persons. Dissolution from piping systems can be prevented by neutralizing the water before

  6. Acid precipitation--effects on trace elements and human health.

    PubMed

    Gerhardsson, L; Oskarsson, A; Skerfving, S

    1994-08-22

    Environmental pollution by acid precipitation increases the solubilization and mobilization of toxic metals. Through the food chain, this may alter the intake of toxic and essential elements in man. Potential adverse health effects could follow after increased human exposure. For the general population, the exposure pattern and health effects caused by aluminium, cadmium, lead and mercury are of particular concern. Although there are several indications that the exposure to toxic elements (e.g. aluminium, cadmium, lead and methylmercury), as well as the intake of essential elements (e.g. selenium), may be affected by acid precipitation, there is presently no firm evidence of adverse health effects in man. However, the present data clearly indicate that the safety margins are small. Thus, the ongoing acidification in many areas must be stopped before such effects become evident. The effects on trace element status and human health by acid precipitation were discussed at the ISTERH (International Society for Trace Element Research in Humans) Conference in Stockholm, May, 1992. The main findings are briefly summarized here.

  7. Precipitation-chemistry measurements from the California Acid Deposition Monitoring Program, 1985-1990

    USGS Publications Warehouse

    Blanchard, Charles L.; Tonnessen, Kathy A.

    1993-01-01

    The configuration of the California Acid Deposition Monitoring Program (CADMP) precipitation network is described and quality assurance results summarized. Comparison of CADMP and the National Acid Deposition Program/National Trends Network (NADP/NTN) data at four parallel sites indicated that mean depth-weighted differences were less than 3 μeq ℓ−1 for all ions, being statistically significant for ammonium, sulfate and hydrogen ion. These apparently small differences were 15–30% of the mean concentrations of ammonium, sulfate and hydrogen ion. Mean depth-weighted concentrations and mass deposition rates for the period 1985–1990 are summarized; the latter were highest either where concentrations or precipitation depths were relatively high.

  8. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-09-06

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria.

  9. Evaluation of OTT PLUVIO Precipitation Gage versus Belfort Universal Precipitation Gage 5-780 for the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Tumbusch, Mary L.

    2003-01-01

    The National Atmospheric Deposition Program, a cooperative effort supported by Federal, State, and local agencies, and Indian Tribes, was established in 1977 to study atmospheric deposition and its impact on the environment. The program's National Trends Network now includes wet-deposition networks at more than 250 sites across the United States, Canada, Puerto Rico, and the Virgin Islands. Precipitation amounts are currently measured using a Belfort Universal Precipitation Gage 5-780, which involves technology that is more than 50 years old. In 1999, a three-phase study was begun to evaluate several weighing, all-weather precipitation gages to find a possible replacement for the Belfort Universal Precipitation Gage 5-780. One gage that performed consistently well in phase I and II testing was the OTT PLUVIO Precipitation Gage. Phase III of the study, discussed herein, was to determine the accuracy and comparability of the data sets collected by the OTT PLUVIO Precipitation Gages and the existing Belfort Universal Precipitation Gage 5-780. Seven OTT PLUVIO Precipitation Gages were installed at six National Trends Network sites across the country for a data-collection period of approximately 18 months. The NovaLynx Model 260-2510 Standard Rain and Snow Gage also was used, as a reference, at two of the sites. Paired t-tests analysis showed no significant differences in precipitation measurements between the Belfort Universal Precipitation Gage 5-780 and the OTT PLUVIO Precipitation Gages at three of the six sites. When the false positives were removed from the precipitation-event data sets, the gages at all sites were in agreement and the paired t-tests showed the gage measurements were not significantly different. A false positive is defined as a zero response from the Belfort Universal Precipitation Gage 5-780 concurrent with a recorded response from the OTT PLUVIO Precipitation Gage.

  10. Acid deposition: a national problem

    SciTech Connect

    Hendrey, G.R.

    1985-01-01

    The deposition of excessive quantities of sulfur and nitrogen from the atmosphere constitutes a problem encompassing all of the United States east of the Mississippi River. It also occurs in some areas of the western US. Calculations based on emission inventories and simplifying assumptions indicate electric utilities account for 66% of SO/sub 2/ emissions, 29% of NO/sub x/ emissions and about half of precipitation acidity. Acidification of clearwater lakes and streams is a widespread problem only in areas receiving rain with an average acidity less than or equal to 4.7. The dominant anion in such waters is SO/sub 4//sup 2 -/ and concentrations of aluminum derived from watershed acidification may exceed 200 ..mu..g 1/sup -1/. Changes in assemblages of aquatic biota become increasingly apparent as pH decreases below 6.0, and elimination of fish from some waters has been documented. The sensitivity of surface waters is controlled by and represents an integration of biogeochemical processes in their edaphic settings. Changes in surface water chemistry imply changes in the terrestrial environment. Direct evidence of changes in terrestrial environments is sparse. Nevertheless, observations of forest dieback in the US and abroad suggest that acid deposition may contribute to the problem. Very few credible studies are available which allow an evaluation of acid precipitation effects on crops.

  11. Potential impact of acid precipitation on arsenic and selenium.

    PubMed Central

    Mushak, P

    1985-01-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075

  12. Potential impact of acid precipitation on arsenic and selenium.

    PubMed

    Mushak, P

    1985-11-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling.

  13. A model of annual orographic precipitation and acid deposition and its application to Snowdonia

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Mousavi-Baygi, M.; Smith, R. I.; Hall, J.; Fowler, D.; Choularton, T. W.

    A model of orographic rainfall has been used to estimate annual precipitation and acid wet deposition at a 1 km resolution for the Snowdonia mountains in North Wales. Comparison with measurements and existing rainfall maps of the UK showed that this approach was successful in reproducing the high annual precipitation peaks of up to 4000 mm annually that occur in this area. At 13 out of the 17 measurement sites, the modelled annual precipitation differed from long-term annual average measurements by no more than 25%. The process model was compared with a procedure used to map wet deposition of pollutants across the United Kingdom at a 5 km resolution. Significant differences between the two deposition data sets were apparent. With the mapping procedure, maximum wet deposition was correlated to areas of high precipitation in the northeast of the domain. With the process model, however, maximum deposition was observed over the smaller hills in the southwest of the domain, the first orographic barrier reached by the air mass in south-westerly flow. High exceedances of critical loads for acidic deposition to soils were calculated using the mapping procedure and found to be due to the high annual precipitation in Snowdonia. The seeder-feeder model represents a useful tool, which could be used for estimating annual wet deposition of pollutants and exceedance of critical loads in hill areas at a much finer resolution than the national transport models and deposition mapping routines that are commonly employed in the United Kingdom.

  14. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  15. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  16. Precipitation of biomimetic fluorhydroxyapatite/polyacrylic acid nanostructures

    NASA Astrophysics Data System (ADS)

    Roche, Kevin J.; Stanton, Kenneth T.

    2015-01-01

    Ordered structures of fluorhydroxyapatite (FHA) nanoparticles that resemble the nanostructure of natural human enamel have been prepared. Wet precipitation in the presence of polyacrylic acid (PAA) was used, and the particle morphology was altered by varying several reaction conditions. High molecular weight PAA increased particle length from around 54 nm to several hundred nanometres, while maintaining particle width at 15 nm. PAA concentration and the order of mixing the reactants also influenced crystal morphology. Optimum conditions produced dense, aligned bundles of highly elongated nanorods, which are very similar to the hierarchical nanostructure of human tooth enamel.

  17. Acid precipitation and embryonic mortality of spotted salamanders, Ambystoma maculatum.

    PubMed

    Pough, F H

    1976-04-01

    Spotted salamanders breed in temporary pools formed in early spring by melted snow and rain. Many of these pools reflect the low pH of precipitation in the northeastern United States. Egg mortality is low (less than 1 percent) in pools near neutrality, but high (greater than 60 percent) in pools more acid than pH 6. Developmental anomalies and the embryonic stage at which death occurs are the same in field situations as at corresponding pH's in laboratory experiments.

  18. Impact of acid precipitation on recreation and tourism in Ontario: an overview

    SciTech Connect

    Not Available

    1984-01-01

    The impacts of acid precipitation on fishing opportunities, waterfowl and moose hunting, water contact activities, and the perception of the environment in Ontario are analyzed. Economic effects and future research needs are also estimated and discussed. These questions have been examined by identifying the likely links between acidic precipitation and recreation and tourism, by developing estimates of the importance of aquatic-based recreation and tourism, by describing the current and estimated future effects of acid precipitation. 101 references, 9 figures, 19 tables.

  19. National Atmospheric Deposition Program (NADP) Networks: Data on the chemistry of precipitation

    DOE Data Explorer

    The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide network of sites collecting data on the chemistry of precipitation for monitoring of geographical and temporal long-term trends. The precipitation at each station is collected weekly according to strict clean-handling procedures. It is then sent to the Central Analytical Laboratory where it is analyzed for hydrogen (acidity as pH), sulfate, nitrate, ammonium, chloride, and base cations (such as calcium, magnesium, potassium and sodium). The network is a cooperative effort between many different groups, including the State Agricultural Experiment Stations, U.S. Geological Survey, U.S. Department of Agriculture, and numerous other governmental and private entities. DOE is one of these cooperating agencies, though it plays a smaller funding role than some of the other federal sources. Since 1978, the NADP/NTN has grown from 22 stations to over 250 sites spanning the continental United States, Alaska, and Puerto Rico, and the Virgin Islands. The National Atmospheric Deposition Program has also expanded its sampling to two additional networks: 1) the Mercury Deposition Network (MDN), currently with over 90 sites, was formed in 1995 to collect weekly samples of precipitation which are analyzed by Frontier Geosciences for total mercury, and 2) the Atmospheric Integrated Research Monitoring Network (AIRMoN), formed for the purpose of studying precipitation chemistry trends with greater temporal resolution than the NTN. [taken from the NADP History and Overview page at http://nadp.sws.uiuc.edu/nadpoverview.asp] Data from these networks are freely available in via customized search interfaces linked to interactive maps of the stations in the three networks. Animated Isopleth maps in Flash and PowerPoint are also available to display concentrations and depositions various substances such as sulfate, nitrate, etc. (Specialized Interface)

  20. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  1. Occurrence of acid precipitation on the West Coast of the United States

    SciTech Connect

    Powers, C.F.; Rambo, D.L.

    1981-01-01

    Compilation of published and unpublished data shows acid precipitation to be more widespread in the Pacific coastal states than is generally recognized. Although information is scattered and discontinuous, precipitation is definitely acidic in the Los Angeles Basin and north-central California and in the Puget Sound region in Washington. Acid-rain occurrences were observed in western and eastern Oregon, but data are inadequate for regional generalization. New stations currently being established in Washington and Oregon, largely in response to the recently renewed activity of Mount St. Helens, will greatly facilitate assessment of precipitation acidity in the Northwest.

  2. The occurrence of acid precipitation on the west coast of the United States.

    PubMed

    Powers, C F; Rambo, D L

    1981-06-01

    Compilation of published and unpublished data shows acid precipitation to be more widespread in the Pacific coastal states than is generally recognized. Although information is scattered and discontinuous, precipitation is definitely acidic in the Los Angeles Basin and north-central california, and in the Puget Sound region in Washington. Acid rain occurrences have been observed in western and eastern Oregon, but data are inadequate for regional generalization. New stations currently being established in Washington and Oregon, largely in resposnse to the recently renewed activity of Mount St. Helens, will greatly facilitate assessment of precipitation acidity in the Northwest.

  3. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  4. Acid-Base and Precipitation Equilibria in Wine

    ERIC Educational Resources Information Center

    Palma, Miguel; Barroso, Carmelo G.

    2004-01-01

    Experiments are performed to establish the changes of pH during the precipitation of potassium hydrogen tartrate, with its unfavorable impact on the stability of wine. Students, thus, obtain a clearer understanding of the interplay between a variety of chemical equilibria within a single medium.

  5. Compositions and method for controlling precipitation when acidizing sour wells

    SciTech Connect

    Dill, W.R.; Walker, M.L.

    1990-08-21

    This patent describes a method of treating a sour well penetrating a subterranean formation. It comprises: introducing into the well a treating fluid comprising an acid solution having a pH below 1.9, an iron sequestering agent comprising at least one compound selected from the group consisting of aminopolycarboxylic acids, hydroxycarboxylic acids, cyclic polyethers and derivatives of the acids and ethers, present in an amount of from about 0.25 to about 5 percent by weight of the acid solution, and a sulfide modifier comprising at least one compound selected from the group consisting of an aldehyde, acetal, hemiacetal and any other compound capable of forming aldehydes in the acid solution, present in an amount of from about 0.25 to about 5 percent of the acid solution; and treating the subterranean formation with the treating fluid.

  6. Ecological effects of acid precipitation on primary producers

    SciTech Connect

    Conway, H.L.; Hendrey, G.R.

    1981-01-01

    Non-acidic, oligotrophic lakes are typically dominated by golden-brown algae, diatoms and green algae. With increasing acidity, the number of species decrease and the species composition changes to dinoflagellates and golden-brown algae, with blue-green algae dominating in some cases. For macrophytic plants, dense stands of Sphagnum and Utricularia are found in some acidic lakes which may reduce nutrient availability and benthic regeneration. Hydrogen ion concentration does not appear to be as important as inorganic phosphorus in controlling primary production and biomass in acidic lakes. In acidic, oligotrophic lakes, benthic plants may have a competitive advantage over pelagic algae because of the high concentrations of inorganic carbon and phosphorus available to them in the sediment.

  7. [Concentrations and acidity contributions of acetate and formate in precipitation at 14 stations of China].

    PubMed

    He, Xiao-huan; Xu, Xiao-bin; Yu, Xiao-lan; Tang, Jie

    2010-04-01

    To investigate the concentrations of organic acids in precipitation in China and their contributions to the total acidity of precipitation, samples were taken at 14 stations of regional representativeness in 2007 and analyzed for acetate and formate using ion chromatography. In this paper, data of acetate and formate in precipitation at 14 stations are presented, wet depositions of these organic acids are calculated, and contributions of them to the total free acidity (TFA) of precipitation are estimated. Based on the measurements, the mean concentrations of formate at different stations were in the range of 0.96-3.43 micromol/L, and those of acetate in the range of 0-5.13 micromol/L, close to the levels at remote sites in other countries and at the lower ends of concentration ranges from previous measurements in China. Comparisons indicate that the concentrations of the organic acids at remote sites are lower than those at sites in the vicinity of urban areas. The annual wet depositions of formate and acetate were estimated to be in the ranges of 0.38-4.18 mmol/(m2 x a) and 0.06-5.87 mmol/(m2 x a), respectively, with larger depositions in southern China and smaller depositions in northern China. The relative contributions of the two organic acids to the TFA of precipitation were estimated to be in the range of 0.02%-51.6%, with an overall average of 2.95%. This suggests that although acid rain in China is mainly caused by emissions of sulfur and nitrogen oxides, organic acids can significantly contribute to the acidification of precipitation in some regions and during some periods, hence need to be included in observational studies of acid rain.

  8. Considerations of an air-quality standard to protect terrestrial vegetation from acidic precipitation

    SciTech Connect

    Evans, L.S.

    1981-01-01

    Studies on the effects of acidic precipitation which is here defined as wet or frozen deposition with a hydrogen ion concentration greater than 2.5 ..mu..eq 1/sup -1/, are reviewed. At the present time there is an inadequate amount of information that shows decreases in crop growth except for one field study. Most studies with plants (crops and forests) are inadequate for standard setting because they are not conducted in the field with adequate randomization of plots coupled with rigorous statistical analyses. Although visible injury to foliage has been documented in a variety of greenhouse studies, no experimental evidence demonstrates loss of field crop value or reduction in plant productivity due to visible foliar injury. Acidic precipitation can contribute nutrients to vegetation and could also influence leaching rates of nutrients from vegetation. Although these processes occur, there are no data that show changes in nutrient levels in foliage that relate to crop or natural ecosystem productivity. Experimental results show that fertilization of ferns is inhibited by current levels of acidic precipitation in the northeastern United States. However, the overall impacts of inhibited fertilization on perpetuation of the species or ecosystem productivity have not been evaluated. Simulated acidic precipitation has been shown to effect plant pathogens in greenhouse and field experiments. Simulated acidic precipitation inhibited pathogen activities under some circumstances and promoted pathogen activities under other circumstances. No conclusion can be drawn about the effects of current levels of precipitation acidity on plant pathogen-host interactions. From these data it must be concluded that research on the effects of acidic precipitation on terrestrial vegetation is too meager to draw any conclusions with regard to an air quality standard.

  9. Acid Precipitation Learning Materials: Science, Environmental and Social Studies, Grades 6-12.

    ERIC Educational Resources Information Center

    Hessler, Edward W.

    The major environmental problem of acid precipition is addressed through a series of activities contained in this guide for teachers of grades 6 through 12. Exercises are provided to help students learn science inquiry skills, facts, and concepts while focusing on the acid rain situation. Activities are organized by content areas. These include:…

  10. Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid

    SciTech Connect

    Dabbs, Daniel M.; Ramachandran, Usha; Lu, Sang; Liu, Jun; Wang, Li Q.; Aksay, Ilhan A.

    2005-12-06

    Citric acid has been shown to act as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous suspensions of aluminum-containing particles. Solutions of aluminum chloride, with and without citric acid added, were titrated with NaO(aq). The presence and size of particles were determined using quasi-elastic light scattering. In solutions that contained no citric acid, particles formed instantaneously when NaOH(aq) was added but these were observed to rapidly diminish in size, disappearing at OH/Al ratios below 2.5 mol/mol. When the OH/Al ratio was raised beyond 2.5 by addingmoreNaOH(aq), suspensions of colloidally stable particles formed. Large polycations containing 13 aluminum atoms were detected by 27Al solution NMR in citric-acid-free solutions with OH/Al ratios slightly lower than 2.5. In comparison, adding citric acid to solutions of aluminum chloride inhibited the formation of large aluminum-containing polycations. The absence of the polycations prevents or retards the subsequent formation of particles, indicating that the polycations, when present, act as seeds to the formation of new particles. Particles did not form in solutions with a citric acid/aluminum ratio of 0.8 until sufficient NaOH(aq) was added to raise the OH/Al ratio to 3.29. By comparison, lower amounts of citric acid did not prevent particles from forming but did retard the rate of growth.

  11. Effects of acid precipitation on cation transport in New Hampshire forest soils. Technical completion report

    SciTech Connect

    Cronan, C.S.

    1981-07-01

    This report describes the results of our investigation of the effects of regional acid precipitation on forest soils and watershed biogeochemistry in New England. The report provides descriptions of the following research findings: (1) acid precipitation may cause increased aluminum mobilization and leaching from soils to sensitive aquatic systems; (2) acid deposition may shift the historic carbonic acid/organic acid leaching regime in forest soils to one dominated by atmospheric H/sub 2/SO/sub 4/; (3) acid precipitation may accelerate nutrient cation leaching from forest soils and may pose a particular threat to the potassium resources of northeastern forested ecosystems; (4) while acid rain may pass through some coniferous canopies without being neutralized, similar inputs of acid rainfall to hardwood canopies may be neutralized significantly by Bronsted base leaching and by leaf surface ion exchange mechanisms; and (5) progressive acid dissolution of soils in the laboratory may provide an important tool for predicting the patterns of aluminum leaching from soils exposed to acid deposition.

  12. [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].

    PubMed

    Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E

    2015-05-01

    Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.

  13. Reconciling Empirical Carbonate Clumped Isotope Calibrations: A Comparison of Calcite Precipitation and Acid Digestion Methods

    NASA Astrophysics Data System (ADS)

    Kelson, J.; Huntington, K. W.; Schauer, A. J.; Saenger, C.; Lechler, A. R.

    2015-12-01

    An accurate empirical calibration is necessary to confidently apply the carbonate clumped isotope (Δ47) thermometer. Previous synthetic carbonate calibrations disagree in temperature sensitivity, with one group of calibrations displaying a shallow Δ47-temperature slope (e.g., Dennis & Schrag, GCA, 2010), and the other a steep slope (e.g., Zaarur et al., EPSL, 2013). These calibrations differ in both the method of mineral precipitation and the temperature of the phosphoric acid used to digest carbonates for analysis, making it difficult to isolate the cause of the discrepancy. Here, we precipitate synthetic carbonates at temperatures of 6-80ºC using 4 different precipitation methods, and analyze the samples using both 90 and 25°C acid digestion. Precipitation experiments varied the use of salts (NaHCO3 and CaCl2) vs. dissolved CaCO3 as a starting solution, the use of carbonic anhydrase to promote isotopic equilibrium among dissolved inorganic carbon species in solution, and the method by which CO2 degasses to force carbonate precipitation. Carbonates precipitated by using salts and allowing CO2 to passively degas produce a shallow calibration slope that we hypothesize to approach isotopic equilibrium. Precipitation methods that bubble CO2 into solution then degas that CO2 (either passively or actively by bubbling N2) produce carbonates with consistently lower Δ47 and higher δ18O values for a given growth temperature. We infer that these carbonates grew in disequilibrium during rapid CO2 degassing. Varying acid digestion temperature does not change the results; acid fractionation factor is not correlated with grain size, Δ47, or d47 values. No precipitation method produces a steep calibration slope. Our large sample set of >60 carbonates lend confidence to a shallow slope calibration, and inform interpretations of Δ47 and δ18O values of natural carbonates that grow under conditions of isotopic disequilibrium.

  14. An evaluation of trends in the acidity of precipitation and the related acidification of surface water in North America

    USGS Publications Warehouse

    Turk, John T.

    1983-01-01

    The acidity of precipitation in the Northeastern United States and Southeastern Canada has increased in the past, probably as a result of anthropogenic emissions. The increase in New England and New York occurred primarily before the mid-1950's. Since the mid1960's, there has been no significant change in the acidity of precipitation in this region; however, sulfate concentrations have decreased and nitrate concentrations may have increased. The time of initial acidification in Southeastern Canada is not known because of a lack of historical data. In the Southeastern United States, the evaluation of whether precipitation has been acidified is complicated by meager data. The available data show that precipitation is more acidic than would be expected for sites unaffected by anthropogenic emissions. In addition, comparison of recent data with the meager historical data suggests, but does not unambiguously prove, increased acidification since the 1950's. In the Western United States, available data indicate that precipitation at individual sites has been acidified by anthropogenic emissions. The acidification generally has been attributable to localized sources, and the time of initial acidification is undefined. Acidification of lakes and streams in the Northeastern United States has occurred in a time frame compatible with the hypothesis that acidification of precipitation was the cause. The acidification of surface waters appears to have occurred before the mid- to late 1960's. In Southeastern Canada, the best-documented cases of acidified lakes point to localized sources of acidic emissions as the cause. Sparse evidence of recent regional acidification of lakes and streams exists, but evidence for acidification of precipitation as the cause is largely lacking. In the Southeastern United States, most data on acidification of surface waters are ambiguous, and in the West, most of the data reflect local conditions. However, recent analysis of a national network of

  15. The effects of acid precipitation runoff on source water quality

    SciTech Connect

    Leibfried, R.T.; DeWalle, D.R.; Sharpe, W.A.

    1984-03-01

    The quality of water in two small streams that provide supplies to the water systems of Jennerstown and Boalsburg, Pa., was monitored during episodes of acid runoff in February 1981 (Card Machine Run) and March 1983 (Galbraith Gap Run): Changes in pH, in the concentration of aluminum, and in the Ryznar Stability Index were determined. The magnitude and potential importance of these changes are discussed.

  16. Effects of acid precipitation runoff on source water quality

    SciTech Connect

    Leibfried, R.T.; Sharpe, W.E.; DeWalle, D.R.

    1984-03-01

    The quality of water in two small streams that provide supplies to the water systems of Jennerstown and Boalsburg, Pa., was monitored during episodes of acid runoff in February 1981 (Card Machine Run) and March 1983 (Galbraith Gap Run). Changes in pH, in the concentration of aluminum, and in the Ryznar Stability Index were determined. The magnitude and potential importance of these changes are discussed. 17 references, 2 figures.

  17. PRECP: the Department of Energy's program on the nonlinearity of acid precipitation processes

    SciTech Connect

    Tanner, R.L.; Tichler, J.; Brown, R.; Davis, W.; Johnson, S.; Patrinos, A.A.N.; Sisterson, D.; Slinn, W.G.N.

    1986-09-01

    During the period of 1 April to 3 May 1985, staff from Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Pacific Northwest Laboratory (PNL), participated in a multifaceted, coordinated set of field studies from an aircraft logistical base in Columbus, OH, and a surface precipitation and air chemistry network in the Philadelphia area. The general goals of these activities, conducted within the DOE-sponsored PRocessing of Emissions by Clouds and Precipitation (PRECP) program were to obtain information concerning scavenging ratios and the vertical distribution of cloud and precipitation chemistry for sulfur and nitrogen oxides and oxyacids, and for oxidant species in the vicinity of precipitating and nonprecipitating clouds. Profiling of pollutant concentrations and phase distributions, and studies of scavenging processes were accomplished principally by airborne measurements of aerosol and gaseous species in pre-cloud and below-cloud air and of aqueous-phase species in clouds and precipitation, accompanied by documentation of meteorological and cloud physics parameters in the sampled regimes. Studies in the Midwest utilized only limited surface precipitation collection and chemical measurements, whereas a more extensive ground precipitation network was deployed in the Philadelphia area studies together with surface air chemistry measurements at a single nonurban site.

  18. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges

    USGS Publications Warehouse

    Yang, D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.; Leavesley, G.; Emerson, D.; Hanson, C.L.; Golubev, V.S.; Elomaa, E.; Gunther, T.; Pangburn, T.; Kang, E.; Milkovic, J.

    1999-01-01

    Various combinations of wind shields and national precipitation gauges commonly used in countries of the northern hemisphere have been studied in this paper, using the combined intercomparison data collected at 14 sites during the World Meteorological Organization's (WMO) Solid Precipitation Measurement Intercomparison Project. The results show that wind shields improve gauge catch of precipitation, particularly for snow. Shielded gauges, on average, measure 20-70% more snow than unshielded gauges. Without a doubt, the use of wind shields on precipitation gauges has introduced a significant discontinuity into precipitation records, particularly in cold and windy regions. This discontinuity is not constant and it varies with wind speed; temperature, and precipitation type. Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies. The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields. Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types. The linear relation does not fully take into account the varying effect of wind and temperature on gauge catch. Overadjustment by the linear relation may occur at those sites with lower wind speeds, and underadjustment may occur at those stations with higher wind speeds. The RCR technique is anticipated to be more applicable in a wide range of climate conditions. The RCR technique and the linear relation have been tested at selected WMO intercomparison stations, and reasonable agreement between the adjusted amounts and the shielded gauge measurement was obtained at most of the sites. Test application of the developed methodologies to a regional or national network is therefore recommended to further evaluate their applicability in

  19. A numerical simulation of the distribution of acid precipitation in Chongqing area of China

    NASA Astrophysics Data System (ADS)

    Lei, Xiao'en; Jia, Xinyuan; Yuan, Suzhen; Luo, Qiren; Chen, Silong; Xu, Yu

    1987-09-01

    A numerical model for the study of the regional acid precipitation is developed. The model consists of five parts: the distribution patterns of SO2 concentration, the mesoscale flow fields, the parameterization of SO2 transformation into SO{4/-}, the parameterization of precipitation scavenging process, and the relationship between SO2 content in precipitation and ground level concentration of SO2 in the air. The distribution of SO2, SO{2/-} and pH for all precipitations in Chongqing area during the period of July to October 1982 are simulated with the model. A comparison of the simulated results with experimental data shows that high SO2 concentration centres correspond to low pH centres. The source of the acid rain in Chongqing area is local air pollution which is due to the lower effective stack height, low wind velocity in the area, basin topography, and the use of coal with high sulphur content. The mechanism for the formation of the acid precipitation here may be different from that in the United States of America and the Western Europe, where acid rain appears in the area far from pollution source.

  20. Dissolution and precipitation reactions in human tooth enamel under weak acid conditions.

    PubMed

    Borggreven, J M; Driessens, F C; van Dijk, J W

    1986-01-01

    Slices of enamel were demineralized in weak acid solutions at pH 5. The solutions were analysed for Ca, P, Na and Mg. A substantial increase of the Ca/P ratio in the solution after about 6 h of demineralization was ascribed to brushite formation. The ratios of liberated Ca/Na, P/Na, Ca/Mg and P/Mg were always lower than the correspondent ratios in sound enamel. It was concluded that precipitation of brushite, and a preferential dissolution of Na and Mg compounds from the enamel both play a role in the dissolution-precipitation reactions in dental enamel during acid attack.

  1. Detecting acid precipitation impacts on lake water quality

    NASA Astrophysics Data System (ADS)

    Loftis, Jim C.; Taylor, Charles H.

    1989-09-01

    The United States Environmental Protection Agency is planning to expand its long-term monitoring of lakes that are sensitive to acid deposition effects. Effective use of resources will require a careful definition of the statistical objectives of monitoring, a network design which balances spatial and temporal coverage, and a sound approach to data analysis. This study examines the monitoring objective of detecting trends in water quality for individual lakes and small groups of lakes. Appropriate methods of trend analysis are suggested, and the power of trend detection under seasonal (quarterly) sampling is compared to that of annual sampling. The effects of both temporal and spatial correlation on trend detection ability are described.

  2. Effect of simulated acid precipitation on algal fixation of nitrogen and carbon dioxide in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1983-01-01

    Three forest soils from areas exposed to acid precipitation were incubated for 21 days in the light to enhance the development of indigenous algae. The rates of nitrogen fixation (acetylene reduction) in the light and dark were significantly less if the soils were treated with simulated rain at pH 3.5 than at pH 5.6. The inhibition increased with increasing amounts of simulated rain at pH 3.5. The fixation of CO/sub 2/ in the light was significantly less in the three soils following their exposure to simulated precipitation at pH 3.5 than to the same solutions at pH 5.6, and the extent of suppression rose with increasing amounts of synthetic rain. It is suggested that algae in terrestrial ecosystems may be especially susceptible to acid precipitation.

  3. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  4. [Low-molecular-weight organic acids in precipitation in Zunyi City, Guizhou province].

    PubMed

    Jiang, Wei; Lee, Xin-qing; Zeng, Yong; Huang, Rong-sheng; Tan, Ling; Xu, Gang; Wang, Bing

    2008-09-01

    Formic (HCOOH) and acetic (CH3COOH) acids are ubiquitous in troposphere. Studies on the low-molecular carboxylic acids help shed light on the biogeochemical cycles of carbon, hydrogen and oxygen, as well as on the formation of acid precipitation. As a city with severe acid precipitation, the city Zunyi in north Guizhou province, provide a typical background for gaining insight into the organic geochemistry in the heavily polluted atmospheric environment. We collected the precipitation in the downtown city for a whole year on the event basis, and measured inorganic and organic anions with ion chromatograph and cations with atomic absorption spectroscopy. The data demonstrate an annual average pH of 4.11, a clear indication of the acid atmosphere. The volume-weighted mean concentrations of [HCOO-]T and [CH3COO-]T were 9.29 micromol x L(-1) (ranged from 0.15 micromol x L(-1) to 46.14 micromol x L(-1)) and 6.47 micromol x L(-1) (ranged from 0.02 micromol x L(-1) to 19.11 micromol x L(-1)) respectively, accounting for 4.10% of the total anions. With a coefficient of 0.86, formic is significantly correlated with acetic acid, suggesting that both acids share common sources. The acids often decrease with time in a precipitation event, with occasional increases in the middle and last stages, indicating that the organic acids are primarily scavenged from blow cloud, with limited amount from the long distance transportation. The close range provenance of organic acids is facilitated by the local environmental condition, which is characterized by the mountain-enclosed valley with high humidity, low wind speed, and high atmospheric dust content. Based on the Henry's Law, we proposed the ratio of formic and acetic acids in the precipitation (F/A)aq as the indicator of the sources, and thus found that the anthropogenic sources are responsible for the organic compounds in the Spring and Winter, while vegetation emissions claim the sources in the Summer and Autumn.

  5. Metal chelate affinity precipitation: purification of BSA using poly(N-vinylcaprolactam-co-methacrylic acid) copolymers.

    PubMed

    Ling, Yuan-Qing; Nie, Hua-Li; Brandford-White, Christopher; Williams, Gareth R; Zhu, Li-Min

    2012-06-01

    This investigation involves the metal chelate affinity precipitation of bovine serum albumin (BSA) using a copper ion loaded thermo-sensitive copolymer. The copolymer of N-vinylcaprolactam with methacrylic acid PNVCL-co-MAA was synthesized by free radical polymerization in aqueous solution, and Cu(II) ions were attached to provide affinity properties for BSA. A maximum loading of 48.1mg Cu(2+) per gram of polymer was attained. The influence of pH, temperature, BSA and NaCl concentrations on BSA precipitation and of pH, ethylenediaminetetraacetic acid (EDTA) and NaCl concentrations on elution were systematically probed. The optimum conditions for BSA precipitation occurred when pH, temperature and BSA concentration were 6.0, 10°C and 1.0 mg/ml, respectively and the most favorable elution conditions were at pH 4.0, with 0.2M NaCl and 0.06 M EDTA. The maximum amounts of BSA precipitation and elution were 37.5 and 33.7 mg BSA/g polymer, respectively. It proved possible to perform multiple precipitation/elution cycles with a minimal loss of polymer efficacy. The results show that PNVCL-co-MAA is a suitable matrix for the purification of target proteins from unfractionated materials.

  6. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments.

    PubMed

    Tang, Guoping; Luo, Wensui; Watson, David B; Brooks, Scott C; Gu, Baohua

    2013-06-01

    Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)3 and basaluminite precipitation reactions and a cation exchange selectivity coefficient K(Na\\Al) of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH < 5 and with liebigite (Ca2UO2(CO3)3·10H2O) precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments.

  7. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments.

    PubMed

    Tang, Guoping; Luo, Wensui; Watson, David B; Brooks, Scott C; Gu, Baohua

    2013-06-01

    Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)3 and basaluminite precipitation reactions and a cation exchange selectivity coefficient K(Na\\Al) of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH < 5 and with liebigite (Ca2UO2(CO3)3·10H2O) precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments. PMID:23641798

  8. Assessment of acidity of lakes and precipitation in the Sierra Nevada

    SciTech Connect

    Melack, J.M.

    1983-06-01

    The east central Sierra Nevada received acid precipitation (pH 3.7 to 4.9) during the convective storms interspersed through the dry seasons of 1981 and 1982. In contrast, late autumn, winter and early spring snow (1981-1982) ranged in pH from 5.2 to 6.1 (mean 5.7) and had low ammonium, nitrate and sulfate concentrations. As of 1981 most of the alpine lakes of the Sierra Nevada remain very weakly buffered, bicarbonate lakes that receive a small loading of acid precipitation and a large annual input of snowmelt uncontaminated by strong acids. These lakes contain low concentrations of orthophosphate, nitrate and ammonium and are oligotrophic. The zooplankton communities fall into two major groups, those dominated by large-bodied species in the absence of fish, and those dominated by smaller species where fish are present. If the acidity of the precipitation increases the pH of the lakes will decrease rapidly with adverse biological impacts because the lakes and their basins have extremely low buffer capacity and the biota cannot tolerate acidic water. 65 references, 14 figures, 6 tables.

  9. Effects of acid precipitation on reproduction in alpine plant species. [Erythronium grandiflorum; Aquilegia caerulea

    SciTech Connect

    McKenna, M.A.; Hille-Salgueiro, M.; Musselman, R.C. Dept. of Agriculture, Fort Collins, CO )

    1990-01-01

    A series of experiments were designed to determine the impact of acid rain on plant reproductive processes, a critical component of a species life history. Research was carried out in herbaceous alpine communities at the USDA (United States Department of Agriculture) Forest Service Glacier Lakes Ecosystem Experiments Site in the Snowy Mts. of Wyoming. A range of species were surveyed to monitor the sensitivity of pollen to acidification during germination and growth, and all species demonstrated reduced in vitro pollen germination in acidified media. Field pollinations were carried out in Erythronium grandiflorum and Aquilegia caerulea to determine the reproductive success of plants exposed to simulated ambient precipitation (pH 5.6) or simulated acid precipitation (pH 3.6) prior to pollination. In Erythronium, no differences were observed in seed set and seed weight of fruits resulting from the two pollination treatments. In Aquilegia, fruits resulting from the acid spray treatment produced fewer seeds and lighter seeds.

  10. Acidic and alkaline precipitation in the Cilician Basin, north-eastern Mediterranean Sea.

    PubMed

    Ozsoy, T; Saydam, A C

    2000-05-15

    Samples from precipitation events collected at Erdemli during February 1996-June 1997 were analyzed to determine their particulate aluminium content, in addition to pH and conductivity measurements. Backward air mass trajectories corresponding to the rainy days were analyzed to determine potential source regions of acidic and alkaline constituents transported to the Cilician Basin. Approximately 28% of the rain samples were found to be acidic and the trajectories associated with half of the acid precipitation events were from the Mediterranean Basin and the Balkan Peninsula, while the other half were from the Anatolian mainland and local sources. Rain samples were found to be alkaline (58%), with their trajectories originating from North Africa and the Middle East. As a result of its CaCO3 content, mineral dust from these arid regions significantly increased the pH of rainwater.

  11. Temporal trends in the acidity of precipitation and surface waters of New York

    USGS Publications Warehouse

    Peters, Norman E.; Schroeder, Roy A.; Troutman, David E.

    1982-01-01

    Statistical analyses of precipitation data from a nine-station monitoring network indicate little change in pH from 1965-78 within New York State as a whole but suggest that pH of bulk precipitation has decreased in the western part of the State by approximately 0.2 pH units since 1965 and increased in the eastern part by a similar amount. This trend is equivalent to an annual change in hydrogen-ion concentration of 0.2 microequivalents per liter. An average annual increase in precipitation quantity of 2 to 3 percent since 1965 has resulted in an increased acid load in the western and central parts of the State. During 1965-78, sulfate concentration in precipitation decreased an average of 1-4 percent annually. In general, no trend in nitrate was detected. Calculated trends in hydrogen-ion concentration do not correlate with measured trends of sulfate and nitrate, which suggests variable neutralization of hydrogen ion, possibly by particles from dry deposition. Neutralization has produced an increase of about 0.3 pH units in nonurban areas and 0.7 pH units in urban areas. Statistical analyses of chemical data from several streams throughout New York suggest that sulfate concentrations decreased an average of 1 to 4 percent per year. This decrease is comparable to the sulfate decrease in precipitation during the same period. In most areas of the State, chemical contributions from urbanization and farming, as well as the neutralizing effect of carbonate soils, conceal whatever effects acid precipitation may have on pH of streams.

  12. Biomediated Precipitation of Calcium Carbonate and Sulfur in a Faintly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Peng, X.; Qiao, H.

    2014-12-01

    A faintly acidic hot spring named "female Tower" (T=73.5 ℃, pH=6.64 ) is located in the Jifei Geothermal Field,Yunnan province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite and sulfur, as reveals by XRD analysis. Scanning electron microscopy (SEM) analysis show the microbial mats are formed of various coccoid, rod and filamentous microbes. Transmission electron microscopy (TEM) analysis show that intracellular sulfur granules are commonly associated with these microbes. Energy dispersive X-ray spectrometer (EDS) analysis shows that the surface of microbes are mainly composed of Ca, C, O and S. A culture-independent molecular phylogenetic analysis demonstrates the majority of bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We suggest that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the formation of sulfur granules intracellularly and extracellularly. In the meantime, this reaction increases the pH in ambient environments, which fosters the precipitation of calcium carbonate precipitation in the microbial mats. This study suggests that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in faintly acidic hot spring environments.

  13. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate

    NASA Astrophysics Data System (ADS)

    Yang, Jinian; Wang, Chuang; Shao, Kaiyun; Ding, Guoxin; Tao, Yulun; Zhu, Jinbo

    2015-11-01

    Poly(lactic acid) (PLA)-based composites were prepared by blending PLA with precipitated barium sulfate (BaSO4) modified with stearic acid. The morphologies, mechanical properties and thermal stability of samples with increased mass fraction of BaSO4 were investigated. Results showed that PLA was toughened and reinforced simultaneously by incorporation of precipitated BaSO4 particles. The highest impact toughness and elongation at break were both achieved at 15% BaSO4, while the elastic modulus increased monotonically with increasing BaSO4 loading. Little effect of BaSO4 on the thermal behavior of PLA was observed in the present case. However, the thermal stability of PLA/BaSO4 composites at high temperature was enhanced.

  14. Acid precipitation. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the causes, and ecological and economic consequences of acid precipitation and deposition. Emissions of sulfur and nitrogen compounds, loading rates at specific study sites, the role of buffering materials on the acidification of lakes and streams, and the effects on aquatic life are considered. The effects on soil chemistry and vegetation are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  15. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  16. Precipitation chemistry and occurrence of acid rain over Dhanbad, coal city of India.

    PubMed

    Singh, Abhay Kr; Mondal, G C; Kumar, Suresh; Singh, K K; Kamal, K P; Sinha, A

    2007-02-01

    The present study investigated the chemical composition of wet atmospheric precipitation over Dhanbad, coal city of India. The precipitation samples were collected on event basis for three years (July 2003 to October 2005) at Central Mining Research Institute. The precipitation samples were analyzed for pH, conductivity, major anions (F, Cl, NO(3), SO(4)) and cations (Ca, Mg, Na, K, NH(4)). The pH value varied from 4.01 to 6.92 (avg. 5.37) indicating acidic to alkaline nature of rainwater. The pH of the rainwater was found well above the reference pH (5.6), showing alkalinity during the non-monsoon and early phase of monsoon, but during the late phase of monsoon, pH tendency was towards acidity (<5.6 pH) indicating the non-availability of proper neutralizer for acidic ions. The observed acidic events at this site were 91, (n = 162) accounting 56% for the entire monitoring months. The (NO(3) + Cl)/SO(4) ratio in majority of samples was found below 1.0, indicating that the acidity is greatly influenced by SO(4). The calculated ratio of (Ca + NH(4))/(NO(3) + SO(4)) ranges between 0.42-5.13 (average 1.14), however in most of the samples, the ratio is greater than unity (>1.0) indicating that Ca and NH(4) play an important role in neutralization of acidic ions in rainwater. Ca and SO(4) dominate the bulk ionic deposition and these two ions along with NH(4) accounts 63% of the annual ionic deposition.

  17. Acid Rain in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Rice, Karen C.; Deviney, Frank A.; Olson, Gordon

    2007-01-01

    Visitors to Shenandoah National Park (SNP) enjoy the animal and plant life and the scenery but may not realize how vulnerable these features are to various threats, such as invasion of exotic plants and insects, improper use of park resources by humans, and air and water pollution. The National Park Service strives to protect natural resources from such threats to ensure that the resources will be available for enjoyment now and in the future. Because SNP has limited influence over the air pollution that envelops the region, acidic deposition--commonly known as acid rain--is one of the more challenging threats facing park managers. With the help of U.S. Geological Survey (USGS) scientists, park managers can understand how acid rain interacts with ground- and surface-water resources, which enables them to explain why reductions in air pollution can help preserve park resources. Such understanding also provides essential insight into ecosystem processes, as managers strive to unravel and resolve other environmental problems that are interrelated to acid rain.

  18. Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters

    SciTech Connect

    Kanematsu, Masakazu; Perdrial, Nicolas; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2014-06-03

    Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly-crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge EXAFS indicated that “autunite-type” sheets of meta-ankoleite transformed to “phosphuranylite-type” sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.

  19. Potential health implications for acid precipitation, corrosion, and metals contamination of drinking water.

    PubMed

    Sharpe, W E; DeWalle, D R

    1985-11-01

    Potential health effects of drinking water quality changes caused by acid precipitation are presented. Several different types of water supply are discussed and their roles in modifying acid rain impacts on drinking water are explained. Sources of metals contamination in surface water supplies are enumerated. The authors present some results from their research into acid rain impacts on roof-catchment cisterns, small surface water supplies, and lead mobilization in acid soils. A good correlation was obtained between cistern water corrosivity as measured by the Ryznar Index (RI) values and standing tapwater copper concentrations. However, lead concentrations in tapwater did not correlate well with cistern water RI. A modified linear regression model that accounted for Ryznar Index change during storage in vinyl-lined cisterns was used to predict the Ryznar Index value at a copper concentration of 1000 micrograms/L. The predicted RI was greater than the RI of precipitation with a pH of 5.3, indicating that anthropogenically acidified precipitation may result in cistern tapwater copper concentrations in excess of the 1000 micrograms/L suggested drinking water limit. Good correlations between tapwater Ryznar Index and tapwater copper and lead concentrations were not obtained for the small surface water supply. Aluminum concentrations in reservoir water were similar to those in stream source water. Limited data were also presented that indicated lead was present in acid forest soil leachate and streams draining such soils in relatively small concentrations. Where appropriate, recommendations for future research are included with the discussions of research results.

  20. Potential health implications for acid precipitation, corrosion, and metals contamination of drinking water.

    PubMed

    Sharpe, W E; DeWalle, D R

    1985-11-01

    Potential health effects of drinking water quality changes caused by acid precipitation are presented. Several different types of water supply are discussed and their roles in modifying acid rain impacts on drinking water are explained. Sources of metals contamination in surface water supplies are enumerated. The authors present some results from their research into acid rain impacts on roof-catchment cisterns, small surface water supplies, and lead mobilization in acid soils. A good correlation was obtained between cistern water corrosivity as measured by the Ryznar Index (RI) values and standing tapwater copper concentrations. However, lead concentrations in tapwater did not correlate well with cistern water RI. A modified linear regression model that accounted for Ryznar Index change during storage in vinyl-lined cisterns was used to predict the Ryznar Index value at a copper concentration of 1000 micrograms/L. The predicted RI was greater than the RI of precipitation with a pH of 5.3, indicating that anthropogenically acidified precipitation may result in cistern tapwater copper concentrations in excess of the 1000 micrograms/L suggested drinking water limit. Good correlations between tapwater Ryznar Index and tapwater copper and lead concentrations were not obtained for the small surface water supply. Aluminum concentrations in reservoir water were similar to those in stream source water. Limited data were also presented that indicated lead was present in acid forest soil leachate and streams draining such soils in relatively small concentrations. Where appropriate, recommendations for future research are included with the discussions of research results. PMID:4076096

  1. Colloidal precipitates related to Acid Mine Drainage: bacterial diversity and micro fungi-heavy metal interactions

    NASA Astrophysics Data System (ADS)

    Lucchetti, G.; Carbone, C.; Consani, S.; Zotti, M.; Di Piazza, S.; Pozzolini, M.; Giovine, M.

    2015-12-01

    In Acid Mine Drainage (AMD) settings colloidal precipitates control the mobility of Potential Toxic Elements (PTEs). Mineral-contaminant relationships (i.e. adsorption, ion-exchange, desorption) are rarely pure abiotic processes. Microbes, mainly bacteria and microfungi, can catalyze several reactions modifying the element speciation, as well as the bioavailability of inorganic pollutants. Soil, sediments, and waters heavily polluted with PTEs through AMD processes are a potential reservoir of extremophile bacteria and fungi exploitable for biotechnological purposes. Two different AMD related colloids, an ochraceous precipitate (deposited in weakly acidic conditions, composed by nanocrystalline goethite) and a greenish-blue precipitate (deposited at near-neutral pH, composed by allophane + woodwardite) were sampled. The aims of this work were to a) characterize the mycobiota present in these colloidal minerals by evaluating the presence of alive fungal propagules and extracting bacteria DNA; b) verify the fungal strains tolerance, and bioaccumulation capability on greenish-blue and ZnSO4 enriched media; c) evaluate potential impact of bacteria in the system geochemistry. The preliminary results show an interesting and selected mycobiota able to survive under unfavourable environmental conditions. A significant number of fungal strains were isolated in pure culture. Among them, species belonging to Penicillium and Trichoderma genera were tested on both greenish-blue and ZnSO4 enriched media. The results show a significant tolerance and bioaccumulation capability to some PTEs. The same colloidal precipitates were processed to extract bacteria DNA by using a specific procedure developed for sediments. The results give a good yield of nucleic acids and a positive PCR amplification of 16S rDNA accomplished the first step for future metagenomic analyses.

  2. Cation ratios in Cladonia portentosa as indices of precipitation acidity in the British Isles.

    PubMed

    Hyvärinen, M; Crittenden, P D

    1996-03-01

    The relationship between rainfall chemistry and the concentrations of potassium, calcium and magnesium in the apices (top 5 mm) of the cushion-forming; lichen Cladonia portentosa (Dufour) Coem was investigated. Lichen samples, together with underlying topsoil, were collected from heathlands in close proximity to rain gauges in the UK Acid Deposition Monitoring Network, located in rural areas of the British Isles, which provide wet deposition data based on weekly bulk samples. The ratios K(+) : Mg(2+) and extracellular Mg(2+) : intracellular Mg(2+) in the lichen apices were strongly correlated with H(+) concentration in precipitation. It is suggested that shifts in these ratios occur owing to enhanced displacement of extracellular Mg(2+) by elevated H(+) concentration in acid rain. By contrast, there was no indication of any relationship between total acid deposition and lichen chemistry. The concentration of Mg(2+) in the lichen was weakly correlated with that in soil, whereas lichen Ca(2+) content was not correlated with either precipitation or soil chemistry. It is concluded that these ratios describing changes in lichen Mg(2+) content provide good biomarkers for wet-deposited acidity.

  3. Effect of atmospheric sulfur pollutants derived from acid precipitation on the benthic dynamics of lakes

    SciTech Connect

    Mitchell, M.J.

    1982-11-01

    Sulfuric acid is a major contributor to acid precipitation in the United States. The relationship of acid precipitation to the sulfur dynamics of three lakes in New York was studied. For South Lake, which has probably been acidified, the sulfur profile in the sediment corresponded to historical changes in anthropogenic sulfur inputs. In all three study lakes, the organic sulfur constituents, which generally have been ignored in limnological investigations, played a major role in sulfur dynamics. The transformations and fluxes of inorganic and organic sulfur differed among the lakes and reflected characteristic abiotic and biotic properties, including productivity parameters. The community structure and secondary production of the invertebrate benthos were ascertained and, for South Lake, were similar to other acidified lakes. The importance of benthic insects on sulfur dynamics was demonstrated. Further studies on sulfur in lakes will enhance the understanding of the role of these anthropogenic inputs on lake systems and permit a more accurate appraisal of the present and future impacts of acidic deposition on water quality. 10 references.

  4. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.

    2015-12-01

    A slightly acidic hot spring named "Female Tower" (T=73.5 °C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite, and sulfur. Scanning electron microscopy (SEM) analyses revealed that the microbial mats were formed of various coccoid, rod-shaped, and filamentous microbes. Transmission electron microscopy (TEM) showed that the intracellular sulfur granules were commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrated that the majority of the bacteria in the spring were sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We speculated that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. In the meantime, this reaction increased the pH in the micron-scale microdomains, which fostered the precipitation of calcium carbonate in the microbial mats. The results of this study indicated that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.

  5. Fractionation of atmospheric acid and base components within storm events by precipitation scavenging processes.

    PubMed

    Liljestrand, H M

    1992-01-01

    Concentrations of ions in storm rainwater in Texas have been monitored for each 0.254 mm increment of precipitation. The changes in concentrations have been analyzed to investigate the role of differential rates of scavenging of particulate matter of differing particle size, and especially the major acid and base components. The empirical trend at the onset of rainfall is a chemical fractionation of acids and bases with correspondingly wide pH variations. These results are confirmed by model calculations, which show a significant preferential scavenging of calcium relative to sulfate in the first 10 mm of rainfall, resulting in fractionation of bases and acids from their atmospheric concentrations. Previous studies, using Target Transformation Factor Analysis of ion concentrations in storm precipitation and regional ambient aerosol data, statistically determined the average source for acidic secondary species and alkaline particulate matter. Two types of crustal sources were identified as western and eastern soil dust. In this study, an alternate physical explanation for these two soil dust factors is offered. As a storm progresses, the elements in the local soil dust are fractionated as a result of their differential rates of precipitation scavenging, enriching species predominantly in the fine particle size and depleting elements predominantly in the coarse particle size. This fractionation process results in a single source having different elemental ratios at the beginning and at the end of a rain event. For Austin, Dallas, and Tyler, Texas, the soil dust previously identified as being from eastern sources could, instead, be a fractionated form of the western soil source.

  6. Electrostatic precipitation of condensed acid mist: Third quarterly technical progress report, March 1--May 31, 1989

    SciTech Connect

    Not Available

    1989-01-01

    Acid mists can sometimes constitute a significant portion of the total particulate emissions from power plants burning high-sulfur coals. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attack glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. The project is organized in two phases. Phase I, which is scheduled for September 1988 to September 1989, involves the WESP fabrication, laboratory and pilot combustor testing, and computer modeling. Phase II, which is scheduled for September 1989 to September 1990, involves the solicitation of a utility demonstration site, preliminary site measurements, and planning for the demonstration test program. Progress on Phase I work is addressed in this discussion. 5 refs., 4 figs.

  7. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate.

    PubMed

    Meunier, Nathalie; Drogui, Patrick; Montané, Camille; Hausler, Robert; Mercier, Guy; Blais, Jean-François

    2006-09-01

    This paper provides a quantitative comparison between electrocoagulation and chemical precipitation based on heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) removal from acidic soil leachate (ASL) at the laboratory pilot scale. Chemical precipitation was evaluated using either calcium hydroxide or sodium hydroxide, whereas electrocoagulation was evaluated via an electrolytic cell using mild steel electrodes. Chemical precipitation was as effective as electrocoagulation in removing metals from ASL having low contamination levels (30 mg Pbl(-1) and 18 mg Znl(-1)). For ASL enriched with different metals (each concentration of metals was initially adjusted to 100 mg l(-1)), the residual Cr, Cu, Pb and Zn concentrations at the end of the experiments were below the acceptable level recommended for discharge in sewage urban works (more than 99.8% of metal was removed) using either electrocoagulation or chemical precipitation. Cd was more effectively removed by electrochemical treatment, whereas Ni was easily removed by chemical treatment. The cost for energy, chemicals and disposal of metallic residue of electrocoagulation process ranged from USD 8.83 to 13.95 tds(-1), which was up to five times lower than that recorded using chemical precipitation. Highly effective electrocoagulation was observed as the ASL was specifically enriched with high concentration of Pb (250-2000 mg Pbl(-1)). More than 99.5% of Pb was removed regardless of the initial Pb concentration imposed in ASL and, in all cases, the residual Pb concentrations (0.0-1.44 mg l(-1)) were below the limiting value (2.0 mg l(-1)) for effluent discharge in sewage works.

  8. Recovery of molybdenum, nickel and cobalt by precipitation from the acidic leachate of a mineral sludge.

    PubMed

    Vemic, M; Bordas, F; Comte, S; Guibaud, G; Lens, P N L; van Hullebusch, E D

    2016-09-01

    The objective of this study was to investigate the recovery potential of molybdenum (Mo), nickel (Ni) and cobalt (Co) from synthetic and real acidic leachate of a mineral sludge from a metal recycling plant by sulfide precipitation. The operational parameters (metal sulfide (M/S) ratio 0.1-1, agitation speed 0-100 rpm, contact time 15-120 min and pH 1-5) were optimized in batch conditions on synthetic metal leachate (0.5 M HNO3, Mo = 101.6 mg L(-1), Ni = 70.8 mg L(-1), Co = 27.1 mg L(-1)) with a 0.1 M Na2S solution. Additionally, recovery of the target metals was theoretically simulated with a chemical equilibrium model (Visual MINTEQ 3.0). The optimized Na2S precipitation of metals from the synthetic leachate resulted in the potential selective recovery of Mo at pH 1 (98% by modeling, 95% experimental), after simultaneous precipitation of Ni and Co as sulfide at pH 4 (100% by modeling, 98% experimental). Metal precipitation from the real leachate (18 M H2SO4, Mo = 10,160 mg L(-1), Ni = 7,080 mg L(-1), Co = 2,710 mg L(-1)) was performed with 1 M Na2S, and resulted in a maximal Mo recovery at pH 2 (50%), while maximal recoveries of Ni and Co were observed at pH 4 (56% and 60%, respectively). Real leachate gave a lower metals recovery efficiency compared with synthetic leachate, which can be attributed to changes in the pH, nature of leachant, co-precipitation of Zn and competition for S(2-) ions. PMID:26824137

  9. Recovery of molybdenum, nickel and cobalt by precipitation from the acidic leachate of a mineral sludge.

    PubMed

    Vemic, M; Bordas, F; Comte, S; Guibaud, G; Lens, P N L; van Hullebusch, E D

    2016-09-01

    The objective of this study was to investigate the recovery potential of molybdenum (Mo), nickel (Ni) and cobalt (Co) from synthetic and real acidic leachate of a mineral sludge from a metal recycling plant by sulfide precipitation. The operational parameters (metal sulfide (M/S) ratio 0.1-1, agitation speed 0-100 rpm, contact time 15-120 min and pH 1-5) were optimized in batch conditions on synthetic metal leachate (0.5 M HNO3, Mo = 101.6 mg L(-1), Ni = 70.8 mg L(-1), Co = 27.1 mg L(-1)) with a 0.1 M Na2S solution. Additionally, recovery of the target metals was theoretically simulated with a chemical equilibrium model (Visual MINTEQ 3.0). The optimized Na2S precipitation of metals from the synthetic leachate resulted in the potential selective recovery of Mo at pH 1 (98% by modeling, 95% experimental), after simultaneous precipitation of Ni and Co as sulfide at pH 4 (100% by modeling, 98% experimental). Metal precipitation from the real leachate (18 M H2SO4, Mo = 10,160 mg L(-1), Ni = 7,080 mg L(-1), Co = 2,710 mg L(-1)) was performed with 1 M Na2S, and resulted in a maximal Mo recovery at pH 2 (50%), while maximal recoveries of Ni and Co were observed at pH 4 (56% and 60%, respectively). Real leachate gave a lower metals recovery efficiency compared with synthetic leachate, which can be attributed to changes in the pH, nature of leachant, co-precipitation of Zn and competition for S(2-) ions.

  10. Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage.

    PubMed

    Kim, Yeongkyoo

    2015-01-01

    The white aluminum precipitates (S1,S2,S4-1,S4-2) collected at three different locations affected by acid mine and rock drainage were studied to characterize the mineral phases and mobility of trace metals. Chemical analysis, XRD, SEM, NMR, and sequential extraction method were mainly used. XRD data showed that most white aluminum precipitates are amorphous with small amount of gypsum, which was also confirmed by SEM. The (27)Al MAS NMR spectra provide more detailed information on the local environments of aluminum in those samples. The samples collected at two locations (S3, and S4-1 and S4-2) contain 4-coordinated aluminum, suggesting that the samples contain a significant amount of amorphous phase from Al13-tridecamer. Chemical data of calcium and sulfur with (27)Al MAS NMR spectra suggest that the relative amounts of amorphous phase from Al13-tridecamer, hydrobasaluminite, aluminum hydroxide, and gypsum are different for each sample. Different amount of amorphous phase from Al13-tridecamer in those samples are probably caused by the different geochemical conditions and hydrolysis by aging in water. Sequential extraction results show that water soluble fraction and sorbed and exchangeable fraction of trace metals in sample collected as suspended particles (S1) are higher than other samples, and can affect the ecological system in waters by releasing aluminum and trace metals. These results suggest that careful characterization of white aluminum precipitates is needed to estimate the environmental effects of those precipitates in acid mine drainage. PMID:25213794

  11. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  12. 1958-2006 Precipitation Climatology for Lawrence Livermore National Laboratory Livermore Site and Site 300

    SciTech Connect

    Bowen, B M

    2006-12-19

    This report contains rainfall climatology and analyses during the period from 1958 to 2006 for the two sites of Lawrence Livermore National Laboratory: the Livermore site and Site 300. The measurement sites are described, a regional climatology overview is provided, and the effect of topography on regional precipitation is discussed. Rainfall statistics are presented including monthly normals (30-year means) and medians; percentages of time that rainfall is less than or equal to specified amounts for given months, years, and seasons; and mean, median, and maximum numbers of days of precipitation for specified amounts by month, year, and season. The rainfall pattern is demonstrated to be typical of Mediterranean climates, with most rain falling during the cold season. Nearly 80% of seasonal rainfall occurs during November through March, with the average annual rainfall equaling 13.62 and 10.64 inches at the Livermore site and Site 300, respectively. Precipitation frequency and extreme value analyses for durations ranging from 15 minutes to 24 hours, month, and rainfall season are shown in order to estimate rainfall amounts for return periods of two to 100 years at both sites. This analysis determined 100-year return periods for largest 24-hour rainfalls of 2.49 and 2.22 inches at the Livermore site and Site 300, respectively. Historical analysis of seasonal rainfall data indicates that the wettest rainfall seasons at both sites typically occurred during strong El Ninos.

  13. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    PubMed

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań. PMID:23114919

  14. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean

    2011-01-01

    Two batches of nominally pretreated and augmented urine were prepared with the baseline pretreatment formulation of sulfuric acid and chromium trioxide. The urine was augmented with inorganic salts and organic compounds in order to simulate a urinary ionic concentrations representing the upper 95 percentile on orbit. Three strong mineral acids: phosphoric, hydrochloric, and nitric acid, were substituted for the sulfuric acid for comparison to the baseline sulfuric acid pretreatment formulation. Three concentrations of oxidizer in the pretreatment formulation were also tested. Pretreated urine was distilled to 85% water recovery to determine the effect of each acid and its conjugate base on the precipitation of minerals during distillation. The brines were analyzed for calcium and sulfate ion, total, volatile, and fixed suspended solids. Test results verified that substitution of phosphoric, hydrochloric, or nitric acids for sulfuric acid would prevent the precipitation of gypsum up to 85% recovery from pretreated urine representing the upper 95 percentile calcium concentration on orbit.

  15. High-molecular-weight polymers for protein crystallization: poly-gamma-glutamic acid-based precipitants.

    PubMed

    Hu, Ting Chou; Korczyńska, Justyna; Smith, David K; Brzozowski, Andrzej Marek

    2008-09-01

    Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-gamma-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of approximately 400 kDa and PGA-HM (high molecular weight) of >1,000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  16. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    PubMed

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. PMID:22707097

  17. [Acidic components of precipitation: humid deposition of S, N and Cl compounds].

    PubMed

    Fernández Patier, R; Esteban Lefler, M

    1989-01-01

    Precipitation samples have been gathered using recipients that differentiate the dry deposition of the humidity in three stations in Spain: one urban (Madrid) and two at base levels (San Pablo de los Montes and Granada). The study is centred on the components of an acid character, for which significant special variations of the sulphate and nitrate concentrations have been obtained. The levels, highest in Madrid and lowest in San Pablo, show the influence of the emitting focal points. A study of the seasonal variations in San Pablo show that the concentrations in summer are more than double than those in winter, probably due to the intervention of the photochemical formation processes of these contaminants. Also studies of humidity deposition are carried out, from which one can observe greater monthly values that are greater in Madrid than in other stations, in spite of having less rainfall. Likewise, episodes of "acid rain" and "red rain" are commented on.

  18. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R. M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.

    2012-10-01

    Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that carbonates can form under diverse macroscopic physicochemical conditions ranging from very low to neutral pH (1.5-7.0). A multi-technique approach demonstrates that carbonate minerals are closely associated with microbial activity. Carbonates occur in the form of micron-size carbonate precipitates under bacterial biofilms, mineralization of subsurface colonies, and possible biogenic microstructures including globules, platelets and dumbbell morphologies. We propose that carbonate precipitation in the low-pH environment of Río Tinto is a process enabled by microbially-mediated neutralization driven by the reduction of ferric iron coupled to the oxidation of biomolecules in microbially-maintained circumneutral oases, where the local pH (at the scale of cells or cell colonies) can be much different than in the macroscopic environment. Acidic conditions were likely predominant in vast regions of Mars over the last four billion years of planetary evolution. Ancient Martian microbial life inhabiting low-pH environments could have precipitated carbonates similar to those observed at Río Tinto. Preservation of carbonates at Río Tinto over geologically significant timescales suggests that similarly-formed carbonate minerals could also be preserved on Mars. Such carbonates could soon be observed by the Mars Science Laboratory, and by future missions to the red planet.

  19. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.

    PubMed

    Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2013-05-01

    Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.

  20. Evaluation of simulated acid precipitation effects on forest microcosms. Final report

    SciTech Connect

    Kelly, J.M.; Strickland, R.C.; Weatherford, F.P.; Noggle, J.C.

    1984-04-01

    Microcosms were treated for a 30-month period with simulated precipitation acidified to four pH levels (5.7, 4.5, 4.0, and 3.5) to evaluate the impact of acid precipitation on foliar leaching, plant nutrient content, soil leaching, soil nutrient content, and litter decomposition. Direct effects of acid precipitation on diameter growth, bud break, leaf senescence, chlorophyll content, stomatal size, stomatal density, photosynthesis, respiration, transpiration, and cuticle erosion were evaluated on tulip poplar, white oak, and Virginia pine seedlings growing as mixed stands in the microcosms. None of the plant physiological or morphological parameters evaluated responded in a statistically significant manner as a result of treatment. A significant treatment canopy interaction was observed in the form of a 60 percent increase in calcium input in throughfall in response to the pH 3.5 treatment. Foliar nutrient content did not change in response to treatment nor did field measurements of decomposer activity. Soil analysis indicated a significantly lower concentration of exchangeable calcium and magnesium in the top 3.5 cm of the mineral soil in association with the pH 3.5 treatment. Soil leachate concentrations exhibited significant increases at both the 25 and 50 cm depths. However, at the 100 cm depth no significant response in concentration or elemental loss from the system was observed. Laboratory respiration measurements indicated a small, but statistically significant reduction in decomposer activity in the lower litter (02) horizon. This reduction was masked in the field measurements of decomposer activity due to the relatively small contribution of the 02 to total soil respiration. 38 references, 12 figures, 18 tables.

  1. Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor.

    PubMed

    Garg, Anurag; Mishra, I M; Chand, S

    2010-08-15

    The effectiveness of coagulation (using aluminium-based chemicals and ferrous sulfate) and acid precipitation (using H(2)SO(4)) processes for the pre-treatment of diluted black liquor obtained from a pulp and paper mill is reported. Commercial alum was found to be the most economical among all the aluminium and ferrous salts used as a coagulant. A maximum removal of chemical oxygen demand (COD) (ca. 63%) and colour reduction (ca. 90%) from the wastewater (COD = 7000 mg l(-1)) at pH 5.0 was obtained with alum. During the acid precipitation process, at pH < 5.0, significant COD reductions (up to 64%) were observed. Solid residue obtained from the alum treatment at a temperature of 95 degrees C showed much better (3 times) settling rate than that for the residue obtained after treatment with the same coagulant at a temperature of 25 degrees C. The settling curves had three parts, namely, hindered, transition and compression zones. Tory plots were used to determine the critical height of suspension-supernatant interface that is used in the design of a clarifier-thickener unit. High heating values and large biomass fraction of the solid residues can encourage the fuel users to use this waste derived sludge as a potential renewable energy source.

  2. The acid precipitation provisions of the 1990 Clean Air Act Amendments and minorities' energy consumption

    SciTech Connect

    Nieves, L.A.; Wernette, D.

    1991-01-01

    In November 1990 Congress passed a comprehensive set of amendments to the Clean Air Act of 1977 with potentially very high compliance costs. The provisions pertaining to control of acid precipitation have been specified with sufficient detail to examine their cost impacts. These provisions will require investment in emissions control technology, mainly by electric utilities. Production costs will increase due to the required investment, resulting in higher electricity prices. This paper examines the possible magnitude of these effects and whether there might be differential impacts on racial/ethnic minority groups. Differential impacts were considered a possibility because of the differences in the percentage of total income spent on energy by various population subgroups. In 1989, the Majority group (defined as non-Black, non-Hispanic) spent about three percent of household income on energy, while Blacks spent double that, six percent, and Hispanics spent about four percent. (The differences in income underlying these figures are greater, however, than the differences in energy expenditures). To address these issues, we compare projected electricity consumption and expenditures and total energy expenditures for Black, Hispanic, and Majority households. The distribution of benefits from reducing acid precipitation is not addressed since the possible effects on ambient air quality in specific geographical areas that are directly attributable to reducing utilities' sulfur dioxide emissions are highly uncertain.

  3. The acid precipitation provisions of the 1990 Clean Air Act Amendments and minorities` energy consumption

    SciTech Connect

    Nieves, L.A.; Wernette, D.

    1991-12-31

    In November 1990 Congress passed a comprehensive set of amendments to the Clean Air Act of 1977 with potentially very high compliance costs. The provisions pertaining to control of acid precipitation have been specified with sufficient detail to examine their cost impacts. These provisions will require investment in emissions control technology, mainly by electric utilities. Production costs will increase due to the required investment, resulting in higher electricity prices. This paper examines the possible magnitude of these effects and whether there might be differential impacts on racial/ethnic minority groups. Differential impacts were considered a possibility because of the differences in the percentage of total income spent on energy by various population subgroups. In 1989, the Majority group (defined as non-Black, non-Hispanic) spent about three percent of household income on energy, while Blacks spent double that, six percent, and Hispanics spent about four percent. (The differences in income underlying these figures are greater, however, than the differences in energy expenditures). To address these issues, we compare projected electricity consumption and expenditures and total energy expenditures for Black, Hispanic, and Majority households. The distribution of benefits from reducing acid precipitation is not addressed since the possible effects on ambient air quality in specific geographical areas that are directly attributable to reducing utilities` sulfur dioxide emissions are highly uncertain.

  4. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  5. Technical and economical assessment of formic acid to recycle phosphorus from pig slurry by a combined acidification-precipitation process.

    PubMed

    Daumer, M-L; Picard, S; Saint-Cast, P; Dabert, P

    2010-08-15

    Dissolution by acidification followed by a liquid/solid separation and precipitation of phosphorus from the liquid phase is one possibility to recycle phosphorus from livestock effluents. To avoid increase of effluent salinity by using mineral acids in the recycling process, the efficiency of two organic acids, formic and acetic acid, in dissolving the mineral phosphorus from piggery wastewater was compared. The amount of formic acid needed to dissolve the phosphorus was reduced three fold, compared to acetic acid. The amount of magnesium oxide needed for further precipitation was decreased by two with formic acid. Neither the carbon load nor the effluent salinity was significantly increased by using formic acid. An economical comparison was performed for the chemical recycling process (mineral fertilizer) vs. centrifugation (organic fertilizer) considering the centrifugation and the mineral fertilizers sold in the market. After optimisation of the process, the product could be economically competitive with mineral fertilizer as superphosphate in less than 10 years. PMID:20471746

  6. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.

    PubMed

    Huang, Jiayu; Wang, Hongmei; Shi, Yingjie; Zhang, Fan; Dang, Xiaoqing; Zhang, Hui; Shu, Yun; Deng, Shuang; Liu, Yu

    2016-10-01

    The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s(-1), the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m(-3) and ca. 10(4) 1 cm(-3) at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s(-1). Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m(-3) with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m(-3) with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV. PMID:27357706

  7. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.

    PubMed

    Huang, Jiayu; Wang, Hongmei; Shi, Yingjie; Zhang, Fan; Dang, Xiaoqing; Zhang, Hui; Shu, Yun; Deng, Shuang; Liu, Yu

    2016-10-01

    The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s(-1), the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m(-3) and ca. 10(4) 1 cm(-3) at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s(-1). Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m(-3) with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m(-3) with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV.

  8. Precipitation of Metallic Cations by the Acidic Exopolysaccharides from Bradyrhizobium japonicum and Bradyrhizobium (Chamaecytisus) Strain BGA-1

    PubMed Central

    Corzo, J.; León-Barrios, M.; Hernando-Rico, V.; Gutierrez-Navarro, A. M.

    1994-01-01

    The interaction between the acidic exopolysaccharides produced by two Bradyrhizobium strains and several metal cations has been studied. Aqueous solutions in the millimolar range of Fe3+ but not of Fe2+ precipitated the exopolysaccharides from Bradyrhizobium (Chamaecytisus) strain BGA-1 and, to a lesser extent, Bradyrhizobium japonicum USDA 110. The precipitation was pH dependent, with a maximum around pH 3. The precipitate was redissolved by changing the pH and by Fe3+ reduction or chelation. Deacetylation of B. japonicum polysaccharide increased its precipitation by Fe3+. At pH near neutrality, the polysaccharide from Bradyrhizobium (Chamaecytisus) strain BGA-1 stabilized Fe3+ solutions, despite the insolubility of Fe(OH)3. Aluminum precipitated Bradyrhizobium (Chamaecytisus) polysaccharide but not the polysaccharide produced by B. japonicum. The precipitation showed a maximum at about pH 4.8, and the precipitate was redissolved after Al3+ chelation with EDTA. Precipitation was inhibited by increases in the ionic strength over 10 mM. Bradyrhizobium (Chamaecytisus) polysaccharide was also precipitated by Th4+, Sn2+, Mn2+, and Co2+. The presence of Fe3+ increased the exopolysaccharide precipitation by aluminum. No precipitation, gelation, or increase in turbidity of polysaccharide solutions occurred when K+, Na+, Ca2+, Mg2+, Cu2+, Cd2+, Pb2+, Zn2+, Hg2+, or U6+ was added at several pH values. The results suggest that the precipitation is based on the interaction between carboxylate groups from different polysaccharide chains and the partially hydrolyzed aquoions of Fe3+, Al3+, Th4+, and Sn2+. PMID:16349466

  9. Nucleation kinetics of selenium (+4) precipitation from an acidic copper sulphate solution

    NASA Astrophysics Data System (ADS)

    Mangere, M.; Nathoo, J.; Lewis, A. E.

    2010-10-01

    The removal of selenium from copper sulphate solution prior to the electrowinning of copper is desirable in order to minimise contamination of the copper cathodes by selenium and other impurities. The selenium removal is effected by a precipitation process that takes place under high supersaturation conditions, which favour nucleation over any other particle formation processes. There is currently no fundamental information on the nucleation kinetics of this important process. In this study, the nucleation kinetics of selenium (+4) precipitation from an acidic copper sulphate solution was determined using the classical nucleation theory (CNT). Experiments were carried out by varying the levels of supersaturation from 8.66×10 15 to 4.33×10 17 at a temperature of 95 °C under atmospheric pressure. The nucleation rates for four different levels of supersaturation, the nucleation work and the nucleus size were determined. The kinetic constant A was found to be 3.92×10 27 m -3 s -1, which shows that the nucleation process takes place through a homogeneous mechanism. The associated thermodynamic parameter ( B) was determined to be 8.98×10 04.

  10. Determination of trifluoroacetic acid in 1996--1997 precipitation and surface waters in California and Nevada

    SciTech Connect

    Wujcik, C.E.; Cahill, T.M.; Seiber, J.N.

    1999-05-15

    The atmospheric degradation of three chlorofluorocarbon (CFC) replacement compounds, namely HFC-134a, HCFC-123, and HCFC-124, results in the formation of trifluoroacetic acid (TFA). Concentrations of TFA were determined in precipitation and surface water samples collected in California and Nevada during 1996--1997. Terminal lake systems were found to have concentrations 4--13 times higher than their calculated yearly inputs, providing evidence for accumulation. The results support dry deposition as the primary contributor of TFA to surface waters in arid and semiarid environments. Precipitation samples obtained from three different locations contained 20.7--1530 ng/L with significantly higher concentrations in fogwater over rainwater. Elevated levels of TFA were observed for rainwater collected in Nevada over those collected in California, indicating continual uptake and concentration as clouds move from a semiarid to arid climate. Thus several mechanisms exist, including evaporative concentration, vapor-liquid phase partitioning, lowered washout volumes of atmospheric deposition water, and dry deposition, which may lead to elevated concentrations of TFA in atmospheric and surface waters above levels expected from usual rainfall washout.

  11. Strong and Biostable Hyaluronic Acid-Calcium Phosphate Nanocomposite Hydrogel via in Situ Precipitation Process.

    PubMed

    Jeong, Seol-Ha; Koh, Young-Hag; Kim, Suk-Wha; Park, Ji-Ung; Kim, Hyoun-Ee; Song, Juha

    2016-03-14

    Hyaluronic acid (HAc) hydrogel exhibits excellent biocompatibility, but it has limited biomedical application due to its poor biomechanical properties as well as too-fast enzymatic degradation. In this study, we have developed an in situ precipitation process for the fabrication of a HAc-calcium phosphate nanocomposite hydrogel, after the formation of the glycidyl methacrylate-conjugated HAc (GMHA) hydrogels via photo-cross-linking, to improve the mechanical and biological properties under physiological conditions. In particular, our process facilitates the rapid incorporation of calcium phosphate (CaP) nanoparticles of uniform size and with minimal agglomeration into a polymer matrix, homogeneously. Compared with pure HAc, the nanocomposite hydrogels exhibit improved mechanical behavior. Specifically, the shear modulus is improved by a factor of 4. The biostability of the nanocomposite hydrogel was also significantly improved compared with that of pure HAc hydrogels under both in vitro and in vivo conditions. PMID:26878437

  12. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: comparison with precipitation in other major Chinese cities.

    PubMed

    Huang, De-Yin; Xu, Yi-Gang; Peng, Ping'an; Zhang, Hui-Huang; Lan, Jiang-Bo

    2009-01-01

    With the aim of understanding the origin of acid rains in South China, we analyzed rainwaters collected from Guangzhou, China, between March 2005 and February 2006. The pH of rainwater collected during the monitoring period varied from 4.22 to 5.87; acid rain represented about 94% of total precipitation during this period. The rainwater was characterized by high concentrations of SO(4)(2-), NO(3)(-), Ca(2+), and NH(4)(+). SO(4)(2-) and NO(3)(-), the main precursors of acid rain, were related to the combustion of coal and fertilizer use/traffic emissions, respectively. Ca(2+) and NH(4)(+) act as neutralizers of acid, accounting for the decoupling between high SO(4)(2-) concentrations and relatively high pH in the Guangzhou precipitation. The acid rain in Guangzhou is most pronounced during spring and summer. A comparison with acid precipitation in other Chinese cities reveals a decreasing neutralization capacity from north to south, probably related to the role and origin of alkaline bases in precipitation. PMID:18801606

  13. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: comparison with precipitation in other major Chinese cities.

    PubMed

    Huang, De-Yin; Xu, Yi-Gang; Peng, Ping'an; Zhang, Hui-Huang; Lan, Jiang-Bo

    2009-01-01

    With the aim of understanding the origin of acid rains in South China, we analyzed rainwaters collected from Guangzhou, China, between March 2005 and February 2006. The pH of rainwater collected during the monitoring period varied from 4.22 to 5.87; acid rain represented about 94% of total precipitation during this period. The rainwater was characterized by high concentrations of SO(4)(2-), NO(3)(-), Ca(2+), and NH(4)(+). SO(4)(2-) and NO(3)(-), the main precursors of acid rain, were related to the combustion of coal and fertilizer use/traffic emissions, respectively. Ca(2+) and NH(4)(+) act as neutralizers of acid, accounting for the decoupling between high SO(4)(2-) concentrations and relatively high pH in the Guangzhou precipitation. The acid rain in Guangzhou is most pronounced during spring and summer. A comparison with acid precipitation in other Chinese cities reveals a decreasing neutralization capacity from north to south, probably related to the role and origin of alkaline bases in precipitation.

  14. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  15. Effects of acidic precipitation on the water quality of streams in the Laurel Hill area, Somerset County, Pennsylvania, 1983-86

    USGS Publications Warehouse

    Barker, J.L.; Witt, E. C.

    1990-01-01

    Five headwater streams in the Laurel Hill area in southwestern Pennsylvania were investigated from September 1983 through February 1986 to determine possible effects of acidic precipitation on water quality. Precipitation in the Laurel Hill area is among the most acidic in the Nation, with a mean volume-weighted pH of 4.06. Sulfate is the dominant acid-forming anion, averaging 3.6 milligrams per liter or about 50 kilograms per hectare in wet deposition alone. Nitrate averages about 2 milligrams per liter or 7 kilograms per hectare in the study area. Stream chemistry in the five streams is quite variable and apparently is influenced to a large degree by the bedrock geology and by small amounts of alkaline material in watershed soils. Three of the five streams with no or little acid-neutralizing capacity presently are devoid of fish because of low pH and elevated aluminum concentrations. Aluminum concentrations increase in the other two streams during rainfall and snowmelt despite comparatively higher base flow and acid-neutralizing capacities. Comparison of the chemistry of streamflow during 14 storm events at South Fork Bens Creek and North Fork Bens Creek reveals similar chemical responses when discharge suddenly increases. Concentrations of dissolved metals and sulfate increased during stormflow and snowmelt runoff, whereas concentrations of base cations, silica, and chloride decreased. Nitrate concentrations were not affected by rainfall runoff by tended to increase with snowmelt runoff.

  16. Effects of acidic precipitation on the water quality of streams in the Larel Hill area, Somerset County, Pennsylvania, 1983-86

    SciTech Connect

    Barker, J.L.; Witt, E.C.

    1990-01-01

    Five headwater streams in the Laurel Hill area in southwestern Pennsylvania were investigated from September 1983 through February 1986 to determine possible effects of acidic precipitation on water quality. Precipitation in the Larel Hill area is among the most acidic in the Nation, with a mean volume-weighted pH of 4.06. Sulfate is the dominant acid-forming anion, averaging 3.6 mg/L or about 50 kg/hectare in wet deposition alone. Nitrate averages about 2 mg/L or 7 kg/hectare in the study area. Stream chemistry in the five streams is quite variable and apparently is influenced to a large degree by the bedrock geology and by small amounts of alkaline material in watershed soils. Three of the five streams with no or little acid-neutralizing capacity present are devoid of fish because of low pH and elevated aluminum concentrations. Aluminum concentrations increase in the other two streams during rainfall and snowmelt despite comparatively higher base flow and acid-neutralizing capacities. Comparison of the chemistry of streamflow during 14 storm events at South Fork Bens Creek and North Bens creek reveals similar chemical responses when discharge suddenly increases. concentrations of dissolved metals and sulfate increased during stormflow and snowmelt runoff, whereas concentrations of base cations, silica, and chloride decreased. Nitrate concentrations were not affected by rainfall runoff, but tended to increase with snowmelt runoff. 36 refs., 19 figs., 15 tabs.

  17. Evaluation of candidate rain gages for upgrading precipitation measurement tools for the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Gordon, John D.

    2003-01-01

    The National Atmospheric Deposition Program (NADP) was established in 1977 to investigate atmospheric deposition and its effects on the environment. Since its establishment, precipitation records have been obtained at all NADP sites using a gage developed approximately 50 years ago-the Belfort 5-780 mechanical rain gage. In 1998 and 1999, a study was done by the U.S. Geological Survey to evaluate four recently developed, technologically advanced rain gages as possible replacement candidates for the mechanical gage currently (2002) in use by the NADP. The gage types evaluated were the Belfort 3200, Geonor T-200, ETI Noah II, and the OTT PLUVIO. The Belfort 5-780 was included in the study to compare the performance of the rain gage currently (2002) used by NADP to the performance of the more recently developed gages. As a reference gage, the NovaLynx Model 260-2510 National Weather Service type stick gage also was included in the study. Two individual gages of each type were included in the study to evaluate precision between gages of the same type. A two-phase evaluation was completed. Phase I consisted of indoor bench tests with known amounts of simulated rainfall applied in 20 individual tests. Phase II consisted of outdoor testing by collecting precipitation during a 26-week period near Bay St. Louis, Mississippi. The ETI Noah II, OTT PLUVIO, and NovaLynx stick gages consistently recorded depths more commensurate with the amounts of applied simulated rainfall in Phase I testing than the Geonor T-200, Belfort 5-780, and Belfort 3200 gages. Gages where both the median difference between the measured and applied simulated rainfall and the interquartile range of all of their measured minus applied simulated rainfall differences were small (less than or equal to 0.01 inch) were judged to have performed very well in Phase I testing. The median and interquartile-range values were 0.01 inch or less for each of the ETI Noah II gages, OTT PLUVIO gages, and NovaLynx stick

  18. A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France

    NASA Astrophysics Data System (ADS)

    Charron, Aurélie; Plaisance, Hervé; Sauvage, Stéphane; Coddeville, Patrice; Galloo, Jean-Claude; Guillermo, René

    In order to examine the qualitative and quantitative source-receptor relationships responsible for acid rains at a background site in France, a receptor-oriented model was applied to the precipitation data collected from 1992 to 1995. Origins of acidic and alkaline species in precipitations have been investigated. The methodology combines precipitation chemical data with air parcel backward trajectories to establish concentration field maps of likely contributing sources. Highest acidities and concentrations of sulfate and nitrate in precipitation were associated with transport from the high emission areas of central Europe. Alkaline events were associated with air masses originating from Mediterranean basin or northern Africa. The quantitative relationships between the maps of potential sources and the European emissions of SO 2 and NO x were examined performing a correlation analysis. Good correlations were found between computed concentrations of acidic species and emissions of SO 2 and NO x. Substantial seasonal variations of acidic species were revealed. The highest concentrations occurred during the warm season. These seasonal variations are the effect of change of meteorological conditions and of the strength atmospheric processes according to the season.

  19. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed.

  20. Design and performance of an acidic precipitation delivery system for field investigations with plants.

    PubMed

    Lauver, T L; Laurence, J A; Kohut, R J

    1990-01-01

    An acidic precipitation delivery system is described that was designed and constructed for use in a field investigation of the response of red spruce saplings (Picea rubens Sarg.) to the interactive stresses of ozone and acid rain. The system utilizes hydraulic, solid-cone spray nozzles to produce simulated rainfall with droplet size distributions approximating natural rain events, which are of low intensity, i.e., about 1-1.5 cm hr(-1), and are relatively uniform in distribution of volume over a 2.4 m diameter plot. Three different pH treatments (3.1, 4.1, 5.1) were dispensed randomly to each of three treatment subplots located in twelve open-top field chambers and three ambient control chambers. Storage capacity of the system permitted a 2.3 hr rain event. Construction materials used were chosen for resistance to the corrosive nature of the rain simulant, stability to ambient UV radiation, and resistance to penetration by sunlight. Simulated events were not synchronized to ambient events, but were scheduled to prevent moisture deficits.

  1. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  2. Integrated Lake-Watershed Acidification Study (ILWAS): contributions to the international conference on the ecological impact of acid precipitation

    SciTech Connect

    Not Available

    1981-05-01

    The Integrated Lake-Watershed Acidification Study (ILWAS) was initiated to study and detail lake acidification processes for three lake watershed basins in the Adirondack Park region of New York. The three basins (Woods, Sagamore, and Panther), receive similar amounts of acid deposition yet observable pH values for the lakes are very dissimilar indicating unequal acid neutralizing capacities among the watersheds. This volume contains a compilation of seven papers. Relevant topics include: a characterization of the geology, hydrology, limnology and vegetation of the three study sites, an analysis of acid precipitation quality and quantity, the effects of vegetative canopy, the effects of snowmelt, the effects of winter lake stratification, comparison of heavy metal transport, examination of acidic sources other than direct precipitation, assessment of lake acidification during spring thaw and integration of all acidification components with a mathematical model.

  3. A transport model of the dissolution of limestone and marble due to acid precipitation

    SciTech Connect

    Kishiyama, G.E.

    1991-01-01

    The dissolution rate of calcite is known to be a function of the hydrogen ion activity in a contacting solution. This is important in the case of accelerated weathering by acid precipitation, where the decrease in the natural pH of rainwater can cause significant damage. Experimental studies on inclined slabs of Salem Limestone and Shelburne Marble are being conducted both in the field and in the laboratory. This study is a theoretical model based on the laboratory experiments, and an attempt to relate the results to that obtained in the field studies. The laboratory experiments are modeled after failing film theory, where the flux of species into and out of the system at the solid-liquid interface are defined by the Plummer et al. reaction expressions. Electrochemical effects and chemical reactions in the bulk solution which contribute a buffering effect can alter the rate of mass transfer. A finite difference predictor-corrector method developed by Douglas was chosen to solve the coupled, non-linear equations describing this system. Hydrodynamics of rainfall onto a porous surface differ significantly from the well-known theory of laminar falling films. Hydrogen ion is quickly consumed after initial contact with the solid surface, resulting in large concentrations in the bulk fluid. The ensuing rate of mass transfer after consumption of acid closely resembles heat transfer into a semi-infinite slab with constant flux at the surface. Models for the distribution of raindrop sizes, descent velocity, and impact effect are developed based solely on rainfall intensity, which is provided from the field experiments. Addition of fresh fluid is quickly buffered by the flowing film, and dissolution due to acidity becomes less important for longer exposure lengths.

  4. [Low molecular weight carboxylic acids in precipitation during the rainy season in the rural area of Anshun, West Guizhou Province].

    PubMed

    Zhang, Yan-Lin; Lee, Xin-Qing; Huang, Dai-Kuan; Huang, Rong-Sheng; Jiang, Wei

    2009-03-15

    40 rainwater samples were collected at Anshun from June 2007 to October 2007 and analysed in terms of pH values, electrical conductivity, major inorganic anions and soluble low molecular weight carboxylic acids. The results showed that pH of individual precipitation events ranged from 3.57-7.09 and the volume weight mean pH value was 4.57. The most abundant carboxylic acids were acetic (volume weight mean concentration 6.75 micromol x L(-1)) and formic (4.61 micromol x L(-1)) followed by oxalic (2.05 micromol x L(-1)). The concentration levels for these three species during summer especially June and July were comparatively high; it implied that organic acids in Anshun may came primarily from emissions from growing vegetations or products of the photochemical reactions of unsaturated hydrocarbons. Carboxylic acids were estimated to account for 32.2% to the free acidity in precipitation. The contribution was higher than in Guiyang rainwater, which indicated contamination by industry in Guiyang was more than in Anshun. The remarkable correlation(p = 0.01) between formic acid and acetic acid suggest that they have similar sources or similar intensity but different sources. And the remarkable correlation (p = 0.01) between and formic acid and oxalic acid showed that the precursors of oxalic acid and formic acid had similar sources. During this period, the overall wet deposition of carboxylic acids were 2.10 mmol/m2. And it appeared mainly in the summer, during which both concentration and contribution to free acidity were also relatively high. Consequently, it was necessary to control emission of organic acids in the summer to reduce frequence of acid rain in Anshun.

  5. Design of the National Trends Network for monitoring the chemistry of atmospheric precipitation

    USGS Publications Warehouse

    Robertson, J.K.; Wilson, J.W.

    1985-01-01

    Long-term monitoring (10 years minimum) of the chemistry of wet deposition will be conducted at National Trends Network (NTN) sites across the United States. Precipitation samples will be collected at sites that represent broad regional characteristics. Design of the NTN considered four basic elements during construction of a model to distribute 50, 75, 100, 125 or 150 sites. The modeling oriented design was supplemented with guidance developed during the course of the site selection process. Ultimately, a network of 151 sites was proposed. The basic elements of the design are: (1) Assurance that all areas of the country are represented in the network on the basis of regional ecological properties (96 sites); (2) Placement of additional sites east of the Rocky Mountains to better define high deposition gradients (27 sites); (3) Placement of sites to assure that potentially sensitive regions are represented (15 sites); (4) Placement of sites to allow for other considerations, such as urban area effects (5 sites), intercomparison with Canada (3 sites), and apparent disparities in regional coverage (5 sites). Site selection stressed areas away from urban centers, large point sources, or ocean influences. Local factors, such as stable land ownership, nearby small emission sources (about 10 km), and close-by roads and fireplaces (about 0.5 km) were also considered. All proposed sites will be visited as part of the second phase of the study.

  6. The role of annual circulation and precipitation on national scale deposition of atmospheric sulphur and nitrogen compounds.

    PubMed

    Kryza, Maciej; Werner, Małgorzata; Dore, Anthony J; Błaś, Marek; Sobik, Mieczysław

    2012-10-30

    Atmospheric circulation and rainfall are important factors controlling the deposition of atmospheric pollutants. This paper aims to quantify the role of these factors in the deposition of sulphur and nitrogen compounds, using case studies in the United Kingdom and Poland. The FRAME model has been applied to calculate deposition for the base year (2005), dry and wet years (2003 and 2000 for the UK and 2003 and 1974 for Poland, respectively), and for years with contrasting annual wind patterns (1986 and 1996 for the UK, and 1998 and 1996 for Poland). Variation in annual wind and rainfall resulted in statistically significant changes in spatial patterns of deposition and the national deposition budget of sulphur and nitrogen compounds in both countries. The deposition budgets of S and N are 5% lower than for the reference year if the dry year is considered in both countries. For the wet year, there is an increase in country total deposition by up to 17%. Years with an increased frequency of eastern winds are associated with an increase in deposition of up to 14% in Poland and 8% in the UK. The national deposition budget is below the average for the years with high frequencies of W winds, especially for the UK (up to 13%). Wet deposition varies due to meteorological factors to a larger extent than dry deposition. In Poland, the changes in national deposition budget due to meteorological factors exceed the changes resulting from emission abatements in years 2000-2009 for nitrogen compounds. In the UK, emission abatements influence the national deposition budget to a larger extent than meteorological changes (except for NH(x)). The findings are important in relation to future climate changes, especially considering the potential increase in annual precipitation. This may lead to an increase in deposition over mountainous areas with sensitive ecosystems, where annual rainfall brings significant load of S and N. Changes in annual wind speed and frequency can modify the

  7. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean; Carrier, Christopher

    2012-01-01

    In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines

  8. Effect of acid precipitation on retention and excretion of elements in man.

    PubMed

    Bensryd, I; Rylander, L; Högstedt, B; Aprea, P; Bratt, I; Fåhraéus, C; Holmén, A; Karlsson, A; Nilsson, A; Svensson, B L

    1994-05-01

    From a population of 8918 farmers, 237 were selected whose consumption of locally produced foods was high. The subjects' water sources, private wells, were of different degrees of acidity. Significant associations between pH (median 6.7, range 4.7-8.6) of the drinking water and element concentrations were found. The correlation was negative for aluminium (Al; median 0.07 mumol/l), cadmium (Cd; 0.44 nmol/l), copper (Cu; 0.24 mumol/l) and lead (Pb; 1.9 nmol/l), and positive for calcium (Ca; 0.62 mmol/l) and magnesium (Mg; 0.21 mmol/l). Associations could not be found between the pH of, or element concentrations in, the water and concentrations of A1 (0.17 mumol/l), Mg (0.86 mmol/l) and selenium (Se; 1.0 mumol/l) in plasma, Cd (2.0 nmol/l), Pb (0.19 mumol/l) and mercury (Hg; 13 nmol/l) in blood, or A1 (12 mumol/mol creatinine) and Cu (11 mumol/mol creatinine) in urine. The concentrations of Hg in blood and Se in plasma were related to fish consumption, Cd and Pb in blood to smoking, A1 in urine to antacid intake, Pb in blood to rifle activities and hunting, and Hg in blood to hunting. Acid precipitation has an effect on element concentrations in drinking water, but not on the retention of those elements in the subjects investigated.

  9. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor.

    PubMed

    Battaglia-Brunet, Fabienne; Crouzet, Catherine; Burnol, André; Coulon, Stéphanie; Morin, Dominique; Joulian, Catherine

    2012-08-01

    Arsenic (As) is a toxic element frequently present in acid mine waters and effluents. Precipitation of trivalent arsenic sulphide in sulphate-reducing conditions at low pH has been studied with the aim of removing this hazardous element in a waste product with high As content. To achieve this, a 400m L fixed-film column bioreactor was fed continuously with a synthetic solution containing 100mg L(-1) As(V), glycerol and/or hydrogen, at pH values between 2.7 and 5. The highest global As removal rate obtained during these experiments was close to 2.5mg L(-1)h(-1). A switch from glycerol to hydrogen when the biofilm was mature induced an abrupt increase in the sulphate-reducing activity, resulting in a dramatic mobilisation of arsenic due to the formation of soluble thioarsenic complexes. A new analytical method, based on ionic chromatography, was used to evaluate the proportion of As present as thioarsenic complexes in the bioreactor. Profiles of pH, total As and sulphate concentrations suggest that As removal efficiency was linked to solubility of orpiment (As(2)S(3)) depending on pH conditions. Molecular fingerprints revealed fairly homogeneous bacterial colonisation throughout the reactor. The bacterial community was diverse and included fermenting bacteria and Desulfosporosinus-like sulphate-reducing bacteria. arrA genes, involved in dissimilatory reduction of As(V), were found and the retrieved sequences suggested that As(V) was reduced by a Desulfosporosinus-like organism. This study was the first to show that As can be removed by bioprecipitation of orpiment from acidic solution containing up to 100mg L(-1) As(V) in a bioreactor.

  10. Effect of acid precipitation on retention and excretion of elements in man.

    PubMed

    Bensryd, I; Rylander, L; Högstedt, B; Aprea, P; Bratt, I; Fåhraéus, C; Holmén, A; Karlsson, A; Nilsson, A; Svensson, B L

    1994-05-01

    From a population of 8918 farmers, 237 were selected whose consumption of locally produced foods was high. The subjects' water sources, private wells, were of different degrees of acidity. Significant associations between pH (median 6.7, range 4.7-8.6) of the drinking water and element concentrations were found. The correlation was negative for aluminium (Al; median 0.07 mumol/l), cadmium (Cd; 0.44 nmol/l), copper (Cu; 0.24 mumol/l) and lead (Pb; 1.9 nmol/l), and positive for calcium (Ca; 0.62 mmol/l) and magnesium (Mg; 0.21 mmol/l). Associations could not be found between the pH of, or element concentrations in, the water and concentrations of A1 (0.17 mumol/l), Mg (0.86 mmol/l) and selenium (Se; 1.0 mumol/l) in plasma, Cd (2.0 nmol/l), Pb (0.19 mumol/l) and mercury (Hg; 13 nmol/l) in blood, or A1 (12 mumol/mol creatinine) and Cu (11 mumol/mol creatinine) in urine. The concentrations of Hg in blood and Se in plasma were related to fish consumption, Cd and Pb in blood to smoking, A1 in urine to antacid intake, Pb in blood to rifle activities and hunting, and Hg in blood to hunting. Acid precipitation has an effect on element concentrations in drinking water, but not on the retention of those elements in the subjects investigated. PMID:8016632

  11. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

    PubMed Central

    Qiu, S M; Wen, G; Hirakawa, N; Soloway, R D; Hong, N K; Crowther, R S

    1991-01-01

    Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline calcium hydroxyapatite. This inhibition was not mediated by decreased Ca2+ activity. Taurocholic acid (2-12 mM) did not affect hydroxyapatite formation, but antagonized glycochenodeoxycholic acid. Both amorphous and crystalline precipitates contained a surface fraction relatively rich in phosphate. The surface phosphate content was diminish by increasing glycochenodeoxycholic acid concentrations, and this relationship was interpreted as competition between bile acid and HPO4(-4) for binding sites on the calcium phosphate surface. A phosphate-rich crystal surface was associated with rapid transition from amorphous to crystalline states. These results indicate that glycochenodeoxycholic acid prevents transformation of amorphous calcium phosphate to crystalline hydroxyapatite by competitively inhibiting the accumulation of phosphate on the crystal embryo surface. PMID:1655828

  12. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement

    PubMed Central

    Cantaert, Bram; Beniash, Elia

    2013-01-01

    Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP. PMID:24409343

  13. Geological and hydrochemical sensitivity of the eastern United States to acid precipitation

    SciTech Connect

    Hendrey, G.R.; Galloway, J.N.; Norton, S.A.; Schofield, C.L.; Shaffer, P.W.; Burns, D.A.

    1980-03-01

    A new analysis of bedrock geology maps of the eastern US constitutes a simple model for predicting areas which might be impacted by acid precipitation and it allows much greater resolution for detecting sensitivity than has previously been available for the region. Map accuracy has been verified by examining current alkalinities and pH's of waters in several test states, including Maine, New Hampshire, New York, Virginia and North Carolina. In regions predicted to be highly sensitive, alkalinities in upstream sites were generally low. Many areas of the eastern US are pinpointed in which some of the surface waters, especially upstream reaches, may be sensitive to acidification. Pre-1970 data were compared to post-1975 data, revealing marked declines in both alkalinity and pH of sensitive waters of two states tested, North Carolina, where pH and alkalinity have decreased in 80% of 38 streams and New Hampshire, where pH in 90% of 49 streams and lakes has decreased since 1949. These sites are predicted to be sensitive by the geological map on the basis of their earlier alkalinity values. The map is to be improved by the addition of a soils component.

  14. Interactions of 57Co, 85Sr and 137Cs with peat under acidic precipitation conditions.

    PubMed

    Sanchez, A L; Schell, W R; Thomas, E D

    1988-03-01

    Following the burial of low-level wastes in nuclear waste repositories, the interactions of radionuclides with surrounding soil infiltrated by acid precipitation could cause radionuclide migration and transport into nearby wells. To evaluate this migration through organically rich soil in the unsaturated zone, we measured sorption and desorption distribution ratios (Rd) of 57Co, 85Sr and 137Cs onto peat at pH 4. Peat samples rich in organic C showed relatively higher sorption Rd values for 57Co and 85Sr compared to soil samples with less organic C. The sorption and desorption Rd values for these radionuclides are similar, indicating the reversibility of the sorption process. The measurements suggest the importance of organic complexes for the retention of these radionuclides at the pH range (pH 4), where hydrolysis of the metals is not important and sorption is expected to be low. Cesium-137, on the other hand, appears to be associated more strongly with inorganic components of the soil samples, with its Rd value significantly higher in the peat material containing less organic C. The 137Cs desorption Rd on the same peat sample is also comparable to the sorption Rd indicating equilibrium. Both the organic and inorganic components of peat are thus able to retard the migration of radionuclides which may be found in nuclear waste repositories. The design of such a repository may be improved using a peat barrier to restrict radionuclide migration.

  15. A Drought Monitoring Tool for Customized Calculation of a Standardized Precipitation Index Value in the Navajo Nation

    NASA Astrophysics Data System (ADS)

    Cary, C.; Ly, V.; Gao, M.; Surunis, A.; Turnbull-Appell, S.; Sodergren, C.; Brooks, A. N.

    2015-12-01

    The Navajo Nation, located in the southwestern United States, has been increasingly impacted by severe drought events and regional changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring climate and drought are dependent on national-scale monthly drought maps calculated by the Western Regional Climate Center (WRCC). These maps do not provide the spatial resolution needed to examine differences in drought severity across the vast Nation. To better understand and monitor drought regime changes in the Navajo Nation, this project comprises of two main components: 1) a geodatabase of historical climate information necessary to calculate Standardized Precipitation Index (SPI) values and 2) a tool that calculates SPI values for a user-selected area within the study site. The tool and geodatabase use TRMM and GPM observed precipitation data, and Parameter-elevation Relationships on Independent Slopes Model (PRISM) modeled historical precipitation data. These products allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.

  16. Survival of Listeria innocua in rainbow trout protein recovered by isoelectric solubilization and precipitation with acetic and citric acids.

    PubMed

    Otto, R A; Paker, I; Bane, L; Beamer, S; Jaczynski, J; Matak, K E

    2011-08-01

    During mechanical fish processing, a substantial amount of protein is discarded as by-products. Isoelectric solubilization and precipitation (ISP) is a process that uses extreme pH shifts to solubilize and precipitate protein from by-products to recover previously discarded protein. Typically, strong acids are used for pH reduction, but these acids do not have a pasteurization effect (6 log reduction) on bacterial load; therefore, organic acids were used during ISP processing to test the impact on Listeria innocua concentrations. Headed and gutted rainbow trout (Oncorhynchus mykiss) were inoculated with L. innocua, homogenized, and brought to the target pH with granular citric acid (pH 2.0 and 2.5) or glacial acetic acid (pH 3.0 and 3.5). Proteins were solubilized for 10 min at 4°C, and insoluble components (e.g., skin and insoluble protein) were removed by centrifugation. The remaining solution was pH shifted to the protein isoelectric point (pH 5.5) with sodium hydroxide, and precipitated protein was separated from the water. Microbial cells for each component (proteins, insolubles, and water) were enumerated on modified Oxford agar (MOX) and tryptic soy agar with 6% yeast extract (TSAYE). The sums of the surviving cells from each component were compared with the initial inoculum levels. No significant differences were observed between results obtained from TSAYE and from MOX (P > 0.05). Significant reductions in microbial populations were detected, regardless of pH or acid type (P < 0.05). The greatest reduction was at pH 3.0 with glacial acetic acid, resulting in a mean reduction of 6.41 log CFU/g in the recovered protein and 5.88 log CFU/g in the combined components. These results demonstrate the antimicrobial potential of organic acids in ISP processing.

  17. Precipitation, density, and population dynamics of desert bighorn sheep on San Andres National Wildlife Refuge, New Mexico

    USGS Publications Warehouse

    Bender, L.C.; Weisenberger, M.E.

    2005-01-01

    Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert

  18. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    PubMed

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles.

  19. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    PubMed

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles. PMID:26302857

  20. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  1. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  2. STRONTIUM PRECIPITATION

    DOEpatents

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  3. Stepwise ethanolic precipitation of sugar beet pectins from the acidic extract.

    PubMed

    Guo, Xiaoming; Meng, Hecheng; Zhu, Siming; Tang, Qiang; Pan, Runquan; Yu, Shujuan

    2016-01-20

    A stepwise ethanol-precipitation (SEP) procedure was developed for the purification of sugar beet pectins (SBP) from a pectin-containing aqueous extract. Five fractions of different chemical and molecular characteristics were produced by stepwise elevating the alcohol concentration of the precipitation medium from 50% to 80% v/v. Comparison of chemical and macromolecular features between the obtained fractions indirectly suggested that the ability of pectin to solubilize in the ethanol-water binary mixture depended greatly on the polymer structure. Fractions rich in neutral sugars were precipitated at relatively high ethanol concentrations, probably due to the enhanced interactions generated between pectin side chains and solvent molecules. Furthermore, the obtained fractions displayed different surface activities. Results obtained in this work indicate that the SEP procedure is more selective with respect to pectin structural features and surface properties than the one-step ethanolic precipitation.

  4. Stepwise ethanolic precipitation of sugar beet pectins from the acidic extract.

    PubMed

    Guo, Xiaoming; Meng, Hecheng; Zhu, Siming; Tang, Qiang; Pan, Runquan; Yu, Shujuan

    2016-01-20

    A stepwise ethanol-precipitation (SEP) procedure was developed for the purification of sugar beet pectins (SBP) from a pectin-containing aqueous extract. Five fractions of different chemical and molecular characteristics were produced by stepwise elevating the alcohol concentration of the precipitation medium from 50% to 80% v/v. Comparison of chemical and macromolecular features between the obtained fractions indirectly suggested that the ability of pectin to solubilize in the ethanol-water binary mixture depended greatly on the polymer structure. Fractions rich in neutral sugars were precipitated at relatively high ethanol concentrations, probably due to the enhanced interactions generated between pectin side chains and solvent molecules. Furthermore, the obtained fractions displayed different surface activities. Results obtained in this work indicate that the SEP procedure is more selective with respect to pectin structural features and surface properties than the one-step ethanolic precipitation. PMID:26572361

  5. Effects of airborne particulate matter on the acidity of precipitation in central Missouri

    SciTech Connect

    Applin, K.R.

    1985-01-01

    The pH of rainfall in central Missouri was monitored at four sites during the fall of 1983. Several pH values were well above 5.6, the theoretical pH of pure water in equilibrium with ambient levels of CO/sub 2/. Most of the higher pH's were measured on rainfall of short duration or rainfall collected during the first few hours of extended rainfall events. Furthermore, the rainfall associated with storm events lasting several days exhibited a trend of decreasing pH with time approaching values as low as 4.0 during the late stages of rainfall. Precipitation pH values above 5.6 apparently reflect neutralization reactions between wet precipitation and various components of airborne dust, especially clays and carbonates. During extended rainfalls, the neutralization effects gradually diminish as suspended dust is washed from the atmosphere yielding more accurate values of the wet precipitation pH. The results of this study suggest that airborne particulate matter generated from the dust bowl region of the US may affect the chemistry of precipitation in areas hundreds of kilometers downwind. Using date available in the literature, a direct relationship between precipitation pH and accumulated dustfall was found for data taken along a transect which represents the path of major storms crossing the US, i.e., from the south-central to northeastern regions.

  6. Dissolved, particulate and acid-leachable trace metal concentrations in North Atlantic precipitation collected on the Global Change Expedition

    SciTech Connect

    Lim, B.; Jickells, T.D. )

    1990-12-01

    Atmospheric inputs of trace metals into surface waters are an important pathway for the oceanic biogeochemical cycling of many trace constituents. Rainwater samples from six precipitation events were collected on board ship during legs 3 and 4 of the Global Change Expedition over the North Atlantic Ocean and analyzed for dissolved, particulate (Al and Pb), and acid-leachable trace metals (Al, Fe, Mn, Cd, Cu, Pb, Zn). Acid-leachable concentrations of the elements were similar to reported values from the North Atlantic and Pacific Oceans which were measured using comparable acidification procedures. Concentrations of dissolved and particulate Al and Pb were determined in rain events acid-leachable and total trace metal concentrations suggest that the acid-leachable fraction of metals can significantly underestimate total concentrations of crustal elements in rain. The solubilities of Al and Pb in precipitation were variable and mean solubilities of the elements were 13% and 45%, respectively. Recycled sea salt components were less than 14% for Al, Fe, Mn, Pb, Cd, Cu, and Zn, indicating that the net trace metal flux is from the atmosphere to the oceans. Deep sea particle fluxes for these metals through the western tropical North Atlantic exceed atmospheric deposition fluxes by a factor of 18 to 41. 57 refs., 2 figs., 12 tabs.

  7. Pluvial Precipitation in Baja California and the National Astronomical Observatory at San Pedro Mártir Sierra

    NASA Astrophysics Data System (ADS)

    Álvarez, M.; Michel, R.; Reyes-Coca, S.; Troncoso-Gaytán, R.

    2007-10-01

    We present an analysis of climatic data around the National Astronomical Observatory at San Pedro Mártir Sierra (OAN-SPM) in Ensenada, B.C. This analysis is based on data taken by several authors, and at different epochs, to characterize this site for astronomical purposes. We used rain precipitation data, relative humidity, wind, and other parameters from the climatological stations operated by Comisión Nacional del Agua and other offices. We use indexes, derived from ocean surface temperature (OST) and tree-ring data analysis, to study past climatic variations to create a possible future scenario for pluvial precipitation. We point out some implications on the Global Climatic Change at the region of Baja California.

  8. Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials.

    PubMed

    Opiso, Einstine; Sato, Tsutomu; Yoneda, Tetsuro

    2009-10-15

    Pollution caused by boric acid and toxic anions such as As(V), Cr(VI) and Se(VI) is hazardous to human health and environment. The sorption characteristics of these environmentally significant ionic species on allophane-like nanoparticles were investigated in order to determine whether allophane can reduce their mobility in the subsurface environment at circum-neutral pH condition. Solutions containing 100 or 150 mmol of AlCl(3)x6H(2)O were mixed to 100 mmol of Na(4)SiO(4) and the pH were adjusted to 6.4+/-0.3. The mineral suspensions were shaken for 1h and incubated at 80 degrees C for 5 days. Appropriate amounts of As, B, Cr and Se solutions were added separately during and after allophane precipitation. The results showed that As(V) and boric acid can be irreversibly fixed during co-precipitation in addition to surface adsorption. However, Cr(VI) and Se(VI) retention during and after allophane precipitation is mainly controlled by surface adsorption. The structurally fixed As(V) and boric acid were more resistant to release than those bound on the surface. The sorption characteristics of oxyanions and boric acid were also influenced by the final Si/Al molar ratio of allophane in which Al-rich allophane tend to have higher uptake capacity. The overall results of this study have demonstrated the role of allophane-like nanoparticles and the effect of its Si/Al ratio on As, B, Cr and Se transport processes in the subsurface environment.

  9. Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: a case study in southwest China.

    PubMed

    Chen, Jing; Li, Wei; Gao, Fang

    2010-10-01

    The elemental composition of rainwater, throughfall, and soil solutions of a forest ecosystem in the acid rain control region of southwest China was investigated during 2007-2008 to assess the acid buffering capacity of different forest covers. A possible seasonal distribution of wet deposition was identified. Sulfur was determined as the dominant acidification precursor in this region. The chemical composition of rainfall intercepted by the forest canopy was modified substantially; generally the ion concentrations were increased by dry deposition and foliar leaching. As an exception, the concentration of NH(4)(+) and NO(3)(-) decreased in throughfall, which was probably due to the absorption of nitrogen by the leaves. Elemental concentrations in soil solutions decreased with depth. The water conservation capacity of different forests was also evaluated. The most appropriate forest vegetation for water conservation and remediation of acid precipitation in this region was explored for the sake of ecosystem management, ecological restoration and economic development.

  10. Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: a case study in southwest China.

    PubMed

    Chen, Jing; Li, Wei; Gao, Fang

    2010-10-01

    The elemental composition of rainwater, throughfall, and soil solutions of a forest ecosystem in the acid rain control region of southwest China was investigated during 2007-2008 to assess the acid buffering capacity of different forest covers. A possible seasonal distribution of wet deposition was identified. Sulfur was determined as the dominant acidification precursor in this region. The chemical composition of rainfall intercepted by the forest canopy was modified substantially; generally the ion concentrations were increased by dry deposition and foliar leaching. As an exception, the concentration of NH(4)(+) and NO(3)(-) decreased in throughfall, which was probably due to the absorption of nitrogen by the leaves. Elemental concentrations in soil solutions decreased with depth. The water conservation capacity of different forests was also evaluated. The most appropriate forest vegetation for water conservation and remediation of acid precipitation in this region was explored for the sake of ecosystem management, ecological restoration and economic development. PMID:20859590

  11. Optimal Concentration of 2,2,2-Trichloroacetic Acid for Protein Precipitation Based on Response Surface Methodology

    PubMed Central

    Ngo, Albert N; Ezoulin, Miezan JM; Youm, Ibrahima; Youan, Bi-Botti C

    2014-01-01

    For low protein concentrations containing biological samples (in proteomics) and for non proteinaceous compound assays (in bioanalysis), there is a critical need for a simple, fast, and cost-effective protein enrichment or precipitation method. However, 2,2,2-trichloroacetic acid (TCA) is traditionally used for protein precipitation at ineffective concentrations for very low protein containing samples. It is hypothesized that response surface methodology, can be used to systematically identify the optimal TCA concentration for protein precipitation in a wider concentration range. To test this hypothesis, a central composite design is used to assess the effects of two factors (X1 = volume of aqueous solution of protein, and X2 = volume of TCA solution 6.1N) on the optical absorbance of the supernatant (Y1), and the percentage of protein precipitated (Y2). Using either bovine serum albumin (BSA) as a model protein or human urine (with 20 ppm protein content), 4% w/v (a saddle point) is the optimal concentration of the TCA solution for protein precipitation that is visualized by SDS-PAGE analysis. At this optimal concentration, the Y2-values range from 76.26 to 92.67% w/w for 0.016 to 2 mg/mL of BSA solution. It is also useful for protein enrichment and xenobiotic analysis in protein-free supernatant as applied to tenofovir (a model HIV microbicide). In these conditions, the limit of detection and limit of quantitation of tenofovir are respectively 0.0014 mg/mL and 0.0042 mg/mL. This optimal concentration of TCA provides optimal condition for protein purification and analysis of any xenobiotic compound like tenofovir. PMID:25750762

  12. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect

    Norton, G.

    1990-09-21

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  13. Effect of precipitation, geographical location and biosynthesis on New Zealand milk powder bulk and fatty acids D/H ratios

    NASA Astrophysics Data System (ADS)

    Frew, R.; Emad Ehtesham, R.; Van Hale, R.; Hayman, A.; Baisden, T.

    2012-04-01

    D/H ratio measurements provide useful information for the investigation of biogeochemical influences on natural and agricultural produce, particularly with application to food traceability and authentication. Numerous studies have shown that variation of a product's D/H ratio is influenced by both environmental factors and biological processes. This study investigates the D/H ratio of New Zealand milk powder and individual fatty acids, and causal determinants of isotopic variation. One of the key environmental factors is precipitation, and the D/H ratio "isoscaping" of NZ has been undertaken. New Zealand provides a unique geography for these kinds of study in terms of proximity to the ocean and natural geographical variability from sea level to elevations as high as 3700 m. Milk powder samples were collected from different geographical regions from milk processing units, which were supplied by producers in the immediate region. H/D ratios of bulk milk powder and of individual fatty acids were determined. Initial comparison of the precipitation and milk powder bulk D/H data show a very good differentiation from north to southernmost parts of New Zealand and a relation between rain and milk bulk D/H abundance ratio. Almost 98% of milk FAs are in the form of triglycerides that have been extracted and hydrolysed to free FAs. Free FAs were esterified and analyzed with GC-IRMS. Individual FAs show variation in D/H ratio, and all values are depleted relative to the precipitation data. The difference in D/H ratio amongst individual FAs reflects the geographical environment and biological processes i.e. micro-organisms activity in the rumen of the cow. Short chain FAs (less than 8 carbons), particularly C4 (Butyric acid), appear to be key determinants. The variation in the data can be rationalized using statistical multivariate analysis.

  14. Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park.

    PubMed

    Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-08-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56 degrees C at the source and 40 degrees C at the confluence of both springs. Growth and survival assays at 56 degrees C for 60 days were performed, confirming the origin of the strain.

  15. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  16. The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.

    1984-01-01

    Periphyton and benthic invertebrates assemblages were studied at the confluence of two Rocky Mountain streams, Deer Creek and the Snake River near Montezuma, Colorado. Upstream from the confluence the Snake River is acidic and enriched in dissolved trace metals, while Deer Creek is a typical Rocky Mountain stream. In the Snake River, downstream from the confluence, the pH increases and hydrous metal oxides precipitate and cover the streambed. The algal and benthic invertebrate communities in the upstream reaches of the Snake River and in Deer Creek were very different. A liverwort, Scapania undulata var. undulata, was abundant in the Snake River, and although periphyton were very sparse, there were as many benthic invertebrates as in Deer Creek. Downstream from the confleunce, the precipitation of hydrous metal oxides greatly decreased the abundance of periphyton and benthic invertebrates. This study shows that in streams metal precipitates covering the streambed may have a more deleterious effect on stream communities than high metal-ion activities. ?? 1984 Dr. W. Junk Publishers.

  17. The effect of phosphoric acid concentration on the synthesis of nano-whiskers of calcium metaphosphate by chemical precipitation Method

    NASA Astrophysics Data System (ADS)

    Yao, Nengjian; Zhang, Yin; Kong, Deshuang; Zhu, Jianping; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Calcium metaphosphate (CMP) nano-whiskers were produced by a chemical precipitation method. In order to produce nano-powders, CMP was prepared by the mixing of two precursors, calcium oxide (CaO) and phosphate acid (H3PO4). Sparingly soluble chemicals, the Ca/P ratio of the mixture was set to be 0.50 to produce stoichiometric CMP, were chemical agitated in phosphate acid solution. At least 3 hours of pre-hydrolysis of phosphorus precursor were required to obtain CMP phase. The CMP powders were dried in a drying oven at 60 °C for 7 days and then followed by a heat treatment at 390 °C for 8hours. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA, Zeta Potential Meter, Specific Surface Area, and Particle Size Analyzer. The results showed that obtained CMP nano-whiskers have a significantly powder characteristics.

  18. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1984-09-01

    Soil samples from three watersheds of New York State were treated with simulated rain at pH 3.5, 4.1, and 5.6 daily for 14 d, at 12 3-d intervals in three separate tests, or at 22 7-d intervals. Except for one system of treating the three forest soils, simulated acid rain reduced the amount of organic matter leached from samples of soil from which more than 0.05% of the organic carbon was leached during the exposure period. In the soil samples representing the exceptions, acid rain enhanced the leaching of organic matter. Samples from the organic layer of the treated samples of acid soil were taken at two equal depths, and the rates of organic matter decomposition in the two layers were studied. As compared with simulated rain at pH 5.6, simulated acid rain reduced the decomposition of organic matter in the three soils at both depths in three of the five tests and at both depths of two of the soils in the fourth test. In some instances, organic matter decomposition was enhanced by the simulated acid rain. Except for the sample of soil at the highest initial pH, carbon mineralization was inhibited in soils and treatments in which simulated acid rain reduced the amount of organic carbon leached, and it was stimulated in soils and treatments in which the quantity of organic carbon leached was increased by the simulated acid rain. 12 references, 3 figures, 8 tables.

  19. Changes in acid precipitation-related water chemistry of lakes from southwestern New Brunswick, Canada, 1986-2001.

    PubMed

    Pilgrim, W; Clair, T A; Choate, J; Hughes, R

    2003-01-01

    Between 1986 and 2001, thirty-nine lakes in southwestern New Brunswick in Atlantic Canada were surveyed for acid precipitation-related water quality changes. Most of the study lakes are located on granite bedrock and represent the most acid sensitive lakes in the province. Between 1987 and 1992, hydrogen ion deposition to the lake study area averaged 452 eq ha(-1) yr(-1), compared to 338 eq ha(-1) yr(-1) between 1993 and 2000, a 25% reduction. The lake chemistry data were evaluated by dividing the lakes into four clusters for each survey year based on their acid neutralizing capacity. Twenty percent of the lakes (cluster IV) had an average ANC of 40 microeq L(-1) or greater and maintained an average pH of greater than 6 over the duration of the study period. A pH of 6 or greater is considered a healthy benchmark for maintaining biodiversity. The remaining 31 lakes (clusters I to III) had an average ANC of less than 40 microeq L(-1) and maintained an average pH of less than 6. Other lake chemistry changes included a general decline in lake sulphate and colour over the duration of the survey period, followed by more recent improvements in calcium ion, pH and ANC, and notably higher but declining aluminum levels in lower ANC and pH lakes. Nitrate accounted for 37% of the acid deposition to the study area, however it was not detectable in the lakes. Although acid deposition has declined and these lakes are beginning to show signs of acid recovery, 80% of the study lakes remain acid sensitive having little buffering capacity with low calcium, pH and ANC.

  20. Investigation of differences between field and laboratory pH measurements of national atmospheric deposition program/national trends network precipitation samples

    USGS Publications Warehouse

    Latysh, N.; Gordon, J.

    2004-01-01

    A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.

  1. Soluble species in the Arctic summer troposphere - acidic gases, aerosols, and precipitation

    SciTech Connect

    Talbot, R.W.; Vijgen, A.S.; Harriss, R.C. Old Dominion Univ., Norfolk, VA )

    1992-10-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions. 61 refs.

  2. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  3. The effects of a simulated acid precipitation on leaf litter quality and the growth of a detritivore in a buffered lotic system.

    PubMed

    Garden, A; Davies, R W

    1988-01-01

    The effects of a simulated acid rain on leaf litter quality and the growth of a detritivore in a buffered lotic system were investigated. Exposure of Populus balsamifera L. saplings to a simulated acid precipitation prior to leaf abscission resulted in significant decreases in foliar nitrogen content and increases in carbon: nitrogen ratios. During decomposition of the leaf litter in a buffered lotic system, microbial activity was significantly reduced. Growth of Tipula commiscibilis Diane (Diptera: Tipulidae) larvae decreased significantly when fed conditioned leaves exposed to a simulated acid precipitation prior to abscission. Reductions in detritivore growth were correlated with lower potential quality of the leaf litter resulting from increased carbon: nitrogen ratios and reduced levels of microbial activity. Thus, even in well buffered freshwater ecosystems, acid precipitation can have significant indirect effects on microbial activity and macroinvertebrate growth.

  4. The effects of a simulated acid precipitation on leaf litter quality and the growth of a detritivore in a buffered lotic system.

    PubMed

    Garden, A; Davies, R W

    1988-01-01

    The effects of a simulated acid rain on leaf litter quality and the growth of a detritivore in a buffered lotic system were investigated. Exposure of Populus balsamifera L. saplings to a simulated acid precipitation prior to leaf abscission resulted in significant decreases in foliar nitrogen content and increases in carbon: nitrogen ratios. During decomposition of the leaf litter in a buffered lotic system, microbial activity was significantly reduced. Growth of Tipula commiscibilis Diane (Diptera: Tipulidae) larvae decreased significantly when fed conditioned leaves exposed to a simulated acid precipitation prior to abscission. Reductions in detritivore growth were correlated with lower potential quality of the leaf litter resulting from increased carbon: nitrogen ratios and reduced levels of microbial activity. Thus, even in well buffered freshwater ecosystems, acid precipitation can have significant indirect effects on microbial activity and macroinvertebrate growth. PMID:15092603

  5. Generation of dose-response relationships to assess the effects of acidity in precipitation on growth and productivity of vegetation

    SciTech Connect

    Evans, L.S.

    1981-01-01

    Experiments were performed with several plant species in natural environments as well in a greenhouse and/or tissue culture facilities to establish dose-response functions of plant responses to simulated acidic rain in order to determine environmental risk assessments to ambient levels of acidic rain. Response functions of foliar injury, biomass of leaves and seed of soybean and pinto beans, root yields of radishes and garden beets, and reproduction of bracken fern are considered. The dose-response function of soybean seed yields with the hydrogen ion concentration of simulated acidic rainfalls was expressed by the equation y = 21.06-1.01 log x where y = seed yield in grams per plant and x = the hydrogen concentration if ..mu..eq l/sup -1/. The correlation coefficient of this relationship was -0.90. A similar dose-response function was generated for percent fertilization of ferns in a forest understory. When percent fertilization is plotted on logarithmic scale with hydrogen ion concentration of the simulated rain solution, the Y intercept is 51.18, slope -0.041 with a correlation coefficient of -0.98. Other dose-response functions were generated that assist in a general knowledge as to which plant species and which physiological processes are most impacted by acidic precipitation. Some responses did not produce convenient dose-response relationships. In such cases the responses may be altered by other environmental factors or there may be no differences among treatment means.

  6. Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park.

    PubMed

    Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-08-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56 degrees C at the source and 40 degrees C at the confluence of both springs. Growth and survival assays at 56 degrees C for 60 days were performed, confirming the origin of the strain. PMID:17557859

  7. Synthesis of WO{sub 3} nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties

    SciTech Connect

    Sánchez-Martínez, D.; Martínez-de la Cruz, A.; López-Cuéllar, E.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► WO{sub 3} nanoparticles were synthesized by a simple citric acid-assisted precipitation. ► WO{sub 3} photocatalyst was able to the partial mineralization of rhB, IC and MO. ► WO{sub 3} can be considered as a photocatalyst active under visible light irradiation. -- Abstract: WO{sub 3} nanoparticles were synthesized by citric acid-assisted precipitation method using a 1:1.5 molar ratio of ammonium paratungstate hydrate (H{sub 42}N{sub 10}O{sub 42}W{sub 12}·xH{sub 2}O):citric acid (C{sub 6}H{sub 8}O{sub 7}). The formation of monoclinic crystal structure of WO{sub 3} at different temperatures was confirmed by X-ray powder diffraction (XRD). The characterization of the samples synthesized was complemented by transmission electron microscopy (TEM), Brunauer–Emmitt–Teller surface area (BET) and diffuse reflectance spectroscopy (DRS). According to the thermal treatment followed during the synthesis of WO{sub 3}, the morphology of the nanoparticles formed was characterized by rectangular and ovoid shapes. The photocatalytic activity of WO{sub 3} obtained under different experimental conditions was evaluated in the degradation of rhodamine B (rhB), indigo carmine (IC), methyl orange (MO), and Congo red (CR) in aqueous solution under UV and UV–vis radiation. The highest photocatalytic activity was observed in the sample obtained by thermal treatment at 700 °C. In general, the sequence of degradation of the organic dyes was: indigo carmine (IC) > rhodamine B (rhB) > methyl orange (MO) > Congo red (CR). The mineralization degree of organic dyes by WO{sub 3} photocatalysts was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 82% (rhB), 85% (IC), 28% (MO), and 7% (CR) for 96 h of lamp irradiation.

  8. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  9. Soluble species in the Arctic summer troposphere: Acidic gases, aerosols, and precipitation

    NASA Astrophysics Data System (ADS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-10-01

    We report here the distribution of selected acidic gases and aerosol species in the North American Arctic and sub-Arctic summer troposphere. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases and acidic sulfate aerosols dominating the particulate phase. Our data show that the acidic gas and aerosol composition is uniform on a large spatial scale. There appears to be a surface source of NH4+ over the Arctic Ocean pack ice which may reflect release of NH3 from decay of dead marine organisms on the ice surface near ice leads, release from rotting sea ice, or an upward flux from surface ocean waters in open ice leads. This NH3 appears to partially neutralize aerosol acidity in the boundary layer. Over sub-Arctic tundra in southwestern Alaska inputs of marine biogenic sulfur from the nearby Bering Sea appear to be an important source of boundary layer aerosol SO42-. While there were only minor effects on aerosol chemistry over the tundra from sea salt, the rainwater chemistry showed influence from marine aerosols which were apparently incorporated into air masses during frontal passages moving inland from the Bering Sea. The rainwater acidity over the tundra (pH 4.69) is typical of remote regions. The principal acidity components are H2SO4 and carboxylic acids, especially HCOOH. The carboxylic acids appear to have a strong continental biogenic source, but hydrocarbons of marine origin and emissions from forest fires may also be important. The wet deposition fluxes of NO3--N and SO42--S over sub-Arctic tundra during July-August 1988 were 2.1 and 2.4 mmol m-2 yr-1. Wet deposition of NO3- was nearly 3 times higher than the average NOy deposition flux, which is believed to represent primarily dry deposition of HNO3 (Bakwin et al., this issue). Our measurements indicate that the mid-troposphere in the Arctic is generally contaminated with low levels of anthropogenic pollutants even in summer when direct atmospheric coupling

  10. Aquatic Activities for Middle School Children. A Focus on the Effects of Acid Precipitation.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Minnesota Sea Grant Program.

    Basic water-related concepts and underlying principles of acid rain are described in this curriculum in a manner that young children can understand. The curriculum consists of activities presented in four units: Background Unit, Earth Science Unit, Life Science Unit, and Extension Unit. The first three units consist of several modules, each module…

  11. Acid precipitation effects on algal productivity and biomass in Adirondack Mountain lakes

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain lakes were studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly to maxima six weeks after ice-out, instead of occurring very close to ice-out. Contributions of netplankton, nannoplankton and ultraplankton to productivity per m/sup 2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). This was consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. 11 references, 2 tables.

  12. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer

    NASA Astrophysics Data System (ADS)

    Cánovas, C. R.; Macías, F.; Pérez-López, R.

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40 days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  13. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    PubMed

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  14. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    PubMed

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  15. Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

    PubMed Central

    Nafissi Varcheh, Nastaran; Luginbuehl, Vera; Aboofazeli, Reza; Peter Merkle, Hans

    2011-01-01

    Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein particles (lysozyme-Zn complex as a freshly prepared suspension or a freeze-dried solid) were then loaded into PLGA (Resomer® 503H) microspheres, using a double emulsion technique and microspheres encapsulation efficiency and their sizes were determined. It was observed that salt type could significantly influence the magnitude of protein complexation. At the same conditions, zinc chloride was found to be more successful in producing pelletizable lysozyme. Generally, higher concentrations of protein solution led also to the higher yields of complexation and at the optimum conditions, the percentage of pelletizable lysozyme reached to 80%. Taking advantage of this procedure, a modified technique for preparation of protein-loaded PLGA microspheres was established, although it is also expected that this technique increases the protein drugs stabilization during the encapsulation process. PMID:24250344

  16. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process.

    PubMed

    Berwig, Karina Hammel; Baldasso, Camila; Dettmer, Aline

    2016-10-01

    Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality. PMID:27347795

  17. Electrostatic precipitation of condensed acid mist: First quarterly technical progress report, September 1 to November 30, 1988

    SciTech Connect

    Dahlin, R.S.

    1988-01-01

    This report covers the project scope and structure for developing and demonstrating a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. In order to accomplish this goal, the objectives to be met are: (1) a laboratory-version of the WESP (Wet Electrostatic Precipitator) must be fabricated. (2) the WESP performance must be optimized through laboratory tests with a nonvolatile simulant aerosol having a size distribution similar to the acid mist. (3) the WESP concept must be proven by demonstrating adequate collection of actual acid mist in a pilot coal combustion facility under conditions simulating a full-scale power plant burning high-sulfur coal. (4) a computer model of the WESP process must be developed to assist in the process optimization, interpretation of test results, and extrapolation to full scale. (5) Utility participation must be solicited in a follow-on demonstration of the WESP concept at a full-scale power plant. 5 refs., 2 figs. (JL)

  18. Electrostatic precipitation of condensed acid mist: Second quarterly technical progress report, December 1, 1988--February 28, 1989

    SciTech Connect

    Dahlin, R.S.

    1989-01-01

    This report covers the project scope and structure for developing and demonstrating a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. In order to accomplish this goal, the objectives to be met are: (1) a laboratory-version of the WESP (Wet Electrostatic Precipitator) must be fabricated, (2) the WESP performance must be optimized through laboratory tests with a nonvolatile simulant aerosol having a size distribution similar to the acid mist, (3) the WESP concept must be proven by demonstrating adequate collection of actual acid mist in a pilot coal combustion facility under conditions simulating a full-scale power plant burning high-sulfur coal, (4) a computer model of the WESP process must be developed to assist in the process optimization, interpretation of test results, and extrapolation to full scale, and (5) utility participation must be solicited in a follow-on demonstration of the WESP concept at a full-scale power plant. Progress in laboratory testing and collection efficiency is described. 5 refs., 2 figs.

  19. Trans fatty acids in diets act as a precipitating factor for gut inflammation?

    PubMed

    Okada, Yoshikiyo; Tsuzuki, Yoshikazu; Ueda, Toshihide; Hozumi, Hideaki; Sato, Shingo; Hokari, Ryota; Kurihara, Chie; Watanabe, Chikako; Tomita, Kengo; Komoto, Shunsuke; Kawaguchi, Atsushi; Nagao, Shigeaki; Miura, Soichiro

    2013-12-01

    Fatty acids in our daily diet are broadly classified into cis and trans fatty acids (TFAs). TFAs are formed during the manufacturing process of hydrogenated vegetable oils such as margarine. Modern diets such as deep-fried products, frozen foods, and packaged snacks commonly include large quantities of margarine containing TFAs. Although an increased report in the effects of the diet containing TFAs on a risk factor of metabolic syndrome, diabetes mellitus, and coronary heart disease has been observed in the recent years, influence on intestinal inflammation remains unknown. This review describes pro-inflammatory effects of TFAs in our diary diet on various systemic disorders and also discusses a possible role of TFAs on gut inflammation. PMID:24251700

  20. Red spruce germination and growth in soil-mediated regeneration microcosms under acid precipitation

    SciTech Connect

    Ho, M.

    1992-01-01

    In the past three decades, atmospheric pollution has caused substantial problems for the environment as well as for many biological processes. The objective of this study focuses on red spruce (Picea ruben Sarg.) regeneration potential and chemical change within the soil-water-plant continuum following simulated acid rain treatments. Inceptisols from three forests at 1735, 1920, and 2015 m at Mt. Mitchell, North Carolina had lower pH, bulk density, and higher organic matter, and base cations as altitude increased. Red spruce seeds were collected from two nearby standing trees at the 1735 m site. A strip-split-split plot experiment was constructed using soils from the two lower elevations, which support natural red spruce stands. Besides a control (pH 5.6, NO[sub 3]:SO[sub 4] ratio 0.10), eight treatments corresponding to two pHs (3.5 and 4.2) with four NO[sub 3]:SO[sub 4] ratios (0.20, 0.33, 0.40, and 0.67) each were used. Seedling emergence and growth, chemistry of soil. Soil leachate, and plant tissue were analyzed to test soil differences and treatment effects of acidity, nitrate, and sulfate. Temporal patterns of germination respond more to soil than to rain chemistry, but significant interactions were found. Besides higher survival, faster germinating seedlings in the 1735 m soil also produced more complex root system and more biomass. Lower root-to-shoot ratios at more acidic treatments suggest a negative effect of acidity on root growth. Canonical discriminant analysis revealed that factors controlling overall soil chemistry were dominated by soil origin, then by rain pH.

  1. Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54

    SciTech Connect

    Shield, Stephen Allan; Dai, Zhenxue

    2015-08-18

    Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has significant impacts on the results of subsurface flow and transport studies. One method to obtain the meteorological data required for flow and transport studies is the use of weather generating models. This paper compares the difference in performance of two weather generating models at Technical Area 54 of Los Alamos National Lab. Technical Area 54 is contains several waste pits for low-level radioactive waste and is the site for subsurface flow and transport studies. This makes the comparison of the performance of the two weather generators at this site particularly valuable.

  2. The effect of random precipitation times on the scavenging rate for tropospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    1988-01-01

    A model for the effective scavenging rate of a soluble species has been developed. The model takes into account the possibility of positive as well as negative correlations between departures from the mean of the scavenging rate and species concentration. The model is demonstrated for the case of late afternoon rainout of nitric acid occurring just prior to the nighttime cessation of its chemical production. The calculations give effective scavenging rates which are about a factor of 2 to 3 greater than those calculated using the models of Rodhe and Grandell (1972) and Giorgi and Chameides (1985).

  3. Acidity, nutrients, and minerals in atmospheric precipitation over Florida: deposition patterns, mechanisms and ecological effects

    SciTech Connect

    Brezonik, P.L.; Hendry, C.D. Jr.; Edgerton, E.S.; Schulze, R.L.; Crisman, T.L.

    1983-06-01

    A monitoring network of 21 bulk and 4 wet/dry collectors located throughout Florida measured spatial and temporal trends during a one-year period from May 1978 to April 1979. The project summary notes that statewide deposition rates of nitrogen and phosphorus were below the loading rates associated with eutrophication, although nutrient concentrations were higher during the summer. Overall, pH appears to have relatively small effects (in the range 4.7-6.8) on community structure in soft-water Florida lakes. More dramatic effects could occur under more acidic conditions in the future. 4 references, 5 figures, 1 table.

  4. Detection of chlorodifluoroacetic acid in precipitation: A possible product of fluorocarbon degradation

    SciTech Connect

    Martin, J.W.; Franklin, J.; Hanson, M.L.; Solomon, K.R.; Mabury, S.A.; Ellis, D.A.; Scott, B.F.; Muri, D.C.G.

    2000-01-15

    Chlorodiffluoroacetic acid (CDFA) was detected in rain and snow samples from various regions of Canada. Routine quantitative analysis was performed using an in-situ derivatization technique that allowed for the determination of CDFA by GC-MS of the anilide derivative. Validation of environmental CDFA was provided by strong anionic exchange chromatography and detection by {sup 19}F NMR. CDFA concentrations ranges from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations ranged from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations in rain event samples showed a seasonal trend between June and November 1998, peaking in late summer and decreasing in the fall for Guelph and Toronto sites. Preliminary toxicity tests with the aquatic macrophytes Myriophyllum sibiricum and Myriophyllum spicatum suggest that CDFA does not represent a risk of acute toxicity to these aquatic macrophytes at current environmental concentrations. A degradation study suggests that CDFA is recalcitrant to biotic and abiotic degradation relative to dichloroacetic acid (DCA) and may accumulate in the aquatic environment. On the basis of existing experimental data, the authors postulate that CDFA is a degradation product of CFC-113 and, to a lesser extent, HCFC-142b. If CFC-113 is a source, its ozone depletion potential may be lower than previously assumed. Further work is required to identify alternative atmospheric and terrestrial sources of CDFA.

  5. Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland

    NASA Astrophysics Data System (ADS)

    Machemer, Steven D.; Wildeman, Thomas R.

    1992-01-01

    Metal removal processes from acid mine drainage were studied in an experimental constructed wetland in the Idaho Springs-Central City mining district of Colorado. The wetland was designed to passively remove heavy metals from the mine drainage flowing from the Big Five Tunnel. Concurrent studies were performed in the field on the waters flowing from the wetland and in the laboratory on the wetland substrate. Both studies suggest that there is competition for organic adsorption sites among Fe, Cu, Zn and Mn. Iron and Cu appear to be more strongly adsorbed than Zn and Mn. The adsorption of metals varies with the fluctuation of pH in the outflow water. Also indicated by field and laboratory studies is the microbial reduction of sulfate with a corresponding increase in the sulfide concentration of the water. As sulfide is generated. Cu and Zn are completely removed. The field results suggest that upon start up of a constructed wetland, the adsorption of dissolved metals onto organic sites in the substrate material will be an important process. Over time, sulfide precipitation becomes the dominant process for metal removal from acid mine drainage.

  6. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone. PMID:15093505

  7. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone.

  8. Jarosite Precipitation from Acidic Saline Waters in Kachchh, Gujarat, India: an Appropriate Martian Analogue?

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Gupta, S.; Bhattacharya, S.; Banerjee, S.; Chauhan, P.; Parthasarathy, G.

    2014-12-01

    The origin of jarosite [KFe3(SO4)2(OH)6] on the Martian surface has been an intriguing problem since the Mars Exploration Rover 'Opportunity' first revealed its presence at the Meridiani Planum on Mars. To explain its origin, several terrestrial analogue sites have been studied in different geographical zones. Although several models have been suggested, there is a consensus that only the prevalence of acidic and oxidizing aqueous environmental conditions are conducive to form jarosite. In the Kachchh region of Gujarat, western India, jarosite has been recently discovered from gorges dissecting the Paleocene Matanumadh Formation sediments, that overlie basalts of the Deccan Volcanic Province. This formation comprises pebble conglomerates, carbonaceous shales and purple sandstones capped by a laterite on top. Jarosite, in association with gypsum and goethite, has been detected through FTIR and VNIR spectrometry in almost all litho-units of the succession, albeit in different modes and concentrations. The occurrence of jarosite within black shale in other parts of the world, has been attributed to the oxidation of pyrites within the shale layers. However, in shales of the Matanumadh Formation, jarosite is restricted to fractures that cut across the bedding, while the overlying purple sandstone unit only preserves jarosite in shale clasts within the sandstone. Since the sandstone overlies the black shale layer, downward percolation of sulfate-bearing water from the oxidation of pyrite within the shale layer cannot explain jarosite formation in this unit. In addition, no jarosite is observed below or within pyrite-rich lignite bearing sections in other parts of Kachchh. Alternative suggestions, that jarosite developed in the immediate aftermath of Deccan volcanism as surface waters were rendered acidic by interaction with the final phase of volcanic effusives, are also unlikely as on-going studies suggest that jarosite is not restricted to the Matanumadh Formation. The

  9. Limestone characterization to model damage from acidic precipitation: Effect of pore structure on mass transfer

    USGS Publications Warehouse

    Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.

    1996-01-01

    The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.

  10. Report on the materials effects research review meeting of the National Acid Precipitation Assessment Program

    SciTech Connect

    Joyner, K.C.; Schnell, M.H.

    1986-10-01

    Invited panels of scientists and other technical experts reviewed 30 projects, basing their evaluations on oral presentations at the meeting and written summaries received by the reviewers before the meeting. Projects were reviewed for quality of science as well as relevance to the overall program objectives for use by NAPAP program and research managers to improve and coordinate current research and set priorities for research between 1988 and 1990 in the following: economics and behavior; cultural inventory; construction inventory; air quality; damage functions, paint; damage functions, metal; and damage functions, stone. In addition, three generalist reviewers were asked to comment on the overall Task Group VII effort including its various components. This document is a compilation of the summary reports, consisting of general comments and comments on individual projects, submitted by each review panel, and the written comments from the generalist reviewers.

  11. Characterising regional landslide initiation thresholds in Scotland, UK using NIMROD c-band precipitation radar and the BGS National Landslide Database.

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil

    2016-04-01

    Forecasting changes in slope stability and the location and timing of landslide events is of great scientific and societal interest. This is particularly the case in the context of critical infrastructure systems as these can cross many geological and hydro-geological domains and provide essential societal services. An established area of enquiry is that of characterising site, regional and national scale hydro-meteorological proxies (e.g. precipitation intensity/duration, antecedent precipitation or soil moisture deficit) to distil antecedent and initiation landslide threshold conditions. However, the application of such methods often suffers from limited spatio-temporal availability of meteorological data and landslide inventories. There are relatively few studies applying remotely sensed meteorological data to examine precursory conditions at national, regional and local scale. This study seeks to address this by applying remotely sensed meteorological data to examine precursory conditions at national, regional and local scale in combination with information derived from the BGS National Landslide Database. There are a total 115 landslides in Scotland, UK with recorded date of failure in the BGS National Landslide Database covering the period 2004 to 2015. To determine landslide initiation thresholds high resolution (15 minute 5km2) c-band precipitation intensity (mm/hr) radar data are analysed leading to the establishment of precipitation intensity time series for each landslide location. These time series enable calculation of derived explanatory variables including daily mean, max, volume and the aggregation of antecedent values at 3, 6, 18, 36 and 72 days. The statistical significance of each variable is determined, with the lowest probability of the observed occurrences being due to chance taken as indicating the best explanation. Combinations of thresholds and various spatial scales are examined to identify national and regional triggering conditions

  12. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    PubMed

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  13. Investigation of the linkages between insoluble precipitation residues and cloud properties at Yosemite National Park during U.S. West Coast storms

    NASA Astrophysics Data System (ADS)

    Creamean, J.; Minnis, P.; Palikonda, R.; Spangenberg, D.; Prather, K. A.; White, A. B.

    2015-12-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation, and depends not only on cloud depth and temperature, but also on the type of aerosols that serve as ice nuclei (IN). The resulting precipitation from these clouds serves as a viable source of water, especially for mountainous regions such as the California Sierra Nevada. Thus, a better understanding of the sources of IN that impact these particular clouds is important for assessing water availability in California. We present a multi-site, multi-year (2011 and 2012) analysis of single, insoluble residue particles in precipitation samples that potentially served as IN and influenced ice formation in the clouds above Yosemite National Park, USA. Dust and biological particles typically represented the dominant fraction of the total residues (64% on average) and were ultimately removed via precipitation. Cloud glaciation was determined using GOES satellite observations and was not only dependent on high cloud tops (> 6.2 km MSL) and low temperatures (< -26°C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust particularly rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to serve as efficient IN, and thus we hypothesize that these precipitation residue types induced ice formation in the clouds above the site. The goal of this study is to use precipitation chemistry data to gain a better understanding of the potential sources of IN in the south-central Sierra Nevada, where aerosol-cloud-precipitation interactions are under-studied and where mixed-phase orographic clouds are a key element to precipitation and thus water supply in California.

  14. [A preliminary study on the chemical properties of precipitation, throughfall, stemflow and surface run-off in major forest types at Dinghushan under acid deposition].

    PubMed

    Liu, Juxiu; Zhang, Deqiang; Zhou, Guoyi; Wen, Dazhi; Zhang, Qianmei

    2003-08-01

    Studies on the chemical properties of precipitation, throughfall, stemflow and surface run-off in major forest types at Dinghushan under acid deposition showed that the pH value of precipitation was about 4.90, and the frequency of acid rain was over 62%. In broad-leaved forest, the pH value of precipitation was lower than that of throughfall, but higher than that of stemflow and especially the surface run-off, indicating that the soil was naturally acidified. In mixed forest, both throughfall and surface run-off had a higher pH value, but stemflow had a lower pH value than precipitation. The throughfall and stemflow were more acidified than precipitation in coniferous pine forest, but the surface run-off had a higher pH value than precipitation. These results suggested that among the three major forest types at Dinghushan, the canopy of broad-leaved forest had the highest buffering ability, whereas for the soil, the coniferous forest had the highest soil buffering capacity. The concentrations of nutrient elements, such as P, K, Ca, Na and Mg in the throughfall, stemflow and surface run-off were higher than those in bulk precipitation in all forests at Dinghushan, some even 10 times higher, indicating that a large amount of nutrients were leached from the canopy. The concentrations of nutrient elements in stemflow were higher than those in throughfall in all forests, and the concentration of nutrient elements in surface water was higher than those in atmospheric rainfall. Coniferous forest had a higher concentration of nutrients in the throughfall and stemflow and a lower nutrient concentration in the surface run-off than other forest types, which implied that nutrient loss was more serious in broad-leaved and mixed forests than in coniferous forests.

  15. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.

    PubMed

    Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania

    2015-10-01

    Escherichia coli strain DH5α was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters.

  16. Use of a non-linear model in examining growth responses of loblolly pine to ozone and acid precipitation

    NASA Astrophysics Data System (ADS)

    Somerville, Matthew C.; Shadwick, Douglas S.; Meldahl, Ralph S.; Chappelka, Arthur H.; Lockaby, B. Graeme

    Monthly diameter 2 × height ( d 2h ) data were measured over two years in open-top chambers at Auburn University, Alabama. This study exposed seedlings from two half-sibling loblolly pine ( Pinus taeda L.) families to ozone and acid precipitation treatments. For these data, the accumulation of d 2h ) by individual trees over two years was efficiently represented by a six-parameter non-linear model of ln ( d 2h ) as a function of time. Multivariate analysis of variance using these six estimated parameters for each seedling resulted in greater sensitivity to treatment differences as measured by tests of hypotheses than did analysis of covariance on ln (final d 2h ). This result illustrates the importance of utilizing appropriate analyses that can bring as much of the data as is possible to bear on the question at hand. A test for additional information indicated that five of the six parameters contributed important information concerning treatment differences for at least one of the two families tested. It may be inferred that the treatments have an important effect on the nature of d 2h accumulation within a growing season as well as on the d 2h at the end of the growing season.

  17. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.

    PubMed

    Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

    2012-04-15

    Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-μm-diameter spherical aggregates identified by microscopy and synchrotron-μ-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes.

  18. Zirconium(IV) tungstate nanoparticles prepared through chemical co-precipitation method and its function as solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Sadanandan, Manoj; Bhaskaran, Beena

    2014-08-01

    In this paper, we report the synthesis of zirconium(IV) tungstate nanoparticles, a new and efficient catalyst for the oxidation of benzyl alcohol and esterification of acetic acid with various alcohols. The nanoparticle catalyst was prepared using the room temperature chemical co-precipitation method. The catalyst was characterized with thermogravimetric and differential thermal analysis, elemental analysis, X-ray diffraction analysis (XRD), fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and the Brunauer-Emmett-Teller (BET) surface area. The crystallite size was found to be ~20 nm as revealed by XRD, HRTEM and AFM. The Na+ exchange capacity was found to be 2.76 meq g-1 and the surface area of the compound measured using BET method was found to be 250-265 m2 g-1. The high value of ion exchange capacity indicates the presence of surface hydroxyl groups. The prepared nanoparticles have proven to be excellent catalysts for both oxidation and ester synthesis under mild reaction conditions. The mechanism of the catalytic reaction was studied as well.

  19. The effects of acid precipitation runoff episodes on reservoir and tapwater quality in an Appalachian Mountain water supply.

    PubMed Central

    Sharpe, W E; DeWalle, D R

    1990-01-01

    The aluminum concentration and Ryznar Index increased and the pH decreased in a small Appalachian water supply reservoir following acid precipitation runoff episodes. Concomitant increases in tapwater aluminum and decreases in tapwater pH were also observed at two homes in the water distribution system. Lead concentrations in the tapwater of one home frequently exceeded recommended levels, although spatial and temporal variation in tapwater copper and lead concentrations was considerable. Since source water and reservoir water copper and lead concentrations were much lower, the increased copper and lead concentrations in tapwater were attributed to corrosion of household plumbing. Tapwater copper concentration correlated well with tapwater pH and tapwater temperature. Asbestos fibers were not detected in tapwater. The asbestos-cement pipe in the water distribution system was protected by a spontaneous metallic coating that inhibited fiber release from the pipe. Several simultaneous reactions were hypothesized to be taking place in the distribution system that involved corrosion of metallic components and coating of asbestos-cement pipe components in part with corrosion products and in part by cations of watershed origin. Greater water quality changes might be expected in areas of higher atmospheric deposition. Images FIGURE 5. FIGURE 6. PMID:2088742

  20. The effects of acid precipitation runoff episodes on reservoir and tapwater quality in an Appalachian Mountain water supply

    SciTech Connect

    Sharpe, W.E.; DeWalle, D.R. )

    1990-11-01

    The aluminum concentration and Ryznar Index increased and the pH decreased in a small Appalachian water supply reservoir following acid precipitation runoff episodes. Concomitant increases in tapwater aluminum and decreases in tapwater pH were also observed at two homes in the water distribution system. Lead concentrations in the tapwater of one home frequently exceeded recommended levels, although spatial and temporal variation in tapwater copper and lead concentrations was considerable. Since source water and reservoir water copper and lead concentrations were much lower, the increased copper and lead concentrations in tapwater were attributed to corrosion of household plumbing. Tapwater copper concentration correlated well with tapwater pH and tapwater temperature. Asbestos fibers were not detected in tapwater. The asbestos-cement pipe in the water distribution system was protected by a spontaneous metallic coating that inhibited fiber release from the pipe. Several simultaneous reactions were hypothesized to be taking place in the distribution system that involved corrosion of metallic components and coating of asbestos-cement pipe components in part with corrosion products and in part by cations of watershed origin. Greater water quality changes might be expected in areas of higher atmospheric deposition.

  1. Susceptibility to acidic precipitation contributes to the decline of the terricolous lichens Cetraria aculeata and Cetraria islandica in central Europe.

    PubMed

    Hauck, Markus

    2008-04-01

    The effective quantum yield of photochemical energy conversion in photosystem II (Phi2) was shown to be reduced in the terricolous lichens Cetraria aculeata and Cetraria islandica by short-term exposure to aqueous SO2 at pH values occurring in the precipitation of areas with high SO2 pollution. Significant reduction of Phi2 was found at pHacid, a major lichen substance of C. islandica, increases the pollution tolerance in lichens.

  2. The effects of acid precipitation runoff episodes on reservoir and tapwater quality in an Appalachian Mountain water supply.

    PubMed

    Sharpe, W E; DeWalle, D R

    1990-11-01

    The aluminum concentration and Ryznar Index increased and the pH decreased in a small Appalachian water supply reservoir following acid precipitation runoff episodes. Concomitant increases in tapwater aluminum and decreases in tapwater pH were also observed at two homes in the water distribution system. Lead concentrations in the tapwater of one home frequently exceeded recommended levels, although spatial and temporal variation in tapwater copper and lead concentrations was considerable. Since source water and reservoir water copper and lead concentrations were much lower, the increased copper and lead concentrations in tapwater were attributed to corrosion of household plumbing. Tapwater copper concentration correlated well with tapwater pH and tapwater temperature. Asbestos fibers were not detected in tapwater. The asbestos-cement pipe in the water distribution system was protected by a spontaneous metallic coating that inhibited fiber release from the pipe. Several simultaneous reactions were hypothesized to be taking place in the distribution system that involved corrosion of metallic components and coating of asbestos-cement pipe components in part with corrosion products and in part by cations of watershed origin. Greater water quality changes might be expected in areas of higher atmospheric deposition.

  3. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.

    PubMed

    Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

    2012-04-15

    Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-μm-diameter spherical aggregates identified by microscopy and synchrotron-μ-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes. PMID:22414495

  4. Response of surface water chemistry to reduced levels of acid precipitation: comparison of trends in two regions of New York, USA

    NASA Astrophysics Data System (ADS)

    Burns, Douglas A.; McHale, Michael R.; Driscoll, Charles T.; Roy, Karen M.

    2006-04-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC) increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions.

  5. Response of surface water chemistry to reduced levels of acid precipitation: Comparison of trends in two regions of New York, USA

    USGS Publications Warehouse

    Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.

    2006-01-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.

  6. Rocks, soils, and water quality. Relationships and implications for effects of acid precipitation on surface water in the northeastern United States

    SciTech Connect

    Kaplan, E.; Thode, H.C. Jr.; Protas, A.

    1981-05-01

    Distribution of rocks and soils in Northeast counties were investigated for the degree to which they influence pH and alkalinity in surface waters. Using 283 counties, path analysis resulted in two models of equivalent explanatory power. Each model indicated the importance of both rocks and soils as determinants of pH and alkalinity in surface waters, and as important factors in the sensitivity of natural waters to acidification from acid precipitation. Previous studies have emphasized the importance of bedrock geology, at the expense of knowledge about soils, in an understanding of waters sensitive to the effects of acid precipitation. Our regional analysis found that rocks were contributors to the buffering capacity of surface water; however, the presence of a large percentage of alfisol soils better indicates locations of waters with higher levels of alkalinity, and thus of greater resistance to effects of acid rain.

  7. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  8. Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; Funk, Christopher C.; Hoell, Andrew

    2014-01-01

    In this study we implement and evaluate a simple 'hybrid' forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble's (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The 'hybrid approach' described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45.

  9. Partitioning and inactivation of viruses by the caprylic acid precipitation followed by a terminal pasteurization in the manufacturing process of horse immunoglobulins.

    PubMed

    Mpandi, M; Schmutz, P; Legrand, E; Duc, R; Geinoz, J; Henzelin-Nkubana, C; Giorgia, S; Clerc, O; Genoud, D; Weber, T

    2007-10-01

    Caprylic acid (octanoic acid), has been used for over 50 years as a stabilizer of human albumin during pasteurization. In addition caprylic acid is of great interest, by providing the advantage of purifying mammalian immunoglobulins and clearing viruses infectivity in a single step. Exploiting these two properties, we sequentially used the caprylic acid precipitation and the pasteurization to purify horse hyperimmune globulins used in the manufacturing of Sérocytol. To evaluate the effectiveness of the process for the removal/inactivation of viruses, spiking studies were carried out for each dedicated step. Bovine viral diarrhoea virus (BVDV), pseudorabies virus (PRV), encephalomyocarditis virus (EMCV) and minute virus of mice (MVM) were used for the virological validation. Our data show that the treatment with caprylic acid 5% (v/v) can effectively be used as well to purify or to ensure viral safety of immunoglobulins. Caprylic acid precipitation was very efficient in removing and/or inactivating enveloped viruses (PRV, BVDV) and moderately efficient against non-enveloped viruses (MVM, ECMV). However the combination with the pasteurization ensured an efficient protection against both enveloped and non-enveloped viruses. So that viruses surviving to the caprylic acid precipitation will be neutralized by pasteurization. Significant log reduction were achieved > or =9 log(10) for enveloped viruses and 4 log(10) for non-enveloped viruses, providing the evidence of a margin of viral safety achieved by our manufacturing process. Its a simple and non-expensive manufacturing process of immunoglobulins easily validated that we have adapted to a large production scale with a programmable operating system.

  10. PRECIPITATION OF PROTACTINIUM

    DOEpatents

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  11. Formation of stratospheric nitric acid by a hydrated ion cluster reaction: chemical and dynamical effects of energetic particle precipitation on the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kvissel, O. K.; Orsolini, Y. J.; Stordal, F.

    2012-04-01

    In order to Improve our understanding of the effects of energetic particle precipitation upon the nitrogen family (NOy) and ozone (O3), we have modelled the chemical and dynamical middle atmosphere response to the introduction of a chemical pathway that produces nitric acid (HNO3) by conversion of dinitrogen pentoxide (N2O5) upon hydrated water clusters H+•(H2O)n. We have used an ensemble of simulations with the National Center for Atmospheric Research (NCAR) Whole-Atmosphere Community Climate Model (WACCM) chemistry-climate model. The introduced chemical pathway alters the internal partitioning of NOy during winter months in both hemispheres, and ultimately triggers statistically significant changes in the climatological distributions of constituents including: i) a cold season production of HNO3 with a corresponding loss of N2O5, and ii) a cold season decrease in NOx/NOy-ratio and an increase of O3, in polar regions. We see an improved seasonal evolution of modelled HNO3 compared to satellite observations from Microwave Limb Sounder (MLS), albeit not enough HNO3 is produced at high altitudes. Through O3 changes, both temperature and dynamics are affected, allowing for complex chemical-dynamical feedbacks beyond the cold season when the introduced pathway is active. Hence, we also find a NOx polar increase in spring-to-summer in the SH, and in spring in the NH. The springtime NOx increase arises from anomalously strong poleward transport associated with a weaker polar vortex. In the southern hemisphere, a statistical significant weakening of the stratospheric jet is altered down to the lower stratosphere, and we argue that it is caused by strengthened planetary waves induced by mid-latitude zonal asymmetries in O3 and short-wave heating.

  12. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    NASA Astrophysics Data System (ADS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  13. Folic acid: to fortify or not to fortify? An examination of selected national policies towards mandatory folic acid fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many national authorities are reviewing their policy towards mandatory folic acid fortification of staple foods in response to epidemiological evidence of the relationship between folic acid and neural tube defects (NTDs). However, there are scientific, ethical and technical challenges associated wi...

  14. A perspective of stepwise utilisation of Bayer red mud: Step two--Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation.

    PubMed

    Huang, Yanfang; Chai, Wencui; Han, Guihong; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-04-15

    The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation. PMID:26799223

  15. Caprylic acid-induced impurity precipitation from protein A capture column elution pool to enable a two-chromatography-step process for monoclonal antibody purification.

    PubMed

    Zheng, Ji; Wang, Lu; Twarowska, Barbara; Laino, Sarah; Sparks, Colleen; Smith, Timothy; Russell, Reb; Wang, Michelle

    2015-01-01

    This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA-induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high-molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host-cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15-25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5-1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA-based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography.

  16. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    NASA Astrophysics Data System (ADS)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  17. Modeling Precipitation and Sorption of Al, U and Co-contaminants during Titration of Acidic Sediments in Recirculation Flow-Through Experiments

    SciTech Connect

    Tang, Guoping; Luo, Wensui; Brooks, Scott C; Watson, David B; Gu, Baohua

    2013-01-01

    We conducted batch and recirculating column titration tests with contaminated acidic sediments with controlled CO2 in the headspace, and extended the geochemical model by Gu et al. (2003, GCA) to better understand and quantify the reactions governing trace metal fate in the subsurface. The sediment titration curve showed slow pH increase due to strong buffering by Al precipitation and CO2 uptake. Assuming precipitation of basaluminite at low saturation index (SI=-4), and decreasing cation exchange selectivity coefficient (kNa\\Al=0.3), the predictions are close to the observed pH and Al; and the model explains 1) the observed Ca, Mg, and Mn concentration decrease by cation exchange with sorbed Al, and 2) the decrease of U by surface complexation with Fe hydroxides at low pH, and precipitation as liebigite (Ca2UO2(CO3)3:10H2O) at pH>5.5. Without further adjustment geochemical parameters, the model describes reasonably well previous sediment and column titration tests without CO2 in the headspace, as well as the new large column test. The apparent inhibition of U and Ni decrease in the large column can be explained by formation of aqueous carbonate complexes and/or competition with carbonate for surface sites. These results indicated that ignoring labile solid phase Al would underestimate base requirement in titration of acidic aquifers.

  18. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  19. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production.

  20. Unit: Indicating Acidity, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The introductory core activities in this trial unit, prepared for students in grades seven through nine of Australian schools, use indicators derived from flower pigments to provide a more convenient measure of acidity than taste. Students are offered choices among seven options after completion of the core: "How Acidic is That?"; "What Colour is…

  1. Correlation between precipitation and geographical location of the δ2H values of the fatty acids in milk and bulk milk powder

    NASA Astrophysics Data System (ADS)

    Ehtesham, E.; Baisden, W. T.; Keller, E. D.; Hayman, A. R.; Van Hale, R.; Frew, R. D.

    2013-06-01

    Hydrogen isotope ratios (δ2H) have become a tool for food traceability and authentication of agricultural products. The principle is that the isotopic composition of the produce is influenced by environmental and biological factors and hence exhibits a spatial differentiation of δ2H. This study investigates the variation in δ2H values of New Zealand milk, both in the bulk powder and individual fatty acids extracted from milk samples from dairy factories across New Zealand. Multivariate statistical analyses were used to test for relationships between δ2H of bulk milk powder, milk fatty acid and geographical location. Milk powder samples from different regions of New Zealand were found to exhibit patterns in isotopic composition similar to the corresponding regional precipitation associated with their origin. A model of δ2H in precipitation was developed based on measurements between 2007 and 2010 at 51 stations across New Zealand (Frew and Van Hale, 2011). The model uses multiple linear regressions to predict daily δ2H from 2 geographic and 5 rain-weighted climate variables from the 5 × 5 km New Zealand Virtual Climate Station Network (VCSN). To approximate collection radius for a drying facility the modelled values were aggregated within a 50 km radius of each dairy factory and compared to observed δ2H values of precipitation and bulk milk powder. Daily δ2H predictions for the period from August to December for the area surrounding the sample collection sites were highly correlated with the δ2H values of bulk milk powder. Therefore the δ2H value of milk fatty acids demonstrates promise as a tool for determining the provenance of milk powders and products where milk powder is an ingredient. Separation of milk powder origin to geographic sub-regions within New Zealand was achieved. Hydrogen isotope measurements could be used to complement traditional tracking systems in verifying point of origin.

  2. Low-molecular-weight organic acids in the Tibetan Plateau: Results from one-year of precipitation samples at the SET station

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kang, Shichang; Sun, Jimin; Wan, Xin; Wang, Yongjie; Gao, Shaopeng; Cong, Zhiyuan

    2014-04-01

    Background atmospheric organic acids: formic (F), acetic (A), oxalic (O), and methanesulfonic (MSA, abbreviated to M) acids in the southern Tibetan Plateau (TP), were determined in one-year of precipitation measurements at a remote alpine station. These organic acids were dominated by oxalic (volume-weighted mean of 0.51 μmol l-1)/formic acid (0.38 μmol l-1), followed by acetic acid (0.20 μmol l-1) and MSA (0.10 μmol l-1). Their levels were comparable with those from other remote sites, while they were lower than those found in populated areas. The South Asian monsoon is responsible for the seasonal variation of organic acid concentration: a relative abundance of MSA and lower concentrations of other organic acids (by the dilution effect) in the monsoon season, while opposite in the non-monsoon season. Diverse sources were identified by principal component analysis combined with the corresponding tracers. These were anthropogenic disturbances (which explain 41% of the variance), marine emission (24%), and biogenic emission (16%). Moreover, the variances of F/A, M/(F + A), and O/(F + A) in monsoonal versus non-monsoonal samples, were involved with the changes of sources. Furthermore, these chemical indexes suggest that active photochemistry over the TP was significant for the production of organic acids and consequently enhanced the ratios of M/(F + A) and O/(F + A) in monsoonal rainfalls. The elevated organic compounds within the ascending tropical moisture imply potential significances for the secondary formation of organic acids in the high-altitude and the changes of the Asian monsoon.

  3. Effect of the quantity and duration of application of simulated acid precipitation on nitrogen mineralization and nitrification in a forest soil

    SciTech Connect

    Klein, T.M.; Alexander, M.

    1986-01-01

    A study was conducted of the influence of the rate of application of simulated acid rain on N mineralization and nitrification in a forest soil. The rates were varied by applying different quantities of simulated rain for varying periods of time. The soil was exposed in the laboratory to simulated rain at pH 3.5, 4.1,, or 5.6 at rates equivalent to 1.5, 2.3, 4.6, 7.1 or 15 times the average rate of precipitation in the field and then mineralization of soil N or oxidation of added ammonium was determined. The rates of N mineralization were inhibited by precipitation at pH 3.5 or 4.1 when applied for 27-234 days at rates 1.5 times greater than that which occurs in nature. N mineralization was not affected by simulated rain at pH 3.5 or 4.1 in soils exposed for 156 days at 2.3 times the natural rate of precipitation, for 27 or 81 days at 4.6 times the natural rate, for 54 days at 7.1 times the natural rate, or for 234 day at 15 times the natural rate. (Copyright (c) 1986 by D. Reidel Publishing Company).

  4. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    PubMed

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  5. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    PubMed Central

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  6. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    PubMed

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  7. Long-Term Large-Scale Bias-Adjusted Precipitation Estimates at High Spatial and Temporal Resolution Derived from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Precipitation Reanalysis over CONUS

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar

  8. Swedish scientists take acid-rain research to developing nations

    SciTech Connect

    Abate, T.

    1995-12-01

    In the realm of acid-rain research, Sweden looms large on the world stage. It is the country where scientists first proved more than 30 years ago that airborne chemicals could and did cross international boundaries to acidify lakes and forests far from where the pollution was generated. Now, Swedish scientists are leading an international effort to map acid-rain patterns in the developing countries of Asia, where new industrial activity seems to be recreating problems that European and North American policy makers have already taken steps to solve. Topics covered in this article include acid rain on the rise in Asia; visualizing and validating the data; funding as the key to steady research.

  9. Acid precipitation - (Part I). Hearings before the Subcommittee on Health and the Environment of the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, First Session on Effects and Solutions to Combat Acid Precipitation

    SciTech Connect

    Not Available

    1982-01-01

    Part 1 of the record covers three days of hearings on effects of acid rain and possible solutions to combat it. The 24 witnesses include a panel of business representatives from the Adirondacks area of New York, spokesmen from four other states affected by acid rain, and representatives of the Northeast States, all of whom described the threat to animal life in the lakes and streams, to lumber, and to human life because of acidification.

  10. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  11. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  12. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  13. Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation.

    PubMed

    Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Elena Lugo-Sánchez, M; Gisela Carvallo-Ruiz, M; García-Sánchez, Guillermina

    2008-09-15

    A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional-technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein-protein aggregates insoluble at high ionic strength (I=0.5M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160gcm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle.

  14. Acid precipitation: Effects on fresh water ecosystems. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the effects of acidification on fresh water ecosystems. Algae and diatom distribution, survival and reproduction rates of specific fish species under acid lake conditions, and tolerance to stress caused by acidic conditions in fresh water ecosystems are studied. Effects of water pH on trace metal toxicity to fresh water organisms are briefly considered. Control and reduction of acidification are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. LC-MS/MS analysis of Δ9-tetrahydrocannabinolic acid A in serum after protein precipitation using an in-house synthesized deuterated internal standard.

    PubMed

    Wohlfarth, Ariane; Roth, Nadine; Auwärter, Volker

    2012-06-01

    An assay based on liquid chromatography/tandem mass spectrometry is presented for the fast, precise and sensitive quantitation of Δ9-tetrahydrocannabinolic acid A (THCA) in serum. THCA is the biogenetic precursor of Δ9-tetrahydrocannabinol in cannabis and has aroused interest in the pharmacological and forensic field especially as a potential marker for recent cannabis use. After addition of deuterated THCA, synthesized from D(3)-THC as starting material, and protein precipitation, the analytes were separated using gradient elution on a Luna C18 column (150 × 2.0 mm × 5 µm) with 0.1% formic acid and acetonitrile/0.1% formic acid. Data acquisition was performed on a triple quadrupole linear ion trap mass spectrometer in multiple reaction monitoring mode with negative electrospray ionization. After optimization, the following sample preparation procedure was used: 200 μL serum was spiked with internal standard solution and methanol and then precipitated 'in fractions' with 500 μL ice-cold acetonitrile. After storage and centrifugation, the supernatant was evaporated and the residue redissolved in mobile phase. The assay was fully validated according to international guidelines including, for the first time, the assessment of matrix effects and stability experiments. Limit of detection was 0.1 ng/mL, and limit of quantification was 1.0 ng/mL. The method was found to be selective and proved to be linear over a range of 1.0 to 100 ng/mL using a 1/x weighted calibration model with regression coefficients >0.9996. Accuracy and precision data were within the required limits (RSD ≤ 8.6%, bias: 2.4 to 11.4%), extractive yield was greater than 84%. The analytes were stable in serum samples after three freeze/thaw cycles and storage at -20 °C for one month.

  16. Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation.

    PubMed

    Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Elena Lugo-Sánchez, M; Gisela Carvallo-Ruiz, M; García-Sánchez, Guillermina

    2008-09-15

    A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional-technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein-protein aggregates insoluble at high ionic strength (I=0.5M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160gcm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle. PMID:26049243

  17. Amino acid and mineral composition of protein and other components and their recovery yields from whole Antarctic krill (Euphausia superba) using isoelectric solubilization/precipitation.

    PubMed

    Chen, Y-C; Tou, J C; Jaczynski, J

    2009-03-01

    Proteins and insolubles were recovered from whole Antarctic krill via novel isoelectric solubilization/precipitation using different pH treatments. The protein recovery yield was 45% to 50% (dry basis). The recovered proteins had higher (P < 0.05) content of essential amino acids (EAAs) and non-EAAs as well as higher (P < 0.05) ratio of total EAA/total AA than whole krill. The EAAs constituted almost 50% of total AAs. The least extreme pH treatments (pHs 3 and 12) yielded highest (P < 0.05) content of EAAs. The quality of recovered proteins was high based on EAAs meeting FAO/WHO/UNU recommendations for adults and infants. The basic pH yielded proteins with the lowest (P < 0.05) amount of minerals and the highest (P < 0.05) amount of Ca, P, and Mg in the insolubles when compared to the acidic treatments. However, both basic and acidic treatments effectively removed minerals from recovered proteins without the removal of the exoskeleton before processing. Therefore, besides high-quality proteins, the insolubles may provide a mineral supplement in the animal diet.

  18. Acid precipitation and food quality: Inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium and phosphorus

    USGS Publications Warehouse

    Sparling, D.W.

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  19. Acid precipitation and food quality: inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium, and phosphorus.

    PubMed

    Sparling, D W

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  20. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world. PMID:19544737

  1. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  2. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  3. A Storm-by-Storm Analysis of Alpine and Regional Precipitation Dynamics at the Mount Hunter Ice Core Site, Denali National Park, Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Saylor, P. L.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Winski, D.

    2014-12-01

    In May-June 2013, an NSF-funded team from Dartmouth College and the Universities of Maine and New Hampshire collected two 1000-year ice cores to bedrock from the summit plateau of Mount Hunter in Denali National Park, Alaska (62.940291, -151.087616, 3912 m). The snow accumulation record from these ice cores will provide key insight into late Holocene precipitation variability in central Alaska, and compliment existing precipitation paleorecords from the Mt. Logan and Eclipse ice cores in coastal SE Alaska. However, correct interpretation of the Mt. Hunter accumulation record requires an understanding of the relationships between regional meteorological events and micrometeorological conditions at the Mt. Hunter ice core collection site. Here we analyze a three-month window of snow accumulation and meteorological conditions recorded by an Automatic Weather Station (AWS) at the Mt. Hunter site during the summer of 2013. Snow accumulation events are identified in the Mt. Hunter AWS dataset, and compared on a storm-by-storm basis to AWS data collected from the adjacent Kahiltna glacier 2000 m lower in elevation, and to regional National Weather Service (NWS) station data. We also evaluate the synoptic conditions associated with each Mt. Hunter accumulation event using NWS surface maps, NCEP-NCAR Reanalysis data, and the NOAA HYSPLIT back trajectory model. We categorize each Mt. Hunter accumulation event as pure snow accumulation, drifting, or blowing snow events based on snow accumulation, wind speed and temperature data using the method of Knuth et al (2009). We analyze the frequency and duration of events within each accumulation regime, in addition to the overall contribution of each event to the snowpack. Preliminary findings indicate that a majority of Mt. Hunter accumulation events are of pure accumulation nature (55.5%) whereas drifting (28.6%) and blowing (15.4%) snow events play a secondary role. Our results will characterize the local accumulation dynamics on

  4. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  5. Catalog of Corps of Engineers structure inventories suitable for the acid precipitation-structure materials study. Special report

    SciTech Connect

    Merry, C.J.; McKim, H.L.; Humiston, N.H.

    1985-03-01

    This report contains a survey of Corps of Engineers floodplain inventories. Its purpose was to determine if enough building materials information was available in the Corps data base to be used for predicting the distribution of building materials across the country as part of the EPA acid rain assessment program. The floodplain surveys were rated using the criteria of the date of the survey, the number of buildings, the variety of building materials, the amount of dimensions data listed for the buildings, the land cover types in the data, and whether or not the data were computerized. Six structure inventories were recommended for further study.

  6. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    SciTech Connect

    Kelly, Elizabeth J.; Dewart, Jean Marie; Deola, Regina

    2015-12-10

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete. In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.

  7. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  8. Acid precipitation studies in Colorado and Wyoming: interim report of surveys of montane amphibians and water chemistry

    USGS Publications Warehouse

    Corn, Paul Stephen; Stolzenburg, William; Bury, R. Bruce

    1989-01-01

    Acid deposition may be detrimental or stressful to native populations of wildlife. Because many species of amphibians breed in shallow ponds created by spring rains or melting snow, they may be particularly vulnerable to the effects of acidification. From 1986 to 1988, we surveyed 105 locations in the central Rocky Mountains where amphibians had been recorded previously, and we found that two species of amphibians had experiences major losses. We found the northern leopard frog (Rana pipiens) at only 4 of 33 (12%) historically known localities, and the boreal toad (Bufo boreas) was present at 10 of 59 (17%) known localities. Three other species have not suffered region-wide declines. Tiger salamanders (Ambystoma tigrinum) and wood frogs (Rana sylvatica) were present at 45% and 69% of known localities respectively, and were observed at several localities were they had not been recorded previously. Chorus frogs (Pseudacris triseriata) suffered a catastrophic decline in population size in one population monitored since 1961, but regionally, this species was observed in 36 of 56 (64%) known localities and in another 19 localities where there were no previous records. Complete water chemistry was recorded for 41 localities, and pH was measured at 110 sites in total. Acid neutralizing capacity, pH, specific conductivity, and cation concentrations were negatively correlated with elevation. However, in mountain ponds and lakes, pH was rarely less than 6.0 during the amphibian breeding season. We tested the tolerance of embryos of the four species of frogs to low pH. The LC50 pH was 4.8 for chorus frogs, 4.4-4.7 for leopard frogs, 4.4-4.5 for boreal toads, and 4.2-4.3 for wood frogs. Survival of wood frog embryos declined when exposed to aluminum concentrations of 100 µg/L or greater, but boreal toad embryos survived exposure to aluminum concentrations of 400 µg/L. Acid deposition does not appear to be a major factor in the decline of leopard frogs and boreal toads

  9. Growth response of four species of Eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. [Prunus serotina, Acer rubrum, Quercus rubra, Liriodendron tulipifera

    SciTech Connect

    Davis, D.D. Skelly, J.M. )

    1992-03-01

    In 1987 a study was conducted in controlled environment chambers to determine the foliar sensitivity of tree seedlings of eight species to ozone and acidic precipitation, and to determine the influence of leaf position on symptom severity. Jensen and Dochinger conducted concurrent similar studies in Continuously Stirred Tank Reactor (CSTR) chambers with ten species of forest trees. Based on the results of these initial studies, four species representing a range in foliar sensitivity to ozone were chosen: black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.). These species were also chosen because of their ecological and/or commercial importance in Pennsylvania. Seedlings were exposed in growth chambers simulated acid rain. In addition acute exposures to sulfur dioxide were conducted in a regime based on unpublished monitoring data collected near coal-fired power plants. The objective of this study was to determine if the pollutant treatments influenced the growth and productivity of seedlings of these four species. This information will help researchers and foresters understand the role of air pollution in productivity of eastern forests.

  10. EFFECT OF MERTHIOLATE (LILLY) ON CERTAIN SPECIFIC PRECIPITATION REACTIONS.

    PubMed

    Pressman, D; Grossberg, A L

    1945-03-01

    Merthiolate (Lilly), a substituted benzoic acid, has been shown to interfere, in concentrations usually used for preservation, with the specific precipitation of antisera against beef serum or sheep serum coupled with diazotized p-aminobenzoic acid, p-arsanilic acid, or p-(p-aminophenylazo) phenylarsonic acid. In some systems increased precipitation was observed, while in others decreased precipitation was observed.

  11. Developmental and anatomical changes in leaves of yellow birch and red kidney bean exposed to simulated acid precipitation

    SciTech Connect

    Paparozzi, E.T.; Tukey, H.B. Jr.

    1983-01-01

    Leaves of Betula alleghaniensis Britt. (yellow birch) and Phaseolus vulgaris L cv. Red Kidney (bean) were examined microscopically during development and after exposure to simulated rain of pH 5.5, 4.3, 3.2, and 2.8. Yellow birch leaves attained maximal leaf area, midvein length, and cuticle thickness at 21 days. Trichomes were either long, unicellular, or multicellular with caplike head and stalk. Epicuticular wax was a bumpy and amorphous layer. The 2nd trifoliolate leaf of red kidney bean attained maximal leaf area, midvein length, and cuticle thickness when the 3rd trifoliolate leaf was expanding. Trichomes present were long, with a unicellular head and a multicellular base; long, unicellular, and terminally hooked; and small and multicellular. Epicuticular wax was present as small irregular flakes. After 2 days of pH 2.8 and 4 days of pH 3.2 simulated acid rain, round yellow and small tan lesions appeared on birch and bean leaves, respectively. Most injury occurred on or between small veins. Most trichome types were uninjured. Lesions formed as a result of collapsed epidermal and highly plasmolyzed palisade cells. The cuticle was still present over injured epidermal cells and epicuticular waxes were unchanged. There was not statistical difference in mean cuticle thickness due to pH of simulated rain. 25 references, 10 figures, 4 tables.

  12. Precipitation Matters

    ERIC Educational Resources Information Center

    McDuffie, Thomas

    2007-01-01

    Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…

  13. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    USGS Publications Warehouse

    Sibrell, P.L.; Watten, B.; Boone, T.; ,

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and <10% of manganese (Mn) (10 mg/L in influent). Ferrous iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new

  14. Characteristics of three acidic lakes in Kejimkujik National Park, Nova Scotia, Canada.

    PubMed

    Kerekes, J; Freedman, B

    1989-01-01

    This report summarizes a study of the chemical and biological characteristics of three oligotrophic lakes located in a region that receives a moderately acidic precipitation (mean annual pH 4.5-4.6), and a sulfate deposition of about 20 kg/ha/yr. The two brownwater lakes are relatively acidic (pH 4.5 and 4.8), and much of their acidity is attributable to organic anions. The brownwater lakes also have a large concentration of aluminum and iron, but these are bound to dissolved organic matter and are relatively non-toxic to biota. Average phytoplankton production was largest in the clearwater lake. This was due to its relatively deep euphotic zone, since the average unit-volume productivity did not differ much among the lakes. In fact, productivity at light optimum was largest in the most acidic brownwater lake, probably because of its larger phosphorus concentration. The clearwater lake had extensive macrophyte vegetation, which covered its bottom to a depth of 6.5 m. In the brownwater lakes, macrophytes were confined to shallow nearshore water because of the limited water transparency. Zooplankton density and biomass were largest in the most acidic brownwater lake, probably because of allochthonous organic particulates and little fish predation. Benthic invertebrates were abundant in all three lakes, and were dominated by insects, especially Chironomids. Lakes in the study area appear to be sustaining fish populations at more acidic pHs than elsewhere. This may be due to the large concentration of dissolved organic matter in many lakes, which complexes and partially detoxifies metals such as aluminum.

  15. Electrostatic precipitator with precipitator electrodes

    SciTech Connect

    Junkers, G.

    1980-12-16

    The invention relates to an electrostatic precipitator with collecting electrodes which are arranged in rows adjacent to each other and in respective pairs at equal distances from a respective discharge electrode with which they cooperate. Spring elements are provided between the collecting electrodes and influence the stiffness and oscillating properties of the array of the collecting electrodes.

  16. Targeted toxicological screening for acidic, neutral and basic substances in postmortem and antemortem whole blood using simple protein precipitation and UPLC-HR-TOF-MS.

    PubMed

    Telving, Rasmus; Hasselstrøm, Jørgen Bo; Andreasen, Mette Findal

    2016-09-01

    A broad targeted screening method based on broadband collision-induced dissociation (bbCID) ultra-performance liquid chromatography high-resolution time-of-flight mass spectrometry (UPLC-HR-TOF-MS) was developed and evaluated for toxicological screening of whole blood samples. The acidic, neutral and basic substances covered by the method were identified in postmortem and antemortem whole blood samples from forensic autopsy cases, clinical forensic cases and driving under the influence of drugs (DUID) cases by a reverse target database search. The screening method covered 467 substances. Validation was performed on spiked whole blood samples and authentic postmortem and antemortem whole blood samples. For most of the basic drugs, the established cut-off limits were very low, ranging from 0.25ng/g to 50ng/g. The established cut-off limits for most neutral and acidic drugs, were in the range from 50ng/g to 500ng/g. Sample preparation was performed using simple protein precipitation of 300μL of whole blood with acetonitrile and methanol. Ten microliters of the reconstituted extract were injected and separated within a 13.5min UPLC gradient reverse-phase run. Positive electrospray ionization (ESI) was used to generate the ions in the m/z range of 50-1000. Fragment ions were generated by bbCID. Identification was based on retention time, accurate mass, fragment ion(s) and isotopic pattern. A very sensitive broad toxicological screening method using positive electrospray ionization UPLC-HR-TOF-MS was achieved in one injection. This method covered basic substances, substances traditionally analyzed in negative ESI (e.g., salicylic acid), small highly polar substances such as beta- and gamma-hydroxybutyric acid (BHB and GHB, respectively) and highly non-polar substances such as amiodarone. The new method was shown to combine high sensitivity with a very broad scope that has not previously been reported in toxicological whole blood screening when using only one injection

  17. Acid precipitation and food quality: Effects of dietary Al, Ca and P on bone and liver characteristics in American black ducks and mallards

    USGS Publications Warehouse

    Sparling, D.W.

    1991-01-01

    American black ducks (Anas rubripes) and mallards (A. platyrhynchos) were fed diets varying in concentrations of aluminum (Al). calcium (Ca), and phosphorus (P) for 10 weeks to identify toxic effects of Al under conditions representative of areas with acid precipitation. Femur and liver tissues were analyzed for Al. Ca, and P concentrations and structural characteristics. At two weeks of age, both species demonstrated pronounced differences in femur Al and P concentrations and femur mass from dietary Al and interaction between Ca:P regimen and Al:Low Ca:Low P enhanced Al storage and decreased P and mass in femurs. Femur Ca was lowest in the Low Ca:Low P regimen but was not affected by dietary Al. At 10 weeks, femur and liver Al continued to vary with dietary Al. Elevated Al and reduced Ca lowered modulus of elasticity. Femur P increased with elevated dietary P in black ducks. Elevated dietary P negated some of the effects of dietary A! on femur mass in black ducks. Reduced Ca concentrations weakened bones of both species and lowered both Ca and P. An array of clinical signs including lameness, discoloration of the upper mandible, complete and greenstick fractures, and death were responses to elevated Al and Ca:P regimen. Black ducks seemed to display these signs over a wider range of diets than mallards. Diets of 1,000 mg/kg Al had toxic effects on both species, particularly when combined with diets low in Ca and P.

  18. Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea

    PubMed Central

    Farasin, Julien; Andres, Jérémy; Casiot, Corinne; Barbe, Valérie; Faerber, Jacques; Halter, David; Heintz, Dimitri; Koechler, Sandrine; Lièvremont, Didier; Lugan, Raphael; Marchal, Marie; Plewniak, Frédéric; Seby, Fabienne; Bertin, Philippe N.; Arsène-Ploetze, Florence

    2015-01-01

    The acid mine drainage (AMD) in Carnoulès (France) is characterized by the presence of toxic metals such as arsenic. Several bacterial strains belonging to the Thiomonas genus, which were isolated from this AMD, are able to withstand these conditions. Their genomes carry several genomic islands (GEIs), which are known to be potentially advantageous in some particular ecological niches. This study focused on the role of the “urea island” present in the Thiomonas CB2 strain, which carry the genes involved in urea degradation processes. First, genomic comparisons showed that the genome of Thiomonas sp. CB2, which is able to degrade urea, contains a urea genomic island which is incomplete in the genome of other strains showing no urease activity. The urease activity of Thiomonas sp. CB2 enabled this bacterium to maintain a neutral pH in cell cultures in vitro and prevented the occurrence of cell death during the growth of the bacterium in a chemically defined medium. In AMD water supplemented with urea, the degradation of urea promotes iron, aluminum and arsenic precipitation. Our data show that ureC was expressed in situ, which suggests that the ability to degrade urea may be expressed in some Thiomonas strains in AMD, and that this urease activity may contribute to their survival in contaminated environments. PMID:26441922

  19. [High aluminum concentrations in well water of southern Lower Saxony sandy soil areas caused by acid precipitation--evaluation from the public health and ecologic viewpoint].

    PubMed

    Mühlenberg, W

    1990-01-01

    Decades of acid precipitation have caused soil acidification in regions with low neutralizing capacity of industrial countries, thus mobilizing aluminium from clay minerals into soil solution and ground water. In the southern sandy heath-land of Lower Saxony all the wells with pH values lower than 4.5 showed aluminium contents higher than 2.0 mg/l. 66.7% of the specimens within the pH-range 4.5 to 5.0 and 20% of the specimens within the pH-range 5.0 to 5.5 had aluminium levels of more than 0.2 mg/l, that is the maximum permissible limit value of the drinking water regulation. High contents of aluminium in drinking water are objectionable from the hygienic point of view, as they may cause intoxications in infants and patients with impaired renal function. In addition to this, the involvement of aluminium in the pathogenesis of severe degenerative disorders of the central nervous system cannot be excluded, such as Alzheimers disease, amyotrophic lateral sclerosis and Parkinsons dementia.

  20. Electrostatic precipitator

    SciTech Connect

    Hayashi, T.

    1982-08-03

    An electrostatic precipitator comprising a plurality of flat plate dust-collecting electrodes, arranged in substantially equally spaced and parallel relationship with one another and each having a discharge electrode, or electrodes, on and along the edge of one side thereof with the discharge electrodes of the adjacent dust-collecting electrodes alternately facing in opposite directions; the edges having the discharge electrodes are arranged in a setback relation by some distance in relation to the nearby edges of the adjacent dust-collecting plates, where no discharge electrodes are provided, so that uniform and nonuniform electric fields may be produced.

  1. Current-use pesticides and organochlorine compounds in precipitation and lake sediment from two high-elevation national parks in the Western United States

    USGS Publications Warehouse

    Mast, M.A.; Foreman, W.T.; Skaates, S.V.

    2007-01-01

    Current-use pesticides (CUPs) and banned organochlorine compounds (OCCs) were measured in precipitation (snowpack and rain) and lake sediments from two national parks in the Western United States to determine their occurrence and distribution in high-elevation environments. CUPs frequently detected in snow were endosulfan, dacthal, and chlorothalonil in concentrations ranging from 0.07 to 2.4 ng/L. Of the OCCs, chlordane, hexachlorobenzene, and two polychlorinated biphenyl congeners were detected in only one snow sample each. Pesticides most frequently detected in rain were atrazine, carbaryl, and dacthal in concentrations from 3.0 to 95 ng/L. Estimated annual deposition rates in one of the parks were 8.4 ??g/m2 for atrazine, 9.9 ??g/m2 for carbaryl, and 2.6 ??g/m2 for dacthal, of which >85% occurred during summer. p,p'-DDE and p,p'-DDD were the most frequently detected OCCs in surface sediments from lakes. However, concentrations were low (0.12 to 4.7 ??g/kg) and below levels at which harmful effects for benthic organisms are likely to be observed. DDD and DDE concentrations in an age-dated sediment core suggest that atmospheric deposition of DDT and its degradates, and possibly other banned OCCs, to high-elevation areas have been decreasing since the 1970s. Dacthal and endosulfan sulfate were present in low concentrations (0.11 to 1.2 ??g/kg) and were the only CUPs detected in surface sediments. Both pesticides were frequently detected in snow, confirming that some CUPs entering high-elevation aquatic environments through atmospheric deposition are accumulating in lake sediments and potentially in aquatic biota as well. ?? 2007 Springer Science+Business Media, Inc.

  2. Current-use pesticides and organochlorine compounds in precipitation and lake sediment from two high-elevation national parks in the Western United States.

    PubMed

    Mast, M A; Foreman, W T; Skaates, S V

    2007-04-01

    Current-use pesticides (CUPs) and banned organochlorine compounds (OCCs) were measured in precipitation (snowpack and rain) and lake sediments from two national parks in the Western United States to determine their occurrence and distribution in high-elevation environments. CUPs frequently detected in snow were endosulfan, dacthal, and chlorothalonil in concentrations ranging from 0.07 to 2.4 ng/L. Of the OCCs, chlordane, hexachlorobenzene, and two polychlorinated biphenyl congeners were detected in only one snow sample each. Pesticides most frequently detected in rain were atrazine, carbaryl, and dacthal in concentrations from 3.0 to 95 ng/L. Estimated annual deposition rates in one of the parks were 8.4 microg/m2 for atrazine, 9.9 microg/m2 for carbaryl, and 2.6 microg/m2 for dacthal, of which >85% occurred during summer. p,p'-DDE and p,p'-DDD were the most frequently detected OCCs in surface sediments from lakes. However, concentrations were low (0.12 to 4.7 microg/kg) and below levels at which harmful effects for benthic organisms are likely to be observed. DDD and DDE concentrations in an age-dated sediment core suggest that atmospheric deposition of DDT and its degradates, and possibly other banned OCCs, to high-elevation areas have been decreasing since the 1970s. Dacthal and endosulfan sulfate were present in low concentrations (0.11 to 1.2 microg/kg) and were the only CUPs detected in surface sediments. Both pesticides were frequently detected in snow, confirming that some CUPs entering high-elevation aquatic environments through atmospheric deposition are accumulating in lake sediments and potentially in aquatic biota as well.

  3. The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, USA

    USGS Publications Warehouse

    Denning, A. Scott

    1993-01-01

    We explored the seasonal characteristics in wet deposition chemistry for two sites located at different elevations along the east slope of the Colorado Front Range in Rocky Mountain National Park. Seasonally separated precipitation was stratified into highly concentrated (high salt), dilute (low salt), or acid-dominated precipitation groups. These groups and unstratified precipitation data were related to mean easterly or westerly zonal winds to determine direction of local transport. Strong acid anion associations were also determined for the stratified and unstratified precipitation data sets. We found that strong acid anions, acidity, ammonium, and high salt concentrations originate to the east of Rocky Mountain National Park, and are transported via up-valley funneling winds or convective instability from differential heating of the mountains and the plains to the east. These influence the composition of precipitation at Beaver Meadows, the low elevation site, throughout the year, while their effect on precipitation at Loch Vale, the high elevation site, is felt most strongly during the summer. During the winter, Loch Vale precipitation is very dilute, and occurs in conjunction with westerly winds resulting from the southerly location of the jet stream.

  4. Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Lee, Shu Chin; Hasan, Norhasnita; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    In this work, suppression of the charge recombination on the titanium dioxide (TiO2) was reported by the addition of copper oxide (CuO), which led to a higher activity of TiO2 for removal of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide. A series of CuO/TiO2 with CuO loadings of 0.1-1 wt% was prepared through a co-precipitation method. X-ray diffraction patterns revealed that the presence of CuO could not be detected as the low loading amount of CuO might have good dispersion on the surface of TiO2. Diffuse reflectance UV-visible spectra suggested that low loading amount of CuO did not influence the optical property of TiO2. Fluorescence spectroscopy revealed that TiO2 possessed a dominant emission peak of 407 nm at an excitation wavelength of 218 nm. The increasing loading amount of CuO decreased the emission intensity of TiO2, suggesting the successful reduction of charge recombination. After irradiation under UV light for 1 h, CuO(0.1 wt%)/TiO2 gave the highest percentage removal of the herbicide among the samples. The optimum loading amount of CuOmight improve the charge separation and reduce the electron-hole recombination on TiO2 without blocking the active sites, thus leading to the improved photocatalytic activity. This work showed that CuO/TiO2 is a potential photocatalyst for environmental remediation.

  5. Global precipitation measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.

    2001-12-01

    The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.

  6. Formation of stratospheric nitric acid by a hydrated ion cluster reaction: Implications for the effect of energetic particle precipitation on the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kvissel, O.-K.; Orsolini, Y. J.; Stordal, F.; Isaksen, I. S. A.; Santee, M. L.

    2012-08-01

    In order to improve our understanding of the effects of energetic particle precipitation on the middle atmosphere and in particular upon the nitrogen family and ozone, we have modeled the chemical and dynamical middle atmosphere response to the introduction of a chemical pathway that produces HNO3 by conversion of N2O5 upon hydrated water clusters H+·(H2O)n. We have used an ensemble of simulations with the National Center for Atmospheric Research (NCAR) Whole-Atmosphere Community Climate Model (WACCM) chemistry-climate model. The chemical pathway alters the internal partitioning of the NOy family during winter months in both hemispheres, and ultimately triggers statistically significant changes in the climatological distributions of constituents including: i) a cold season production and loss of HNO3 and N2O5, respectively, and ii) a cold season decrease and increase in NOx/NOy-ratio and O3, respectively, in the polar regions of both hemispheres. We see an improved seasonal evolution of modeled HNO3 compared to satellite observations from Microwave Limb Sounder (MLS), albeit not enough HNO3 is produced at high altitudes. Through O3changes, both temperature and dynamics are affected, allowing for complex chemical-dynamical feedbacks beyond the cold season when the pathway is active. Hence, we also find a NOxpolar increase in spring-to-summer in the southern hemisphere, and in spring in the northern hemisphere. The springtime NOxincrease arises from anomalously strong poleward transport associated with a weaker polar vortex. We argue that the weakening of zonal-mean polar winds down to the lower stratosphere, which is statistically significant at the 0.90 level in spring months in the southern hemisphere, is caused by strengthened planetary waves induced by the middle and sub-polar latitude zonal asymmetries in O3and short-wave heating.

  7. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Kirk, Nordstrom D.; Blaine, McCleskey R.; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  8. Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities

    NASA Astrophysics Data System (ADS)

    Osburn, Magdalena R.; Sessions, Alex L.; Pepe-Ranney, Charles; Spear, John R.

    2011-09-01

    We report the abundances and hydrogen-isotopic compositions (D/H ratios) of fatty acids extracted from hot-spring microbial mats in Yellowstone National Park. The terrestrial hydrothermal environment provides a useful system for studying D/H fractionations because the numerous microbial communities in and around the springs are visually distinct, separable, and less complex than those in many other aquatic environments. D/H fractionations between lipids and water ranged from -374‰ to +41‰ and showed systematic variations between different types of microbial communities. Lipids produced by chemoautotrophic hyperthermophilic bacteria, such as icosenoic acid (20:1), generally exhibited the largest and most variable fractionations from water (-374‰ to -165‰). This was in contrast to lipids characteristic of heterotrophs, such as branched, odd chain-length fatty acids, which had the smallest fractionations (-163‰ to +41‰). Mats dominated by photoautotrophs exhibited intermediate fractionations similar in magnitude to those expressed by higher plants. These data support the hypothesis that variations in lipid D/H are strongly influenced by central metabolic pathways. Shifts in the isotopic compositions of individual fatty acids across known ecological boundaries show that the isotopic signature of specific metabolisms can be recognized in modern environmental samples, and potentially recorded in ancient ones. Considering all sampled springs, the total range in D/H ratios is similar to that observed in marine sediments, suggesting that the trends observed here are not exclusive to the hydrothermal environment.

  9. Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas.

    PubMed

    Patrick, Lisa; Cable, Jessica; Potts, Daniel; Ignace, Danielle; Barron-Gafford, Greg; Griffith, Alden; Alpert, Holly; Van Gestel, Natasja; Robertson, Traesha; Huxman, Travis E; Zak, John; Loik, Michael E; Tissue, David

    2007-04-01

    Global climate models predict that in the next century precipitation in desert regions of the USA will increase, which is anticipated to affect biosphere/atmosphere exchanges of both CO(2) and H(2)O. In a sotol grassland ecosystem in the Chihuahuan Desert at Big Bend National Park, we measured the response of leaf-level fluxes of CO(2) and H(2)O 1 day before and up to 7 days after three supplemental precipitation pulses in the summer (June, July, and August 2004). In addition, the responses of leaf, soil, and ecosystem fluxes of CO(2) and H(2)O to these precipitation pulses were also evaluated in September, 1 month after the final seasonal supplemental watering event. We found that plant carbon fixation responded positively to supplemental precipitation throughout the summer. Both shrubs and grasses in watered plots had increased rates of photosynthesis following pulses in June and July. In September, only grasses in watered plots had higher rates of photosynthesis than plants in the control plots. Soil respiration decreased in supplementally watered plots at the end of the summer. Due to these increased rates of photosynthesis in grasses and decreased rates of daytime soil respiration, watered ecosystems were a sink for carbon in September, assimilating on average 31 mmol CO(2) m(-2) s(-1) ground area day(-1). As a result of a 25% increase in summer precipitation, watered plots fixed eightfold more CO(2) during a 24-h period than control plots. In June and July, there were greater rates of transpiration for both grasses and shrubs in the watered plots. In September, similar rates of transpiration and soil water evaporation led to no observed treatment differences in ecosystem evapotranspiration, even though grasses transpired significantly more than shrubs. In summary, greater amounts of summer precipitation may lead to short-term increased carbon uptake by this sotol grassland ecosystem.

  10. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  11. Modeling potential interactions of acid deposition and climate change at four watersheds in Shenandoah National Park, VA using the dynamic biogeochemical model PnET-BGC

    NASA Astrophysics Data System (ADS)

    Robison, A.; Scanlon, T. M.; Cosby, B. J.; Webb, J. R.; Hayhoe, K.; Galloway, J. N.

    2013-12-01

    The ecological threat imposed by acid deposition on watersheds in the eastern U.S. has, to a certain extent, been alleviated by the passage of the Clean Air Act and subsequent amendments. At the same time, as climate change continues to emerge as a global issue affecting temperature regimes and hydrological cycling among many other variables, new concerns are developing for these watershed ecosystems. Considering that climate change and acid deposition do not influence watersheds independently, there is an opportunity and need to examine both the potential interactions and the impacts of these two biogeochemical drivers. Long-term monitoring of four streams in Shenandoah National Park, VA has provided a favorable setting for analyzing this interaction. Deposition of both sulfur and nitrogen has significantly decreased over the past 30 years in the region. Meanwhile, all four streams have warmed significantly over the past 20-33 years at an average rate of 0.07 oC yr-1, a trend that is closely tied to atmospheric warming rather than changes in hydrology. We applied a dynamic biogeochemical model (PnET-BGC) to these four watersheds to a) investigate how climate change will affect watershed response to reduced acid deposition; b) identify the key processes through which this interaction will be manifested; and c) examine how differences in watershed characteristics (e.g. bedrock and soil properties) affect the response to these two biogeochemical drivers. Included in model application are statistically downscaled climate projections of temperature maximums and minimums, precipitation, and solar radiation. Results will be used to assess the relative impact of these climate variables in regulating stream acid-base status. This study will also provide insight into the future ecological health of these ecosystems, primarily through examination of aquatic habitat suitability based on temperature and acidity.

  12. The Changing Character of Precipitation.

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Dai, Aiguo; Rasmussen, Roy M.; Parsons, David B.

    2003-09-01

    From a societal, weather, and climate perspective, precipitation intensity, duration, frequency, and phase are as much of concern as total amounts, as these factors determine the disposition of precipitation once it hits the ground and how much runs off. At the extremes of precipitation incidence are the events that give rise to floods and droughts, whose changes in occurrence and severity have an enormous impact on the environment and society. Hence, advancing understanding and the ability to model and predict the character of precipitation is vital but requires new approaches to examining data and models. Various mechanisms, storms and so forth, exist to bring about precipitation. Because the rate of precipitation, conditional on when it falls, greatly exceeds the rate of replenishment of moisture by surface evaporation, most precipitation comes from moisture already in the atmosphere at the time the storm begins, and transport of moisture by the storm-scale circulation into the storm is vital. Hence, the intensity of precipitation depends on available moisture, especially for heavy events. As climate warms, the amount of moisture in the atmosphere, which is governed by the Clausius- Clapeyron equation, is expected to rise much faster than the total precipitation amount, which is governed by the surface heat budget through evaporation. This implies that the main changes to be experienced are in the character of precipitation: increases in intensity must be offset by decreases in duration or frequency of events. The timing, duration, and intensity of precipitation can be systematically explored via the diurnal cycle, whose correct simulation in models remains an unsolved challenge of vital importance in global climate change. Typical problems include the premature initiation of convection, and precipitation events that are too light and too frequent. These challenges in observations, modeling, and understanding precipitation changes are being taken up in the NCAR

  13. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  14. Sensitivity of stream basins in Shenandoah National Park to acid deposition

    USGS Publications Warehouse

    Lynch, D.D.; Dise, N.B.

    1985-01-01

    Six synoptic surveys of 56 streams that drain the Shenandoah National Park, Virginia, were conducted in cooperation with the University of Virginia to evaluate sensitivity of dilute headwater streams to acid deposition and to determine the degree of acidification of drainage basins. Flow-weighted alkalinity concentration of most streams is below 200 microequivalents per liter, which is considered the threshold of sensitivity. Streams draining resistant siliceous bedrocks have an extreme sensitivity (alkalinity below 20 microequivalents/L); those draining granite and granodiorite have a high degree of sensitivity (20 to 100 microequivalents/L); and streams draining metamorphosed volcanics have moderate to marginal sensitivity (100 to 200 microequivalents/L). A comparison of current stream water chemistry to that predicted by a model based on carbonic acid weathering reactions suggests that all basins in the Park shows signs of acidification by atmospheric deposition. Acidification is defined as a neutralization of stream water alkalinity and/or an increase in the base cation weathering rate. Acidification averages 50 microequivalents/L, which is fairly evenly distributed in the Park. However, the effects of acidification are most strongly felt in extremely sensitive basins, such as those underlain by the Antietam Formation, which have stream water pH values averaging 4.99 and a mineral acidity of 7 microequivalents/L. (USGS)

  15. Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA.

    PubMed

    Brown, Patricia B; Wolfe, Gordon V

    2006-01-01

    We examined eukaryote genetic diversity in the hydrothermal environments of Lassen Volcanic National Park (LVNP), Northern California. We sampled hydrothermal areas of the Bumpass Hell, Sulfur Works, Devil's Kitchen, and Boiling Springs Lake sites, all of which included diverse acidic pools, mud pots, and streams with visible algal mats and biofilms. Temperatures varied from 15 to 85 degrees C and pH from 1.7 to 5.8. DNA extraction methods compared by denaturing gradient gel electrophoresis fingerprinting exhibited similar patterns, and showed limited diversity of eukaryotic small subunit (SSU) rRNA genes compared with prokaryotes. We successfully amplified eukaryotic SSU rRNA genes from most environments up to 68 degrees C. Cloned rDNA sequences reveal acidophilic protists dominate eukaryotes in LVNP hydrothermal environments. Most sites showed phototrophic assemblages dominated by chlorophytes and stramenopiles (diatoms and chrysophytes). Heterotrophic taxa, though less abundant, included diverse alveolates (ciliates), amoebae, and flagellates. Fungi were also found at most sites, and metazoans (hexapods, nematodes, platyhelminths) were sometimes detected in less acidic environments, especially in algal mats. While many cloned rDNA sequences showed 95%-99% identity to known acidophilic isolates or environmental clones from other acidic sites (Rio Tinto), sequence diversity generally declined both with decreasing pH and increasing temperature, and both were controlling physical variables on the abundance and distribution of organisms at our sites. However, a pool at 68 degrees C with pH 1.7 yielded the greatest number of distinct sequences. While some were likely contaminants from nearby cooler sites, we suggest that Lassen's acidic hydrothermal features may harbor novel protists.

  16. Dissolved Free Amino Acids in Hydrothermal Springs at Yellowstone National Park, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cox, J. S.; Holland, M. E.; Shock, E. L.

    2004-12-01

    Insights into the organic geochemistry of hydrothermal systems, as well as the dynamics of biotic processes in hot spring ecosystems, can be gained by identifying and quantifying dissolved free amino acids (DFAA). Hydrothermal systems form a unique environmental subset relative to other aqueous settings due to their higher temperatures, largely uncharacterized and exotic microbiology, wider pH range, and elevated levels of rare metals, sulfur, and dissolved gases. Previous studies of hot spring and geothermal systems (e.g. Mukhin et al., 1979; Svensson et al., 2004) indicated the presence of micromolar quantities of various amino acids, but the underlying mechanisms controlling amino acid production and disappearance/consumption have continued to remain elusive. DFAA were identified and quantified in five hot springs at Yellowstone National Park that span a range of pH (2 to 8) and temperature (75 to 93° C/boiling). Biotic uptake experiments and enantiomeric analyses on samples from one location were also performed to elucidate biotic pathways. Analyses were performed using high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which is able to resolve amino acids as well as certain carbohydrates, oligopeptides, and a variety of related biological molecules. Preliminary data indicate that total DFAA concentrations are quite low (sub-micromolar range) and that amino acids with aliphatic and nitrogen-containing R-groups are predominant in the DFAA fraction. The types and concentrations of amino acids were variable across the sites. Obsidian Pool (pH 5.1, 77.5° C), where multiple microbiological studies have been conducted, was found to have a DFAA fraction consisting primarily of glycine with trace amounts of arginine, lysine, and histidine. In comparison, an acidic spring in the Sylvan Springs area (pH 1.9, 79.7° C) had higher total DFAA concentrations and was found to contain primarily arginine, lysine, and leucine, together

  17. Aluminum colloid formation and its effect on co-precipitation of zinc during acid rock drainage remediation with clinoptilolite in a slurry bubble column

    NASA Astrophysics Data System (ADS)

    Xu, W.; Li, L. Y.; Grace, J. R.

    2012-04-01

    Zinc and other metal ions were adsorbed in a laboratory slurry bubble column (SBC) by natural clinoptilolite sorbent particles. During the remediation process, significant white precipitates were sometimes observed. Both zinc and aluminum were detected in the colloidal mixtures. It is shown that Al leached from clinoptilolite during the agitation, contributing to the precipitate. As a result of the Al leaching and increase of pH during the remediation process, the formation of an Al colloid and zinc adsorption onto it could significantly improve ARD remediation, given the high adsorption capacity of the colloid. Sorption of cations increased with increasing colloid formation. Various conditions were tested to investigate their impact on (a) dealumination of clinoptilolite; (b) Al hydrolysis/colloid formation; and (c) adsorption onto the colloidal mixture. The test results indicate that dealumination contributes to the excess aluminum in the aqueous phase and to precipitates. The excess dealumination varies with pH and agitation time. Al hydrolysis occurs with increasing pH due to the neutralization effect of clinoptilolite. A significant proportion of zinc adsorbed onto the collectible aluminum precipitates.

  18. Electrostatic precipitator manual

    SciTech Connect

    McDonald, J.R.; Dean, A.H.

    1982-01-01

    Studies performed by various individuals and organizations on the application of electrostatic precipitators to the collection of fly ash produced in the combustion of pulverized fuel are summarized in this manual. The scope of the studies evaluated include full scale precipitators and laboratory investigations. It covers measurement of fly ash resistivity, rapping reentrainment, conditioning agents, fundamental operations of hot-side precipitators. The major chapter headings are: Terminology and General Design Features Associated with Electrostatic Precipitators Used to Collect Fly Ash Particles; Fundamental Principles of Electrostatic Precipitation; Limiting Factors Affecting Precipitator Performance; Use of Electrostatic Precipitators for the Collection of Fly Ash; Analysis of Factors influencing ESP Performance; Emissions from Electrostatic Precipitators; Choosig an Electrostatic Precipitator: Cold-side versus Hot-side; Safety Aspects of Working with Electrostatic Precipitators; Maintenance Procedures; Troubleshooting; An Electrostatic Precipitator Computer Model; Features of a Well-equipped Electrostatic Precipitator.

  19. Controls on the microbial utilization of carbon monoxide and formic acid in Acidic Hydrothermal Springs in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Urschel, M.; Kubo, M. W.; Hoehler, T. M.; Boyd, E. S.; Peters, J.

    2012-12-01

    In hydrothermal systems, dissolved carbon dioxide (CO2) in the presence of reduced iron-bearing minerals, such as those found in basalt, can be reduced to form formic acid (HCOOH). HCOOH can then be dehydrated in a side reaction, resulting in the generation of carbon monoxide (CO), which forms an equilibrium with HCOOH. HCOOH can also be further reduced to methane, and longer chain hydrocarbons. Geochemical measurements have demonstrated the presence of elevated concentrations of HCOOH, dissolved CO, and dissolved inorganic carbon (CO2, H2CO3), in high temperature, low pH springs in Yellowstone National Park (YNP). Likewise, a number of compounds that could potentially serve as electron acceptors (e.g. S0, SO42-, NO3-, Fe3+) in the oxidation of CO or formic acid have been detected in many of these systems. We hypothesized that the utilization of CO and HCOOH as carbon and/or energy sources is a broadly-distributed metabolic strategy in high temperature, low pH springs in YNP. To test this hypothesis, radiolabeled CO (14CO) and HCOOH (H14COOH) were used to determine rates of CO and formate oxidation activity in three hot springs in YNP ranging in temperature from 53 °C to 89 °C and pH from 2.5 to 5.3. In parallel, 16S rRNA gene sequencing and enrichment isolation techniques were employed to identify the microorganisms responsible for these activities. Our results indicate that CO and HCOOH are important sources of carbon and/or energy in high temperature, low pH hydrothermal springs in Yellowstone National Park. Rates of CO oxidation appear to be orders of magnitude lower than those of HCOOH oxidation. One possible explanation for this result is that HCOOH is preferentially utilized, consistent with thermodynamic calculations indicating that HCOOH liberates approximately 215 kJ/mol more Gibbs energy (under standard conditions) than CO when oxidized with oxygen (O2) as the electron acceptor. Redox couples of HCOOH oxidation with other electron acceptors (e.g. SO4

  20. Precipitating circumstances of suicide among youth aged 10-17 years by sex: data from the National Violent Death Reporting System, 16 states, 2005-2008.

    PubMed

    Karch, Debra L; Logan, J; McDaniel, Dawn D; Floyd, C Faye; Vagi, Kevin J

    2013-07-01

    We examined the circumstances that precipitated suicide among 1,046 youth aged 10-17 years in 16 U.S. states from 2005 to 2008. The majority of deaths were among male subjects (75.2%), non-Hispanic whites (69.3%), those aged 16-17 years (58.1%), those who died by hanging/strangulation/suffocation (50.2%) and those who died in a house or an apartment (82.5%). Relationship problems, recent crises, mental health problems, and intimate partner and school problems were the most common precipitating factors and many differed by sex. School problems were reported for 25% of decedents, of which 30.3% were a drop in grades and 12.4% were bullying related. Prevention strategies directed toward relationship-building, problem-solving, and increasing access to treatment may be beneficial for this population. PMID:23790202

  1. End point control of an actinide precipitation reactor

    SciTech Connect

    Muske, K.R.; Palmer, M.J.

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  2. Dietary intake of fats and fatty acids in the Korean population: Korea National Health and Nutrition Examination Survey, 2013

    PubMed Central

    Baek, Yeji; Hwang, Ji-Yun; Kim, Kirang; Moon, Hyun-Kyung; Kweon, Sanghui; Yang, Jieun

    2015-01-01

    BACKGROUND/OBJECTIVES The aim of this study was to estimate average total fat and fatty acid intakes as well as identify major food sources using data from the Korea National Health and Nutrition Examination Survey (KNHANES) VI-1 (2013). SUBJECTS/METHODS Total fat and fatty acid intakes were estimated using 24-hour dietary recall data on 7,048 participants aged ≥ 3 years from the KNHANES VI-1 (2013). Data included total fat, saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), n-3 fatty acid (n-3 FA), and n-6 fatty acid (n-6 FA) levels. Population means and standard errors of the mean were weighted in order to produce national estimates and separated based on sex, age, income, as well as residential region. Major food sources of fat, SFA, MUFA, PUFA, n-3 FA, and n-6 FA were identified based on mean consumption amounts of fat and fatty acids in each food. RESULTS The mean intake of total fat was 48.0 g while mean intakes of SFA, MUFA, PUFA, n-3 FA, and n-6 FA were 14.4 g, 15.3 g, 11.6 g, 1.6 g, and 10.1 g, respectively. Intakes of MUFA and SFA were each higher than that of PUFA in all age groups. Pork was the major source of total fat, SFA, and MUFA, and soybean oil was the major source of PUFA. Milk and pork were major sources of SFA in subjects aged 3-11 years and ≥ 12 years, respectively. Perilla seed oil and soybean oil were main sources of n-3 FA in subjects aged ≥ 50 years and aged < 50 years, respectively. CONCLUSIONS Estimation of mean fatty acid intakes of this study using nationally represented samples of the Korean population could be useful for developing and evaluating national nutritional policies. PMID:26634055

  3. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  4. Geographical distribution and temporal variation of rain acidity over China

    SciTech Connect

    Wen-Xing Wang; Yan-Bo Pang; Guo-An Ding

    1996-12-31

    In recent decade, large areas of acid rain have appeared in China. With the increasing emission of SO{sub 2} and NO{sub x} year by year, the acidity of precipitation has increased, and the acid rain area is expanding. Presently, the acid rain in China has become the third largest area of acid rain in the world, next to Europe and North America. The Chinese government took action against acid rain and planned a five-year National Acid Deposition Research Project. The space-time distribution and variation of rain acidity described in this paper is a part of this project. China is a large country. The area is almost equal to that of Europe. Its climate varies greatly and spans the tropics, subtropics, temperate and frigid zone. There is a varied topography including mountain, hilly country, desert and plain, on the other hand the distribution of anthropogenic sources are not even. All of the human and natural factors caused different chemical composition in different parts of China, the acidity of precipitation varies also. The acidity of the precipitation is the most important parameter in the acid rain research. In order to obtain the regional representative distribution of rain acidity, National Acidic Deposition Research Monitoring Network with 261 monitoring sites was established in 1992. This paper summarizes the rain acidity of 21355 precipitation samples, and gave the annual, seasonal, and the monthly pH contours. Results show that the acid rain area has expanded from the south during winter. Regional differences of monthly acid precipitation exists, generally, the rain acidity level is higher during summer and fall and lower during winter and spring in the northern provinces. The 9 opposite is the case in the southern provinces. The central areas are in a transitional situation. The geographical distribution and temporal variation of rain acidity are quite different from North America and Europe.

  5. Mechanisms by which acid precipitation produces embryonic death in aquatic vertebrates. Technical completion report, 1 May 1977-31 December 1980

    SciTech Connect

    Pough, F.H.

    1981-03-01

    Fourteen species of amphibians show a general similarity in their tolerance of acid media during embryonic development. More than 85% mortality is produced by pHs of 3.7 to 3.9 and more than 50% mortality occurs at pHs of 4.0 or less. Similar values have been reported for fishes. The sensitivity of amphibian embryos to acidity is greater in late stages of their development than it is during the initial cleavage of the embryos. The teratogenic effects of acidity appear to be the result of damage to the superficial tissues of the embryo. A similar response occurs in fish embryos. Because of the similarity of sensitivity and response to acidity of fishes and amphibians, the latter animals are suitable experimental models for investigations of the details of acid resistance. Controlled breedings of African clawed frogs (Xenopus laevis) indicated that the offspring of some pairs of parents were more resistant to acidity than those of other pairs. Wild populations of spotted salamanders (Ambystoma maculatum) breeding in some ponds in the Ithaca, New York, region have probably been exposed to increasingly acid conditions for the past three decades (10 or more generations). In the most acid ponds more than 70% of the embryos die before hatching. Despite the intensity and duration of this selection, it was not possible to demonstrate any difference in sensitivity to acidity between eggs collected from acidic and neutral breeding sites.

  6. Relation of precipitation quality to storm type, and deposition of dissolved chemical constituents from precipitation in Massachusetts, 1983-85

    USGS Publications Warehouse

    Gay, F.B.; Melching, C.S.

    1995-01-01

    Precipitation samples were collected for 83 storms at a rural inland site in Princeton, Mass., and 73 storms at a rural coastal site in Truro, Mass., to examine the quality of precipitation from storms and relate quality to three storm types (oceanic cyclone, continental cyclone, and cold front). At the inland site, Princeton, ranked-means of precipitation depth, storm duration, specific conductance, and concentrations and loads of hydrogen, sulfate, aluminum, bromide, and copper ions were affected by storm type. At the coastal site, Truro, ranked means of precipitation depth, storm duration, and concentrations and loads of calcium, chloride, magnesium, potassium, and sodium ions were affected by storm type. Precipitation chemistry at the coastal site was 85 percent oceanic in orgin, whereas precipitation 72 kilometers inland was 60 percent hydrogen, nitrate, and sulfate ions, reflecting fossil-fuel combustion. Concentrations and loads for specific conductance and 9 chemical constituents on an annual and seasonal basis were determined from National Atmospheric Deposition Program data for spring 1983 through winter 1985 at Quabbin (rural, inland), Waltham (suburban, inland) and Truro (rural, coastal), Massachusetts. Concentrations of magnesium, potassium, sodium, and chloride concentrations were highest at the coast and much lower inland, with very little difference between Waltham and Quabbin. Loads of ammonium, nitrate, sulfate, and hydrogen are highest at Quabbin and are about equal at Waltham and Truro. About twice as much nitrate and hydrogen and about 35 percent more sulfate is deposited at Quabbin than at Waltham or Truro; this pattern indicates that the interior of Massachusetts receives more acidic precipitation than do the eastern or the coastal areas of Massachusetts.

  7. Hydrocarbonates in precipitation of Moscow

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Eremina, Iren; Aloyan, Artash; Arutunan, Vardan; Chubarova, Natalia; Yermakov, Alexandr

    2016-04-01

    According to monitoring of the atmospheric precipitation of Moscow a number of episodes is revealed, the content of hydrocarbonates in which repeatedly surpasses equilibrium level. Facts of their registration are linked to complex structure of precipitation which is caused by a different chemical composition of condensation nucleus. As a result on the underlying surface two groups of drops with acidity of the different nature are transferred. The acidity of the first, "metal" group of droplets, is determined by a carbonate equilibrium with atmospheric CO2 and with dissolved carbonates of alkali and alkaline earth metals. The acidity of the second, "ammonium" group droplets, is characterized by the balance between an ammonia absorbed from the air and atmospheric acids. Regulation of acidity of the deposits measured in a course of monitoring, occurs for this reason not only in the air, but also in the condensate receiver. A mixing "metal" and "ammonium" groups precipitation accompanied by only a partial transfer of hydrocarbonates in the dissolved CO2. The process is braked as a result of a practical stop of exit of CO2 into the atmosphere because of a mass transfer deceleration. In turn it leads to excess of equilibrium level of hydrocarbonates in the receiver. Estimates show that the acidity of "ammonia" component of precipitation should be much higher than the reported monitoring data. In other words, real acidity of rain drops can essentially exceed that is measured by standard procedures of monitoring of deposits, that it is necessary to take into consideration at calculations of so-called critical levels of acid loading on people and environment. In other words, the actual acidity of raindrops could greatly exceed that is measured by the standard procedures for monitoring rainfall, which should be taken into account when calculating the so-called critical levels of acid loads on people and the environment. It follows that the true level of hazard of acid rain

  8. PRECIPITATION OF PLUTONOUS PEROXIDE

    DOEpatents

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  9. Acid rain

    SciTech Connect

    Not Available

    1985-01-01

    This report has four parts: they discuss acid rain in relation to acid soils, agriculture, forests, and aquatic ecosystems. Among findings: modern sources of acid deposition from the atmosphere for all the acid soils in the world, nor even chiefly responsible for those of northern U.S. Agriculture has its problems, but acid precipitation is probably not one of them. More research is needed to determine to what extent acid precipitation is responsible for forest declines and for smaller detrimental effects on forest growth where no damage to the foliage is evident. Many lakes and streams are extremely sensitive to added acids.

  10. Effects of acid deposition on watershed ecosystems of national parks in the great lakes basin.

    PubMed

    Stottlemyer, R; Rutkowski, D; Toczydlowski, D

    1989-04-01

    Legally protected national parks provide an appropriate substrate for essential long-term study of ecosystem structure and function, and for detecting trends in natural and human-induced stress. The absence of unplanned site manipulation in such areas is especially valuable for such research. Our present research has two major components. The first is the long-term ecosystem-level study of the effects of atmospheric contaminants on ecosystem processes. The overall objective is to evaluate ecosystem aquatic/terrestrial linkages and their role in establishing aquatic ecosystem sensitivity to anthropic atmospheric inputs. Four watershed/lake ecosystems, representative of much of the region's diversity, are under study. Two mature boreal sites on Isle Royale are characterized by first-order perennial surface stream input and lake outflow. Two additional mainland northern hardwood sites, one with shallow soils and one with soils derived from glacial till, are characterized by sensitive aquatic systems. One site is in a private reserve and the other in Pictured Rocks National Lakeshore. Surface outflow is gaged by Parshall flume and stage height recorder. Meteorological stations record variables for estimating evapotranspiration. One-tenth ha plots have been established in all watersheds and three sites have had intensive study of precipitation modification by canopy and forest soil. Five-year mean maximum and minimum lake pH varies from 6.85 to 4.94, Ca(2+) from 1070 to 54 μ eq l(-1), K(+) from 5.42 to 8.35 μ eq l(-1), NH 4 (+) from 10.12 to 3.23 μ eq l(-1), HCO 3 (sup-) from 635 to 24 μ eq l(-1), NO 3 (sup-) from 3.27 to 1.54 μ eq l(-1), and SO 4 (sup2-) from 110 to 52.7 μ eq l(-1). The relatively high NO 3 (sup-) values observed in one lake are the result of stream drainage from a watershed dominated by Alnus rugosa, and another has high seasonal NO 3 (sup-) inputs during spring runoff. However, owing to periodic winter thaws, significant snowpack release of

  11. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park.

    PubMed

    Beam, Jacob P; Jay, Zackary J; Kozubal, Mark A; Inskeep, William P

    2014-04-01

    Novel lineages of the phylum Thaumarchaeota are endemic to thermal habitats, and may exhibit physiological capabilities that are not yet observed in members of this phylum. The primary goals of this study were to conduct detailed phylogenetic and functional analyses of metagenome sequence assemblies of two different thaumarchaeal populations found in high-temperature (65-72 °C), acidic (pH~3) iron oxide and sulfur sediment environments of Yellowstone National Park (YNP). Metabolic reconstruction was coupled with detailed geochemical measurements of each geothermal habitat and reverse-transcriptase PCR to confirm the in situ activity of these populations. Phylogenetic analyses of ribosomal and housekeeping proteins place these archaea near the root of the thaumarchaeal branch. Metabolic reconstruction suggests that these populations are chemoorganotrophic and couple growth with the reduction of oxygen or nitrate in iron oxide habitats, or sulfur in hypoxic sulfur sediments. The iron oxide population has the potential for growth via the oxidation of sulfide to sulfate using a novel reverse sulfate reduction pathway. Possible carbon sources include aromatic compounds (for example, 4-hydroxyphenylacetate), complex carbohydrates (for example, starch), oligopeptides and amino acids. Both populations contain a type III ribulose bisphosphate carboxylase/oxygenase used for carbon dioxide fixation or adenosine monophosphate salvage. No evidence for the oxidation of ammonia was obtained from de novo sequence assemblies. Our results show that thermoacidophilic Thaumarchaeota from oxic iron mats and hypoxic sulfur sediments exhibit different respiratory machinery depending on the presence of oxygen versus sulfide, represent deeply rooted lineages within the phylum Thaumarchaeota and are endemic to numerous sites in YNP.

  12. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park

    PubMed Central

    Beam, Jacob P; Jay, Zackary J; Kozubal, Mark A; Inskeep, William P

    2014-01-01

    Novel lineages of the phylum Thaumarchaeota are endemic to thermal habitats, and may exhibit physiological capabilities that are not yet observed in members of this phylum. The primary goals of this study were to conduct detailed phylogenetic and functional analyses of metagenome sequence assemblies of two different thaumarchaeal populations found in high-temperature (65–72 °C), acidic (pH∼3) iron oxide and sulfur sediment environments of Yellowstone National Park (YNP). Metabolic reconstruction was coupled with detailed geochemical measurements of each geothermal habitat and reverse-transcriptase PCR to confirm the in situ activity of these populations. Phylogenetic analyses of ribosomal and housekeeping proteins place these archaea near the root of the thaumarchaeal branch. Metabolic reconstruction suggests that these populations are chemoorganotrophic and couple growth with the reduction of oxygen or nitrate in iron oxide habitats, or sulfur in hypoxic sulfur sediments. The iron oxide population has the potential for growth via the oxidation of sulfide to sulfate using a novel reverse sulfate reduction pathway. Possible carbon sources include aromatic compounds (for example, 4-hydroxyphenylacetate), complex carbohydrates (for example, starch), oligopeptides and amino acids. Both populations contain a type III ribulose bisphosphate carboxylase/oxygenase used for carbon dioxide fixation or adenosine monophosphate salvage. No evidence for the oxidation of ammonia was obtained from de novo sequence assemblies. Our results show that thermoacidophilic Thaumarchaeota from oxic iron mats and hypoxic sulfur sediments exhibit different respiratory machinery depending on the presence of oxygen versus sulfide, represent deeply rooted lineages within the phylum Thaumarchaeota and are endemic to numerous sites in YNP. PMID:24196321

  13. Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming.

    PubMed

    Hamilton, Trinity L; Lange, Rachel K; Boyd, Eric S; Peters, John W

    2011-08-01

    The near ubiquitous distribution of nifH genes in sediments sampled from 14 high-temperature (48.0-89.0°C) and acidic (pH 1.90-5.02) geothermal springs in Yellowstone National Park suggested a role for the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) (e.g. nitrogen fixation or diazotrophy) in these environments. nifH genes from these environments formed three unique phylotypes that were distantly related to acidiphilic, mesophilic diazotrophs. Acetylene reduction assays and (15) N(2) tracer studies in microcosms containing sediments sampled from acidic and high-temperature environments where nifH genes were detected confirmed the potential for biological N(2) reduction in these environments. Rates of acetylene reduction by sediment-associated populations were positively correlated with the concentration of NH(4)(+), suggesting a potential relationship between NH(4)(+) consumption and N(2) fixation activity. Amendment of microcosms with NH(4)(+) resulted in increased lag times in acetylene reduction assays. Manipulation of incubation temperature and pH in acetylene reduction assays indicated that diazotrophic populations are specifically adapted to local conditions. Incubation of sediments in the presence of a N(2) headspace yielded a highly enriched culture containing a single nifH phylotype. This phylotype was detected in all 14 geothermal spring sediments examined and its abundance ranged from ≈ 780 to ≈ 6800 copies (g dry weight sediment)(-1), suggesting that this organism may contribute N to the ecosystems. Collectively, these results for the first time demonstrate thermoacidiphilic N(2) fixation in the natural environment and extend the upper temperature for biological N(2) fixation in terrestrial systems.

  14. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park.

    PubMed

    Beam, Jacob P; Jay, Zackary J; Kozubal, Mark A; Inskeep, William P

    2014-04-01

    Novel lineages of the phylum Thaumarchaeota are endemic to thermal habitats, and may exhibit physiological capabilities that are not yet observed in members of this phylum. The primary goals of this study were to conduct detailed phylogenetic and functional analyses of metagenome sequence assemblies of two different thaumarchaeal populations found in high-temperature (65-72 °C), acidic (pH~3) iron oxide and sulfur sediment environments of Yellowstone National Park (YNP). Metabolic reconstruction was coupled with detailed geochemical measurements of each geothermal habitat and reverse-transcriptase PCR to confirm the in situ activity of these populations. Phylogenetic analyses of ribosomal and housekeeping proteins place these archaea near the root of the thaumarchaeal branch. Metabolic reconstruction suggests that these populations are chemoorganotrophic and couple growth with the reduction of oxygen or nitrate in iron oxide habitats, or sulfur in hypoxic sulfur sediments. The iron oxide population has the potential for growth via the oxidation of sulfide to sulfate using a novel reverse sulfate reduction pathway. Possible carbon sources include aromatic compounds (for example, 4-hydroxyphenylacetate), complex carbohydrates (for example, starch), oligopeptides and amino acids. Both populations contain a type III ribulose bisphosphate carboxylase/oxygenase used for carbon dioxide fixation or adenosine monophosphate salvage. No evidence for the oxidation of ammonia was obtained from de novo sequence assemblies. Our results show that thermoacidophilic Thaumarchaeota from oxic iron mats and hypoxic sulfur sediments exhibit different respiratory machinery depending on the presence of oxygen versus sulfide, represent deeply rooted lineages within the phylum Thaumarchaeota and are endemic to numerous sites in YNP. PMID:24196321

  15. Acid precipitation: effects on fresh-water ecosystems. January 1978-September 1988 (Citations from the Life Sciences Collection data base). Report for January 1978-September 1988

    SciTech Connect

    Not Available

    1988-10-01

    This bibliography contains citations concerning the effects of acidification of fresh-water ecosystems. Algae and diatom distribution, survival, and reproduction rates of specific fish species under acid-lake conditions, and tolerance to stress caused by acidic conditions in fresh water ecosystems are studied. Effects of water ph on trace metal toxicity to fresh water organisms is briefly considered. Control and reduction of acidification is excluded from this bibliography. (Contains 290 citations fully indexed and including a title list.)

  16. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  17. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  18. Automated homogeneous oxalate precipitation of Pu(III)

    SciTech Connect

    Yarbro, S.L.; Schreiber, S.B.; Dunn, S.L.; Mills, C.W.

    1990-01-01

    Homogeneous oxalate precipitation using diethyl oxalate was compared to precipitating Pu(III) oxalate with solid oxalic acid. The diethyl oxalate technique at 75{degree}C is better because it gives 50% less plutonium in the filtrate with a reasonable filtering time. Also, the procedure for the homogeneous precipitation is easier to automate because the liquid diethyl oxalate is simpler to introduce into the precipitator than solid oxalic acid. It also provides flexibility because the hydrolysis rate and therefore the precipitation rate can be controlled by varying the temperature. 5 refs., 3 figs., 3 tabs.

  19. Acid rain and dry deposition of atmospheric pollutants: ORNL studies the effects

    SciTech Connect

    Shriner, D.

    1984-01-01

    Acidic precipitation and atmospheric deposition may be involved in the decline of some forests and in the elevation of aluminum levels in streams. The research programs at Oak Ridge National Laboratory which are focussed on acid rain are described. Some of the areas currently under scrutiny are: soil buffering capacity, the quantitative relationships between wet and dry deposition, the effects of acid rain on forest growth, forest canopy interactions with acid precipitation, the effects of acid rain on aquatic ecosystems, and innovations in pollution control technology.

  20. Recovery of Plutonium by Carrier Precipitation

    DOEpatents

    Goeckermann, R. H.

    1961-04-01

    The recovery of plutonium from an aqueous nitric acid Zr-containing solution of 0.2 to 1N acidity is accomplished by adding fluoride anions (1.5 to 5 mg/l), and precipitating the Pu with an excess of H/sub 2/0/sub 2/ at 53 to 65 deg C. (AEC)

  1. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  2. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    PubMed

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  3. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C‑1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  4. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  5. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  6. Intake of essential fatty acids in Indonesian children: secondary analysis of data from a nationally representative survey.

    PubMed

    Neufingerl, Nicole; Djuwita, Ratna; Otten-Hofman, Anke; Nurdiani, Reisi; Garczarek, Ursula; Sulaeman, Ahmad; Zock, Peter L; Eilander, Ans

    2016-02-28

    Essential fatty acids (EFA) such as α-linolenic acid (ALA) and linoleic acid (LA) are needed for healthy growth and development of children. Worldwide, reliable intake data of EFA are often lacking. The objective of this study was to investigate dietary intake of EFA in Indonesian children. Dietary intake data of 4-12-year-old children (n 45,821) from a nationally representative Indonesian survey were used to estimate median intake and distribution of population fatty acid intake. Missing data on individual fatty acids in the Indonesian food composition table were complemented through chemical analyses of national representative food samples and imputation of data from the US nutrient database. Nutrient adequacy ratios were calculated as a percentage of FAO/WHO intake recommendations. The medians of total fat intake of the children was 26·7 (10th-90th percentile 11·2-40·0) percentage of total daily energy (%E). Intakes of fatty acids were 4·05 (10th-90th percentile 1·83-7·22) %E for total PUFA, 3·36 (10th-90th percentile 1·14-6·29) %E for LA and 0·20 (10th-90th percentile 0·07-0·66) %E for ALA. Median intake of PUFA was 67 % and that of ALA 40 % of the minimum amounts recommended by FAO/WHO. These data indicate that a majority of Indonesian children has intakes of PUFA and specifically ALA that are lower than recommended intake levels. Total fat and LA intakes may be suboptimal for a smaller yet considerable proportion of children. Public health initiatives should provide practical guidelines to promote consumption of PUFA-rich foods. PMID:26824732

  7. Intake of essential fatty acids in Indonesian children: secondary analysis of data from a nationally representative survey.

    PubMed

    Neufingerl, Nicole; Djuwita, Ratna; Otten-Hofman, Anke; Nurdiani, Reisi; Garczarek, Ursula; Sulaeman, Ahmad; Zock, Peter L; Eilander, Ans

    2016-02-28

    Essential fatty acids (EFA) such as α-linolenic acid (ALA) and linoleic acid (LA) are needed for healthy growth and development of children. Worldwide, reliable intake data of EFA are often lacking. The objective of this study was to investigate dietary intake of EFA in Indonesian children. Dietary intake data of 4-12-year-old children (n 45,821) from a nationally representative Indonesian survey were used to estimate median intake and distribution of population fatty acid intake. Missing data on individual fatty acids in the Indonesian food composition table were complemented through chemical analyses of national representative food samples and imputation of data from the US nutrient database. Nutrient adequacy ratios were calculated as a percentage of FAO/WHO intake recommendations. The medians of total fat intake of the children was 26·7 (10th-90th percentile 11·2-40·0) percentage of total daily energy (%E). Intakes of fatty acids were 4·05 (10th-90th percentile 1·83-7·22) %E for total PUFA, 3·36 (10th-90th percentile 1·14-6·29) %E for LA and 0·20 (10th-90th percentile 0·07-0·66) %E for ALA. Median intake of PUFA was 67 % and that of ALA 40 % of the minimum amounts recommended by FAO/WHO. These data indicate that a majority of Indonesian children has intakes of PUFA and specifically ALA that are lower than recommended intake levels. Total fat and LA intakes may be suboptimal for a smaller yet considerable proportion of children. Public health initiatives should provide practical guidelines to promote consumption of PUFA-rich foods.

  8. Climate Change Impacts on Forest Soils Critical Acid Loads and Exceedances at a National Scale

    NASA Astrophysics Data System (ADS)

    McNulty, S. G.; Cohen, E.; Moore Myers, J.; Sun, G.; Caldwell, P.

    2011-12-01

    The Federal agencies of the United States (US) are currently developing guidelines for forest soil critical acid loads across the US. A critical acid load is defined as the amount of acid deposition (usually expressed on a annual basis) that an ecosystem can absorb. Traditionally, an ecosystem is considered to be at risk for health impairment when the critical acid load exceeds a level known to impair forest health. The excess over the critical acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical acid load applies to a single, long-term pollutant exposure. These guidelines are often used to establish regulations designed to maintain acidic deposition (e.g., nitrogen and sulfur) inputs below the level shown to exceed an ecosystem's critical acid load. The traditional definition for a critical acid load generally assume that the ecosystem is in a steady state condition (i.e. no major changes in the factors that regulate the ecosystems ability to absorb acids. Unfortunately, climate change is altering weather patterns and, thus, impacting the factors that regulate critical acid load limits. This paper explores which factors associated with establishing forest soil critical acid load limits will most likely be influenced by climate change, and how these changes might impact forest soil critical acid load limits across the US. Base cation weathering could increase with global warming, along with nitrogen uptake as a function of increased forest growth across New England. A moderate 20% increase in base cation weathering and nitrogen uptake would result in at least a 25% decrease in the amount of forest soil area that exceeded the critical acid load limit and at least a 50% decrease in the amount of high exceedance area across the US. While these results are encouraging, they do not account for other negative potential forest health risks associated with climate change such as elevated

  9. What can Nitrate Isotopes in Precipitation tell us about NOx Sources, Atmospheric Cycling, and Source Areas? Results from the First National Survey in the United States.

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Kendall, C.; Harlin, K.; Butler, T.; Carlton, R.; Wankel, S.; Boyer, E.; Burns, D.

    2005-12-01

    Atmospheric deposition is a major source of nitrate exported to coastal waters and a key contributor to eutrophication of surface waters worldwide. In order to reduce N loads to surface waters, it is important to understand the relative contributions of major NOx sources to wet and dry deposition to watersheds. In the United States, the two largest NOx sources are vehicular emissions (54 percent) and stationary fuel combustion (40 percent). Reducing emissions from these sources is critical to improving air and surface water quality. However, using nitrate concentration data alone, it is difficult to establish relationships between individual NOx sources and wet deposition of nitrate. Previous research has shown that different NOx sources can have different isotopic compositions and can be used to identify NOx sources to wet deposition. To address this research need, we have completed the first national survey of nitrate isotopes in wet deposition using samples collected by the National Atmospheric Deposition Program (NADP). Archived samples (2000) from 156 NADP sites across the United States were pooled into bimonthly, volume-weighted composites and analyzed for δ15N, δ18O, and mass-independent δ17O of nitrate using the microbial denitrifier method. Nitrate concentrations in the archived samples were stable over several years, indicating that the probability of isotopic fractionation associated with sample storage is very low. We present spatial and temporal variations in both N and O isotopes, and investigate the critical question of whether these variations are a function of atmospheric processes or NOx source contributions. In our analyses (n=883), we determined that δ15N values ranged from -11 to +3 permil, whereas δ18O values ranged from +63 to +94 permil. On average, both δ15N and δ18O values are higher in the winter than in the summer (approximately 2 and 10 permil higher, respectively). In the Northeastern and Mid-Atlantic US, we observed strong

  10. The use of dielectric spectroscopy for the characterisation of the precipitation of hydrophobically modified poly(acrylic-acid) with divalent barium ions.

    PubMed

    Christensen, Peter Vittrup; Keiding, Kristian

    2009-12-01

    The use of dielectric spectroscopy as a monitor for coagulation processes was investigated. Hydrophobically modified poly(acrylic-acid) polymers were used as model macromolecules and coagulated with barium ions. The coagulation process was quantified using a photometric dispersion analyser, thereby serving as a point of reference for the dielectric spectroscopy. It was found that the hydrophobic modification increased the dosage of barium needed to obtain complete coagulation, whereas the dosage required to initiate coagulation was lowered. The coagulation of the polymer samples caused the relaxation time of the measured dielectric dispersion to increase, and this parameter was found to be a good indicator of the formation of polymer aggregates. The magnitude of the dielectric dispersion decreased as a function of barium dosage, but when coagulation was initiated an increase was observed. The observed agreement between the onset of coagulation and the changes in the dielectric dispersion shows the potential use of dielectric spectroscopy for the characterisation of coagulation processes. PMID:19751938

  11. Acid-precipitation studies in Colorado and Wyoming: Interim report of surveys of Montane amphibians and water chemistry. Interim report, 1986-1988

    SciTech Connect

    Corn, P.S.; Stolzenburg, W.; Bury, R.B.

    1989-06-01

    Surveys for amphibians were conducted in the Rocky Mountains of northern Colorado and southern Wyoming from 1986 to 1988. The northern leopard frog (Rana pipiens) was present at only 12% of historically known localities, and the boreal toad (Bufo boreas) was present at 17% of known localities. Chorus frogs (Pseudacris triseriata) suffered a catastrophic decline in population size in one population monitored since 1961, but regionally, this species was observed in 64% of known localities. Tiger salamanders (Ambystoma tigrinum) and wood frogs (Rana sylvatica) were present at 45% and 69% of known localities respectively. Acid neutralizing capacity, pH, specific conductivity, and cation concentrations in water at amphibian localities were negatively correlated with elevation. Survival of wood frog embryos declined when exposed to aluminum concentrations.

  12. Distribution, thickness, and volume of fine-grained sediment from precipitation of metals from acid-mine waters in Keswick Reservoir, Shasta County, California

    USGS Publications Warehouse

    Bruns, Terry R.; Alpers, Charles N.; Carlson, Paul

    2006-01-01

    In February 1993, the U.S. Geological Survey (USGS) acquired high-resolution seismic-reflection data to map the distribution and thickness of fine-grained sediments associated with acid-mine drainage in Keswick Reservoir on the Sacramento River, near Redding, California. In the Spring Creek Arm of Keswick Reservoir, the sediments occurred in three distinct accumulations; thicknesses are greater than 2 meters (m) in the western accumulation, greater than 5 m in the central accumulation, and up to 8 m in the eastern accumulation. In Keswick Reservoir, fine-grained sediments related to acid-mine drainage were present from slightly north of the Spring Creek Arm downstream to the Keswick Dam. Sediment thickness varies from about 3 m opposite the mouth of the Spring Creek Arm to less than 1 m near Keswick Dam. Our estimate for the total volume of fine-grained sediments in the Spring Creek Arm at the time of the geophysical survey in February 1993 is about 152,000 cubic meters in three sediment accumulations, with about 14,000, 32,000, and 105,000 cubic meters respectively in the western, central, and eastern accumulations. We interpreted that an additional 110, 000 cubic meters of material was present in the main part of Keswick Reservoir. At the time of data collection, we therefore estimate that the total volume of fine-grained sediment was 260,000 cubic meters. In the main part of Keswick Reservoir, 42% to 50% of the reservoir area contiguous to Spring Creek Arm had mappable fine-grained sediments. Decreasing sediment supply down-reservoir meant that mappable sediment covered only about 35% of the reservoir in the area to the south, decreasing to about 12% near Keswick Dam. Much of the reservoir bottom below the Spring Creek Arm could have had a thin (less than 20-30 cm) cover of fine-grained sediment that was not mappable using the seismic-reflection data.

  13. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  14. Selective Precipitation of Proteins.

    PubMed

    Matulis, Daumantas

    2016-01-01

    Selective precipitation of proteins can be used as a bulk method to recover the majority of proteins from a crude lysate, as a selective method to fractionate a subset of proteins from a protein solution, or as a very specific method to recover a single protein of interest from a purification step. This unit describes a number of methods suitable for selective precipitation. In each of the protocols that are outlined, the physical or chemical basis of the precipitation process, the parameters that can be varied for optimization, and the basic steps for developing an optimized precipitation are described.

  15. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  16. Electrostatic precipitator efficiency enhancement

    SciTech Connect

    Polizzotti, D.M.; Steelhammer, J.C.

    1983-05-24

    Method for enhancing the removal of particles from a particleladen gas stream utilizing an electrostatic precipitator, which comprises treating the gas with morpholine or derivatives thereof. Treated particles are found to also have desirable flow characteristics. Particularly effective compositions for the purpose comprise a combination of the morpholine, or derivative thereof, with an electrostatic precipitator efficiency enhancer, and in particular an alkanolamine.

  17. [Chemical characteristics of atmospheric precipitation in Shenzhen].

    PubMed

    Niu, Yu-wen; He, Ling-yan; Hu, Min

    2008-04-01

    The precipitation chemical components are good indicators of the air pollution. With rapid economic developing, air quality has greatly changed in Shenzhen. To investigate Chemical feature of precipitation and atmospheric pollution characteristics in Shenzhen, two-year precipitation samples in Shenzhen were collected and analyzed. Based on the dataset, chemical characteristics of rainwater in Shenzhen were discussed. Results show that the concentration of the sum of anions and rations in Shenzhen rainwater was lower compared to northern cities like Beijing, whereas the acidification of rainwater was very serious in Shenzhen. Volume-weighted mean pH values of rainwater were 4.48 and 4.68 respectively, and 88% and 91% of rain events were acidic in 2004 and 2005, respectively. The contribution of SO4(2-) to Shenzhen rainwater acidity was smaller than that in northern cities and NO3- and Cl- played an important part to acidification of Shenzhen precipitation. The contribution of Cl- and Na+ to rainwater chemical components was higher, indicating the significant marine influence on Shenzhen precipitation. The secondary components like SO4(2-), NO3- and NH4+ contributed significantly to total ions of rainwater and they accounted for more than 40% of total ions in 2004 and 2005, which indicated the severe secondary pollution in Shenzhen. There was the obvious difference in origins for different rainwater components. Cl-, K+ and Na+ were mainly from marine contribution while SO4(2-), NO3-, Ca2+ and Mg2+ were mainly from non-sea salt fraction. Formic acid, acetic acid and oxalic acid were most abundant low-molecular weight organic acids and the sum of their concentrations accounted for 94% and 99% of total organic acids determined in 2004 and 2005, respectively.

  18. Developing Critical Loads of acidity for streams in the Great Smoky Mountains National Park, using PnET-BGC model

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.

    2015-12-01

    Acid deposition has impaired acid-sensitive streams and reduced aquatic biotic integrity in Great Smoky Mountains National Park (GRSM) by decreasing pH and acid neutralizing capacity (ANC). Twelve streams in GRSM are listed by the state of Tennessee as impaired due to low stream pH (pH<6.0) under Section 303(d) of the Clean Water Act. A dynamic biogeochemical model, PnET-BGC, was used to evaluate past, current and potential future changes in soil and water chemistry of watersheds of GRSM in response to changes in acid deposition. Calibrating 30 stream-watersheds in GRSM (including 12 listed impaired streams) to the long-term stream chemistry observations, the model was parameterized for the Park. The calibrated model was used to evaluate the level of atmospheric deposition above which harmful effects occur, known as "critical loads", for individual study watersheds. Estimated critical loads and exceedances (levels of deposition above the critical load) of atmospheric sulfur and nitrogen deposition were depicted through geographic information system maps. Accuracy of model simulations in the presence of uncertainties in the estimated model parameters and inputs was assessed using three uncertainty and sensitivity techniques.

  19. Acid rains over semi-urban atmosphere at eastern Himalaya and near coast of Bay of Bengal and alkaline rains over typical urban atmosphere in India: A study on precipitation chemistry during monsoon, 2013

    NASA Astrophysics Data System (ADS)

    Roy, Arindam; Chatterjee, Abhijit; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji

    A study has been made on precipitation chemistry over three different atmosphere in India. Rain samples were collected during the entire period of monsoon (June-October) in the year of 2013 over Kolkata (22.6 (°) N, 89.4 (°) E), a mega city with typical urban atmosphere; Falta (22.3 (°) N, 88.1 (°) E), a rural atmosphere near eastern coast of Bay of Bengal and Darjeeling (27.01 (°) N, 88.15 (°) E), a high altitude (2200 m asl)hill station over eastern Himalaya in India. The major focus of the study is to investigate the composition of various types of aerosol ionic components scavenged and its effect on the acidity and how it differs between these three distinctly different atmospheres. The results showed that the sea-salt components were higher in Falta (140 mueqv/lit) followed by Kolkata (120 mueqv/lit) and minimum in Darjeeling (30 mueqv/lit). Over all the stations, Na (+) and Cl (-) showed strong correlations indicating common marine source. The marine air masses originated from Bay of Bengal (BoB) were found to significantly enrich sea-salt particles over Falta, the nearest station from BoB and having least effect on Darjeeling, the farthest station from BoB. Dust and anthropogenic aerosols particles were significantly higher over Kolkata compared to other two stations. Dust particles were found to scavenge more in the initial phase of monsoon and it gradually decreased as the monsoon progressed. The average pH of rain water over Kolkata was 6.0 indicating alkaline in nature. pH over Falta was 5.2 indicating slightly acidic in nature and the most important fact is that pH over Darjeeling was 4.6 indicating highly acidic in nature. It was found that Ca (2+) , Mg (2+) and NH _{4} (+) neutralized the acidity of rain water over all the stations with the maximum neutralizing factor for Ca (2+) . However, NH _{4} (+) played important role over Darjeeling in neutralizing rain water acidity. The major reason for high acidity of rain water was not due to high

  20. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  1. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine

  2. An optimal merging technique for high-resolution precipitation products: OPTIMAL MERGING OF PRECIPITATION METHOD

    SciTech Connect

    Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.

    2011-04-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  3. Global Precipitation Mission Visualization Tool

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  4. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  5. Extraction and Separation of Vitisin D, Ampelopsin B and cis-Vitisin A from Iris lactea Pall. var. chinensis (Fisch.) Koidz by Alkaline Extraction-Acid Precipitation and High-Speed Counter-Current Chromatography.

    PubMed

    Lv, Huanhuan; Zhou, Wenna; Wang, Xiaoyan; Wang, Zhenhua; Suo, Yourui; Wang, Honglun

    2016-01-01

    Naturally occurring oligostilbenes are receiving more attention because they exhibit several beneficial effects for health, including hepatoprotective, antitumor, anti-adipogenic, antioxidant, antiaging, anti-inflammatory, anti-microbial, antiviral, immunosuppressive and neuroprotective activities. Thus, they could be of some potentially therapeutic values for several diseases. In this study, we adopted the alkaline extraction-acid precipitation (AEAP) method for extraction of oligostilbenes from the seed kernel of Iris lactea Then, the high-speed counter-current chromatography (HSCCC) was used for preparative isolation and purification of oligostilbenes from the AEAP extracts. Finally, three oligostilbenes, namely vitisin D (73 mg), ampelopsin B (25 mg) and cis-vitisin A (16 mg), were successfully fractionated by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (2:5:3:6, v/v/v/v) from 300 mg of the AEAP extracts in ∼ 190 min. The purities of the three isolated oligostilbenes were all over 95.0% as analyzed by high performance liquid chromatography. They all were isolated from I. lacteal for the first time.The method of AEAP for the preparation of the oligostilbene-enriched crude sample was simple, and the HSCCC technique for the isolation and purification of oligostilbenes was efficient.

  6. Extraction and Separation of Vitisin D, Ampelopsin B and cis-Vitisin A from Iris lactea Pall. var. chinensis (Fisch.) Koidz by Alkaline Extraction-Acid Precipitation and High-Speed Counter-Current Chromatography.

    PubMed

    Lv, Huanhuan; Zhou, Wenna; Wang, Xiaoyan; Wang, Zhenhua; Suo, Yourui; Wang, Honglun

    2016-01-01

    Naturally occurring oligostilbenes are receiving more attention because they exhibit several beneficial effects for health, including hepatoprotective, antitumor, anti-adipogenic, antioxidant, antiaging, anti-inflammatory, anti-microbial, antiviral, immunosuppressive and neuroprotective activities. Thus, they could be of some potentially therapeutic values for several diseases. In this study, we adopted the alkaline extraction-acid precipitation (AEAP) method for extraction of oligostilbenes from the seed kernel of Iris lactea Then, the high-speed counter-current chromatography (HSCCC) was used for preparative isolation and purification of oligostilbenes from the AEAP extracts. Finally, three oligostilbenes, namely vitisin D (73 mg), ampelopsin B (25 mg) and cis-vitisin A (16 mg), were successfully fractionated by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (2:5:3:6, v/v/v/v) from 300 mg of the AEAP extracts in ∼ 190 min. The purities of the three isolated oligostilbenes were all over 95.0% as analyzed by high performance liquid chromatography. They all were isolated from I. lacteal for the first time.The method of AEAP for the preparation of the oligostilbene-enriched crude sample was simple, and the HSCCC technique for the isolation and purification of oligostilbenes was efficient. PMID:26847919

  7. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir; Carlisle, Candace

    2010-01-01

    The Global Precipitation Measurement (GP!v1) mission is an international cooperative effort to advance the understanding of the physics of the Earth's water and energy cycle. Accurate and timely knowledge of global precipitation is essential for understanding the weather/climate/ecological system, for improving our ability to manage freshwater resources, and for predicting high-impact natural hazard events including floods, droughts, extreme weather events, and landslides. The GPM Core Observatory will be a reference standard to uniformly calibrate data from a constellation of spacecraft with passive microwave sensors. GPM is being developed under a partnership between the United States (US) National Aeronautics and Space Administration (NASA) and the Japanese Aerospace and Exploration Agency (JAXA). NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD is developing the Core Observatory, two GPM Microwave Imager (GMI) instruments, Ground Validation System and Precipitation Processing System for the GPM mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. The second GMI instrument will be flown on a partner-provided spacecraft. Other US agencies and international partners contribute to the GPM mission by providing precipitation measurements obtained from their own spacecraft and/or providing ground-based precipitation measurements to support ground validation activities. The Precipitation Processing System will provide standard data products for the mission.

  8. NASA Global Precipitation Mission Ground Validation Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.

    2009-01-01

    The Global Precipitation Mission (GPM; core-satellite launch 2013) will provide Ka/Ku-band dual-frequency precipitation radar (DPR) and accompanying passive microwave radiometer-diagnosed precipitation estimates over a latitude range of 65 N to 65 S. The extended latitudinal domain of GPM coverage combined with requirements to detect (and in the case of liquid, estimate) liquid and frozen precipitation rates for values ranging from several hundred to just a few tenths of a millimeter per hour present new challenges to the development of physically-based satellite precipitation retrieval algorithms. On regional scales select national and international resources such as existing calibrated radar and rain gauge networks can provide basic datasets that enable direct statistical validation of GPM core-satellite reflectivitys and core/constellation rain rate measurements. Near-term planned field campaign involvements include Finland/Baltic Sea (fall 2010; joint CloudSat,GPM, and European study of precipitation in low-altitude melting layers and snowfall in the vicinity of the Helsinki testbed), central Oklahoma (spring 2011; joint with DOE ARM- precipitation retrievals over a mid-latitude continental land surface), and the Great Lakes region (winter 2011-12, snowfall retrieval).

  9. BOREAS HYD-8 Gross Precipitation Data

    NASA Technical Reports Server (NTRS)

    Fernandes, Richard; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-08 team made measurements of surface hydrological processes at the Southern Study Area-Old Black Spruce (SSA-OBS) Tower Flux site to support its research into point hydrological processes and the spatial variation of these processes. Data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gross precipitation measurements for July to August 1996. Gross precipitation is the precipitation that falls that is not intercepted by tree canopies. These data are stored in ASCII text files. The HYD-08 gross precipitation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Precipitation chemistry in central Amazonia

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Talbot, R. W.; Berresheim, H.; Beecher, K. M.

    1990-09-01

    Rain samples from three sites in central Amazonia were collected over a period of 6 weeks during the 1987 wet season and analyzed for ionic species and dissolved organic carbon. A continuous record of precipitation chemistry and amount was obtained at two of these sites, which were free from local or regional pollution, for a time period of over 1 month. The volume-weighted mean concentrations of most species were found to be about a factor of 5 lower during the wet season compared with previous results from the dry season. Only sodium, potassium, and chloride showed similar concentrations in both seasons. When the seasonal difference in rainfall amount is taken into consideration, the deposition fluxes are only slightly lower for most species during the wet season than during the dry season, again with the exception of chloride, potassium, and sodium. Sodium and chloride are present in the same ratio as in sea salt; rapid advection of air masses of marine origin to the central Amazon Basin during the wet season may be responsible for the observed higher deposition flux of these species. Statistical analysis suggests that sulfate is, to a large extent, of marine (sea salt and biogenic) origin, but that long-range transport of combustion-derived aerosols also makes a significant contribution to sulfate and nitrate levels in Amazonian rain. Organic acid concentrations in rain were responsible for a large fraction of the observed precipitation acidity; their concentration was strongly influenced by gas/liquid interactions.

  11. Precipitation chemistry in central Amazonia

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Talbot, R. W.; Berresheim, H.; Beecher, K. M.

    1990-01-01

    Rain samples from three sites in central Amazonia were collected over a period of 6 weeks during the 1987 wet season and analyzed for ionic species and dissolved organic carbon. A continuous record of precipitation chemistry and amount was obtained at two of these sites, which were free from local or regional pollution, for a time period of over 1 month. The volume-weighted mean concentrations of most species were found to be about a factor of 5 lower during the wet season compared with previous results from the dry season. Only sodium, potassium, and chloride showed similar concentrations in both seasons. When the seasonal difference in rainfall amount is taken into consideration, the deposition fluxes are only slightly lower for most species during the wet season than during the dry season, again with the exception of chloride, potassium, and sodium. Sodium and chloride are present in the same ratio as in sea salt; rapid advection of air masses of marine origin to the central Amazon Basin during the wet season may be responsible for the observed higher deposition flux of these species. Statistical analysis suggests that sulfate is, to a large extent, of marine (sea salt and biogenic) origin, but that long-range transport of combustion-derived aerosols also makes a significant contribution to sulfate and nitrate levels in Amazonian rain. Organic acid concentrations in rain were responsible for a large fraction of the observed precipitation acidity; their concentration was strongly influenced by gas/liquid interactions.

  12. Rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Lewis, A.J.; Palmer, M.R.; Kemp, A.J.; Sturchio, N.C.

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm: their chondrite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg{sup -1} ({ge}162 ppm), and {Sigma}REE concentrations in sinter are {ge}181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu{sup 2+} is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in mixing and dilution of the geothermal fluids and may have lead to changes in the extent and nature of REE complexing. 37 refs., 7 figs., 4 tabs.

  13. IMERG Global Precipitation Rates

    NASA Video Gallery

    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration betwee...

  14. My NASA Data Precipitation

    NASA Video Gallery

    This lesson has two activities that help students develop a basic understanding of the relationship between cloud type and the form of precipitation and the relationship between the amount of water...

  15. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  16. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  17. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea.

    PubMed

    Kim, Hee-Young; Seok, Hyun-Woo; Kwon, Hye-Ok; Choi, Sung-Deuk; Seok, Kwang-Seol; Oh, Jeong Eun

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑11PFAAs concentrations were detected in the influent and effluent from the paper (median: 411ng/L) and textile (median: 106ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49-66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0ng/g) and chemical (median: 81.5ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146ton/yr. The textile industry had the highest discharge load with 0.055ton/yr (PFOA: 0.039ton/yr, PFOS: 0.010ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored.

  18. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea.

    PubMed

    Kim, Hee-Young; Seok, Hyun-Woo; Kwon, Hye-Ok; Choi, Sung-Deuk; Seok, Kwang-Seol; Oh, Jeong Eun

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑11PFAAs concentrations were detected in the influent and effluent from the paper (median: 411ng/L) and textile (median: 106ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49-66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0ng/g) and chemical (median: 81.5ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146ton/yr. The textile industry had the highest discharge load with 0.055ton/yr (PFOA: 0.039ton/yr, PFOS: 0.010ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. PMID:27152994

  19. Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA

    USGS Publications Warehouse

    Sibrell, P.L.; Watten, B.J.; Haines, T.A.; Spaulding, B.W.

    2006-01-01

    Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 ?? P(CO2)1/2; R2 = 0.975. No significant acidic incursions were noted for the control water over the course of the study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. ?? 2005 Elsevier B.V. All rights reserved.

  20. Feasibility of preparing nanodrugs by high-gravity reactive precipitation.

    PubMed

    Chen, Jian-Feng; Zhou, Min-Yi; Shao, Lei; Wang, Yu-Yong; Yun, Jimmy; Chew, Nora Y K; Chan, Hak-Kim

    2004-01-01

    To study the feasibility of producing nanoparticles of organic pharmaceuticals using a novel high-gravity reactive precipitation (HGRP) technique, reactive precipitation of benzoic acid as a model compound was carried out in a rotating packed bed under high gravity. The main factors such as the rotating bed speed, concentration and volume flow rate of the reactants (sodium benzoate and HCl) affecting the particle size of the precipitate were studied. Particle size was measured by transmission electron microscopy. Benzoic acid was precipitated as nanoparticles as fine as 10nm. The particle size was decreased with increasing rotating bed speed, concentration and volume flow rate of the reactants. The formation of ultrafine particles was due to intensified micro-mixing of reactants in the rotating bed to enhance nucleation while suppressing crystal growth. The results have demonstrated the feasibility to produce nanodrugs by the principle of acid-base precipitating reaction using HGRP.

  1. Changes in the chemistry of precipitation in the United States, 1981-1998

    USGS Publications Warehouse

    Nilles, M.A.; Conley, B.E.

    2001-01-01

    Regulatory measures in the United States, such as Title IV of the Clean Air Act Amendments of 1990, have primarily restricted sulfur dioxide emissions as a way to control acidic deposition. These restrictions, coupled with increasing concentrations of NH4+ in wet deposition in some regions of the U.S. and continued high emissions of nitrogen oxides have generated a significant shift in the chemistry of precipitation as measured at National Atmospheric Deposition Program/National Trends Network sites. Trends in precipitation chemistry at NADP/NTN sites were evaluated for statistical significance for the period 1981-1998 using a Seasonal Mann-Kendall Test, a robust non-parametric test for detection of monotonic trends. SO42- declines were detected at 100 of the 147 sites examined while no sites exhibited increasing SO42- trends. On average, SO42- declined 35% over the period 1981-1998 with downward SO42- trends being most pronounced in the northeastern United States. In contrast, no consistent trends in NO3- concentrations were observed in precipitation in any major region of the United States. Although the majority of sites did not exhibit significant trends in NH4+ concentration, 30 sites exhibited upward trends. For Ca2+ concentration in precipitation, 64 sites exhibited a significant decreasing trend and no sites exhibited an upward trend.

  2. Influence of acid precipitation on stream invertebrates

    SciTech Connect

    Burton, T.M.; Allan, J.W.

    1983-09-01

    Five species of invertebrates, Asellus intermedius an isopod, Lepidostoma liba and Pycnopsyche sp., two species of caddisflies, Physa heterostropha, a snail, and a Nemoura sp., a stonefly, were tested for 30 days in 5 separate experiments for susceptibility to acidification to pH 4.0 and pH 5.0 alone or in combination with 250 to 500 micrograms Al/L. The effects of organic matter on the susceptibility of these invertebrates to acidification and aluminum toxicity were also tested. Acidification alone of natural stream water to pH 4.0 resulted in significant mortality for all 5 species. The addition of 500 micrograms Al/L significantly increased this mortality. Experiments with distilled water with inorganic chemistry adjusted to simulate natural stream water demonstrated that the absence of organic matter strongly resulted in much greater aluminum toxicity at low pH's and in somewhat greater susceptibility to acidification alone. The addition of citrate as an organic ligand decreased this effect. Thus, acidification effects for these 5 species for 30-day exposure periods only occurred at pH levels less than pH 5 and at aluminum levels greater than 250 micrograms Al/L. The threshold for effects, thus, was between pH 5 and pH 4 and between 250 and 500 micrograms Al/L. 19 references, 4 figures, 4 tables.

  3. Microbially Induced Precipitation of Strontianite Nanoparticles.

    PubMed

    Kang, Serku; Yumi Kim; Lee, Young Jae; Roh, Yul

    2015-07-01

    The objectives of this study were to investigate the microbially mediated precipitation of strontium by microorganisms, and to examine the mineralogical characteristics of the precipitates. Wu Do-1 (Proteus mirabilis) enriched from rhodoliths was used to precipitate strontium at room temperature under aerobic environment. The growth of Wu Do-1 gradually increased over 16 days (OD600 = 2.6) and then decreased until 22 days (OD600 = 2.0) during microbial incubation for strontium precipitation. Also, the pH decreased from 6.5 to 5.3 over 4 days of incubation due to microbial oxidation of organic acids, and then the pH increased up to 8.6 at 25 days of incubation due to NH3+ generation. The Sr2+ concentration in the biotic group sharply decreased from 2,953 mg/L to 5.7 mg/L over 29 days of incubation. XRD, SEM-/TEM-EDS analyses revealed that the precipitates formed by Wu Do-1 (Proteus mirabilis) were identified as 20-70 nm sized strontianite (SrCO3). Therefore, these results suggested that formation of sparingly soluble Sr precipitates mediated by Wu Do-1 (Proteus mirabilis) sequesters strontium and carbon dioxide into a more stable and less toxic form such as strontianite (SrCO3). These results also suggest that bioremediation of metal-contaminated water and biominealization of carbonate minerals may be feasible in the marine environment.

  4. as the Strengthening Precipitates

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2014-12-01

    Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.

  5. Acid rain: Delays and management changes in the federal research program

    SciTech Connect

    Not Available

    1987-01-01

    The National Acid Precipitation Assessment Program is to help resolve the scientific uncertainties associated with acid rain and determine if and how it should be controlled. It has yet to issue its first assessment report originally scheduled for release in 1985. NAPAP officials believe that, by 1990, their ongoing research program will provide sufficient new information about the causes and effects of acid rain to serve as the basis for policy recommendations.

  6. LIMESTONE AND MARBLE DISSOLUTION BY ACID RAIN: AN ONSITE WEATHERING EXPERIMENT.

    USGS Publications Warehouse

    Reddy, Michael M.; Sherwood, Susan I.; Doe, B.R.; ,

    1986-01-01

    In this paper the authors describe an experimental research program, conducted in conjunction with the National Acidic Precipitation Assessment Program (NAPAP), to quantify acid-rain damage to commercial and cultural carbonate-rock resources. Initial results of this experiment show that carbonate-rock dissolution and associated surface recession increase with increasing acid deposition to the rock surface. A statistically significant linear relation has been found between carbonate-rock surface-recession rate and hydrogen ion loading to the rock surface.

  7. Coupling Meteorology, Metal Concentrations, and Pb Isotopes for Source Attribution in Archived Precipitation Samples

    EPA Science Inventory

    A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16 ...

  8. Precipitating factors of asthma.

    PubMed

    Lee, T H

    1992-01-01

    Asthma is characterised by bronchial hyperresponsiveness. This feature of the asthmatic diathesis predisposes patients to wheezing in response to a number of different factors. These precipitating factors include specific allergen acting via sensitised mediator cells through an IgE-dependent mechanism. There are irritants which may work through a non-specific manner, or stimuli such as exercise and hyperventilation, which probably also act through mediator release via a non-IgE-dependent manner. The mechanism whereby physical stimuli such as exercise induce bronchoconstriction is of interest, because it increases the context in which the mast cell may participate in acute asthmatic bronchoconstriction. Respiratory infections also commonly provoke asthma, especially in infants and may, indeed, precipitate the asthmatic state itself. Finally, drugs can often trigger asthma attacks and the mechanisms of asthma precipitated by non-steroidal anti-inflammatory drugs such as aspirin have been the subject of recent research.

  9. FORMATION OF URANIUM PRECIPITATES

    DOEpatents

    Googin, J.M. Jr.

    1959-03-17

    A method is described for precipitation of uranium peroxide from uranium- containing solutions so as to obtain larger aggregates which facilitates washings decantations filtrations centrifugations and the like. The desired larger aggregate form is obtained by maintaining the pH of the solution in the approximate range of 1 to 3 and the temperature at about 25 deg C or below while carrytng out the precipitation. Then prior to removal of the precipitate a surface active sulfonated bicarboxyacids such as di-octyl sodium sulfo-succinates is incorporated in an anount of the order of 0.01 to 0.05 percent by weights and the slurry is allowed to ripen for about one-half hour at a temperatare below 10 deg C.

  10. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Lewis, Anita J.; Palmer, Martin R.; Sturchio, Neil C.; Kemp, Anthony J.

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm; their chondite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg -1 (≥ 162 ppm), and ΣREE concentrations in sinter are ≥ 181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Normalisation of REE concentrations in altered Lava Creek Tuff (LCT) from Y-12 drill core to REE concentrations in fresh LCT indicate that the REE overall have been depleted with the exception of Eu, which has been decoupled from the REE series and concentrated in the altered rocks. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu 2+ is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in

  11. Precipitation-Regulated Feedback

    NASA Astrophysics Data System (ADS)

    Voit, Mark

    2016-07-01

    Star formation in the central galaxies of galaxy clusters appears to be fueled by precipitation of cold clouds out of hot circumgalactic gas via thermal instability. I will present both observational and theoretical support for the precipitation mode in large galaxies and discuss how it can be implemented in cosmological simulations of galaxy evolution. Galaxy cluster cores are unique laboratories for studying the astrophysics of thermal instability and may be teaching us valuable lessons about how feedback works in galaxies spanning the entire mass spectrum.

  12. Electrostatic particle precipitator

    SciTech Connect

    Uchiya, T.; Hikizi, S.; Yabuta, H.

    1984-04-03

    An electrostatic particle precipitator for removing dust particles from a flue gas. The precipitator includes a plurality of collecting electrodes in the shape of plates mounted on endless chains and moving between a first region through which flue gas to be treated flows and a second region where the flow of gas is extremely scarce. A dust removal mechanism is positioned in the second region to remove dust which accumulates on the electrode plates. The moving speed of the collecting electrodes is controlled within a certain range to maintain a prescribed thickness of dust on the electrodes whereby the ocurrence of reverse ionization phenomenon is prevented.

  13. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.

    PubMed

    Kozubal, M; Macur, R E; Korf, S; Taylor, W P; Ackerman, G G; Nagy, A; Inskeep, W P

    2008-02-01

    Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75 degrees C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65 degrees C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80 degrees C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and

  14. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.

    PubMed

    Kozubal, M; Macur, R E; Korf, S; Taylor, W P; Ackerman, G G; Nagy, A; Inskeep, W P

    2008-02-01

    Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75 degrees C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65 degrees C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80 degrees C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and

  15. Isolation and Distribution of a Novel Iron-Oxidizing Crenarchaeon from Acidic Geothermal Springs in Yellowstone National Park▿ †

    PubMed Central

    Kozubal, M.; Macur, R. E.; Korf, S.; Taylor, W. P.; Ackerman, G. G.; Nagy, A.; Inskeep, W. P.

    2008-01-01

    Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of

  16. Investigation of Neptunium Precipitator Cleanout Options

    SciTech Connect

    Hill, B.C.

    2003-09-08

    Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern

  17. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    SciTech Connect

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  18. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    PubMed

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today.

  19. Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia

    PubMed Central

    Walker, Robert; Watkin, Elizabeth; Tian, Rui; Bräu, Lambert; O’Hara, Graham; Goodwin, Lynne; Han, James; Reddy, Tatiparthi; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of Burkholderia sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197442

  20. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    PubMed

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today. PMID:23151644

  1. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.

    PubMed

    Sullivan, T J; Cosby, B J; Webb, J R; Dennis, R L; Bulger, A J; Deviney, F A

    2008-02-01

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 microeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 microeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 microeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 microeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 microeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration.

  2. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.

    PubMed

    Sullivan, T J; Cosby, B J; Webb, J R; Dennis, R L; Bulger, A J; Deviney, F A

    2008-02-01

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 microeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 microeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 microeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 microeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 microeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration. PMID:17492359

  3. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J; Wilson, C L

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  4. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  5. Total Precipitable Water

    SciTech Connect

    2012-01-01

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  6. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  7. Precipitation Indices Low Countries

    NASA Astrophysics Data System (ADS)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  8. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  9. Inconsistency in precipitation measurements across the Alaska-Yukon border

    NASA Astrophysics Data System (ADS)

    Scaff, L.; Yang, D.; Li, Y.; Mekis, E.

    2015-12-01

    This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 136 % in January and 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall) than for cold month (mainly snowfall) between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the USA-Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in windy and cold conditions. This result will certainly impact regional, particularly cross-border, climate and hydrology investigations.

  10. Anthropogenic Osmium in Precipitation

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sedwick, P. N.; Sharma, M.

    2007-12-01

    Here we report the Os isotopic composition for precipitation from Hanover (NH), Soda Springs (CA) and the Ross Sea (Antarctica) as determined by negative thermal ionization mass spectrometry. All samples yielded non- radiogenic Os isotopic compositions. Snow and rain samples from Hanover, NH had Os concentrations of 0.8 - 12.2 fg/g (1 fg/g = 1E-15 g/g) and 187Os/188Os from 0.16 - 0.24. Snowpack from the high Sierra Nevada (Central Sierra Snow Laboratory, Soda Springs, CA) yielded Os concentration and isotopic composition of 3.6 fg/g and 0.21, respectively; Antarctic snow deposited above first year pack ice had [Os] = 0.8 fg/g and 187Os/188Os = 0.42. The isotopic ratios indicate that potential natural sources of Os to the atmosphere, such as continental mineral aerosols (187Os/188Os = 1.26) and seawater (187Os/188Os = 1.05) do not contribute bulk of Os to the precipitation. Instead, the isotopic ratios are identical to the platinum ores from the Merensky Reef in the Bushveld Igneous Complex, South Africa and Noril'sk Ni-Cu sulfide deposit associated with the Siberian Flood Basalts, Russia. These two deposits produce greater than 95 percent of the total Pt, Pd and Rh consumed annually primarily by the automotive industry. We infer that anthropogenic Os contribution dominates the isotopic composition of precipitation. The similar and non-radiogenic Os isotopic compositions observed in precipitation from disparate locations suggest that contamination of the troposphere with anthropogenic Os may be global in scale. We think that processing of ore to extract Pt, Pd, and Rh from PGE ores (PGE: group of six closely related elements Os, Ir, Pt, Pd, Rh, and Ru), which involves smelting and converting at high temperature and in the presence of oxygen, releases the volatile, toxic compound OsO4 into the troposphere, where it is mixed and then scavenged by precipitation, thus explaining both the non-radiogenic isotopic composition and the high and variable Os concentrations of

  11. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  12. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  13. Spatial and temporal changes in precipitation in Tuscany

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Caporali, E.

    2009-04-01

    Climate change implications and detections are becoming an important field of research, and climate change science interests not only scientists and specialists but also national governments and common people. An important issue related to this science is covered by the modification of precipitation regime and their repercussions in term of drought periods, water resources availability or flood risk modification. The general lack of long sequences of data increase the difficulties in analyze long periods of climatic events. Here the authors provide a spatial analysis of trends in 6 indexes of precipitation regime. Through spatial interpolation techniques, a specific methodology is adopted to use more data than usual, which include the gauges with very short time series, even only 1 year long. The six indexes are: Total Annual Precipitation (TAP), the number of wet days (precipitation > 1 mm), the Precipitation Concentration Index (PCI), the number of days with more than 10 mm of precipitation, the maximum number of consecutive dry days (precipitation < 1 mm) and the Standardized Precipitation Index (SPI). The analyzed region is Tuscany, in the central part of Italy, with a dataset of 785 recording rain gauges, covering mainly the second half of 20th century. The Mann-Kendall test, modified to take into account the autocorrelation on the data, is employed for the distributed trend analyses. The results do not show any clear signal of changes in the precipitation in Tuscany during the last century. Effects of climate modifications in the analyzed region are not significant through the precipitation.

  14. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  15. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  16. Biogeophysical interactions control the formation of iron oxide microbial biofilms in acidic geothermal outflow channels of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Beam, J.; Berstein, H. C.; Jay, Z.; Kozubal, M. A.; Jennings, R. D.; Inskeep, W. P.

    2012-12-01

    Amorphous iron oxyhydroxide microbial mats in acidic (pH ~ 3) geothermal outflow channels of Yellowstone National Park (YNP) are habitats for diverse populations of autotrophic and heterotrophic microorganisms from the domains Archaea and Bacteria. These systems have been extensively characterized with regards to geochemical, physical, and microbiological (e.g., metagenomics) analyses; however, there is minimal data describing the formation of these iron oxide microbial mats. A conceptual model of Fe(III)-oxide microbial mat development was created, which includes four distinct stages. Autotrophic archaea (Metallosphaera yellowstonensis) and bacteria (Hydrogenobaculum spp.) are the first colonizers (Stage I) that provide pools of organic carbon for heterotrophic thermophiles (Stage II). M. yellowstonensis is an autotrophic Sulfolobales that is responsible for the oxidation of Fe(II) and can thus be defined as the mat 'architect' creating suitable habitats for microbial niches (e.g., anaerobic microorganisms) (Stage III). The last phase of mat formation (Stage IV) represents a pseudo-steady state mature microbial mat, which has been the subject of all previous microbial surveys of these systems. The conceptual model for Fe(III)-oxide microbial mat development was tested by inserting glass (SiO2) microscope slides into the main flow channels of two acidic geothermal springs in YNP. Slides were removed at various time intervals and analyzed for total iron accretion, microbial community structure (i.e., 16S rRNA gene abundance), and mRNA expression of community members. Routine geochemical and physical (e.g., flow) parameters were also measured to decipher their relative contribution to mat development. Initial and previous results show that autotrophic microorganisms (e.g, M. yellowstonensis) are often the first to colonize the glass slides and their activity was confirmed by mRNA expression of genes related to iron oxidation and carbon fixation. Heterotrophs are rare

  17. Duskside relativistic electron precipitation

    NASA Astrophysics Data System (ADS)

    Lorentzen, Kirsten Ruth

    1999-10-01

    On August 20, 1996, a balloon-borne X-ray pinhole camera and a high resolution germanium X-ray spectrometer observed an intense X-ray event near Kiruna, Sweden, at 1835 MLT, on an L-shell of 5.8. This X-ray event consisted of seven bursts spaced 100-200 seconds apart, with smaller 10-20 second variations observed within individual bursts. The energy spectra of these bursts show the presence of X-rays with energies greater than 1 MeV, which are best accounted for by atmospheric bremsstrahlung from mono-energetic 1.7 MeV precipitating electrons. The X-ray imager observed no significant motion or small-scale spatial structure in the event, implying that the bursts were temporal in nature. Ultra- violet images from the Polar satellite and energetic particle data from the Los Alamos geosynchronous satellites show a small magnetospheric substorm onset about 24 minutes before the start of the relativistic precipitation event. Since the balloon was south of the auroral oval and there was no associated increase in relativistic electron flux at geosynchronous altitude, the event must be the result of some mechanism selectively precipitating ambient relativistic electrons from the radiation belts. The balloon X-ray observations are analyzed in a magnetospheric context, in order to determine which of several mechanisms for selective precipitation of relativistic electrons can account for the event. Resonance with electromagnetic ion cyclotron mode waves on the equator is the most likely candidate. The drift of substorm-injected warm protons is calculated using input from the geosynchronous satellites. Wave growth in the model is driven by temperature anisotropies in the warm proton population. A numerical solution of the wave dispersion relation shows that electromagnetic ion cyclotron waves can be excited in high-density duskside regions such as the plasmasphere or detached plasma regions. These waves can selectively precipitate relativistic electrons of energy 1.7 MeV in

  18. National Atmospheric Deposition Program/National Trends Network (NADP/NTN) site visitation program: summary report for the period December 1984 through September 1986

    SciTech Connect

    Eaton, W.C.; Tew, E.L.; Moore, C.E.; Ward, D.A.

    1987-11-01

    The proper collection of precipitation and the accurate measurement of its constituents are important steps in attaining a better understanding of the distribution and effects of acid rain in the United States. One of NAPAP Task Group IV's major programs concerns wet deposition monitoring. The document is a summary report of the findings from the 1985-1986 Site Visitation Program to the 195 sites that comprise the National Atmospheric Deposition Program and National Trends Network precipitation networks, referred to collectively as the NADP/NTN network.

  19. Serum Uric Acid Is Associated with Carotid Plaques: The National Heart, Lung, and Blood Institute Family Heart Study

    PubMed Central

    NEOGI, TUHINA; ELLISON, R. CURTIS; HUNT, STEVEN; TERKELTAUB, ROBERT; FELSON, DAVID T.; ZHANG, YUQING

    2009-01-01

    Objective To examine the association of serum uric acid (SUA) with a marker of preclinical cardiovascular disease (CVD), carotid atherosclerotic plaques (PLQ), where early evidence of risk may be evident, focusing on individuals without CV risk factors. Methods The National Heart, Lung, and Blood Institute Family Heart Study is a multicenter study designed to assess risk factors for heart disease. PLQ were assessed with carotid ultrasound. We conducted sex-specific logistic regression to assess the association of SUA with presence of PLQ, including analyses among persons without risk factors related to both CVD and hyperuricemia. Results In total, 4866 participants had both SUA and carotid ultrasound assessed (54% women, mean age 52 yrs, mean body mass index 27.6). The association of SUA with PLQ increased with increasing SUA levels, demonstrating a dose-response relation for men [OR 1.0, 1.29, 1.61, 1.75, for SUA categories < 5 (reference), 5 to < 6, 6 to < 6.8, ≥ 6.8 mg/dl, respectively; p = 0.002]. Similar associations were found in men without CV risk factors. We found no relation of SUA with PLQ in women. Conclusion In this large study, SUA was associated with carotid atherosclerotic plaques in men. Results were similar in the absence of CV risk factors. These results suggest that SUA may have a pathophysiologic role in atherosclerosis in men. (J Rheumatol First Release Nov 15 2008; doi:10.3899/jrheum.080646) PMID:19012359

  20. Precipitation Indices Low Countries

    NASA Astrophysics Data System (ADS)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  1. METHOD OF IMPROVING THE CARRIER PRECIPITATION OF PLUTONIUM

    DOEpatents

    Kamack, H.J.; Balthis, J.H.

    1958-12-01

    Plutonium values can be recovered from acidic solutlons by adding lead nitrate, hydrogen fluoride, lantha num nitrate, and sulfurlc acid to the solution to form a carrler preclpitate. The lead sulfate formed improves the separatlon characteristics of the lanthanum fluoride carrier precipitate,

  2. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarazin, Ardeshir Art; Carlisle, Candace C.

    2008-01-01

    The GIobd Precipitation hleasurement (GPM) mission is an international cooperatiee ffort to advance weather, climate, and hydrological predictions through space-based precipitation measurements. The Core Observatory will be a reference standard to uniform11 calibrate data from a constellatism of spacecraft with passive microuave sensors. GP3l mission data will be used for scientific research as well as societal applications. GPM is being developed under a partnership between the United States (US) National .Aeronautics and Space Administration (XASA) and the Japanese Aerospace and Exploration Agency (JAYA). NASA is developing the Core Observatory, a Low-Inclination Constellation Observatory, two GPM Rlicrowave Imager (GXII) instruments. Ground Validation System and Precipitation Processing System for the GPRl mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. Other US agencies and international partners contribute to the GPkf mission by providing precipitation measurements obtained from their own spacecraft and,'or providing ground-based precipitation measurements to support ground validation activities. The GPM Core Observatory will be placed in a low earth orbit (-400 krn) with 65-degree inclination, in order to calibrate partner instruments in a variety of orbits. The Core Observatory accommodates 3 instruments. The GkfI instrument provides measurements of precipitation intensity and distribution. The DPR consists of Ka and Ku band instruments, and provides threedimensional measurements of cloud structure, precipitation particle size distribution and precipitation intensitj and distribution. The instruments are key drivers for GPM Core Observatory overall size (1 1.6m x 6.5m x 5.0m) and mass (3500kg), as well as the significant (-1 950U.3 power requirement. The Core Spacecraft is being built in-house at Goddard Space Flight Center. The spacecraft structure

  3. Chemical composition of precipitation and its sources in Hangzhou, China.

    PubMed

    Xu, Hong; Bi, Xiao-Hui; Feng, Yin-Chang; Lin, Feng-Mei; Jiao, Li; Hong, Sheng-Mao; Liu, Wen-Gao; Zhang, Xiao-Yong

    2011-12-01

    To understand the origin and chemical characteristics of precipitation in Hangzhou, rainwater samples were collected from June 2006 to May 2008. All samples were analyzed for pH, electrical conductivity, and major ions (NH⁴⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, SO₄²⁻, NO₃⁻, F⁻, and Cl⁻). Acidification of precipitation in Hangzhou was serious with volume-weighted mean pH value of 4.5, while frequency of acid rain was 95%. The calculated SO₄²⁻/NO₃⁻ ratio in Hangzhou precipitation was 2.87, which indicated that the precipitation of Hangzhou belonged to sulfate-based acid rain. The results of acid neutralization analysis showed that not all the acidity in the precipitation of Hangzhou was neutralized by alkaline constituents. The results of sea salt contribution analysis showed that nearly all SO₄²⁻, Ca²⁺, and Mg²⁺ and 33.7% of K⁺ were of non-sea origins, while all Na⁺ and Cl⁻ and 66.3% of K⁺ originated from sea sources. The principal component analysis which was used to analyze the sources of various ions indicated that chemical compositions of precipitation in Hangzhou mainly came from terrestrial sources, factory emissions, fuel wood burning, and marine sources.

  4. Analysis of precipitation chemistry at a central Pennsylvania site

    NASA Astrophysics Data System (ADS)

    Bowersox, Van C.; de Pena, Rosa G.

    1980-10-01

    As part of the multistate atmospheric power production pollution study precipitation chemistry network, precipitation has been sampled on a storm-by-storm basis at a rural central Pennsylvania site operated by Pennsylvania State University since October 1976. These precipitation data have been analyzed for sulfate, nitrate, ammonium, and hydronium ions for the years 1977 and 1978, and both years exhibit the same general behavior with respect to these chemical species: (1) sulfate concentration in precipitation varies with season, with high values in the summer and low values in the winter, (2) sulfate ion is the major determinant of precipitation acidity, though sulfate alone does not account for the total H3O+ concentration, (for snow and other frozen precipitation the relation between sulfate and H3O+ is less pronounced), (3) nitrate ion of concentrations similar to those of sulfate does not correlate well with hydronium ion in liquid precipitation but does correlate with H3O+ in snow and frozen precipitation, and (4) ammonium ion concentrations in precipitation can be explained by assuming an equilibrium state between the cloud water and gas phase ammonia.

  5. (International conference on acidic deposition)

    SciTech Connect

    McLaughlin, S.B. Jr.

    1990-10-05

    The traveler took the opportunity to participate in a mini-sabbatical at the Institute of Terrestrial Ecology (ITE) in Edinburgh, Scotland, as a part of planned travel to Glasgow, Scotland, to attend the International Conference on Acidic Precipitation. The purpose of the sabbatical was to provide quality time for study and interchange of ideas with scientists at ITE working on physiological effects of acidic deposition and to allocate significant time for writing and synthesizing of results of physiological studies from the National Forest Response Program's Spruce/Fir Research Cooperative. The study focused on the very significant cytological and physiological effects of calcium deficiency in trees, a response that appears to be amplified in spruce by acidic deposition.

  6. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  7. Precipitation analysis over southwest Iran: trends and projections

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Zarenistanak, Mohammad; Kripalani, R. H.; Preethi, B.

    2014-05-01

    Analysis of trends and projection of precipitation are of significance for the future development and management of water resource in southwest Iran. This research has been divided into two parts. The first part consists of an analysis of the precipitation over 50 stations in the study region for the period 1950-2007. The trends in this parameter were detected by linear regression and significance was tested by t test. Mann-Kendall rank test was also employed to confirm the results. The second part of the research involved future projection of precipitation based on four models. The models used were Centre National de Recherches Meteorologiques (CNRM), European Center Hamburg Model (ECHAM), Model for Interdisciplinary Research on Climate (MIROCH) and United Kingdom Meteorological Office (UKMOC). Precipitation projections were done under B1 and A1B emissions scenarios. The results of precipitation series indicated that most stations showed insignificant trend in annual and seasonal series. The highest numbers of stations with significant trends occurred in winter while no significant trends were detected by statistical tests in summer precipitation. No decreasing significant trends were detected by statistical tests in annual and seasonal precipitation series. The result of projections showed that precipitation may decrease according to majority of the models under both scenarios but the decrease may not be large, except according to MIROCH model. Autumn precipitation may increase with higher rates than other seasons at the end of this century.

  8. The Effects of Gaseous Ozone and Nitric Acid Deposition on two Crustose Lichen Species From Joshua Tree National Park

    NASA Astrophysics Data System (ADS)

    Hessom, Elizabeth Curie

    Lichens are dependent on atmospheric deposition for much of their water and nutrients, and due to their sensitivity to pollutants, are commonly used as bioindicators for air quality. While studies have focused on epiphytic (tree dwelling) lichens as bioindicators, virtually nothing is known about crustose (rock dwelling) lichens. The atmospheric pollutants ozone (O 3) and nitric acid (HNO3) are two major pollutants found within the Los Angeles Basin. While recent O3 research suggests it does not significantly affect lichen growth, HNO3 appears to be phytotoxic to some lichens. As both of these pollutants are deposited downwind from the L.A. basin into Joshua Tree National Park (JOTR), lichen species located in the park may provide a sensitive indicator of pollution effects. This research studied two lichen species of particular interest from Joshua Tree National Park, Lobothallia praeradiosa (Nyl.) Hafellner, and Acarospora socialis H. Magn., both of which are crustose species with unknown sensitivities to O3, as well as hypothesized and unknown sensitivities to nitrogen compounds, respectively. Little research exists for either species, possibly because of the difficulty in working with crustose lichens. This research attempted to expand the background knowledge of these species by exposing them to varying levels of O3 and HNO3, to ascertain their physiological responses. Physiological measures of chlorophyll fluorescence, dark respiration, microscopic imaging, and lichen washes (as a proxy for membrane leakage), were measured throughout the exposure period. Results indicated that both species had similar sensitivities to O3 and HNO3. Both species registered physical damage during the O3 fumigation, as well as a decrease in respiration. Neither species showed major physical damage to HNO3, but both manifested a decrease in chlorophyll fluorescence, suggesting damage to the photosynthetic systems of the algae symbiont. These results suggest that both of these

  9. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  10. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  11. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  12. On extreme daily precipitation totals at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Zerefos, C. S.

    2007-04-01

    The paper studies changes in daily precipitation records at the National Observatory, Athens, during the period 1891-2004. This is the longest available time series of precipitation for Greece. The results show that both the shape and scale parameter of a fitted two parameter gamma distribution for the last two decades do show a significant difference of these parameters, when compared to any previous period from the 1890s through the 1970s. Also important changes are observed in daily precipitation totals exceeding various thresholds such as 10, 20, 30 and 50 mm. More specifically, a negative trend in the number of wet days (remarkable after 1968) and a positive trend in extreme daily precipitation are evident. The changes of heavy and extreme precipitation events in this part of SE Europe have significant environmental consequences which cause considerable damage and loss of life.

  13. A new index quantifying the precipitation extremes

    NASA Astrophysics Data System (ADS)

    Busuioc, Aristita; Baciu, Madalina; Stoica, Cerasela

    2015-04-01

    Events of extreme precipitation have a great impact on society. They are associated with flooding, erosion and landslides.Various indices have been proposed to quantify these extreme events and they are mainly related to daily precipitation amount, which are usually available for long periods in many places over the world. The climate signal related to changes in the characteristics of precipitation extremes is different over various regions and it is dependent on the season and the index used to quantify the precipitation extremes. The climate model simulations and empirical evidence suggest that warmer climates, due to increased water vapour, lead to more intense precipitation events, even when the total annual precipitation is slightly reduced. It was suggested that there is a shift in the nature of precipitation events towards more intense and less frequent rains and increases in heavy rains are expected to occur in most places, even when the mean precipitation is not increasing. This conclusion was also proved for the Romanian territory in a recent study, showing a significant increasing trend of the rain shower frequency in the warm season over the entire country, despite no significant changes in the seasonal amount and the daily extremes. The shower events counted in that paper refer to all convective rains, including torrential ones giving high rainfall amount in very short time. The problem is to find an appropriate index to quantify such events in terms of their highest intensity in order to extract the maximum climate signal. In the present paper, a new index is proposed to quantify the maximum precipitation intensity in an extreme precipitation event, which could be directly related to the torrential rain intensity. This index is tested at nine Romanian stations (representing various physical-geographical conditions) and it is based on the continuous rainfall records derived from the graphical registrations (pluviograms) available at National

  14. Predicting biogeochemical calcium precipitation in landfill leachate collection systems.

    PubMed

    VanGulck, Jamie F; Rowe, R Kerry; Rittmann, Bruce E; Cooke, Andrew J

    2003-10-01

    Clogging of leachate collection systems within municipal solid waste landfills can result in greater potential for contaminants to breach the landfill barrier system. The primary cause of clogging is calcium carbonate (CaCO3(s)) precipitation from leachate and its accumulation within the pore space of the drainage medium. CaCO3(s) precipitation is caused by the anaerobic fermentation of volatile fatty acids (VFAs), which adds carbonate to and raises the pH of the leachate. An important relationship in modeling clogging in leachate collections systems is a yield coefficient that relates microbial fermentation of VFAs to precipitation of calcium carbonate. This paper develops a new, mechanistically based yield coefficient, called the carbonic acid yield coefficient (Y(H)), which relates the carbonic acid (H2CO3) produced from microbial fermentation of acetate, propionate, and butyrate to calcium precipitation. The empirical values of Y(H) were computed from the changes in acetate, propionate, butyrate, and calcium concentrations in leachate as it permeated through gravel-size material. The theoretical and empirical results show that the primary driver of CaCO3(s) precipitation is acetate fermentation. Additionally, other non-calcium cations (e.g., iron and magnesium) precipitated with carbonate (CO3(2-)) when present in the leachate. A common yield between total cations bound to CO3(2-) and H2CO3 produced, called the calcium carbonate yield coefficient (Yc), can reconcile the empirical yield coefficient for synthetic and actual leachates.

  15. [Calcium carbonate precipitation in UASB reactors with different substrates].

    PubMed

    Yang, Shu-Cheng; He, Yan-Ling; Zhang, Peng-Xiang; Liu, Yong-Hong; Wang, Dong-Qi; Yang, Jing

    2009-03-15

    Two lab scale upflow anaerobic sludge bed (UASB) reactors were operated at an organic loading rate of COD 9 kg x (m3 x d)(-1) to treat two kinds of calcium containing wastewaters, one of which took acetic acid as substrate and for the other, glucose and soluble starch were the substrate. Both the wastewaters contained 800 mg x L(-1) Ca+. Precipitation of calcium carbonate in the reactors was observed. The results showed that the kind of substrate had great influence on calcium carbonate precipitation. In the reactor treating acetic acid containing wastewater, a maximum calcium precipitation rate of 65% was achieved and an average rate of about 25% was then maintained. In contrast, the calcium precipitation rate for the glucose and soluble starch containing wastewater was only about 7.5%. It was also found that substantial precipitation only occurred 30 days after the reactor were operated for both of the wastewaters. After 180 days of operation, the ash content of the sludge in the reactors increased from about 10% to 70% for the acetic acid containing wastewater and 30% for the other. However, the increase of ash content had no negative influence on the COD removal efficiency, which was kept at about 90% throughout the experimental period. By the SEM it was inferred that the different substrates caused the differences of the granular sludge microstructure, leading to the diversity of calcium carbonate precipitation in the two reactors.

  16. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    NASA Technical Reports Server (NTRS)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  17. Mixing Effects on the Precipitation and Cross Flows Filtration of a Hanford Simulated Precipitated Radioactive Waste

    SciTech Connect

    DUIGNAN, MARK

    2004-03-31

    As part of the River Protection Project at Hanford, Washington, Bechtel National, Inc. has been contracted by the United States Department of Energy to design a Waste Treatment and Immobilization Plant to stabilize liquid radioactive waste. Because of its experience with radioactive waste stabilization, the Savannah River Technology Center of the Westinghouse Savannah River Company is working with Bechtel National and Washington Group International, to help design and test certain parts of the Waste Treatment Plant. One part of the process is the separation of radioactive isotopes from the liquid waste by a precipitation reaction and cross-flow ultrafiltration. To better understand those combined processes an experiment was performed using a simulated radioactive waste, made to prototypically represent the chemical and physical characteristics of a Hanford waste in tank 241-AN-102 and precipitated under prototypic conditions. The resultant slurry was then filtered using a cross-flow filter prototypic in porosity, length, and diameter to the plant design. An important aspect of filtration for waste treatment is the rate at which permeate is produced. There are many factors that affect filtration rate and one of the most difficult to obtain is the effect of particles in the waste streams. The Waste Treatment Plant will filter many waste streams, with varying concentrations and types of dissolved and undissolved solids. An added complication is the need to precipitate organic complexants so they can be efficiently separated from the supernatant. Depending on how precipitation is performed, the newly created solids will add to the complicating factors that determine permeate flux rate. To investigate the effect of precipitated solids on filter flux a pilot-scale test was performed and two different mixing mechanisms were used for the precipitation reaction. A standard impeller type mixer, which created a homogeneous mixture, and a pulse jet mixer, which created a

  18. Current status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Nio, T.; Konishi, T.; Oki, R.; Masaki, T.; Kubota, T.; Iguchi, T.; Hanado, H.

    2015-10-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The GPM is a follow-on mission of the Tropical Rainfall Measuring Mission (TRMM). The objectives of the GPM mission are to observe global precipitation more frequently and accurately than TRMM. The frequent precipitation measurement about every three hours will be achieved by some constellation satellites with microwave radiometers (MWRs) or microwave sounders (MWSs), which will be developed by various countries. The accurate measurement of precipitation in mid-high latitudes will be achieved by the DPR. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. JAXA and NICT developed the DPR through procurement. The configuration of precipitation measurement using active radar and a passive radiometer is similar to TRMM. The major difference is that DPR is used in GPM instead of the precipitation radar (PR) in TRMM. The inclination of the core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sun-synchronous circular orbit is necessary for measuring the diurnal change of rainfall similarly to TRMM. The DPR consists of two radars, which are Ku-band (13.6 GHz) precipitation radar (KuPR) and Ka-band (35.5 GHz) precipitation radar (KaPR). Both KuPR and KaPR have almost the same design as TRMM PR. The DPR system design and performance were verified through the ground test. GPM core observatory was launched at 18:37:00 (UT) on February 27, 2014 successfully. DPR orbital check out was completed in May 2014. The results of orbital checkout show that DPR meets its specification on orbit. After completion of initial checkout, DPR started Normal

  19. Analysis and assessment of precipitation chemistry at Caribou, Maine

    SciTech Connect

    Artz, R.S.; Dayan, U.

    1986-03-01

    Thirty years of data from Caribou, Maine, the only U.S. collection site that has been a part of all four National precipitation chemistry networks, are examined to determine their usefulness in evaluating transboundary transport of the major ions present in precipitation. The reliability of the Caribou data base is assessed and the more recent data are studied with the aid of the GAMBIT (Gridded Atmospheric Multilevel Backward Isobaric Trajectory) model.

  20. Changes in soil aggregate dynamics following 18 years of experimentally increased precipitation in a cold desert ecosystem

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; vanderVeen, J.; Germino, M. J.

    2011-12-01

    Climate change is expected to alter the amount and timing of precipitation in semiarid ecosystems of the intermountain west, which can alter soil carbon dynamics. Specifically, an increase in precipitation in arid ecosystems promotes microbial activity, which can increase soil aggregate formation and enhance sequestration of soil organic carbon within stable aggregates. This study was conducted to assess: (1) how precipitation shifts affect soil aggregate formation and associated soil organic carbon contents in semi arid ecosystems, and (2) how plants mediate precipitation impacts on soil aggregate dynamics. Soil samples were collected from a long-term ecohydrology study located in the cold desert of the Idaho National Lab, USA. Precipitation treatments delivered during the previous 18 years consist of three regimes: (1) a control (ambient precipitation), (2) 200 mm irrigation added during the growing season, and (3) 200 mm irrigation added during the cold dormant season. Experimental plots were planted with a diverse native mix of big sagebrush (Artemisia tridentate) and associated shrubs, grasses, and forbs, but had also become invaded by crested wheatgrass (Agropyron cristatum). Soils were collected in February (2011) with a 4.8 cm diameter soil corer to a depth of 15 cm. Across all precipitation treatments we sampled both directly beneath sagebrush and crested wheatgrass and from relatively bare plant-interspaces. Subsamples (100 g) were sieved (4.75 mm) and air dried. Then, the soils were fractionated into (1) macro aggregates (> 250 μm), (2) free micro aggregates (53-250 μm) and (3) free silt and clay fractions (<53 μm), using a wet sieving protocol. Further, macro aggregates were separated into particulate organic matter (POM), micro aggregates and silt and clay fractions using a micro aggregate isolator. Soil fractions were analyzed for soil organic carbon contents after removal of soil carbonates using sulfurous acid. Our preliminary results indicate

  1. in situ Calcite Precipitation for Contaminant Immobilization

    SciTech Connect

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at

  2. Effective Assimilation of Global Precipitation

    NASA Astrophysics Data System (ADS)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  3. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils.

    PubMed

    Thørring, H; Skuterud, L; Steinnes, E

    2014-08-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m(-2) per column, results indicate that acidic precipitation increased the mobility of (134)Cs added during the experiment. However, depth distribution of already present Chernobyl fallout (137)Cs was not significantly affected by the chemical composition of precipitation. PMID:24704765

  4. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils.

    PubMed

    Thørring, H; Skuterud, L; Steinnes, E

    2014-08-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m(-2) per column, results indicate that acidic precipitation increased the mobility of (134)Cs added during the experiment. However, depth distribution of already present Chernobyl fallout (137)Cs was not significantly affected by the chemical composition of precipitation.

  5. Convective and stratiform precipitation trends in the Spanish Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Ruiz-Leo, A. M.; Hernández, E.; Queralt, S.; Maqueda, G.

    2013-01-01

    Eastern Iberian Peninsula is characterized by the large occurrence of convective precipitation events, which entail important economic and social damage consequences. In order to prevent and minimize its effects, a good knowledge and understanding of the meteorological processes involved are necessary to be achieved. In this regard, an algorithm for classifying convective and stratiform precipitation components has been applied to a decadal precipitation record. Dataset were provided by National Spanish Meteorological Agency (AEMET) for the period 1998-2008. Hourly precipitation records have been analyzed. The goals of this study have been: a) to classify total precipitation into its stratiform and convective components in Levante region (located in the Eastern Spanish Coast) and b) to analyze annual and seasonal trends of such components. For determining both convective and stratiform precipitation components, a suitable exponential function has been used. After a computation process, critical precipitation intensity (so-called Rc) is obtained for each year and season of the studied period. Every precipitation episode in Levante region is classified into prevailing convective or stratiform regime according to the threshold value defined by Rc. The results obtained have been compared to Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) to verify the validity of the algorithm. First results show an annual and seasonal significant positive trend in total precipitation and stratiform component for 1998-2008 decade. Further analysis reveals that convective precipitation exhibits no significant trend. Preliminary conclusions state that the total precipitation amount in Levante Region strongly depends on the stratiform component evolution.

  6. Spatial and temporal variability of Antarctic precipitation from atmospheric methods

    SciTech Connect

    Cullather, R.L.; Bromwich, D.H.; Van Woert, M.L.

    1998-03-01

    The spatial and temporal variability of net precipitation (precipitation minus evaporation/sublimation) for Antarctica derived from the European Centre for Medium-Range Weather Forecasts operational analyses via the atmospheric moisture budget is assessed in comparison to a variety of glaciological and meteorological observations and datasets. For the 11-yr period 1985-95, the average continental value is 151 mm yr{sup {minus}1} water equivalent. Large regional differences with other datasets are identified, and the sources of error are considered. Interannual variability in the Southern Ocean storm tracks is found to be an important mechanism for enhanced precipitation minus evaporation (P-E) in both east and west Antarctica. In relation to the present findings, an evaluation of the rawinsonde method for estimating net precipitation in east Antarctica is conducted. Estimates of P-E using synthetic rawinsondes derived from the analyses are found to compare favorably to glaciological estimates. A significant upward trend of 2.4 mm yr{sup {minus}1} is found for the Antarctic continent that is consistent with findings from the National Centers for Environmental Prediction, formerly the National Meteorological Center, and the National Center for Atmospheric Research Reanalysis precipitation dataset. Despite large regional discrepancies, the general agreement on the main features of Antarctic precipitation between studies suggests that a threshold has been reached, where the assessment of the smaller terms including evaporation/sublimation and drift snow loss is required to explain the differences. 76 refs., 24 figs., 1 tab.

  7. Initial characterization of carbon flows through microbial communities in Beowulf spring, an acidic hot spring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Kreuzer, H.; Moran, J.; Ehrhardt, C.; Melville, A.; Kranz, A.; Inskeep, W. P.

    2011-12-01

    Beowulf Springs are acidic, sulfidic hot springs in Yellowstone National Park. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The relatively rapid sulfur and iron oxide deposition rates in this spring suggests the processes are microbially mediated (since, for instance, abiotic iron oxidation is kinetically slow at this temperature and pH) and previous diversity studies identify microbial communities consistent with the observed metabolic products (namely sulfur and iron oxide). While the energetics of sulfide and iron oxidation are sufficient for supporting microbial activity, a suitable carbon source remains undocumented. The temperatures in Beowulf approach 80 °C, which is above the photosynthetic upper temperature limit thus precluding photosynthetic-based autotrophy within the spring itself. Observed potential carbon sources in Beowulf include dissolved inorganic carbon, dissolved organic carbon, and methane. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. With thorough analysis we hope to identify both the major carbon stores in the system and track how they are transferred between microbial components in Beowulf. Initial stable isotope measurements focused on bulk isotope analysis of major carbon pools; both directly in the spring and in surrounding areas that may affect the spring water through runoff or ground water migration. We are analyzing bulk carbon isotopes of different microbial groups in the spring, the dissolved organic and inorganic carbon in the spring, and surrounding soils and potential plant inputs. Isotopic similarity between dissolved organic carbon and soil organic carbon is consistent with a common carbon source (local vegetation) but has not yet been confirmed as such. Correlation between δ13C of microbial biomass and dissolved organic carbon are suggestive

  8. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  9. Inducing mineral precipitation in groundwater by addition of phosphate

    PubMed Central

    2011-01-01

    Background Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1) added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). Results The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP) within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. Conclusions Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In addition, the presence of

  10. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    SciTech Connect

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  11. Pesticides in Iowa precipitation

    USGS Publications Warehouse

    Nations, B.K.; Hallberg, G.R.

    1992-01-01

    Rainfall was sampled for pesticides to assess their occurrence in precipitation and potential impacts on water resources. Three areas in Iowa were sampled; two localities were in rural settings, and a third in an urban area. Fourteen pesticides, including ten herbicides and four insecticides, were detected from October 1987 through September 1990. Atrazine, alachlor, cyanazine, and metolachlor were the most commonly detected, with one or more of these four herbicides found in almost every rainfall sample during the growing season. Concentrations of individual pesticides ranged from 0.1 ??g L-1 to 40.0 ??g L-1, with most detections under 1.0 ??g L-1. Pesticide detections in rainfall began in April and ended in July or August, probably related to the timing of chemical application and greater volatilization rates during warmer weather. Samples from the urban site had detections of the same agricultural chemicals found at the rural sites, but in lesser quantities. In addition to the commonly detected herbicides, three of the four insecticides detected in rainfall were only found in urban samples. Two of these have urban as well as agricultural uses. Some variation of pesticide detections were seen at the three sampling localities, related to regional and local use patterns. Concentrations were greater at sampling sites near fields where pesticides are applied, suggesting that local volatilization and distance of transport affect the concentrations in rainfall. Pesticide concentrations were highest at the beginning of a rainfall event with concentrations becoming lower in samples taken later in the event.

  12. Precipitation in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  13. Resistivity Problems in Electrostatic Precipitation

    ERIC Educational Resources Information Center

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  14. Precipitation Process and Apparatus Therefor

    DOEpatents

    Stang, Jr, L C

    1950-12-05

    This invention concerns an apparatus for remotely-controlled precipitation and filtration operations. Liquid within a precipitation chamber is maintained above a porous member by introducing air beneath the member; pressure beneath the porous member is reduced to suck the liquid through the member and effect filtration.

  15. Encoding information into precipitation structures

    NASA Astrophysics Data System (ADS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  16. [Seasonal variations of HCOOH and HCHO in precipitation in Guiyang].

    PubMed

    Xu, Gang; Li, Xin-Qing; Huang, Rong-Sheng; Jiang, Wei; Ding, Wen-Ci

    2008-07-01

    Formic acid and formaldehyde are the important and ubiquitous chemical constituents in the atmosphere. Precipitation in Guiyang, the capital city of Guizhou province, was analyzed with ICS-90 ion chromatography for their concentration changes in a year. The volume mean weight average concentration (VMWA) is (13.27 +/- 25.92) micromol/L and (7.89 +/- 8.92) micromol/L for formic acid and formaldehyde, respectively. Both species demonstrated higher concentration during winter-half-year than the summer-half-year. Day-time concentration is higher than the night-time, the diurnal variations for both chemical constituents indicate the sources from human activities and photochemical reactions. Regression analysis of concentration vs precipitation volume and deposition amount vs precipitation volume reveals that dilution and scavenging of precipitation in the below-cloud process are responsible for the changes of the concentrations. The significant correlation between formic acid and formaldehyde suggests similar sources or reaction relationship. The known aqueous oxidation of formaldehyde, however, can not be used to explain the link of the two compounds, and thus should not be the major source of formic acid in Guiyang, Instead, photochemical reactions of unsaturated hydrocarbons (natural or anthropological) were the major sources for formic acid and formaldehyde.

  17. Estimating background precipitation quality from network data.

    PubMed

    Hicks, B B; Artz, R S

    1992-01-01

    Assessments of the relative merits of alternative acid-rain control strategies revolve around considerations of potential benefit per unit effort and/or cost. A question that often arises concerns the changes in deposition that would follow if all industrial (or societal) emissions were eliminated, in which case precipitation chemistry would be dominated by emissions from natural sources. Estimates of the 'natural background' of precipitation chemistry can be based on (a) measurements made at distant locations, (b) reducing emissions to zero in numerical simulations, or (c) examinations of existing data. Each alternative is flawed because (a) of the assumption that natural emissions in one location are like those in another, (b) no existing model contains descriptions of chemical processes involving all of the chemical species of importance, and (c) all contemporary data records or relevance are affected by precisely the emissions we wish to reduce. Here, the third alternative is explored in detail, using event precipitation chemistry data from North America. The analysis reveals a background pH level that varies from site to site, but always lies in the range 5.0-5.3.

  18. Acid rain

    SciTech Connect

    Bess, F.D.

    1980-01-01

    The acid rain problem in the northeastern U.S. has been growing in severity and geographical areas affected. Acid rain has damaged, or will result in damage to visibility, physical structures and materials, aquatic life, timber, crops, and soils. The principal causes of acid rain in the northeastern U.S. are sulfur oxide and nitrogen oxide emissions from large power plants and smelters in the Ohio River Valley. Immediate corrective action and appropriate research are needed to reduce acid precipitation. Short-term programs that will define the rate of environmental deterioration, remaining environmental capacity to resist sudden deterioration, mechanisms of acid rain formation, and costs of various control options must be developed. (3 maps, 13 references, 1 table)

  19. Dye-promoted precipitation of serum proteins. Mechanism and application.

    PubMed

    Birkenmeier, G; Kopperschläger, G

    1991-11-01

    Immobilized dyes have been used primarily for purification of nucleotide dependent enzymes and proteins from plasma and other sources. Due to their low costs, high protein binding capacity and resistance to degradation dyes bear the potential as ligand for affinity separation of proteins on a large scale. In this paper dyes have been used for precipitation of proteins. Using albumin, prealbumin, alpha 1-acid glycoprotein and immunoglobulin G as model proteins we could demonstrate that dye-promoted precipitation depends on several factors which include the structure of the dye, the pH of the solution, the dye/protein molar ratio and the intrinsic properties of the proteins. It revealed that most of the dyes tested were endowed with the precipitating potential. The efficacy of precipitation was found to increase with the complexity of the dye structure. However, the amount of a dye required for total precipitation was found to be different for a given protein. Electrostatic as well as hydrophobic forces are involved in the mechanism of precipitation. It was demonstrated that by optimizing the conditions, mixtures of proteins can be resolved by dye-promoted precipitation. The high sensitivity of the reaction offers the possibility of using this method for rapid concentration of very diluted protein solutions. PMID:1367693

  20. Estimation of continental precipitation recycling

    SciTech Connect

    Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. )

    1993-06-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from the surrounding areas external to the region and (2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the Continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases. 48 refs., 7 figs., 4 tabs.

  1. Estimation of continental precipitation recycling

    NASA Technical Reports Server (NTRS)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, P. S.

    1993-01-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: 1) advection from the surrounding areas external to the region and 2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases.

  2. Studies of heat precipitable immunoglobulins

    PubMed Central

    Patterson, R.; Roberts, Mary; Pruzansky, J. J.

    1970-01-01

    The nature of the heat precipitation of 3 mononoclonal heat labile immunoglobulins was studied. These included 2 γG pyroglobulins and one γM pyroglobulin. Thermoprecipitable activity of both γG pyroglobulins could be localized to their heavy chains and to the Fab fragments of one of them. Heat precipitability of the γM paraprotein required the presence of the intact γM molecule since 7S subunits did not precipitate. The thermal precipitates appeared to result from intramolecular or intermolecular reactions with the formation of strong covalent bonds rather than weak non-covalent bonds. The importance of disulphide bonding was excluded in the precipitation of both γG but not in the γM pyroglobulins. Heat precipitation of the monoclonal γM resulted in coprecipitation of other proteins, particularly γG globulin, which suggested a specific type of reaction with this immunoglobulin. The interaction of the γM pyroglobulin, normal γG and heat produced an irreversible precipitate. ImagesFig. 1 PMID:4099668

  3. Chemical quality of precipitation at Greenville, Maine

    USGS Publications Warehouse

    Smath, J.A.; Potter, T.L.

    1987-01-01

    Weekly composite precipitation samples were collected at a rural site located in Greenville, Maine for analysis of trace metals and organic compounds. Samples collected during February 1982, through May 1984, were analyzed for cadmium, chromium, copper, lead, mercury, nickel, and zinc and during February 1982, through March 1983, for chlorinated hydrocarbon pesticides, pthalate ester plasticizers, and polychlorinated biphenyls. Deposition rates were computed. Data reported by the NADP (National Atmospheric Deposition Program) was used to evaluate the general chemical quality of the precipitation. The precipitation had relatively high concentrations of hydrogen ions, sulfate, and nitrate, compared to other constituents. Of the trace metals included for analysis, only copper, lead, and zinc were consistently detected. Lead concentrations exceeded the U.S. EPA recommended limit for domestic water supply in three samples. High deposition rates for some of the metals were episodic. Alpha-hexachlorocyclohexane was the only organic compound that was consistently detected (maximum 120 nanograms/L). None of the other organic compounds were detected in any of the samples. (Author 's abstract)

  4. Food sources of alpha-linolenic acid (PFA 18:3), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Cancer.gov

    Food sources of alpha-linolenic acid (PFA 18:3), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  5. Food sources of total omega 6 fatty acids (18:2 + 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Cancer.gov

    Food sources of total omega 6 fatty acids (18:2 + 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  6. Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Cancer.gov

    Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  7. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  8. Elevated contaminants contrasted with potential benefits of ω-3 fatty acids in wild food consumers of two remote first nations communities in northern Ontario, Canada.

    PubMed

    Seabert, Timothy A; Pal, Shinjini; Pinet, Bernard M; Haman, Francois; Robidoux, Michael A; Imbeault, Pascal; Krümmel, Eva M; Kimpe, Linda E; Blais, Jules M

    2014-01-01

    Indigenous communities in Boreal environments rely on locally-harvested wild foods for sustenance. These foods provide many nutritional benefits including higher levels of polyunsaturated fatty acids (PUFAs; such as ω-3) than what is commonly found in store-bought foods. However, wild foods can be a route of exposure to dietary mercury and persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs). Here, we show a strong association between the frequency of wild food consumption in adults (N=72) from two remote First Nations communities of Northern Ontario and environmental contaminants in blood (POPs) and hair (mercury). We observed that POPs and mercury were on average 3.5 times higher among those consuming wild foods more often, with many frequent wild food consumers exceeding Canadian and international health guidelines for PCB and mercury exposures. Contaminants in locally-harvested fish and game from these communities were sufficiently high that many participants exceeded the monthly consumption limits for methylmercury and PCBs. Those consuming more wild foods also had higher proportions of potentially beneficial ω-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These results show that the benefits of traditional dietary choices in Boreal regions of Canada must be weighed against the inherent risks of contaminant exposure from these foods. PMID:24598815

  9. Elevated Contaminants Contrasted with Potential Benefits of ω-3 Fatty Acids in Wild Food Consumers of Two Remote First Nations Communities in Northern Ontario, Canada

    PubMed Central

    Seabert, Timothy A.; Pal, Shinjini; Pinet, Bernard M.; Haman, Francois; Robidoux, Michael A.; Imbeault, Pascal; Krümmel, Eva M.; Kimpe, Linda E.; Blais, Jules M.

    2014-01-01

    Indigenous communities in Boreal environments rely on locally-harvested wild foods for sustenance. These foods provide many nutritional benefits including higher levels of polyunsaturated fatty acids (PUFAs; such as ω-3) than what is commonly found in store-bought foods. However, wild foods can be a route of exposure to dietary mercury and persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs). Here, we show a strong association between the frequency of wild food consumption in adults (N = 72) from two remote First Nations communities of Northern Ontario and environmental contaminants in blood (POPs) and hair (mercury). We observed that POPs and mercury were on average 3.5 times higher among those consuming wild foods more often, with many frequent wild food consumers exceeding Canadian and international health guidelines for PCB and mercury exposures. Contaminants in locally-harvested fish and game from these communities were sufficiently high that many participants exceeded the monthly consumption limits for methylmercury and PCBs. Those consuming more wild foods also had higher proportions of potentially beneficial ω-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These results show that the benefits of traditional dietary choices in Boreal regions of Canada must be weighed against the inherent risks of contaminant exposure from these foods. PMID:24598815

  10. Elevated contaminants contrasted with potential benefits of ω-3 fatty acids in wild food consumers of two remote first nations communities in northern Ontario, Canada.

    PubMed

    Seabert, Timothy A; Pal, Shinjini; Pinet, Bernard M; Haman, Francois; Robidoux, Michael A; Imbeault, Pascal; Krümmel, Eva M; Kimpe, Linda E; Blais, Jules M

    2014-01-01

    Indigenous communities in Boreal environments rely on locally-harvested wild foods for sustenance. These foods provide many nutritional benefits including higher levels of polyunsaturated fatty acids (PUFAs; such as ω-3) than what is commonly found in store-bought foods. However, wild foods can be a route of exposure to dietary mercury and persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs). Here, we show a strong association between the frequency of wild food consumption in adults (N=72) from two remote First Nations communities of Northern Ontario and environmental contaminants in blood (POPs) and hair (mercury). We observed that POPs and mercury were on average 3.5 times higher among those consuming wild foods more often, with many frequent wild food consumers exceeding Canadian and international health guidelines for PCB and mercury exposures. Contaminants in locally-harvested fish and game from these communities were sufficiently high that many participants exceeded the monthly consumption limits for methylmercury and PCBs. Those consuming more wild foods also had higher proportions of potentially beneficial ω-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These results show that the benefits of traditional dietary choices in Boreal regions of Canada must be weighed against the inherent risks of contaminant exposure from these foods.

  11. Acid Rain. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Hollmann, Pauline, Comp.

    The term "acid rain," also called "acid precipitation," generally refers to any precipitation having a pH value of less than 5.6. This guide to the literature on acid rain in the collections of the Library of Congress is not necessarily intended to be a comprehensive bibliography. It is designed to provide the reader with a set of resources that…

  12. The advanced microwave precipitation radiometer: A new aircraft radiometer for passive precipitation remote sensing

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Spencer, Roy W.; James, Mark W.

    1991-01-01

    Past studies of passive microwave measurements of precipitating systems have yielded broad empirical relationships between hydrometeors and microwave transmission. In general, these relationships fall into two categories of passive microwave precipitation retrievals rely upon the observed effect of liquid precipitation to increase the brightness temperature of a radiometrically cold background such as an ocean surface. A scattering-based method is based upon the effect that frozen hydrometeors tend to decrease the brightness temperature of a radiometrically warm background such as land. One step toward developing quantitative brightness temperature-rain rate relationships is the recent construction of a new aircraft instrument sponsored by National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC). This instrument is the Advanced Microwave Precipitation Radiometer (AMPR) designed and built by Georgia Tech Research Institute to fly aboard high altitude research aircraft such as the NASA ER-2. The AMPR and its accompanying data acquisition system are mounted in the Q-bay compartment of the NASA ER-2.

  13. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  14. The 2014 Silba Precipitation Extreme

    NASA Astrophysics Data System (ADS)

    Rasol, Dubravka; Ólafsson, Haraldur

    2015-04-01

    On 30 July 2014 a 24 h precipitation record of 218 mm was set at the island of Silba in the N-Adriatic Sea. The precipitation was of convective nature and significantly less precipitation was recorded only small distances away, at the coast of mainland Croatia. The event is reproduced numerically and discussed in terms of dynamics and predictability. On a large scale, the precipitation extreme was associated with a slow-moving upper tropospheric low that formed over the N-Atlantic several days earlier. At lower levels, there were humid mediterranean airmasses. On a smaller scale, there are indications that the extreme convection may have been triggered by an orographic disturbance.

  15. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  16. Some Statistics of Instantaneous Precipitation.

    NASA Astrophysics Data System (ADS)

    Jones, Douglas M. A.; Wendland, Wayne M.

    1984-09-01

    Known sources of data from arrays of instantaneous precipitation intensity recorders in southern Germany, east-central Illinois, northeastern Illinois, central Florida, and Hilo, Hawaii are obtained. These data are analyzed for line averages of the percent frequency of occurrence of the exceedance of selected threshold precipitation intensities. The correlation coefficients of the precipitation intensity at sites at varying distances from a reference site are determined. The decay in correlation is found to be a function of climatic region and the type of precipitation: showery or continuous. Showery rains are found to be essentially uncorrelated about 12 km from the reference site while continuous rain exhibits no correlation beyond about 50 km.Single-station intensity data collected at Urbana, Illinois; Paris, France; Inyanga, Zimbabwe; Bogor, Indonesia; Reading, United Kingdom; Island Beach, New Jersey; Miami, Florida; Franklin, North Carolina; and Majuro, Marshall Islands, are compared.

  17. The Effects of El Niño on Precipitation in Southern California Climate Divisions: Year 2016 Precipitation Forecast.

    NASA Astrophysics Data System (ADS)

    Perez Cruz, L.; Idris, N.; El-Askary, H. M.

    2015-12-01

    Recently, it has been reported by the National Oceanic and Atmospheric Administration (NOAA) that there is very high chance not only for El Niño to continue through Northern Hemisphere winter 2015-16, but also a remarkable chance for El Niño to last into early spring 2016. This research aims at: 1) investigating the impact of El Niño on precipitation in the Southern California Climate Divisions: Climate Division 6 South Coast Drainage, and Division 7 South Coast Desert Basin. 2) Analyzing the precipitation of Southern California region using the Empirical Mode Decomposition Method (EMD). 3) Looking at the SOI components and compare it with the precipitation components of Southern California Climate Divisions. 4) Comparing precipitation data with Niño indices: Niño 1+2, Niño 3, Nino 3.4, and Niño 4. As results, we found a significant cross correlation of 0.7 between SOI component 10 and precipitation component 10 in Climate Division 6. Furthermore, among all the Niño indices, Niño 3 region displayed the best correlation. When we compared precipitation division 7 component 9 with Niño 3 component 10, a 0.95 cross correlation value was obtained. The lowest cross correlation value of (0.33) was obtained from Climate Division 6, precipitation component 7 with Niño 4 component 7.

  18. Manitoba Network for Precipitation Collection (M.N.P.C.): Data summary, 1996. Report number 98-11

    SciTech Connect

    1998-12-31

    The collection and monitoring of precipitation in Manitoba has been on-going by the Manitoba Network for Precipitation Collection since the fall of 1980. The program provides a sufficient data base to determine the quality of precipitation with the emphasis on acidic substances, offers verifiable precipitation chemistry data to other jurisdictions, and determines any spatial or temporal trends in precipitation chemistry related to industrial and/or meteorological conditions within the boundaries of Manitoba. This report presents data accumulated during the year from stations located at Island Lake, Brochet, and Pointe du Bois. Daily precipitation summary and yearly statistical data summaries are given by station.

  19. Global Precipitation Measurement (GPM) implementation

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2010-10-01

    The Global Precipitation Measurement (GPM) mission will provide enhanced space-based precipitation measurements with sufficient coverage, spatial resolution, temporal sampling, retrieval accuracy, and microphysical information to advance the understanding of Earth's water and energy cycle and to improve predictions of its climate, weather, and hydrometeorological processes. Such improvements will in turn improve decision support systems in broad societal applications (e.g. water resource management, agriculture, transportation, etc). GPM is a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), building upon their highly successful partnership on the Tropical Rainfall Measuring Mission (TRMM). The GPM architecture consists of NASA satellites operating in partnership with other earth-observing satellites and instruments to produce global precipitation science data. The current generation of multi-satellite global precipitation products based on microwave/infrared sensors from uncoordinated satellite missions has for its anchor the TRMM precipitation radar and the TRMM Microwave Imager measurements over the tropics and subtropics (+/- 35 degrees latitude), with a mean sampling time of approximately 17 hours. The GPM mission will deploy a spaceborne Core Observatory as a reference standard to unify a space constellation of research and operational microwave sensors aimed at providing uniformly calibrated precipitation measurements globally every 2-4 hours. The Core Observatory measurements will provide, for the first time, quantitative information on precipitation particle size distribution needed for improving the accuracy of precipitation estimates by microwave radiometers and radars. In addition, the GPM will also include a second microwave radiometer and a Tracking and Data Relay Satellite (TDRS) communications subsystem for near real time data relay for a future partner-provided constellation satellite. This second GPM Microwave Imager (GMI

  20. Examining the sensitivity of MM5-CMAQ predictions to explicit microphysics schemes and horizontal grid resolutions, Part I—Database, evaluation protocol, and precipitation predictions

    NASA Astrophysics Data System (ADS)

    Queen, Ashley; Zhang, Yang; Gilliam, Robert; Pleim, Jonathan

    2008-05-01

    Wet deposition of chemical species is one of the most difficult processes to simulate in three-dimensional (3-D) air quality models, due to the complex interplay among meteorology, cloud, and atmospheric chemistry. Different cloud microphysical treatments and horizontal grid resolutions in 3-D models can directly affect simulated clouds, precipitation, and wet deposition. In this study, the performance and sensitivity of the simulated precipitation, concentrations, and wet deposition to different explicit microphysics schemes and horizontal grid resolutions are evaluated for August and December 2002 for a domain centered over North Carolina (NC). Four explicit microphysics schemes in MM5 are examined: Reisner 1 (R1), Reisner 2 (R2), Dudhia (SI), and Hsie (WR). The precipitation evaluation indicates that monthly-average precipitation amounts are underpredicted by all schemes in both August and December at all sites except for the R1 August simulation that shows overpredictions at National Acid Deposition Program (NADP) sites. An increased sensitivity to microphysics schemes is found at locations in both the coastal plain and mountain regions in August and the mountain region in December. The differences in simulation results in August and December are mainly attributed to seasonal differences in dominant meteorological forcing (mesoscale vs. synoptic, respectively). Among the schemes tested, R2 and SI give the best overall performance in predicting precipitation for both months. These findings are applicable for NC and neighboring states with similar meteorological and emission characteristics.

  1. BNL Citric Acid Technology: Pilot Scale Demonstration

    SciTech Connect

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of

  2. The Three Gorges Dam Affects Regional Precipitation

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Zhang, Qiang; Jiang, Zhihong

    2006-01-01

    Issues regarding building large-scale dams as a solution to power generation and flood control problems have been widely discussed by both natural and social scientists from various disciplines, as well as the policy-makers and public. Since the Chinese government officially approved the Three Gorges Dam (TGD) projects, this largest hydroelectric project in the world has drawn a lot of debates ranging from its social and economic to climatic impacts. The TGD has been partially in use since June 2003. The impact of the TGD is examined through analysis of the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) rainfall rate and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and high-resolution simulation using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). The independent satellite data sets and numerical simulation clearly indicate that the land use change associated with the TGD construction has increased the precipitation in the region between Daba and Qinling mountains and reduced the precipitation in the vicinity of the TGD after the TGD water level abruptly rose from 66 to 135 m in June 2003. This study suggests that the climatic effect of the TGD is on the regional scale (approx.100 km) rather than on the local scale (approx.10 km) as projected in previous studies.

  3. Science Formulation of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  4. Impacts of Wildfire on Throughfall and Stemflow Precipitation Chemistry

    NASA Astrophysics Data System (ADS)

    White, A. M.; McIntosh, J. C.; Meixner, T.; Brooks, P. D.; Chorover, J.

    2014-12-01

    The occurrence of large, stand replacing wildfires is more frequent in the western United States now than ever before. The loss of canopy cover due to wildfire drastically modifies landscapes and alters ecosystems as high intensity burns replace canopies with charred branches and trunks, change soil composition and erosion processes, and affect hydrologic flow paths and water chemistry. Precipitation that is not intercepted by the forest canopy makes its way to the forest floor as throughfall or stemflow. Tracking variations in the amount and chemistry of precipitation that interacts with burned versus unburned forest stands, as well as open precipitation, will help to quantify changes in hydrologic routing and catchment water chemistry caused by wildfire. This study investigates the effects of fire on the volume and chemical composition of precipitation diverted to the forest floor as stemflow and throughfall by observing the impact of the June 2013 Thompson Ridge wildfire in the Jemez River Basin Critical Zone Observatory field site in the Valles Caldera National Preserve of New Mexico. Throughfall and stemflow collectors were installed beneath both burned and unburned canopies and open areas in two catchments impacted by the Thompson Ridge fire. Initial results of field parameters, including electrical conductivity, pH and volume of precipitation collected from both burned and unburned sites, show variations across collector type (stemflow, throughfall and open precipitation), site location as the two catchments differ in aspect and gradient, and burn severity. Throughfall, stemflow and open precipitation samples were analyzed for trace metals, major cations, anions, nutrients and organic matter to determine how fire affects the chemical composition of the precipitation that interacts with burned canopies. This study is one of the first to quantify the relationship between wildfire and the chemistry and flux of stemflow and throughfall in conjunction with a full

  5. National Stream Survey data-base guide

    SciTech Connect

    Mitch, M.E.; Kaufmann, P.R.; Herlihy, A.T.; Overton, W.S.; Sale, M.J.

    1990-07-01

    The National Stream Survey (NSS), conducted in the spring of 1985 and 1986, is one component of the U.S. Environmental Protection Agency's National Surface Water Survey. This effort is in support of the National Acid Precipitation Assessment Program. The NSS was a synoptic, spring survey of 500 streams in regions of the Southeastern and Mid-Atlantic United States expected to contain larger numbers of low alkalinity streams. The NSS is based on a probability sample from an explicitly defined population of surface waters. In the NSS, 500 streams were sampled, representing a regional population of 64,700 stream reaches. The NSS database includes stream and watershed physical characteristics, in situ measurements, and water chemistry data. Accompanying the database is a comprehensive user's guide that provides an overview of the NSS design, database structure, and transfer media.

  6. NASA Dual Precipitation Radar Arrives at Goddard

    NASA Video Gallery

    The Dual-frequency Precipitation Radar (DPR) built by the Japan Aerospace Exploration Agency (JAXA) for the Global Precipitation Measurement (GPM) mission's Core Observatory arrived on Friday, Marc...

  7. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  8. Federal report on acid rain draws criticism

    SciTech Connect

    Roberts, L.

    1987-09-18

    Congress established a 10-year interagency research program in 1980 to examine the causes and effects of acid rain and recommend actions to limit or reduce its harmful effects. On September 17, the National Acid Precipitation Assessment Program (NAPAP) is scheduled to release its interim assessment. The impression that emerges from the summary is that there is not much to worry about. Acid rain has negligible or no effects on crops and forests, though tropospheric ozone may be a serious problem. Only a small number of lakes have been acidified, and no further significant acidification is likely in the northeast. No abrupt increase in damage to crops, forests, and lakes is likely at current emissions.

  9. Acid Rain: What It Is -- How You Can Help!

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…

  10. Scientist, researchers, and acid rain

    SciTech Connect

    Alm, L.R. )

    1989-01-01

    The role of the hidden participants in agenda-setting for environmental issues is discussed. These personnel involve academics, researchers, career bureaucrats, congressional staffers, consultants, and administration appointees below the top level. Scientists have been publicly involved in the acid rain issue from the beginning, using the media to dramatize the possible catastrophic consequences of acid rain. Presently, the scientific community is not in consensus about the solutions to the problem. Since the initial enactment of the National Acid Precipitation Act in 1980, not a single acid rain law has been passed, although many bills have been proposed. Spokesman for the coal and utility industries and Reagan administration personnel have used the scientific disagreements to delay abatement actions and refute claims that acid rain is a severe problem. Another result of the confusion is a distrust and even disdain for academic work. One possible solution to the stalemate is an accurate form for resolving scientific disputes that have a strong political component and that the forum should have a mechanism for converging on accurate science. 19 refs.

  11. Development of a global historic monthly mean precipitation dataset

    NASA Astrophysics Data System (ADS)

    Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang

    2016-04-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  12. Microbial Enzymatic Response to Reduced Precipitation and Added Nitrogen in a Southern California Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Alster, C. J.; German, D.; Allison, S. D.

    2011-12-01

    Microbial enzymes play a fundamental role in ecosystem processes and nutrient mineralization. Although there have been many studies concluding that global climate change affects plant communities, the effects on microbial communities in leaf litter have been much less studied. We measured extracellular enzyme activities in litter decomposing in plots with either reduced precipitation or increased nitrogen in a grassland ecosystem in Loma Ridge National Landmark in Southern California. We used a reciprocal transplant design to examine the effects of plot treatment, litter origin, and microbial community origin on litter decomposition and extracellular enzyme activity. Our hypothesis was that increased nitrogen would increase activity because nitrogen often limits microbial growth, while decreased precipitation would decrease activity due to lower litter moisture levels. Samples were collected in March 2011 and analyzed for the activities of cellobiohydrolase (CBH), β-glucosidase (BG), α-glucosidase (AG), N-acetyl-β-D-glucosaminidase (NAG), β-xylosidase (BX), acid phosphatase (AP), and leucine aminopeptidase (LAP). None of the factors in the nitrogen manipulation had a significant effect on any of the enzymes, although BG, CBH, and NAG increased marginally significantly in plots with nitrogen addition (p = 0.103, p = 0.082, and p = 0.114, respectively). For the precipitation manipulation, AG, BG, BX, CBH, and NAG significantly increased in plots with reduced precipitation (p = 0.015, p <0.001, p<0.001, and p<0.001, respectively) while LAP significantly decreased (p = 0.002). LAP catalyzes the hydrolysis of polypeptides, so reduced LAP activity could result in lower rates of enzyme turnover in the reduced precipitation treatment. We also observed that AP significantly increased (p = 0.014) in litter originating from reduced precipitation plots, while AG, BX, and LAP significantly decreased (p = 0.011, p = 0.031, and 0.005, respectively). There were no significant

  13. Chemical Data for Precipitate Samples

    USGS Publications Warehouse

    Foster, Andrea L.; Koski, Randolph A.

    2008-01-01

    During studies of sulfide oxidation in coastal areas of Prince William Sound in 2005, precipitate samples were collected from onshore and intertidal locations near the Ellamar, Threeman, and Beatson mine sites (chapter A, fig. 1; table 7). The precipitates include jarosite and amorphous Fe oxyhydroxide from Ellamar, amorphous Fe oxyhydroxide from Threeman, and amorphous Fe oxyhydroxide, ferrihydrite, and schwertmannite from Beatson. Precipitates occurring in the form of loose, flocculant coatings were harvested using a syringe and concentrated in the field by repetitive decanting. Thicker accumulations were either scraped gently from rocks using a stainless steel spatula or were scooped directly into receptacles (polyethylene jars or plastic heavy-duty zippered bags). Most precipitate samples contain small amounts of sedimentary detritus. With three jarosite-bearing samples from Ellamar, an attempt was made to separate the precipitate from the heavy-mineral fraction of the sediment. In this procedure, the sample was stirred in a graduated cylinder containing deionized water. The jarosite-rich suspension was decanted onto analytical filter paper and air dried before analysis. Eleven precipitate samples from the three mine sites were analyzed in laboratories of the U.S. Geological Survey (USGS) in Denver, Colorado (table 8). Major and trace elements were determined by inductively coupled plasma-mass spectrometry following multiacid (HCl-HNO3-HClO4-HF) digestion (Briggs and Meier, 2002), except for mercury, which was analyzed by cold-vapor atomic absorption spectroscopy (Brown and others, 2002a). X-ray diffraction (XRD) analyses were performed on powdered samples (<200 mesh) by S. Sutley of the USGS. Additional details regarding sample preparation and detection limits are found in Taggert (2002). Discussions of the precipitate chemistry and associated microbial communities are presented in Koski and others (2008) and Foster and others (2008), respectively.

  14. Investigation of impact of environmental changes on precipitation pattern of Pakistan.

    PubMed

    Ghumman, A R; Hassan, I; Khan, Q U Z; Kamal, M A

    2013-06-01

    In this paper, variability in precipitation pattern of Pakistan due to environmental and climatic changes has been studied. Maps have been generated to depict global precipitation variation. Precipitation data of 25 stations of Pakistan have been used. These data were taken from Meteorological Department, Islamabad, Pakistan. The results of two global climate models, namely Australia's Commonwealth Scientific and Industrial Research's third generation general circulation model and National Center for Atmospheric Research's first generation precipitation circulation model for A2 scenario have been applied to investigate the changes. It is observed that precipitation pattern will change significantly in the future. The occurrence of precipitation in all seasons for Pakistan is expected to increase with almost uniform distribution across a season. Average annual precipitation of the country will undergo an increase in the range of +57 to +71 % as compared to average of the base period.

  15. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Davies, T.H.

    1959-12-15

    An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

  16. The role of hydrous ferric oxide precipitation in the fractionation of arsenic, gallium, and indium during the neutralization of acidic hot spring water by river water in the Tama River watershed, Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yasumasa; Ishiyama, Daizo; Shikazono, Naotatsu; Iwane, Kenta; Kajiwara, Masahiro; Tsuchiya, Noriyoshi

    2012-06-01

    The Obuki spring is the largest and most acidic of the Tamagawa hot springs (Akita Prefecture, northern Japan), and it discharges ca. 9000 L/min of chloride-rich acidic water (pH 1.2) that contains high concentrations of both As and rare metals such as Ga and In. This paper aims to quantify seasonal variations in the mobility of these elements in the Shibukuro and Tama rivers, which are fed by the thermal waters of the Obuki spring, caused by sorption onto hydrous ferric oxide (HFO). Seasonal observations revealed the following relationships with respect to As removal by HFO: (a) the oxidation of Fe2+ is predominantly controlled by both pH and water temperature, and progresses more quickly in less acidic and warmer conditions; (b) HFO formation was predominantly controlled by pH; and (c) the removal of dissolved arsenate is directly related to the amount of HFO present. Consequently, the oxidation to Fe3+ was slower during periods of cold and lower pH, and the amount of HFO was too small to remove the dissolved arsenate effectively. Consequently, considerable amounts of dissolved arsenate and Fe2+ remained in river water. In contrast, when HFO production from Fe3+ increased, and dissolved arsenate was removed during warmer and less acidic periods, only small amounts of dissolved arsenite and Fe2+ remained in the river water. The geochemical behavior of Ga and In was essentially controlled by pH; however, when HFO production was limited by a pH of less than 3.5, Ga behavior was controlled mainly by the amount of HFO. Gallium tended to be sorbed under more acidic conditions than was In. Due to differences in sorption behavior, Ga, As, and In were fractionated during sedimentation. In the upstream reaches, arsenate and dissolved Ga sorbed onto HFO, and were widely distributed across the watershed. Conversely, dissolved In was removed by HFO downstream. As a result, In is relatively concentrated on the downstream lakebed, unlike As and Ga, and In-rich mineral deposits

  17. Dust particles precipitation in AC/DC electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Jaworek, A.; Marchewicz, A.; Krupa, A.; Sobczyk, A. T.; Czech, T.; Antes, T.; Śliwiński, Ł.; Kurz, M.; Szudyga, M.; Rożnowski, W.

    2015-10-01

    Submicron and nanoparticles removal from flue or exhaust gases remain still a challenge for engineers. The most effective device used for gas cleaning in power plants or industry is electrostatic precipitator, but its collection efficiency steeply decreases for particles smaller than 1 micron. In this paper, fractional collection efficiency of two-stage electrostatic precipitator comprising of alternating electric field charger and DC supplied parallel-plate collection stage has been investigated. The total number collection efficiency for PM2.5 particles was higher than 95% and mass collection efficiency >99%. Fractional collection efficiency for particles between 300 nm and 1 μm was >95%.

  18. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  19. [Chemical characteristics of 3-year atmospheric precipitation in summer, Taiyuan].

    PubMed

    Guo, Xiao-fang; Cui, Yang; Wang, Kai-yang; He, Qiu-sheng; Wang, Xin-ming

    2015-02-01

    The chemical characteristics of the precipitation in Taiyuan in summer of 2011-2013 were investigated. The results showed that the pH of precipitation varied from 4.63 to 8.02 with a volume-weighted mean of 5.19. The frequency of acid rain was 37.0%, 31.2% and 17.4%, respectively, in 2011-2013. SO4(2-) and NO3(-) were dominant anions in the precipitation, which accounted for 67.2% and 22.0% of the total anions, respectively. While Ca2+ and NH4+ were dominant cations in the precipitation, which accounted for 55.1% and 29.0% of the total cations, respectively. There were evident declining trends in the concentration of SO4(2-), NO3-, Ca2+ and NH4+ in the precipitation over the study period. The mean ratio of SO4(2-) to NO3(-) in summer precipitation was 3.02, indicating that the acid rain was of sulfuric-nitrous mixed type, however, NO3- was very important for the acidity of rain water. Neutralization factors (NF) were calculated to show that Ca2+ and NH4+ were the predominant neutralizers in rainwater samples, but Mg2+ could also not be negligible. The correlation analysis revealed that coal combustion was the dominant source of chemical composition of rainwater in summer of Taiyuan. The back trajectory analysis demonstrated that the air pollutants of Taiyuan were from the local plants and the coal coking plants in the southern Taiyuan basin. However, to improve the air quality in this city, both industrial emissions from thermal power plants and coal coking plants in Taiyuan basin need to be controlled.

  20. [Chemical characteristics of 3-year atmospheric precipitation in summer, Taiyuan].

    PubMed

    Guo, Xiao-fang; Cui, Yang; Wang, Kai-yang; He, Qiu-sheng; Wang, Xin-ming

    2015-02-01

    The chemical characteristics of the precipitation in Taiyuan in summer of 2011-2013 were investigated. The results showed that the pH of precipitation varied from 4.63 to 8.02 with a volume-weighted mean of 5.19. The frequency of acid rain was 37.0%, 31.2% and 17.4%, respectively, in 2011-2013. SO4(2-) and NO3(-) were dominant anions in the precipitation, which accounted for 67.2% and 22.0% of the total anions, respectively. While Ca2+ and NH4+ were dominant cations in the precipitation, which accounted for 55.1% and 29.0% of the total cations, respectively. There were evident declining trends in the concentration of SO4(2-), NO3-, Ca2+ and NH4+ in the precipitation over the study period. The mean ratio of SO4(2-) to NO3(-) in summer precipitation was 3.02, indicating that the acid rain was of sulfuric-nitrous mixed type, however, NO3- was very important for the acidity of rain water. Neutralization factors (NF) were calculated to show that Ca2+ and NH4+ were the predominant neutralizers in rainwater samples, but Mg2+ could also not be negligible. The correlation analysis revealed that coal combustion was the dominant source of chemical composition of rainwater in summer of Taiyuan. The back trajectory analysis demonstrated that the air pollutants of Taiyuan were from the local plants and the coal coking plants in the southern Taiyuan basin. However, to improve the air quality in this city, both industrial emissions from thermal power plants and coal coking plants in Taiyuan basin need to be controlled. PMID:26031061