Sample records for national automatic network

  1. Automatic River Network Extraction from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.

    2016-06-01

    National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  2. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kortström, Jari; Tiira, Timo; Kaisko, Outi

    2016-03-01

    The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.

  3. Automatic Correction Algorithm of Hyfrology Feature Attribute in National Geographic Census

    NASA Astrophysics Data System (ADS)

    Li, C.; Guo, P.; Liu, X.

    2017-09-01

    A subset of the attributes of hydrologic features data in national geographic census are not clear, the current solution to this problem was through manual filling which is inefficient and liable to mistakes. So this paper proposes an automatic correction algorithm of hydrologic features attribute. Based on the analysis of the structure characteristics and topological relation, we put forward three basic principles of correction which include network proximity, structure robustness and topology ductility. Based on the WJ-III map workstation, we realize the automatic correction of hydrologic features. Finally, practical data is used to validate the method. The results show that our method is highly reasonable and efficient.

  4. Automatic, time-interval traffic counts for recreation area management planning

    Treesearch

    D. L. Erickson; C. J. Liu; H. K. Cordell

    1980-01-01

    Automatic, time-interval recorders were used to count directional vehicular traffic on a multiple entry/exit road network in the Red River Gorge Geological Area, Daniel Boone National Forest. Hourly counts of entering and exiting traffic differed according to recorder location, but an aggregated distribution showed a delayed peak in exiting traffic thought to be...

  5. Variable Discretisation for Anomaly Detection using Bayesian Networks

    DTIC Science & Technology

    2017-01-01

    UNCLASSIFIED DST- Group –TR–3328 1 Introduction Bayesian network implementations usually require each variable to take on a finite number of mutually...UNCLASSIFIED Variable Discretisation for Anomaly Detection using Bayesian Networks Jonathan Legg National Security and ISR Division Defence Science...and Technology Group DST- Group –TR–3328 ABSTRACT Anomaly detection is the process by which low probability events are automatically found against a

  6. Automated Information System (AIS) Alarm System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunteman, W.

    1997-05-01

    The Automated Information Alarm System is a joint effort between Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratory to demonstrate and implement, on a small-to-medium sized local area network, an automated system that detects and automatically responds to attacks that use readily available tools and methodologies. The Alarm System will sense or detect, assess, and respond to suspicious activities that may be detrimental to information on the network or to continued operation of the network. The responses will allow stopping, isolating, or ejecting the suspicious activities. The number of sensors, the sensitivity of the sensors, themore » assessment criteria, and the desired responses may be set by the using organization to meet their local security policies.« less

  7. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  8. Swift Trust in Hastily Formed Networks

    DTIC Science & Technology

    2002-01-01

    in the Engineering School. 1983 Grand Prix Award, Sales Promotion Association of Australia A national award received for the best promotion of the...deposit of over $500. The average deposit was over $2,000. 1983 Best Small Budget Award, Sales Promotion Association of Australia A national award...Australian Sales Promotion Awards. Implemented the introduction of new financial services such as automatic bill paying and telephone bill paying. Planned

  9. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  10. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    PubMed

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  11. QUALITY ASSURANCE PROGRAM FOR WET DEPOSITION SAMPLING AND CHEMICAL ANALYSES FOR THE NATIONAL TRENDS NETWORK.

    USGS Publications Warehouse

    Schroder, LeRoy J.; Malo, Bernard A.; ,

    1985-01-01

    The purpose of the National Trends Network is to delineate the major inorganic constituents in the wet deposition in the United States. The approach chosen to monitor the Nation's wet deposition is to install approximately 150 automatic sampling devices with at least one collector in each state. Samples are collected at one week intervals, removed from collectors, and transported to an analytical laboratory for chemical analysis. The quality assurance program has divided wet deposition monitoring into 5 parts: (1) Sampling site selection, (2) sampling device, (3) sample container, (4) sample handling, and (5) laboratory analysis. Each of these five components is being examined using existing designs or new designs. Each existing or proposed sampling site is visited and a criteria audit is performed.

  12. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  13. NASDA knowledge-based network planning system

    NASA Technical Reports Server (NTRS)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  14. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    PubMed

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  15. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network

    PubMed Central

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-01-01

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoph, G.G; Jackson, K.A.; Neuman, M.C.

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in the system audit record, by changes in the vulnerability posture of the system configuration, and in other evidence found through active testing of the system. In 1989 we started developing an automatic misuse detection system for the Integrated Computing Network (ICN) at Los Alamos National Laboratory. Since 1990 this system has been operational, monitoring a variety of network systems and services. We call it the Network Anomaly Detection and Intrusion Reporter, or NADIR. During the last year andmore » a half, we expanded NADIR to include processing of audit and activity records for the Cray UNICOS operating system. This new component is called the UNICOS Real-time NADIR, or UNICORN. UNICORN summarizes user activity and system configuration information in statistical profiles. In near real-time, it can compare current activity to historical profiles and test activity against expert rules that express our security policy and define improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. UNICORN is currently operational on four Crays in Los Alamos` main computing network, the ICN.« less

  17. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  18. Automatic Phase Picker for Local and Teleseismic Events Using Wavelet Transform and Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Gaillot, P.; Bardaine, T.; Lyon-Caen, H.

    2004-12-01

    Since recent years, various automatic phase pickers based on the wavelet transform have been developed. The main motivation for using wavelet transform is that they are excellent at finding the characteristics of transient signals, they have good time resolution at all periods, and they are easy to program for fast execution. Thus, the time-scale properties and flexibility of the wavelets allow detection of P and S phases in a broad frequency range making their utilization possible in various context. However, the direct application of an automatic picking program in a different context/network than the one for which it has been initially developed is quickly tedious. In fact, independently of the strategy involved in automatic picking algorithms (window average, autoregressive, beamforming, optimization filtering, neuronal network), all developed algorithms use different parameters that depend on the objective of the seismological study, the region and the seismological network. Classically, these parameters are manually defined by trial-error or calibrated learning stage. In order to facilitate this laborious process, we have developed an automated method that provide optimal parameters for the picking programs. The set of parameters can be explored using simulated annealing which is a generic name for a family of optimization algorithms based on the principle of stochastic relaxation. The optimization process amounts to systematically modifying an initial realization so as to decrease the value of the objective function, getting the realization acceptably close to the target statistics. Different formulations of the optimization problem (objective function) are discussed using (1) world seismicity data recorded by the French national seismic monitoring network (ReNass), (2) regional seismicity data recorded in the framework of the Corinth Rift Laboratory (CRL) experiment, (3) induced seismicity data from the gas field of Lacq (Western Pyrenees), and (4) micro-seismicity data from glacier monitoring. The developed method is discussed and tested using our wavelet version of the standard STA-LTA algorithm.

  19. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis

    DTIC Science & Technology

    1989-08-01

    Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17

  20. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10.1785/gssrl.83.3.531.

  1. CLARET user's manual: Mainframe Logs. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frobose, R.H.

    1984-11-12

    CLARET (Computer Logging and RETrieval) is a stand-alone PDP 11/23 system that can support 16 terminals. It provides a forms-oriented front end by which operators enter online activity logs for the Lawrence Livermore National Laboratory's OCTOPUS computer network. The logs are stored on the PDP 11/23 disks for later retrieval, and hardcopy reports are generated both automatically and upon request. Online viewing of the current logs is provided to management. As each day's logs are completed, the information is automatically sent to a CRAY and included in an online database system. The terminal used for the CLARET system is amore » dual-port Hewlett Packard 2626 terminal that can be used as either the CLARET logging station or as an independent OCTOPUS terminal. Because this is a stand-alone system, it does not depend on the availability of the OCTOPUS network to run and, in the event of a power failure, can be brought up independently.« less

  2. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  3. Optical depth measurements by shadow-band radiometers and their uncertainties.

    PubMed

    Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  4. Wireless sensor network effectively controls center pivot irrigation of sorghum

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  5. Performance of a wireless sensor network for crop monitoring and irrigation control

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  6. Automatic Network Fingerprinting through Single-Node Motifs

    PubMed Central

    Echtermeyer, Christoph; da Fontoura Costa, Luciano; Rodrigues, Francisco A.; Kaiser, Marcus

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs—a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks. PMID:21297963

  7. Integration and segregation of large-scale brain networks during short-term task automatization

    PubMed Central

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-01-01

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095

  8. Using Antelope and Seiscomp in the framework of the Romanian Seismic Network

    NASA Astrophysics Data System (ADS)

    Marius Craiu, George; Craiu, Andreea; Marmureanu, Alexandru; Neagoe, Cristian

    2014-05-01

    The National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2, SH-1, S13, Mark l4c, Ranger, Gs21, Mark 22) and acceleration sensors (Episensor Kinemetrics). The primary goal of the real-time seismic network is to provide earthquake parameters from more broad-band stations with a high dynamic range, for more rapid and accurate computation of the locations and magnitudes of earthquakes. The Seedlink and AntelopeTM program packages are completely automated Antelope seismological system is run at the Data Center in Măgurele. The Antelope data acquisition and processing software is running for real-time processing and post processing. The Antelope real-time system provides automatic event detection, arrival picking, event location, and magnitude calculation. It also provides graphical displays and automatic location within near real time after a local, regional or teleseismic event has occurred SeisComP 3 is another automated system that is run at the NIEP and which provides the following features: data acquisition, data quality control, real-time data exchange and processing, network status monitoring, issuing event alerts, waveform archiving and data distribution, automatic event detection and location, easy access to relevant information about stations, waveforms, and recent earthquakes. The main goal of this paper is to compare both of these data acquisitions systems in order to improve their detection capabilities, location accuracy, magnitude and depth determination and reduce the RMS and other location errors.

  9. A novel network module for medical devices.

    PubMed

    Chen, Ping-Yu

    2008-01-01

    In order to allow medical devices to upload the vital signs to a server on a network without manually configuring for end-users, a new network module is proposed. The proposed network module, called Medical Hub (MH), functions as a bridge to fetch the data from all connecting medical devices, and then upload these data to the server. When powering on, the MH can immediately establish network configuration automatically. Network Address Translation (NAT) traversal is also supported by the MH with the UPnP Internet Gateway Device (IGD) methodology. Besides the network configuration, other configuration in the MH is automatically established by using the remote management protocol TR-069. On the other hand, a mechanism for updating software automatically according to the variant connected medical device is proposed. With this mechanism, newcome medical devices can be detected and supported by the MH without manual operation.

  10. Performance of wavelet analysis and neural networks for pathological voices identification

    NASA Astrophysics Data System (ADS)

    Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane

    2011-09-01

    Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.

  11. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.

  12. Partial polygon pruning of hydrographic features in automated generalization

    USGS Publications Warehouse

    Stum, Alexander K.; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2017-01-01

    This paper demonstrates a working method to automatically detect and prune portions of waterbody polygons to support creation of a multi-scale hydrographic database. Water features are known to be sensitive to scale change; and thus multiple representations are required to maintain visual and geographic logic at smaller scales. Partial pruning of polygonal features—such as long and sinuous reservoir arms, stream channels that are too narrow at the target scale, and islands that begin to coalesce—entails concurrent management of the length and width of polygonal features as well as integrating pruned polygons with other generalized point and linear hydrographic features to maintain stream network connectivity. The implementation follows data representation standards developed by the U.S. Geological Survey (USGS) for the National Hydrography Dataset (NHD). Portions of polygonal rivers, streams, and canals are automatically characterized for width, length, and connectivity. This paper describes an algorithm for automatic detection and subsequent processing, and shows results for a sample of NHD subbasins in different landscape conditions in the United States.

  13. HOLA: Human-like Orthogonal Network Layout.

    PubMed

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  14. Target recognition based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  15. Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks

    NASA Technical Reports Server (NTRS)

    Smith, Aaron; Evans, Michael; Downey, Joseph

    2017-01-01

    National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.

  16. A Handbook for Automatic Data Processing Equipment Acquisition.

    DTIC Science & Technology

    1981-12-01

    Navy ADPE Procurement Policies (Automatic Data Processing Equipment (ADPE) procurement by federal agencies is governed by an interlocking network of...ADPE) procurement by federal agencies is governed by an interlocking network of policies and directives issued by federal agencies, the Department...SECNAVINST) and local procedures governing the acquisition of ADPE. Obtaining and understanding this interlocking network of policies is often difficult

  17. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

    PubMed

    López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A

    2018-05-01

    Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Water level ingest, archive and processing system - an integral part of NOAA's tsunami database

    NASA Astrophysics Data System (ADS)

    McLean, S. J.; Mungov, G.; Dunbar, P. K.; Price, D. J.; Mccullough, H.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) and collocated World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Archive responsibilities include the NOAA Global Historical Tsunami event and runup database, damage photos, as well as other related hazards data. Beginning in 2008, NGDC was given the responsibility of archiving, processing and distributing all tsunami and hazards-related water level data collected from NOAA observational networks in a coordinated and consistent manner. These data include the Deep-ocean Assessment and Reporting of Tsunami (DART) data provided by the National Data Buoy Center (NDBC), coastal-tide-gauge data from the National Ocean Service (NOS) network and tide-gauge data from the two National Weather Service (NWS) Tsunami Warning Centers (TWCs) regional networks. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Due to the variety of the water level data, the automatic ingest system was redesigned, along with upgrading the inventory, archive and delivery capabilities based on modern digital data archiving practices. The data processing system was also upgraded and redesigned focusing on data quality assessment in an operational manner. This poster focuses on data availability highlighting the automation of all steps of data ingest, archive, processing and distribution. Examples are given from recent events such as the October 2012 hurricane Sandy, the Feb 06, 2013 Solomon Islands tsunami, and the June 13, 2013 meteotsunami along the U.S. East Coast.

  19. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  20. A TDMA Broadcast Satellite/Ground Architecture for the Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.; Raghavan, Rajesh S.

    2003-01-01

    An initial evaluation of a TDMA satellite broadcast architecture with an integrated ground network is proposed in this study as one option for the Aeronautical Telecommunications Network (ATN). The architecture proposed consists of a ground based network that is dedicated to the reception and transmissions of Automatic Dependent Surveillance Broadcast (ADS-B) messages from Mode-S or UAT type systems, along with tracks from primary and secondary surveillance radars. Additionally, the ground network could contain VHF Digital Link Mode 2, 3 or 4 transceivers for the reception and transmissions of Controller-Pilot Data Link Communications (CPDLC) messages and for voice. The second part of the ATN network consists of a broadcast satellite based system that is mainly dedicated for the transmission of surveillance data as well as En-route Flight Information Service Broadcast (FIS-B) to all aircraft. The system proposed integrates those two network to provide a nation wide comprehensive service utilizing near term or existing technologies and hence keeping the economic factor in prospective. The next few sections include a background introduction, the ground subnetwork, the satellite subnetwork, modeling and simulations, and conclusion and recommendations.

  1. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  2. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  3. Research on Application of Automatic Weather Station Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Jianyun, Chen; Yunfan, Sun; Chunyan, Lin

    2017-12-01

    In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.

  4. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  5. Automatic discovery of the communication network topology for building a supercomputer model

    NASA Astrophysics Data System (ADS)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  6. Acoustic Sensor Planning for Gunshot Location in National Parks: A Pareto Front Approach

    PubMed Central

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J.; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario. PMID:22303135

  7. Acoustic sensor planning for gunshot location in national parks: a pareto front approach.

    PubMed

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario.

  8. Neural-network classifiers for automatic real-world aerial image recognition

    NASA Astrophysics Data System (ADS)

    Greenberg, Shlomo; Guterman, Hugo

    1996-08-01

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  9. Neural-network classifiers for automatic real-world aerial image recognition.

    PubMed

    Greenberg, S; Guterman, H

    1996-08-10

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  10. Bulgarian National Digital Seismological Network

    NASA Astrophysics Data System (ADS)

    Dimitrova, L.; Solakov, D.; Nikolova, S.; Stoyanov, S.; Simeonova, S.; Zimakov, L. G.; Khaikin, L.

    2011-12-01

    The Bulgarian National Digital Seismological Network (BNDSN) consists of a National Data Center (NDC), 13 stations equipped with RefTek High Resolution Broadband Seismic Recorders - model DAS 130-01/3, 1 station equipped with Quanterra 680 and broadband sensors and accelerometers. Real-time data transfer from seismic stations to NDC is realized via Virtual Private Network of the Bulgarian Telecommunication Company. The communication interruptions don't cause any data loss at the NDC. The data are backed up in the field station recorder's 4Mb RAM memory and are retransmitted to the NDC immediately after the communication link is re-established. The recorders are equipped with 2 compact flash disks able to save more than 1 month long data. The data from the flash disks can be downloaded remotely using FTP. The data acquisition and processing hardware redundancy at the NDC is achieved by two clustered SUN servers and two Blade Workstations. To secure the acquisition, processing and data storage processes a three layer local network is designed at the NDC. Real-time data acquisition is performed using REFTEK's full duplex error-correction protocol RTPD. Data from the Quanterra recorder and foreign stations are fed into RTPD in real-time via SeisComP/SeedLink protocol. Using SeisComP/SeedLink software the NDC transfers real-time data to INGV-Roma, NEIC-USA, ORFEUS Data Center. Regional real-time data exchange with Romania, Macedonia, Serbia and Greece is established at the NDC also. Data processing is performed by the Seismic Network Data Processor (SNDP) software package running on the both Servers. SNDP includes subsystems: Real-time subsystem (RTS_SNDP) - for signal detection; evaluation of the signal parameters; phase identification and association; source estimation; Seismic analysis subsystem (SAS_SNDP) - for interactive data processing; Early warning subsystem (EWS_SNDP) - based on the first arrived P-phases. The signal detection process is performed by traditional STA/LTA detection algorithm. The filter parameters of the detectors are defined on the base of previously evaluated ambient noise at the seismic stations. Some extra modules for network command/control, state-of-health network monitoring and data archiving are running as well in the National Data Center. Three types of archives are produced in the NDC - two continuous - miniSEED format and RefTek PASSCAL format; and one event oriented in CSS3.0 scheme format. Modern digital equipment and broad-band seismometers installed at Bulgarian seismic stations, careful selection of the software packages for automatic and interactive data processing in the data center proved to be suitable choice for the purposes of BNDSN and NDC: ? to ensure reliable automatic localization of the seismic events and rapid notification of the governmental authorities in case of felt earthquakes on the territory of Bulgaria; ? to provide a modern basis for seismological studies in Bulgaria.

  11. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  12. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.

    PubMed

    Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng

    2018-04-20

    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.

  13. Improved automatic adjustment of density and contrast in FCR system using neural network

    NASA Astrophysics Data System (ADS)

    Takeo, Hideya; Nakajima, Nobuyoshi; Ishida, Masamitsu; Kato, Hisatoyo

    1994-05-01

    FCR system has an automatic adjustment of image density and contrast by analyzing the histogram of image data in the radiation field. Advanced image recognition methods proposed in this paper can improve the automatic adjustment performance, in which neural network technology is used. There are two methods. Both methods are basically used 3-layer neural network with back propagation. The image data are directly input to the input-layer in one method and the histogram data is input in the other method. The former is effective to the imaging menu such as shoulder joint in which the position of interest region occupied on the histogram changes by difference of positioning and the latter is effective to the imaging menu such as chest-pediatrics in which the histogram shape changes by difference of positioning. We experimentally confirm the validity of these methods (about the automatic adjustment performance) as compared with the conventional histogram analysis methods.

  14. Integration of wireless sensor networks into automatic irrigation scheduling of a center pivot

    USDA-ARS?s Scientific Manuscript database

    A six-span center pivot system was used as a platform for testing two wireless sensor networks (WSN) of infrared thermometers. The cropped field was a semi-circle, divided into six pie shaped sections of which three were irrigated manually and three were irrigated automatically based on the time tem...

  15. Processing of Crawled Urban Imagery for Building Use Classification

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Haala, N.

    2017-05-01

    Recent years have shown a shift from pure geometric 3D city models to data with semantics. This is induced by new applications (e.g. Virtual/Augmented Reality) and also a requirement for concepts like Smart Cities. However, essential urban semantic data like building use categories is often not available. We present a first step in bridging this gap by proposing a pipeline to use crawled urban imagery and link it with ground truth cadastral data as an input for automatic building use classification. We aim to extract this city-relevant semantic information automatically from Street View (SV) imagery. Convolutional Neural Networks (CNNs) proved to be extremely successful for image interpretation, however, require a huge amount of training data. Main contribution of the paper is the automatic provision of such training datasets by linking semantic information as already available from databases provided from national mapping agencies or city administrations to the corresponding façade images extracted from SV. Finally, we present first investigations with a CNN and an alternative classifier as a proof of concept.

  16. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and developmentmore » to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.« less

  17. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks.

    PubMed

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-07-03

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.

  18. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks

    PubMed Central

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-01-01

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions. PMID:26151211

  19. A PC-based computer package for automatic detection and location of earthquakes: Application to a seismic network in eastern sicity (Italy)

    NASA Astrophysics Data System (ADS)

    Patanè, Domenico; Ferrari, Ferruccio; Giampiccolo, Elisabetta; Gresta, Stefano

    Few automated data acquisition and processing systems operate on mainframes, some run on UNIX-based workstations and others on personal computers, equipped with either DOS/WINDOWS or UNIX-derived operating systems. Several large and complex software packages for automatic and interactive analysis of seismic data have been developed in recent years (mainly for UNIX-based systems). Some of these programs use a variety of artificial intelligence techniques. The first operational version of a new software package, named PC-Seism, for analyzing seismic data from a local network is presented in Patanè et al. (1999). This package, composed of three separate modules, provides an example of a new generation of visual object-oriented programs for interactive and automatic seismic data-processing running on a personal computer. In this work, we mainly discuss the automatic procedures implemented in the ASDP (Automatic Seismic Data-Processing) module and real time application to data acquired by a seismic network running in eastern Sicily. This software uses a multi-algorithm approach and a new procedure MSA (multi-station-analysis) for signal detection, phase grouping and event identification and location. It is designed for an efficient and accurate processing of local earthquake records provided by single-site and array stations. Results from ASDP processing of two different data sets recorded at Mt. Etna volcano by a regional network are analyzed to evaluate its performance. By comparing the ASDP pickings with those revised manually, the detection and subsequently the location capabilities of this software are assessed. The first data set is composed of 330 local earthquakes recorded in the Mt. Etna erea during 1997 by the telemetry analog seismic network. The second data set comprises about 970 automatic locations of more than 2600 local events recorded at Mt. Etna during the last eruption (July 2001) at the present network. For the former data set, a comparison of the automatic results with the manual picks indicates that the ASDP module can accurately pick 80% of the P-waves and 65% of S-waves. The on-line application on the latter data set shows that automatic locations are affected by larger errors, due to the preliminary setting of the configuration parameters in the program. However, both automatic ASDP and manual hypocenter locations are comparable within the estimated error bounds. New improvements of the PC-Seism software for on-line analysis are also discussed.

  20. Optimizing the real-time automatic location of the events produced in Romania using an advanced processing system

    NASA Astrophysics Data System (ADS)

    Neagoe, Cristian; Grecu, Bogdan; Manea, Liviu

    2016-04-01

    National Institute for Earth Physics (NIEP) operates a real time seismic network which is designed to monitor the seismic activity on the Romanian territory, which is dominated by the intermediate earthquakes (60-200 km) from Vrancea area. The ability to reduce the impact of earthquakes on society depends on the existence of a large number of high-quality observational data. The development of the network in recent years and an advanced seismic acquisition are crucial to achieving this objective. The software package used to perform the automatic real-time locations is Seiscomp3. An accurate choice of the Seiscomp3 setting parameters is necessary to ensure the best performance of the real-time system i.e., the most accurate location for the earthquakes and avoiding any false events. The aim of this study is to optimize the algorithms of the real-time system that detect and locate the earthquakes in the monitored area. This goal is pursued by testing different parameters (e.g., STA/LTA, filters applied to the waveforms) on a data set of representative earthquakes of the local seismicity. The results are compared with the locations from the Romanian Catalogue ROMPLUS.

  1. Morphological self-organizing feature map neural network with applications to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  2. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  3. Complex Networks Analysis of Manual and Machine Translations

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Antiqueira, Lucas; Pardo, Thiago A. S.; da F. Costa, Luciano; Oliveira, Osvaldo N.; Nunes, Maria G. V.

    Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by MT tools can be distinguished from their manual counterparts by means of metrics such as in- (ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better MT tools and automatic evaluation metrics.

  4. Dissociable changes in functional network topology underlie early category learning and development of automaticity

    PubMed Central

    Soto, Fabian A.; Bassett, Danielle S.; Ashby, F. Gregory

    2016-01-01

    Recent work has shown that multimodal association areas–including frontal, temporal and parietal cortex–are focal points of functional network reconfiguration during human learning and performance of cognitive tasks. On the other hand, neurocomputational theories of category learning suggest that the basal ganglia and related subcortical structures are focal points of functional network reconfiguration during early learning of some categorization tasks, but become less so with the development of automatic categorization performance. Using a combination of network science and multilevel regression, we explore how changes in the connectivity of small brain regions can predict behavioral changes during training in a visual categorization task. We find that initial category learning, as indexed by changes in accuracy, is predicted by increasingly efficient integrative processing in subcortical areas, with higher functional specialization, more efficient integration across modules, but a lower cost in terms of redundancy of information processing. The development of automaticity, as indexed by changes in the speed of correct responses, was predicted by lower clustering (particularly in subcortical areas), higher strength (highest in cortical areas) and higher betweenness centrality. By combining neurocomputational theories and network scientific methods, these results synthesize the dissociative roles of multimodal association areas and subcortical structures in the development of automaticity during category learning. PMID:27453156

  5. An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.

    2009-12-01

    For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become available. The results are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, and usually do not differ substantially from the final solutions. In summary, automatic seismic event processing has shown to work well as a first step for starting a Tsunami Warning process. However, for the secured assessment of the tsunami potential of a given event, 24/7-manned regional TWCs are mandatory for reliable manual verification of the automatic seismic results. At this time, GFZ itself provides manual verification only when staff is available, not on a 24/7 basis, while the actual national tsunami warning centers have all a reliable 24/7 service.

  6. [Design and implementation of mobile terminal data acquisition for Chinese materia medica resources survey].

    PubMed

    Qi, Yuan-Hua; Wang, Hui; Zhang, Xiao-Bo; Jin, Yan; Ge, Xiao-Guang; Jing, Zhi-Xian; Wang, Ling; Zhao, Yu-Ping; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    In this paper, a data acquisition system based on mobile terminal combining GPS, offset correction, automatic speech recognition and database networking technology was designed implemented with the function of locating the latitude and elevation information fast, taking conveniently various types of Chinese herbal plant photos, photos, samples habitat photos and so on. The mobile system realizes automatic association with Chinese medicine source information, through the voice recognition function it records the information of plant characteristics and environmental characteristics, and record relevant plant specimen information. The data processing platform based on Chinese medicine resources survey data reporting client can effectively assists in indoor data processing, derives the mobile terminal data to computer terminal. The established data acquisition system provides strong technical support for the fourth national survey of the Chinese materia medica resources (CMMR). Copyright© by the Chinese Pharmaceutical Association.

  7. Automatic inference of multicellular regulatory networks using informative priors.

    PubMed

    Sun, Xiaoyun; Hong, Pengyu

    2009-01-01

    To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.

  8. Earth Sciences Electronic Theater ''999

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Manyin, Mike

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  9. Bellman Ford algorithm - in Routing Information Protocol (RIP)

    NASA Astrophysics Data System (ADS)

    Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah

    2018-04-01

    In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.

  10. 36 CFR 1260.56 - What are NARA considerations when implementing automatic declassification?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false What are NARA considerations when implementing automatic declassification? 1260.56 Section 1260.56 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION DECLASSIFICATION DECLASSIFICATION OF NATIONAL SECURITY INFORMATION Automatic Declassification §...

  11. An Automatic Networking and Routing Algorithm for Mesh Network in PLC System

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosheng; Liu, Hao; Liu, Jiasheng; Xu, Dianguo

    2017-05-01

    Power line communication (PLC) is considered to be one of the best communication technologies in smart grid. However, the topology of low voltage distribution network is complex, meanwhile power line channel has characteristics of time varying and attenuation, which lead to the unreliability of power line communication. In this paper, an automatic networking and routing algorithm is introduced which can be adapted to the "blind state" topology. The results of simulation and test show that the scheme is feasible, the routing overhead is small, and the load balance performance is good, which can achieve the establishment and maintenance of network quickly and effectively. The scheme is of great significance to improve the reliability of PLC.

  12. The guitar chord-generating algorithm based on complex network

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  13. Automatic construction of a recurrent neural network based classifier for vehicle passage detection

    NASA Astrophysics Data System (ADS)

    Burnaev, Evgeny; Koptelov, Ivan; Novikov, German; Khanipov, Timur

    2017-03-01

    Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.

  14. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  15. Looking for underlying features in automatic and reviewed seismic bulletins through a neural network

    NASA Astrophysics Data System (ADS)

    Carluccio, R.; Console, R.; Chiappini, M.; Chiappini, S.

    2009-12-01

    SEL1 bulletins are, among all IDC products, a fundamental tool for NDCs in their task of national assessment of compliance with the CTBT. This is because SEL1s are expected to be disseminated within 2 hours from the occurrence of any detected waveform event, and the National Authorities are supposed to take a political decision in nearly real time, especially in the case when the event could triggers the request for an on site inspection. In this context not only the rapidity, but also the reliability of the SEL1 is a fundamental requirement. Our last years experience gained in the comparison between SEL1 and Italian Seismic Bulletin events has shown that SEL1s usually contain a big fraction of bogus events (sometimes close to 50%). This is due to many factors, all related to the availability of processing data and to the fast automatic algorithms involved. On the other hand, REBs are much more reliable as proved by our experience. Therefore, in spite of their relevant time delay by which they are distributed, which prevents their real-time use, REBs can be still useful in a retrospective way as reference information for comparison with SEL1s. This study tries to set up a sort of logical filter on the SEL1s that, while maintaining the rapidity requirements, improves their reliability. Our idea is based on the assumption that the SEL1s are produced by systematic algorithm of phase association and therefore some patterns among the input and output data could exist and be recognized. Our approach was initially based on a set of rules suggested by human experts on their personal experience, and its application on large datasets on a global scale. Other approaches not involving human interaction (data mining techniques) do exist. This study refers specifically to a semi-automatic approach: fitting of multi-parametric relationships hidden in the data set, through the application of neural networks by an algorithm of supervised learning. Full SEL1 and REB bulletins from Jan 2005 to Oct 2008 have been inserted in a database, together with IMS stations availability information. Part of these data have been used to create two sets of independent data (learning and verifying) used to train a "feed-forward" supervised neural network. A network supervised training algorithm using "confirmation flag" values has been used. In order to optimize network training input a significant, not redundant subset of input parameters has been looked for with the help of a genetic algorithm search tool. A suitable 12 input subset has been found and a network architecture of 12-20-1 has thus been chosen and trained on a 15094 records data set. Different runs of training sequences have been conducted, all showing CCR (Correct Classification Rate) values of the order of 75% - 80%. The trained network behavior is shown in term of ROC curve and input-out success-error matrices. The results of the analysis on our testing and validating data groups appear promising.

  16. Automatic crown cover mapping to improve forest inventory

    Treesearch

    Claude Vidal; Jean-Guy Boureau; Nicolas Robert; Nicolas Py; Josiane Zerubia; Xavier Descombes; Guillaume Perrin

    2009-01-01

    To automatically analyze near infrared aerial photographs, the French National Institute for Research in Computer Science and Control developed together with the French National Forest Inventory (NFI) a method for automatic crown cover mapping. This method uses a Reverse Jump Monte Carlo Markov Chain algorithm to locate the crowns and describe those using ellipses or...

  17. SA-SOM algorithm for detecting communities in complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang

    2017-10-01

    Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.

  18. Cascaded deep decision networks for classification of endoscopic images

    NASA Astrophysics Data System (ADS)

    Murthy, Venkatesh N.; Singh, Vivek; Sun, Shanhui; Bhattacharya, Subhabrata; Chen, Terrence; Comaniciu, Dorin

    2017-02-01

    Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review process or to have automatic indication for highly suspicious areas during an online guidance. This also applies to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role. Image classification is a standard pattern recognition problem and is well studied in the literature. However, performance on the challenging endoscopic images still has room for improvement. In this paper, we present a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard Deep neural network based methods. During the learning phase, CDDN automatically builds a network which discards samples that are classified with high confidence scores by a previously trained network and concentrates only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%. In addition, CDDN can also be applied to other image classification problems.

  19. Automatic comparison of striation marks and automatic classification of shoe prints

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac

    1995-09-01

    A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.

  20. Automatic classification of seismic events within a regional seismograph network

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Kortström, Jari; Uski, Marja

    2015-04-01

    A fully automatic method for seismic event classification within a sparse regional seismograph network is presented. The tool is based on a supervised pattern recognition technique, Support Vector Machine (SVM), trained here to distinguish weak local earthquakes from a bulk of human-made or spurious seismic events. The classification rules rely on differences in signal energy distribution between natural and artificial seismic sources. Seismic records are divided into four windows, P, P coda, S, and S coda. For each signal window STA is computed in 20 narrow frequency bands between 1 and 41 Hz. The 80 discrimination parameters are used as a training data for the SVM. The SVM models are calculated for 19 on-line seismic stations in Finland. The event data are compiled mainly from fully automatic event solutions that are manually classified after automatic location process. The station-specific SVM training events include 11-302 positive (earthquake) and 227-1048 negative (non-earthquake) examples. The best voting rules for combining results from different stations are determined during an independent testing period. Finally, the network processing rules are applied to an independent evaluation period comprising 4681 fully automatic event determinations, of which 98 % have been manually identified as explosions or noise and 2 % as earthquakes. The SVM method correctly identifies 94 % of the non-earthquakes and all the earthquakes. The results imply that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of confidence. The tool helps to reduce work-load in manual seismic analysis by leaving only ~5 % of the automatic event determinations, i.e. the probable earthquakes for more detailed seismological analysis. The approach presented is easy to adjust to requirements of a denser or wider high-frequency network, once enough training examples for building a station-specific data set are available.

  1. Tweeting Earthquakes using TensorFlow

    NASA Astrophysics Data System (ADS)

    Casarotti, E.; Comunello, F.; Magnoni, F.

    2016-12-01

    The use of social media is emerging as a powerful tool for disseminating trusted information about earthquakes. Since 2009, the Twitter account @INGVterremoti provides constant and timely details about M2+ seismic events detected by the Italian National Seismic Network, directly connected with the seismologists on duty at Istituto Nazionale di Geofisica e Vulcanologia (INGV). Currently, it updates more than 150,000 followers. Nevertheless, since it provides only the manual revision of seismic parameters, the timing (approximately between 10 and 20 minutes after an event) has started to be under evaluation. Undeniably, mobile internet, social network sites and Twitter in particular require a more rapid and "real-time" reaction. During the last 36 months, INGV tested the tweeting of the automatic detection of M3+ earthquakes, studying the reliability of the information both in term of seismological accuracy that from the point of view of communication and social research. A set of quality parameters (i.e. number of seismic stations, gap, relative error of the location) has been recognized to reduce false alarms and the uncertainty of the automatic detection. We present an experiment to further improve the reliability of this process using TensorFlow™ (an open source software library originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization).

  2. Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach

    NASA Astrophysics Data System (ADS)

    Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele

    2012-09-01

    The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.

  3. The Masked Semantic Priming Effect Is Task Dependent: Reconsidering the Automatic Spreading Activation Process

    ERIC Educational Resources Information Center

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…

  4. Integrated Seismological Network of Brazil: Key developments in technology.

    NASA Astrophysics Data System (ADS)

    Pirchiner, Marlon; Assumpção, Marcelo; Ferreira, Joaquim; França, George

    2010-05-01

    The Integrated Seismological Network of Brazil - BRASIS - will integrate the main Brazilian seismology groups in an extensive permanent broadband network with a (near) real-time acquisition system and automatic preliminary processing of epicenters and magnitudes. About 60 stations will cover the whole country to continuously monitor the seismic activity. Most stations will be operating by the end of 2010. Data will be received from remote stations at each research group and redistributed to all other groups. In addition to issuing a national catalog of earthquakes, each institution will make its own analysis and issue their own bulletins taking into account local and regional lithospheric structure. We chose the SEED format, seedlink and SeisComP as standard data format, exchange protocol and software framework for the network management, respectively. All different existing equipment (eg, Guralp/Scream, Geotech/CD1.1, RefTek/RTP, Quanterra/seedlink) will be integrated into the same system. We plan to provide: 1) improved station management through remote control, and indexes for quality control of acquired data, sending alerts to operators in critical cases. 2) automatic processing: picking, location with local and regional models and determination of magnitudes, issuing newsletters and alerts. 3) maintainence of an earthquakes catalog, and a waveforms database. 4) query tools and access to metadata, catalogs and waveform available to all researchers. In addition, the catalog of earthquakes and other seismological data will be available as layers in a Spatial Data Infrastructure with open source standards, providing new analysis capabilities to all geoscientists. Seiscomp3 has already been installed in two centers (UFRN and USP) with successful tests of Q330, Guralp, RefTek and Geotech plug-ins to the seedlink protocol. We will discuss the main difficulties of our project and the solutions adopted to improve the Brazilian seismological infrastructure.

  5. Toward the virtual classroom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pihlman, M.; Dirks, D.H.

    1990-01-03

    The Lawrence Livermore National Laboratory (LLNL) encourages its employees to remotely attend classes given by Stanford University, University of California at Davis, and the National Technological University (NTU). To improve the quality of education for LLNL employees, we are cooperating with Stanford University in upgrading the Stanford Instructional Television Network (SITN). A dedicated high-speed communication link (Tl) between Stanford and LLNL will be used for enhanced services such as videoconferencing, real time classnotes distribution, and electronic distribution of homework assignments. The new network will also allow students to take classes from their offices with the ability to ask the professormore » questions via an automatically dialed telephone call. As part of this upgrade, we have also proposed a new videoconferencing based classroom environment where students taking remote classes would feel as though they are attending the live class. All paperwork would be available in near real time and students may converse normally with, and see, other remote students as though they were all in the same physical location. We call this the Virtual Classroom.'' 1 ref., 6 figs.« less

  6. Earth Science Observations, Analysis and Visualization: Roots in the 60's: Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  7. Earth Science Observations, Analysis and Visualization: Roots in the 60's - Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Allen, Jesse

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  8. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.

    PubMed

    Zhao, Yu; Ge, Fangfei; Liu, Tianming

    2018-07-01

    fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The African Reference Frame (AFREF) project: a fundamental geodetic tool for Africa

    NASA Astrophysics Data System (ADS)

    Farah, H.

    2009-04-01

    AFREF has as objective the establishment and maintenance of a unified geodetic reference frame for Africa, which will support and facilitate fundamental scientific and technical projects. The installation of observation systems all over Africa will provide important data that can be used in many different scientific fields (e.g., geodynamics, meteorological). Furthermore, AFREF will create an uniform frame that will support development projects, uniform environmental and mapping programmes as well as aid in resolving current and future international boundary disputes. This reference frame will be based on the International Terrestrial Reference Frame (ITRF) and will be realised through the establishment of a network of permanent Global Navigation Satellite System (GNSS) receivers. In close collaboration with several institutional role players, AFREF is an initiative of the United Nations Economic Commission for Africa (UNECA) Committee on Development Information (CODI). A steering committee is currently responsible for the over-all management and coordination of the implementation of AFREF. Implementation of AFREF is envisaged to be at national level in collaboration with National Mapping Organizations. Furthermore, many scientific Institutions are contributing for the densification of the network. The current status of the AFREF network will be discussed in detail. Several CORS systems have been installed to support AFREF specifically. In addition, most or all of the IGS stations located in Africa will automatically qualify as AFREF core stations. Furthermore, we will show examples of interaction between specific projects and AFREF that are contributing for the development of science in Africa.

  10. Neural Network Classification of Receiver Functions as a Step Towards Automatic Crustal Parameter Determination

    NASA Astrophysics Data System (ADS)

    Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.

    2006-12-01

    Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.

  11. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.

  12. [Construction of automatic elucidation platform for mechanism of traditional Chinese medicine].

    PubMed

    Zhang, Bai-xia; Luo, Si-jun; Yan, Jing; Gu, Hao; Luo, Ji; Zhang, Yan-ling; Tao, Ou; Wang, Yun

    2015-10-01

    Aim at the two problems in the field of traditional Chinese medicine (TCM) mechanism elucidation, one is the lack of detailed biological processes information, next is the low efficient in constructing network models, we constructed an auxiliary elucidation system for the TCM mechanism and realize the automatic establishment of biological network model. This study used the Entity Grammar Systems (EGS) as the theoretical framework, integrated the data of formulae, herbs, chemical components, targets of component, biological reactions, signaling pathways and disease related proteins, established the formal models, wrote the reasoning engine, constructed the auxiliary elucidation system for the TCM mechanism elucidation. The platform provides an automatic modeling method for biological network model of TCM mechanism. It would be benefit to perform the in-depth research on TCM theory of natures and combination and provides the scientific references for R&D of TCM.

  13. Neural network model for automatic traffic incident detection : executive summary.

    DOT National Transportation Integrated Search

    2001-04-01

    Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...

  14. Changes in default mode network as automaticity develops in a categorization task.

    PubMed

    Shamloo, Farzin; Helie, Sebastien

    2016-10-15

    The default mode network (DMN) is a set of brain regions in which blood oxygen level dependent signal is suppressed during attentional focus on the external environment. Because automatic task processing requires less attention, development of automaticity in a rule-based categorization task may result in less deactivation and altered functional connectivity of the DMN when compared to the initial learning stage. We tested this hypothesis by re-analyzing functional magnetic resonance imaging data of participants trained in rule-based categorization for over 10,000 trials (Helie et al., 2010) [12,13]. The results show that some DMN regions are deactivated in initial training but not after automaticity has developed. There is also a significant decrease in DMN deactivation after extensive practice. Seed-based functional connectivity analyses with the precuneus, medial prefrontal cortex (two important DMN regions) and Brodmann area 6 (an important region in automatic categorization) were also performed. The results show increased functional connectivity with both DMN and non-DMN regions after the development of automaticity, and a decrease in functional connectivity between the medial prefrontal cortex and ventromedial orbitofrontal cortex. Together, these results further support the hypothesis of a strategy shift in automatic categorization and bridge the cognitive and neuroscientific conceptions of automaticity in showing that the reduced need for cognitive resources in automatic processing is accompanied by a disinhibition of the DMN and stronger functional connectivity between DMN and task-related brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Neural network model for automatic traffic incident detection : final report, August 2001.

    DOT National Transportation Integrated Search

    2001-08-01

    Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...

  16. Introduction To ITS/CVO Participant Manual, Course 1

    DOT National Transportation Integrated Search

    1999-08-01

    WEIGH-IN-MOTION OR WIM, COMMERCIAL VEHICLE INFORMATION SYSTEMS AND NETWORK OR CVISN, AUTOMATIC VEHICLE INDENTIFICATION OR AVI, AUTOMATIC VEHICLE LOCATION OR AVL, ELECTRONIC DATA INTERCHANGE OR EDI, GLOCAL POSITIONING SYSTEM OR GPS, INTERNET OR WORD W...

  17. Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.

    2006-06-01

    The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.

  18. Fully automatic cervical vertebrae segmentation framework for X-ray images.

    PubMed

    Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg

    2018-04-01

    The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  20. NASA/NOAA Earth Science Electronic Theater 1999. Earth Science Observations, Analysis and Visualization: Roots in the 60s: Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  1. Understanding ITS/CVO Technology Applications, Student Manual, Course 3

    DOT National Transportation Integrated Search

    1999-01-01

    WEIGHT-IN-MOTION OR WIM, COMMERCIAL VEHICLE INFORMATION SYSTEMS AND NETWORK OR CVISN, AUTOMATIC VEHICLE IDENTIFICATION OR AVI, AUTOMATIC LOCATION OR AVL, ELECTRONIC DATA INTERCHANGE OR EDI, GLOBAL POSITIONING SYSTEM OR GPS, INTERNET OR WORLD WIDE WEB...

  2. Index of surface-water stations in Texas, January 1986

    USGS Publications Warehouse

    Carrillo, E.R.; Buckner, H.D.; Rawson, Jack

    1986-01-01

    As of January 1, 1986, the surface-water data-collection network in Texas operated by the U.S. Geological Survey included 386 streamflow, 87 reservoir-contents, 33 stage, 10 crest-stage partial-record, 8 periodic discharge through range, 38 flood-hydrograph partial-record, 11 flood-profile partial-record , 36 low-flow partial-record 2 tide-level, 45 daily chemical-quality, 23 continuous-recording water-quality, 97 periodic biological, 19 lake surveys, 174 periodic organic- and (or) nutrient, 4 periodic insecticide, 58 periodic pesticide, 22 automatic sampler, 157 periodic minor elements, 141 periodic chemical-quality, 108 periodic physical-organic, 14 continuous-recording three- or four-parameter water-quality, 3 sediment, 39 periodic sediment, 26 continuous-recording temperature, and 37 national stream-quality accounting network stations were in operation. Tables describing the station location, type of data collected, and place where data are available are included, as well as maps showing the location of most of the stations. (USGS)

  3. A semi-automatic method for extracting thin line structures in images as rooted tree network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazzini, Jacopo; Dillard, Scott; Soille, Pierre

    2010-01-01

    This paper addresses the problem of semi-automatic extraction of line networks in digital images - e.g., road or hydrographic networks in satellite images, blood vessels in medical images, robust. For that purpose, we improve a generic method derived from morphological and hydrological concepts and consisting in minimum cost path estimation and flow simulation. While this approach fully exploits the local contrast and shape of the network, as well as its arborescent nature, we further incorporate local directional information about the structures in the image. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the targetmore » network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given seed with this metric is combined with hydrological operators for overland flow simulation to extract the line network. The algorithm is demonstrated for the extraction of blood vessels in a retina image and of a river network in a satellite image.« less

  4. PRISM software—Processing and review interface for strong-motion data

    USGS Publications Warehouse

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-11-28

    Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.

  5. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  6. TV audio and video on the same channel

    NASA Technical Reports Server (NTRS)

    Hopkins, J. B.

    1979-01-01

    Transmitting technique adds audio to video signal during vertical blanking interval. SIVI (signal in the vertical interval) is used by TV networks and stations to transmit cuing and automatic-switching tone signals to augment automatic and manual operations. It can also be used to transmit one-way instructional information, such as bulletin alerts, program changes, and commercial-cutaway aural cues from the networks to affiliates. Additonally, it can be used as extra sound channel for second-language transmission to biligual stations.

  7. Automatic delineation and 3D visualization of the human ventricular system using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Hatfield, Fraser N.; Dehmeshki, Jamshid

    1998-09-01

    Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.

  8. OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.

    PubMed

    Jarosch, Andreas; Leber, Jean Francois

    1997-06-01

    An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.

  9. Automatic analysis and classification of surface electromyography.

    PubMed

    Abou-Chadi, F E; Nashar, A; Saad, M

    2001-01-01

    In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.

  10. Modernization of the Slovenian National Seismic Network

    NASA Astrophysics Data System (ADS)

    Vidrih, R.; Godec, M.; Gosar, A.; Sincic, P.; Tasic, I.; Zivcic, M.

    2003-04-01

    The Environmental Agency of the Republic of Slovenia, the Seismology Office is responsible for the fast and reliable information about earthquakes, originating in the area of Slovenia and nearby. In the year 2000 the project Modernization of the Slovenian National Seismic Network started. The purpose of a modernized seismic network is to enable fast and accurate automatic location of earthquakes, to determine earthquake parameters and to collect data of local, regional and global earthquakes. The modernized network will be finished in the year 2004 and will consist of 25 Q730 remote broadband data loggers based seismic station subsystems transmitting in real-time data to the Data Center in Ljubljana, where the Seismology Office is located. The remote broadband station subsystems include 16 surface broadband seismometers CMG-40T, 5 broadband seismometers CMG-40T with strong motion accelerographs EpiSensor, 4 borehole broadband seismometers CMG-40T, all with accurate timing provided by GPS receivers. The seismic network will cover the entire Slovenian territory, involving an area of 20,256 km2. The network is planned in this way; more seismic stations will be around bigger urban centres and in regions with greater vulnerability (NW Slovenia, Krsko Brezice region). By the end of the year 2002, three old seismic stations were modernized and ten new seismic stations were built. All seismic stations transmit data to UNIX-based computers running Antelope system software. The data is transmitted in real time using TCP/IP protocols over the Goverment Wide Area Network . Real-time data is also exchanged with seismic networks in the neighbouring countries, where the data are collected from the seismic stations, close to the Slovenian border. A typical seismic station consists of the seismic shaft with the sensor and the data acquisition system and, the service shaft with communication equipment (modem, router) and power supply with a battery box. which provides energy in case of mains failure. The data acquisition systems are recording continuous time-series sampled at 200 sps, 20 sps and 1sps.

  11. Automatic transducer switching provides accurate wide range measurement of pressure differential

    NASA Technical Reports Server (NTRS)

    Yoder, S. K.

    1967-01-01

    Automatic pressure transducer switching network sequentially selects any one of a number of limited-range transducers as gas pressure rises or falls, extending the range of measurement and lessening the chances of damage due to high pressure.

  12. A project of upgrading the operations control system of the Hungarian electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroszki, L.; Kovacs, G.

    About 20 years ago an on-line EMS/SCADA system replaced the previously used off-line control system in the Hungarian power system. The system that has met the technological requirements of that time now became obsolete. A project started in 1995 by the Hungarian Power Companies, Ltd. (MVM Rt.), the regional utility companies and the power plant companies, with funding through a World Bank loan to cover international procurement, aims to upgrade that system into a complex, intelligent and state-of-the-art process control system. The new hierarchical system will rely on a distributed computer network structure, universally accepted hardware/software interface standards and communicationmore » protocols and use hardware platform independent software. The automatic generation control, performed from the National Dispatch Centre, will have expanded functionality, the most important single item of this will be the inclusion of automatic voltage/var control. The upgrading project includes the replacement of the substation and power plant remote terminal units and the installation of a telecommunication network to provide this telecontrol system with the necessary communications links. The supply contracts for both the master station and the remote terminal unit parts were awarded to the winners of open international bidding processes. In the project implementation MVM has the overall responsibility and works with assistance from international and Hungarian engineering firms.« less

  13. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  14. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  15. Assessing measurement uncertainty in meteorology in urban environments

    NASA Astrophysics Data System (ADS)

    Curci, S.; Lavecchia, C.; Frustaci, G.; Paolini, R.; Pilati, S.; Paganelli, C.

    2017-10-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network®) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer.

  16. Engineering of Sensor Network Structure for Dependable Fusion

    DTIC Science & Technology

    2014-08-15

    Lossy Wireless Sensor Networks , IEEE/ACM Transactions on Networking , (04 2013): 0. doi: 10.1109/TNET.2013.2256795 Soumik Sarkar, Kushal Mukherjee...Phoha, Bharat B. Madan, Asok Ray. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks , Journal of Parallel and Distributed...Deadline Constraints, IEEE Transactions on Automatic Control special issue on Wireless Sensor and Actuator Networks , (01 2011): 1. doi: Eric Keller

  17. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

    PubMed Central

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718

  18. A guidebook for using automatic passenger counter data for National Transit Database (NTD) reporting

    DOT National Transportation Integrated Search

    2010-12-01

    This document provides guidance for transit agencies to use data from their automatic passenger counters (APCs) for reporting to the National Transit Database (NTD). It first reviews both the traditional data requirements on the data items to be repo...

  19. Automatic picker of P & S first arrivals and robust event locator

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Polozov, A.; Hofstetter, A.

    2003-12-01

    We report on further development of automatic all distances location procedure designed for a regional network. The procedure generalizes the previous "loca l" (R < 500 km) and "regional" (500 < R < 2000 km) routines and comprises: a) preliminary data processing (filtering and de-spiking), b) phase identificatio n, c) P, S first arrival picking, d) preliminary location and e) robust grid-search optimization procedure. Innovations concern phase identification, automa tic picking and teleseismic location. A platform free flexible Java interface was recently created, allowing easy parameter tuning and on/off switching to t he full-scale manual picking mode. Identification of the regional P and S phase is provided by choosing between the two largest peaks in the envelope curve. For automatic on-time estimation we utilize now ratio of two STAs, calculated in two consecutive and equal time windows (instead of previously used Akike Information Criterion). "Teleseismic " location is split in two stages: preliminary and final one. The preliminary part estimates azimuth and apparent velocity by fitting a plane wave to the P automatic pickings. The apparent velocity criterion is used to decide about strategy of the following computations: teleseismic or regional. The preliminary estimates of azimuth and apparent velocity provide starting value for the final teleseismic and regional location. Apparent velocity is used to get first a pproximation distance to the source on the basis of the P, Pn, Pg travel-timetables. The distance estimate together with the preliminary azimuth estimate provides first approximations of the source latitude and longitude via sine and cosine theorems formulated for the spherical triangle. Final location is based on robust grid-search optimization procedure, weighting the number of pickings that simultaneously fit the model travel times. The grid covers initial location and becomes finer while approaching true hypocenter. The target function is a sum of the bell-shaped characteristic functions, used to emphasize true pickings and eliminate outliers. The final solution is a grid point that provides maximum to the target function. The procedure was applied to a list of ML > 4 earthquakes recorded by the Israel Seismic Network (ISN) in the 1999-2002 time period. Most of them are badly constrained relative the network. However, the results of location with average normalized error relative bulletin solutions e=dr/R of 5% were obtained, in each of the distance ranges. The first version of the procedure was incorporated in the national Early Warning System in 2001. Recently, we started to send automatic Early Warn ing reports, to the EMSC Real Time Bulletin. Initially reported some teleseismic location discrepancies have been eliminated by introduction of station corrections.

  20. Network of Internet-Controlled HF Receivers for Ionospheric Researches

    NASA Astrophysics Data System (ADS)

    Koloskov, A. V.; Yampolski, Y. M.; Zalizovski, A. V.; Galushko, V. G.; Kascheev, A. S.; La Hoz, C.; Brekke, A.; Beley, V. S.; Rietveld, M. T.

    2014-12-01

    A network of HF receivers intended for multi-position monitoring of the ionosphere is described. At present, it includes nine observation sites located at high, middle and low latitudes in both hemispheres of the Earth. The basic element of the network is a small- size receiving and measuring units designed at the Institute of Radio Astronomy (IRA) of the National Academy of Sciences of Ukraine (NASU) on the basis of a personal computer equipped with commercial digital receiving modules. Software packages developed by the authors make it possible to remotely control the facilities via the Internet network. The received emissions are HF signals from special transmitters and broadcast radio stations. These are processed using Doppler and pulse selection algorithms. In the Internet-controlled mode, the observation results are transferred to the main server in real time to be automatically processed and visualized at the website of the IRA NASU’s Department of Radiophysics of Geospace. Several examples of using the observation results obtained with the HF receiver network for diagnostics of dynamic processes in the near-Earth plasma are presented. The advantages of the multiposition mode of observations are discussed. The possibility of upgrading the HF facilities to provide measuring angles of arrival of signals is considered.

  1. Automatic Publication of a MIS Product to GeoNetwork: Case of the AIS Indexer

    DTIC Science & Technology

    2012-11-01

    installation and configuration The following instructions are for installing and configuring the software packages Java 1.6 and MySQL 5.5 which are...An Automatic Identification System (AIS) reception indexer Java application was developed in the summer of 2011, based on the work of Lapinski and...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT An Automatic Identification System (AIS) reception indexer Java application was

  2. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  3. Intelligentization: an efficient means to get more from optical networking

    NASA Astrophysics Data System (ADS)

    Chen, Zhi Yun

    2001-10-01

    Infocom is a term used to describe the merger of Information and Communications and is used to show the radical changes in today's network traffic. The continuous growth of Infocom traffic, especially that of Internet, is driving Infocom networks to expand rapidly. To service providers, the traffic is consuming the bandwidth of their network. Simultaneously, users are complaining too slow, the net never stopped in China. It is the reality faced by both the service providers and equipment vendors. Demands from both the customers and competition in market call for an efficient network infrastructure. What should a Service Provider do? This paper will first analyze the development trends of optical networking and the formation of the concepts of Intelligent Optical Network (ION) and Automatic Switched Optical Network (ASON) as a solution to this problem. Next it will look at the ways to bring intelligence into optical networks, discussing the benefits to service providers by showing some application examples. Finally, it concludes that the development of optical networking has arrived at a point of introducing intelligence into optical networks. The intelligent optical networks and Automatic Switched Optical Networks will immediately bring a wide range of benefit to service providers, equipment vendors, and, of course, the end users.

  4. High Efficiency Automatic-Power-Controlled and Gain-Clamped EDFA for Broadband Passive Optical Networking Systems

    NASA Astrophysics Data System (ADS)

    Shen, Jyi-Lai; Wei, Shui-Ken; Lin, Chin-Yuan; Iong Li, Ssu; Huang, Chih-Chuan

    2010-04-01

    The configuration of a simple improved high efficiency automatic-power-controlled and gain-clamped EDFA (APC-GC-EDFA) for broadband passive optical networking systems (BPON) is presented here. In order to compensate the phase and amplitude variation due to the different distance between the optical line terminal (OLT) and optical network units (ONU), the APC-GC-EDFA need to be employed. A single 980 nm laser module is employed as the primary pump. To extend the bandwidth, all C-band ASE is recycled as the secondary pump to enhance the gain efficiency. An electrical feedback circuit is used as a multi-wavelength channel transmitter monitor for the automatic power control to improve the gain-flattened flatness for stable amplification. The experimental results prove that the EDFA system can provide flatter clamped gain in both C-band and L-band configurations. The gain flatness wavelength ranging from 1530 to 1610 nm is within 32.83 ± 0.64 dB, i.e. below 1.95 %. The gains are clamped at 33.85 ± 0.65 dB for the input signal power of -40 dBm to -10 dBm. The range of noise figure is between 6.37 and 6.56, which is slightly lower compared to that of unclamped amplifiers. This will be very useful for measuring the gain flatness of APC-GC-EDFA. Finally, we have also demonstrated the records of the overall simultaneous dynamics measurements for the new system stabilization. The carrier to noise ratio (CNR) is 49.5 to 50.8 dBc which is above the National Television System Committee (NTSC) standard of 43 dBc, and both composite second order (CSO) 69.2 to 71.5 dBc and composite triple beat (CTB) of 69.8 to 72.2 dBc are above 53 dBc. The recorded corresponding rise-time of 1.087 ms indicates that the system does not exhibit any overshoot of gain or ASE variation due to the signal at the beginning of the pulse.

  5. Automatic learning rate adjustment for self-supervising autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  6. Adaptive Self-Tuning Networks

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  7. A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times

    DOT National Transportation Integrated Search

    2002-11-01

    This paper develops an algorithm for optimally locating surveillance technologies with an emphasis on Automatic Vehicle Identification tag readers by maximizing the benefit that would accrue from measuring travel times on a transportation network. Th...

  8. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  9. Automatic speech recognition using a predictive echo state network classifier.

    PubMed

    Skowronski, Mark D; Harris, John G

    2007-04-01

    We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.

  10. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and along the coast will also be addressed. With the support of Member States and other countries and organizations it has been possible to significantly expand the sea level network thus reducing the amount of time it now takes to verify tsunamis.

  11. Hardware Neural Network for a Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Chun, Seungwoo; Hayakawa, Yoshihiro; Nakajima, Koji

    The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.

  12. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.

    PubMed

    Hippert, Henrique S; Taylor, James W

    2010-04-01

    Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Protecting against cyber threats in networked information systems

    NASA Astrophysics Data System (ADS)

    Ertoz, Levent; Lazarevic, Aleksandar; Eilertson, Eric; Tan, Pang-Ning; Dokas, Paul; Kumar, Vipin; Srivastava, Jaideep

    2003-07-01

    This paper provides an overview of our efforts in detecting cyber attacks in networked information systems. Traditional signature based techniques for detecting cyber attacks can only detect previously known intrusions and are useless against novel attacks and emerging threats. Our current research at the University of Minnesota is focused on developing data mining techniques to automatically detect attacks against computer networks and systems. This research is being conducted as a part of MINDS (Minnesota Intrusion Detection System) project at the University of Minnesota. Experimental results on live network traffic at the University of Minnesota show that the new techniques show great promise in detecting novel intrusions. In particular, during the past few months our techniques have been successful in automatically identifying several novel intrusions that could not be detected using state-of-the-art tools such as SNORT.

  14. An Xrootd Italian Federation

    NASA Astrophysics Data System (ADS)

    Boccali, T.; Donvito, G.; Diacono, D.; Marzulli, G.; Pompili, A.; Della Ricca, G.; Mazzoni, E.; Argiro, S.; Gregori, D.; Grandi, C.; Bonacorsi, D.; Lista, L.; Fabozzi, F.; Barone, L. M.; Santocchia, A.; Riahi, H.; Tricomi, A.; Sgaravatto, M.; Maron, G.

    2014-06-01

    The Italian community in CMS has built a geographically distributed network in which all the data stored in the Italian region are available to all the users for their everyday work. This activity involves at different level all the CMS centers: the Tier1 at CNAF, all the four Tier2s (Bari, Rome, Legnaro and Pisa), and few Tier3s (Trieste, Perugia, Torino, Catania, Napoli, ...). The federation uses the new network connections as provided by GARR, our NREN (National Research and Education Network), which provides a minimum of 10 Gbit/s to all the sites via the GARR-X[2] project. The federation is currently based on Xrootd[1] technology, and on a Redirector aimed to seamlessly connect all the sites, giving the logical view of a single entity. A special configuration has been put in place for the Tier1, CNAF, where ad-hoc Xrootd changes have been implemented in order to protect the tape system from excessive stress, by not allowing WAN connections to access tape only files, on a file-by-file basis. In order to improve the overall performance while reading files, both in terms of bandwidth and latency, a hierarchy of xrootd redirectors has been implemented. The solution implemented provides a dedicated Redirector where all the INFN sites are registered, without considering their status (T1, T2, or T3 sites). An interesting use case were able to cover via the federation are disk-less Tier3s. The caching solution allows to operate a local storage with minimal human intervention: transfers are automatically done on a single file basis, and the cache is maintained operational by automatic removal of old files.

  15. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  16. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.

    PubMed

    Mento, Giovanni

    2017-12-01

    A main distinction has been proposed between voluntary and automatic mechanisms underlying temporal orienting (TO) of selective attention. Voluntary TO implies the endogenous directing of attention induced by symbolic cues. Conversely, automatic TO is exogenously instantiated by the physical properties of stimuli. A well-known example of automatic TO is sequential effects (SEs), which refer to the adjustments in participants' behavioral performance as a function of the trial-by-trial sequential distribution of the foreperiod between two stimuli. In this study a group of healthy adults underwent a cued reaction time task purposely designed to assess both voluntary and automatic TO. During the task, both post-cue and post-target event-related potentials (ERPs) were recorded by means of a high spatial resolution EEG system. In the results of the post-cue analysis, the P3a and P3b were identified as two distinct ERP markers showing distinguishable spatiotemporal features and reflecting automatic and voluntary a priori expectancy generation, respectively. The brain source reconstruction further revealed that distinct cortical circuits supported these two temporally dissociable components. Namely, the voluntary P3b was supported by a left sensorimotor network, while the automatic P3a was generated by a more distributed frontoparietal circuit. Additionally, post-cue contingent negative variation (CNV) and post-target P3 modulations were observed as common markers of voluntary and automatic expectancy implementation and response selection, although partially dissociable neural networks subserved these two mechanisms. Overall, these results provide new electrophysiological evidence suggesting that distinct neural substrates can be recruited depending on the voluntary or automatic cognitive nature of the cognitive mechanisms subserving TO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neural network applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Alspector, Joshua

    1994-01-01

    Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.

  18. Automatic Detection of Nausea Using Bio-Signals During Immerging in A Virtual Reality Environment

    DTIC Science & Technology

    2001-10-25

    reduce the redundancy in those parameters, and constructed an artificial neural network with those principal components. Using the network we constructed, we could partially detect nausea in real time.

  19. A New GRB follow-up Software at TUG

    NASA Astrophysics Data System (ADS)

    Dindar, M.; Parmaksizoglu, M.; Helhel, S.; Esenoglu, H.; Kirbiyik, H.

    2016-12-01

    A gamma-ray burst (GRB) optical photometric follow-up system at TUBITAK (Scientic and Technological Research Council of Turkey) National Observatory (TUG) has been planned. It uses the 0.6 m Telescope (T60) and can automatically respond to GRB Coordinates Network (GCN) alerts. The telescopes slew relatively fast, being able to point to a new target field within 30 s upon a request. Whenever available, the 1 m T100 and 2.5 m RTT150 telescopes will be used in the future. As an example in 2015, the GRB software system (will be server side) at T60-telescope responded to GRB alert and started the observation as early as 129 s after the GRB trigger autonomously.

  20. A Network of Automatic Control Web-Based Laboratories

    ERIC Educational Resources Information Center

    Vargas, Hector; Sanchez Moreno, J.; Jara, Carlos A.; Candelas, F. A.; Torres, Fernando; Dormido, Sebastian

    2011-01-01

    This article presents an innovative project in the context of remote experimentation applied to control engineering education. Specifically, the authors describe their experience regarding the analysis, design, development, and exploitation of web-based technologies within the scope of automatic control. This work is part of an inter-university…

  1. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  2. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    PubMed

    Lu, Yin; Figler, Bryan; Huang, Hong; Tu, Yi-Cheng; Wang, Ju; Cheng, Feng

    2017-01-01

    Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  3. Computer systems for automatic earthquake detection

    USGS Publications Warehouse

    Stewart, S.W.

    1974-01-01

    U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously. 

  4. Automating the Presentation of Computer Networks

    DTIC Science & Technology

    2006-12-01

    software to overlay operational state information. Other network management tools like Computer Associates Unicenter [6,7] generate internal network...and required manual placement assistance. A number of software libraries [20] offer a wealth of automatic layout algorithms and presentation...FX010857971033.aspx [2] Microsoft (2005) Visio 2003 Product Demo, http://www.microsoft.com/office/visio/prodinfo/demo.mspx [3] Smartdraw (2005) Network

  5. Automatic Screening for Perturbations in Boolean Networks.

    PubMed

    Schwab, Julian D; Kestler, Hans A

    2018-01-01

    A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.

  6. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    PubMed

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  8. High End Computer Network Testbedding at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gary, James Patrick

    1998-01-01

    The Earth & Space Data Computing (ESDC) Division, at the Goddard Space Flight Center, is involved in development and demonstrating various high end computer networking capabilities. The ESDC has several high end super computers. These are used to run: (1) computer simulation of the climate systems; (2) to support the Earth and Space Sciences (ESS) project; (3) to support the Grand Challenge (GC) Science, which is aimed at understanding the turbulent convection and dynamos in stars. GC research occurs in many sites throughout the country, and this research is enabled by, in part, the multiple high performance network interconnections. The application drivers for High End Computer Networking use distributed supercomputing to support virtual reality applications, such as TerraVision, (i.e., three dimensional browser of remotely accessed data), and Cave Automatic Virtual Environments (CAVE). Workstations can access and display data from multiple CAVE's with video servers, which allows for group/project collaborations using a combination of video, data, voice and shared white boarding. The ESDC is also developing and demonstrating the high degree of interoperability between satellite and terrestrial-based networks. To this end, the ESDC is conducting research and evaluations of new computer networking protocols and related technologies which improve the interoperability of satellite and terrestrial networks. The ESDC is also involved in the Security Proof of Concept Keystone (SPOCK) program sponsored by National Security Agency (NSA). The SPOCK activity provides a forum for government users and security technology providers to share information on security requirements, emerging technologies and new product developments. Also, the ESDC is involved in the Trans-Pacific Digital Library Experiment, which aims to demonstrate and evaluate the use of high performance satellite communications and advanced data communications protocols to enable interactive digital library data access between the U. S. Library of Congress, the National Library of Japan and other digital library sites at 155 MegaBytes Per Second. The ESDC participation in this program is the Trans-Pacific access to GLOBE visualizations in real time. ESDC is participating in the Department of Defense's ATDNet with Multiwavelength Optical Network (MONET) a fully switched Wavelength Division Networking testbed. This presentation is in viewgraph format.

  9. Convolution neural-network-based detection of lung structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.

    1994-05-01

    Chest radiography is one of the most primary and widely used techniques in diagnostic imaging. Nowadays with the advent of digital radiology, the digital medical image processing techniques for digital chest radiographs have attracted considerable attention, and several studies on the computer-aided diagnosis (CADx) as well as on the conventional image processing techniques for chest radiographs have been reported. In the automatic diagnostic process for chest radiographs, it is important to outline the areas of the lungs, the heart, and the diaphragm. This is because the original chest radiograph is composed of important anatomic structures and, without knowing exact positions of the organs, the automatic diagnosis may result in unexpected detections. The automatic extraction of an anatomical structure from digital chest radiographs can be a useful tool for (1) the evaluation of heart size, (2) automatic detection of interstitial lung diseases, (3) automatic detection of lung nodules, and (4) data compression, etc. Based on the clearly defined boundaries of heart area, rib spaces, rib positions, and rib cage extracted, one should be able to use this information to facilitate the tasks of the CADx on chest radiographs. In this paper, we present an automatic scheme for the detection of lung field from chest radiographs by using a shift-invariant convolution neural network. A novel algorithm for smoothing boundaries of lungs is also presented.

  10. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  11. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  12. Development of a Deep Learning Algorithm for Automatic Diagnosis of Diabetic Retinopathy.

    PubMed

    Raju, Manoj; Pagidimarri, Venkatesh; Barreto, Ryan; Kadam, Amrit; Kasivajjala, Vamsichandra; Aswath, Arun

    2017-01-01

    This paper mainly focuses on the deep learning application in classifying the stage of diabetic retinopathy and detecting the laterality of the eye using funduscopic images. Diabetic retinopathy is a chronic, progressive, sight-threatening disease of the retinal blood vessels. Ophthalmologists diagnose diabetic retinopathy through early funduscopic screening. Normally, there is a time delay in reporting and intervention, apart from the financial cost and risk of blindness associated with it. Using a convolutional neural network based approach for automatic diagnosis of diabetic retinopathy, we trained the prediction network on the publicly available Kaggle dataset. Approximately 35,000 images were used to train the network, which observed a sensitivity of 80.28% and a specificity of 92.29% on the validation dataset of ~53,000 images. Using 8,810 images, the network was trained for detecting the laterality of the eye and observed an accuracy of 93.28% on the validation set of 8,816 images.

  13. GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML.

    PubMed

    Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas

    2013-09-01

    GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.

  14. Extending gene ontology with gene association networks.

    PubMed

    Peng, Jiajie; Wang, Tao; Wang, Jixuan; Wang, Yadong; Chen, Jin

    2016-04-15

    Gene ontology (GO) is a widely used resource to describe the attributes for gene products. However, automatic GO maintenance remains to be difficult because of the complex logical reasoning and the need of biological knowledge that are not explicitly represented in the GO. The existing studies either construct whole GO based on network data or only infer the relations between existing GO terms. None is purposed to add new terms automatically to the existing GO. We proposed a new algorithm 'GOExtender' to efficiently identify all the connected gene pairs labeled by the same parent GO terms. GOExtender is used to predict new GO terms with biological network data, and connect them to the existing GO. Evaluation tests on biological process and cellular component categories of different GO releases showed that GOExtender can extend new GO terms automatically based on the biological network. Furthermore, we applied GOExtender to the recent release of GO and discovered new GO terms with strong support from literature. Software and supplementary document are available at www.msu.edu/%7Ejinchen/GOExtender jinchen@msu.edu or ydwang@hit.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. BioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language.

    PubMed

    Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane

    2016-01-01

    Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. © The Author(s) 2016. Published by Oxford University Press.

  16. GuMNet - Guadarrama Monitoring Network initiative (Madrid,Spain)

    NASA Astrophysics Data System (ADS)

    Santolaria-Canales, Edmundo

    2017-04-01

    The Guadarrama Monitoring Network initiative (GuMNet) is an observational infrastructure focused on monitoring the state of the atmosphere, surface and subsurface in the Sierra de Guadarrama, 50 km NW of the city of Madrid. The network is composed of 10 automatic real time weather stations ranging from low altitude (ca. 900 m.a.s.l) to high mountain areas (ca. 2400 m.a.s.l). The GuMNet infrastructure consists in 10 real time automatic weather stations with instrumentation for observing the state of the atmosphere, surface and the subsurface at the Sierra de Guadarrama, just 50 km north-northwest of the city of Madrid. GuMNet lays the foundations of a research network on weather, soil thermodynamics, boundary layer physics, climate and ecosystem oriented impacts, air pollutions, etc. in the Sierra de Guadarrama. GuMNet represents a first step to provide a unique observational network in an environment of high protection to be used as a laboratory serving a wide range of scientific and educational interests. High altitude sites are focused on periglacial areas and lower altitude sites have emphasis on pastures. One of the low altitude sites is equipped with a 10 m high anemometric tower with a 3D sonic anemometer at the top jointly with a CO2/H2O analyzer that will allow sampling of wind profiles and H2O and CO2 eddy covariance fluxes, important for soil respiration and CO2 and water vapor exchange. A portable station has also a 3D sonic anemometer with CO2/H2O analyzer, this 4 meters-high portable tower is designed for comparison with other soil terrain fluxes. The network is connected via general packet radio service (GPRS) to the central lab in the Campus of Excellence of Moncloa and a management software has been developed to handle the operation of the infrastructure. The deployment of instrumentation and connection of sites to the network was finished in 2016. GuMNet is currently in the process of becoming operational. Conceptually, GuMNet intends to convert a well known space such as the Sierra de Guadarrama into a laboratory for interdisciplinary research. On one hand, a space for exchange of observational and scientific discussion among researchers. On the other hand, online platforms and various informative materials will allow the public to access the results generated by different research lines with a focus on this region. GuMNet is part of the MRI initiative and as well as ongoing collaboration with the Global Precipitation Measurements (NASA). This initiative is supported and developed by research groups integrating the GuMNet Consortium from the Complutense and Polytechnical Universities of Madrid (UCM and UPM), the Energetic Environmental and Technological Research Centre (CIEMAT), the Spanish meteorological agency, AEMET, the National Park Sierra de Guadarrama (PNSG) and the National Research Council (CSIC). Web and contact: http://www.ucm.es/gumnet/

  17. Automatic reconstruction of a bacterial regulatory network using Natural Language Processing

    PubMed Central

    Rodríguez-Penagos, Carlos; Salgado, Heladia; Martínez-Flores, Irma; Collado-Vides, Julio

    2007-01-01

    Background Manual curation of biological databases, an expensive and labor-intensive process, is essential for high quality integrated data. In this paper we report the implementation of a state-of-the-art Natural Language Processing system that creates computer-readable networks of regulatory interactions directly from different collections of abstracts and full-text papers. Our major aim is to understand how automatic annotation using Text-Mining techniques can complement manual curation of biological databases. We implemented a rule-based system to generate networks from different sets of documents dealing with regulation in Escherichia coli K-12. Results Performance evaluation is based on the most comprehensive transcriptional regulation database for any organism, the manually-curated RegulonDB, 45% of which we were able to recreate automatically. From our automated analysis we were also able to find some new interactions from papers not already curated, or that were missed in the manual filtering and review of the literature. We also put forward a novel Regulatory Interaction Markup Language better suited than SBML for simultaneously representing data of interest for biologists and text miners. Conclusion Manual curation of the output of automatic processing of text is a good way to complement a more detailed review of the literature, either for validating the results of what has been already annotated, or for discovering facts and information that might have been overlooked at the triage or curation stages. PMID:17683642

  18. Automatic physical inference with information maximizing neural networks

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.

  19. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    PubMed

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  20. THE CHOICE OF OPTIMAL STRUCTURE OF ARTIFICIAL NEURAL NETWORK CLASSIFIER INTENDED FOR CLASSIFICATION OF WELDING FLAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, R.; Chady, T.; Baniukiewicz, P.

    2010-02-22

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less

  1. The Choice of Optimal Structure of Artificial Neural Network Classifier Intended for Classification of Welding Flaws

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.

    2010-02-01

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less

  3. Toward next-generation optical networks: a network operator perspective based on experimental tests and economic analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng

    2004-04-01

    As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.

  4. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery

    PubMed Central

    Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases. PMID:28985229

  5. A new methodology for automatic detection of reference points in 3D cephalometry: A pilot study.

    PubMed

    Ed-Dhahraouy, Mohammed; Riri, Hicham; Ezzahmouly, Manal; Bourzgui, Farid; El Moutaoukkil, Abdelmajid

    2018-04-05

    The aim of this study was to develop a new method for an automatic detection of reference points in 3D cephalometry to overcome the limits of 2D cephalometric analyses. A specific application was designed using the C++ language for automatic and manual identification of 21 (reference) points on the craniofacial structures. Our algorithm is based on the implementation of an anatomical and geometrical network adapted to the craniofacial structure. This network was constructed based on the anatomical knowledge of the 3D cephalometric (reference) points. The proposed algorithm was tested on five CBCT images. The proposed approach for the automatic 3D cephalometric identification was able to detect 21 points with a mean error of 2.32mm. In this pilot study, we propose an automated methodology for the identification of the 3D cephalometric (reference) points. A larger sample will be implemented in the future to assess the method validity and reliability. Copyright © 2018 CEO. Published by Elsevier Masson SAS. All rights reserved.

  6. Social Networks and Welfare in Future Animal Management

    PubMed Central

    Koene, Paul; Ipema, Bert

    2014-01-01

    Simple Summary Living in a stable social environment is important to animals. Animal species have developed social behaviors and rules of approach and avoidance of conspecifics in order to co-exist. Animal species are kept or domesticated without explicit regard for their inherent social behavior and rules. Examples of social structures are provided for four species kept and managed by humans. This information is important for the welfare management of these species. In the near future, automatic measurement of social structures will provide a tool for daily welfare management together with nearest neighbor information. Abstract It may become advantageous to keep human-managed animals in the social network groups to which they have adapted. Data concerning the social networks of farm animal species and their ancestors are scarce but essential to establishing the importance of a natural social network for farmed animal species. Social Network Analysis (SNA) facilitates the characterization of social networking at group, subgroup and individual levels. SNA is currently used for modeling the social behavior and management of wild animals and social welfare of zoo animals. It has been recognized for use with farm animals but has yet to be applied for management purposes. Currently, the main focus is on cattle, because in large groups (poultry), recording of individuals is expensive and the existence of social networks is uncertain due to on-farm restrictions. However, in many cases, a stable social network might be important to individual animal fitness, survival and welfare. For instance, when laying hens are not too densely housed, simple networks may be established. We describe here small social networks in horses, brown bears, laying hens and veal calves to illustrate the importance of measuring social networks among animals managed by humans. Emphasis is placed on the automatic measurement of identity, location, nearest neighbors and nearest neighbor distance for management purposes. It is concluded that social networks are important to the welfare of human-managed animal species and that welfare management based on automatic recordings will become available in the near future. PMID:26479886

  7. JAXA-NASA Interoperability Demonstration for Application of DTN Under Simulated Rain Attenuation

    NASA Technical Reports Server (NTRS)

    Suzuki, Kiyoshisa; Inagawa, Shinichi; Lippincott, Jeff; Cecil, Andrew J.

    2014-01-01

    As is well known, K-band or higher band communications in space link segment often experience intermittent disruptions caused by heavy rainfall. In view of keeping data integrity and establishing autonomous operations under such situation, it is important to consider introducing a tolerance mechanism such as Delay/Disruption Tolerant Networking (DTN). The Consultative Committee for Space Data Systems (CCSDS) is studying DTN as part of the standardization activities for space data systems. As a contribution to CCSDS and a feasibility study for future utilization of DTN, Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA) conducted an interoperability demonstration for confirming its tolerance mechanism and capability of automatic operation using Data Relay Test Satellite (DRTS) space link and its ground terminals. Both parties used the Interplanetary Overlay Network (ION) open source software, including the Bundle Protocol, the Licklider Transmission Protocol, and Contact Graph Routing. This paper introduces the contents of the interoperability demonstration and its results.

  8. Combining morphometric features and convolutional networks fusion for glaucoma diagnosis

    NASA Astrophysics Data System (ADS)

    Perdomo, Oscar; Arevalo, John; González, Fabio A.

    2017-11-01

    Glaucoma is an eye condition that leads to loss of vision and blindness. Ophthalmoscopy exam evaluates the shape, color and proportion between the optic disc and physiologic cup, but the lack of agreement among experts is still the main diagnosis problem. The application of deep convolutional neural networks combined with automatic extraction of features such as: the cup-to-disc distance in the four quadrants, the perimeter, area, eccentricity, the major radio, the minor radio in optic disc and cup, in addition to all the ratios among the previous parameters may help with a better automatic grading of glaucoma. This paper presents a strategy to merge morphological features and deep convolutional neural networks as a novel methodology to support the glaucoma diagnosis in eye fundus images.

  9. Distrubtion Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  10. Distribution Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  11. IMNN: Information Maximizing Neural Networks

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.

  12. Supervised machine learning on a network scale: application to seismic event classification and detection

    NASA Astrophysics Data System (ADS)

    Reynen, Andrew; Audet, Pascal

    2017-09-01

    A new method using a machine learning technique is applied to event classification and detection at seismic networks. This method is applicable to a variety of network sizes and settings. The algorithm makes use of a small catalogue of known observations across the entire network. Two attributes, the polarization and frequency content, are used as input to regression. These attributes are extracted at predicted arrival times for P and S waves using only an approximate velocity model, as attributes are calculated over large time spans. This method of waveform characterization is shown to be able to distinguish between blasts and earthquakes with 99 per cent accuracy using a network of 13 stations located in Southern California. The combination of machine learning with generalized waveform features is further applied to event detection in Oklahoma, United States. The event detection algorithm makes use of a pair of unique seismic phases to locate events, with a precision directly related to the sampling rate of the generalized waveform features. Over a week of data from 30 stations in Oklahoma, United States are used to automatically detect 25 times more events than the catalogue of the local geological survey, with a false detection rate of less than 2 per cent. This method provides a highly confident way of detecting and locating events. Furthermore, a large number of seismic events can be automatically detected with low false alarm, allowing for a larger automatic event catalogue with a high degree of trust.

  13. Coupling flood forecasting and social media crowdsourcing

    NASA Astrophysics Data System (ADS)

    Kalas, Milan; Kliment, Tomas; Salamon, Peter

    2016-04-01

    Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Nations Office for the Coordination of Humanitarian Affairs in response to Typhoon Yolanda. The network of volunteers performing rapid needs & damage assessment by tagging reports posted to social media which were then used by machine learning classifiers as a training set to automatically identify tweets referring to both urgent needs and offers of help. In this work we will present the potential of coupling a social media streaming and news monitoring application ( GlobalFloodNews - www.globalfloodsystem.com) with a flood forecasting system (www.globalfloods.eu) and the geo-catalogue of the OGC services discovered in the Google Search Engine (WMS, WFS, WCS, etc.) to provide a full suite of information available to crisis management centers as fast as possible. In GlobalFloodNews we use advanced filtering of the real-time Twitter stream, where the relevant information is automatically extracted using natural language and signal processing techniques. The keyword filters are adjusted and optimized automatically using machine learning algorithms as new reports are added to the system. In order to refine the search results the forecasting system will be triggering an event-based search on the social media and OGC services relevant for crisis response (population distribution, critical infrastructure, hospitals etc.). The current version of the system makes use of USHAHIDI Crowdmap platform, which is designed to easily crowdsource information using multiple channels, including SMS, email, Twitter and the web we want to show the potential of monitoring floods at the global scale.

  14. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  15. Efficient content-based low-altitude images correlated network and strips reconstruction

    NASA Astrophysics Data System (ADS)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  16. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.

  17. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    PubMed

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.

  18. Technical guidelines for the implementation of the Advanced National Seismic System

    USGS Publications Warehouse

    Committee, ANSS Technical Integration

    2002-01-01

    The Advanced National Seismic System (ANSS) is a major national initiative led by the US Geological Survey that serves the needs of the earthquake monitoring, engineering, and research communities as well as national, state, and local governments, emergency response organizations, and the general public. Legislation authorizing the ANSS was passed in 2000, and low levels of funding for planning and initial purchases of new seismic instrumentation have been appropriated beginning in FY2000. When fully operational, the ANSS will be an advanced monitoring system (modern digital seismographs and accelerographs, communications networks, data collection and processing centers, and well-trained personnel) distributed across the United States that operates with high performance standards, gathers critical technical data, and effectively provides timely and reliable earthquake products, information, and services to meet the Nation’s needs. The ANSS will automatically broadcast timely and authoritative products describing the occurrence of earthquakes, earthquake source properties, the distribution of ground shaking, and, where feasible, broadcast early warnings and alerts for the onset of strong ground shaking. Most importantly, the ANSS will provide earthquake data, derived products, and information to the public, emergency responders, officials, engineers, educators, researchers, and other ANSS partners rapidly and in forms that are useful for their needs.

  19. National Highway Safety Administration. Automatic collision notice field test summary.

    PubMed

    2001-10-01

    From 1995 to 2000, the National Highway Traffic Safety Administration (NHTSA) sponsored an initiative to create and operate an Automatic Collision Notification (ACN) system on a demonstration basis in a rural area to provide faster and smarter emergency medical responses and in an attempt to save lives and reduce disabilities from injuries. This article is a brief summary of that demonstration.

  20. Video conferencing made easy

    NASA Technical Reports Server (NTRS)

    Larsen, D. Gail; Schwieder, Paul R.

    1993-01-01

    Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.

  1. Video conferencing made easy

    NASA Astrophysics Data System (ADS)

    Larsen, D. Gail; Schwieder, Paul R.

    1993-02-01

    Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.

  2. Video conferencing made easy

    NASA Astrophysics Data System (ADS)

    Larsen, D. G.; Schwieder, P. R.

    Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE video conferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hub monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel costs throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.

  3. ADVANCED SURVEILLANCE OF ENVIROMENTAL RADIATION IN AUTOMATIC NETWORKS.

    PubMed

    Benito, G; Sáez, J C; Blázquez, J B; Quiñones, J

    2018-06-01

    The objective of this study is the verification of the operation of a radiation monitoring network conformed by several sensors. The malfunction of a surveillance network has security and economic consequences, which derive from its maintenance and could be avoided with an early detection. The proposed method is based on a kind of multivariate distance, and the verification for the methodology has been tested at CIEMAT's local radiological early warning network.

  4. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    DOE PAGES

    Vollmer, Todd; Manic, Milos

    2014-05-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, anmore » established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.« less

  5. DiffNet: automatic differential functional summarization of dE-MAP networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2014-10-01

    The study of genetic interaction networks that respond to changing conditions is an emerging research problem. Recently, Bandyopadhyay et al. (2010) proposed a technique to construct a differential network (dE-MAPnetwork) from two static gene interaction networks in order to map the interaction differences between them under environment or condition change (e.g., DNA-damaging agent). This differential network is then manually analyzed to conclude that DNA repair is differentially effected by the condition change. Unfortunately, manual construction of differential functional summary from a dE-MAP network that summarizes all pertinent functional responses is time-consuming, laborious and error-prone, impeding large-scale analysis on it. To this end, we propose DiffNet, a novel data-driven algorithm that leverages Gene Ontology (go) annotations to automatically summarize a dE-MAP network to obtain a high-level map of functional responses due to condition change. We tested DiffNet on the dynamic interaction networks following MMS treatment and demonstrated the superiority of our approach in generating differential functional summaries compared to state-of-the-art graph clustering methods. We studied the effects of parameters in DiffNet in controlling the quality of the summary. We also performed a case study that illustrates its utility. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Efficient self-organizing multilayer neural network for nonlinear system modeling.

    PubMed

    Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei

    2013-07-01

    It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Automatically Scoring Short Essays for Content. CRESST Report 836

    ERIC Educational Resources Information Center

    Kerr, Deirdre; Mousavi, Hamid; Iseli, Markus R.

    2013-01-01

    The Common Core assessments emphasize short essay constructed response items over multiple choice items because they are more precise measures of understanding. However, such items are too costly and time consuming to be used in national assessments unless a way is found to score them automatically. Current automatic essay scoring techniques are…

  8. 12 CFR 7.1018 - Automatic payment plan account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Automatic payment plan account. 7.1018 Section 7.1018 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1018 Automatic payment plan account. A national bank may, for the benefit and...

  9. 47 CFR 68.318 - Additional limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions for Terminal Equipment Approval § 68.318 Additional... incorporate the specified features. (b) Registered terminal equipment with automatic dialing capability. (1... proceeding to dial another number. (6) Network addressing signals shall be transmitted no earlier than: (i...

  10. 47 CFR 68.318 - Additional limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions for Terminal Equipment Approval § 68.318 Additional... incorporate the specified features. (b) Registered terminal equipment with automatic dialing capability. (1... proceeding to dial another number. (6) Network addressing signals shall be transmitted no earlier than: (i...

  11. 47 CFR 68.318 - Additional limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions for Terminal Equipment Approval § 68.318 Additional... incorporate the specified features. (b) Registered terminal equipment with automatic dialing capability. (1... proceeding to dial another number. (6) Network addressing signals shall be transmitted no earlier than: (i...

  12. 47 CFR 68.318 - Additional limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions for Terminal Equipment Approval § 68.318 Additional... incorporate the specified features. (b) Registered terminal equipment with automatic dialing capability. (1... proceeding to dial another number. (6) Network addressing signals shall be transmitted no earlier than: (i...

  13. 47 CFR 68.318 - Additional limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions for Terminal Equipment Approval § 68.318 Additional... incorporate the specified features. (b) Registered terminal equipment with automatic dialing capability. (1... proceeding to dial another number. (6) Network addressing signals shall be transmitted no earlier than: (i...

  14. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2001-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  15. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2004-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  16. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  17. Time coded distribution via broadcasting stations

    NASA Technical Reports Server (NTRS)

    Leschiutta, S.; Pettiti, V.; Detoma, E.

    1979-01-01

    The distribution of standard time signals via AM and FM broadcasting stations presents the distinct advantages to offer a wide area coverage and to allow the use of inexpensive receivers, but the signals are radiated a limited number of times per day, are not usually available during the night, and no full and automatic synchronization of a remote clock is possible. As an attempt to overcome some of these problems, a time coded signal with a complete date information is diffused by the IEN via the national broadcasting networks in Italy. These signals are radiated by some 120 AM and about 3000 FM and TV transmitters around the country. In such a way, a time ordered system with an accuracy of a couple of milliseconds is easily achieved.

  18. P2MP MPLS-Based Hierarchical Service Management System

    NASA Astrophysics Data System (ADS)

    Kumaki, Kenji; Nakagawa, Ikuo; Nagami, Kenichi; Ogishi, Tomohiko; Ano, Shigehiro

    This paper proposes a point-to-multipoint (P2MP) Multi-Protocol Label Switching (MPLS) based hierarchical service management system. Traditionally, general management systems deployed in some service providers control MPLS Label Switched Paths (LSPs) (e.g., RSVP-TE and LDP) and services (e.g., L2VPN, L3VPN and IP) separately. In order for dedicated management systems for MPLS LSPs and services to cooperate with each other automatically, a hierarchical service management system has been proposed with the main focus on point-to-point (P2P) TE LSPs in MPLS path management. In the case where P2MP TE LSPs and services are deployed in MPLS networks, the dedicated management systems for P2MP TE LSPs and services must work together automatically. Therefore, this paper proposes a new algorithm that uses a correlation between P2MP TE LSPs and multicast VPN services based on a P2MP MPLS-based hierarchical service management architecture. Also, the capacity and performance of the proposed algorithm are evaluated by simulations, which are actually based on certain real MPLS production networks, and are compared to that of the algorithm for P2P TE LSPs. Results show this system is very scalable within real MPLS production networks. This system, with the automatic correlation, appears to be deployable in real MPLS production networks.

  19. Preparing a collection of radiology examinations for distribution and retrieval.

    PubMed

    Demner-Fushman, Dina; Kohli, Marc D; Rosenman, Marc B; Shooshan, Sonya E; Rodriguez, Laritza; Antani, Sameer; Thoma, George R; McDonald, Clement J

    2016-03-01

    Clinical documents made available for secondary use play an increasingly important role in discovery of clinical knowledge, development of research methods, and education. An important step in facilitating secondary use of clinical document collections is easy access to descriptions and samples that represent the content of the collections. This paper presents an approach to developing a collection of radiology examinations, including both the images and radiologist narrative reports, and making them publicly available in a searchable database. The authors collected 3996 radiology reports from the Indiana Network for Patient Care and 8121 associated images from the hospitals' picture archiving systems. The images and reports were de-identified automatically and then the automatic de-identification was manually verified. The authors coded the key findings of the reports and empirically assessed the benefits of manual coding on retrieval. The automatic de-identification of the narrative was aggressive and achieved 100% precision at the cost of rendering a few findings uninterpretable. Automatic de-identification of images was not quite as perfect. Images for two of 3996 patients (0.05%) showed protected health information. Manual encoding of findings improved retrieval precision. Stringent de-identification methods can remove all identifiers from text radiology reports. DICOM de-identification of images does not remove all identifying information and needs special attention to images scanned from film. Adding manual coding to the radiologist narrative reports significantly improved relevancy of the retrieved clinical documents. The de-identified Indiana chest X-ray collection is available for searching and downloading from the National Library of Medicine (http://openi.nlm.nih.gov/). Published by Oxford University Press on behalf of the American Medical Informatics Association 2015. This work is written by US Government employees and is in the public domain in the US.

  20. Automatic breast density classification using a convolutional neural network architecture search procedure

    NASA Astrophysics Data System (ADS)

    Fonseca, Pablo; Mendoza, Julio; Wainer, Jacques; Ferrer, Jose; Pinto, Joseph; Guerrero, Jorge; Castaneda, Benjamin

    2015-03-01

    Breast parenchymal density is considered a strong indicator of breast cancer risk and therefore useful for preventive tasks. Measurement of breast density is often qualitative and requires the subjective judgment of radiologists. Here we explore an automatic breast composition classification workflow based on convolutional neural networks for feature extraction in combination with a support vector machines classifier. This is compared to the assessments of seven experienced radiologists. The experiments yielded an average kappa value of 0.58 when using the mode of the radiologists' classifications as ground truth. Individual radiologist performance against this ground truth yielded kappa values between 0.56 and 0.79.

  1. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  2. Social Networks and Welfare in Future Animal Management.

    PubMed

    Koene, Paul; Ipema, Bert

    2014-03-17

    It may become advantageous to keep human-managed animals in the social network groups to which they have adapted. Data concerning the social networks of farm animal species and their ancestors are scarce but essential to establishing the importance of a natural social network for farmed animal species. Social Network Analysis (SNA) facilitates the characterization of social networking at group, subgroup and individual levels. SNA is currently used for modeling the social behavior and management of wild animals and social welfare of zoo animals. It has been recognized for use with farm animals but has yet to be applied for management purposes. Currently, the main focus is on cattle, because in large groups (poultry), recording of individuals is expensive and the existence of social networks is uncertain due to on-farm restrictions. However, in many cases, a stable social network might be important to individual animal fitness, survival and welfare. For instance, when laying hens are not too densely housed, simple networks may be established. We describe here small social networks in horses, brown bears, laying hens and veal calves to illustrate the importance of measuring social networks among animals managed by humans. Emphasis is placed on the automatic measurement of identity, location, nearest neighbors and nearest neighbor distance for management purposes. It is concluded that social networks are important to the welfare of human-managed animal species and that welfare management based on automatic recordings will become available in the near future.

  3. Conversion of KEGG metabolic pathways to SBGN maps including automatic layout

    PubMed Central

    2013-01-01

    Background Biologists make frequent use of databases containing large and complex biological networks. One popular database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) which uses its own graphical representation and manual layout for pathways. While some general drawing conventions exist for biological networks, arbitrary graphical representations are very common. Recently, a new standard has been established for displaying biological processes, the Systems Biology Graphical Notation (SBGN), which aims to unify the look of such maps. Ideally, online repositories such as KEGG would automatically provide networks in a variety of notations including SBGN. Unfortunately, this is non‐trivial, since converting between notations may add, remove or otherwise alter map elements so that the existing layout cannot be simply reused. Results Here we describe a methodology for automatic translation of KEGG metabolic pathways into the SBGN format. We infer important properties of the KEGG layout and treat these as layout constraints that are maintained during the conversion to SBGN maps. Conclusions This allows for the drawing and layout conventions of SBGN to be followed while creating maps that are still recognizably the original KEGG pathways. This article details the steps in this process and provides examples of the final result. PMID:23953132

  4. When abuse primes addiction - automatic activation of alcohol concepts by child maltreatment related cues in emotionally abused alcoholics.

    PubMed

    Potthast, Nadine; Neuner, Frank; Catani, Claudia

    2015-09-01

    Recent research indicates that there is a link between emotional maltreatment and alcohol dependence (AD), but the underlying mechanisms still need to be clarified. There is reason to assume that maltreatment related cues automatically activate an associative memory network comprising cues eliciting craving as well as alcohol-related responses. The current study aimed to examine this network in AD patients who experienced emotional abuse using a priming paradigm. A specific priming effect in emotionally abused AD subjects was hypothesized for maltreatment related words that preceded alcohol related words. 49 AD subjects (n=14 with emotional abuse vs. n=35 without emotional abuse) and 34 control subjects performed a priming task with maltreatment related and neutral prime words combined with alcohol related and neutral target words. Maltreatment related words consisted of socially and physically threatening words. As hypothesized, a specific priming effect for socially threatening and physically threatening cues was found only in AD subjects with emotional abuse. The present data are the first to provide evidence that child maltreatment related cues automatically activate an associative memory network in alcoholics with emotional abuse experiences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An artificial intelligence approach to classify and analyse EEG traces.

    PubMed

    Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello

    2002-06-01

    We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.

  6. Road Network Extraction from Dsm by Mathematical Morphology and Reasoning

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wu, Jianliang; Zhu, Lin; Tachibana, Kikuo

    2016-06-01

    The objective of this research is the automatic extraction of the road network in a scene of the urban area from a high resolution digital surface model (DSM). Automatic road extraction and modeling from remote sensed data has been studied for more than one decade. The methods vary greatly due to the differences of data types, regions, resolutions et al. An advanced automatic road network extraction scheme is proposed to address the issues of tedium steps on segmentation, recognition and grouping. It is on the basis of a geometric road model which describes a multiple-level structure. The 0-dimension element is intersection. The 1-dimension elements are central line and side. The 2-dimension element is plane, which is generated from the 1-dimension elements. The key feature of the presented approach is the cross validation for the three road elements which goes through the entire procedure of their extraction. The advantage of our model and method is that linear elements of the road can be derived directly, without any complex, non-robust connection hypothesis. An example of Japanese scene is presented to display the procedure and the performance of the approach.

  7. Probabilistic resource allocation system with self-adaptive capability

    NASA Technical Reports Server (NTRS)

    Yufik, Yan M. (Inventor)

    1996-01-01

    A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and directed links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Reliability values are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.

  8. Probabilistic resource allocation system with self-adaptive capability

    NASA Technical Reports Server (NTRS)

    Yufik, Yan M. (Inventor)

    1998-01-01

    A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and weighted links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Weights are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.

  9. A Self-Organizing Incremental Neural Network based on local distribution learning.

    PubMed

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Container-code recognition system based on computer vision and deep neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  11. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.

    PubMed

    Xu, Kele; Feng, Dawei; Mi, Haibo

    2017-11-23

    The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.

  12. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    PubMed Central

    Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen

    2011-01-01

    This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time. PMID:22346680

  13. Advanced Computational Techniques for Power Tube Design.

    DTIC Science & Technology

    1986-07-01

    fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design

  14. Observations of Earth space by self-powered stations in Antarctica.

    PubMed

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power control system with variable resistor shunts to regulate the power and dissipate the excess energy and at the same time provide heat for a temperature controlled environment for the instrument electronics and data system. We deployed such systems and demonstrated a high degree of reliability in several years of operation in spite of the relative unpredictability of the Antarctic environment. Sample data are shown to demonstrate that the AGOs provide key measurements, which would be impossible without the special technology developed for this type of observing platform.

  15. Observations of Earth space by self-powered stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Rachelson, W.; Sterling, R.; Frey, H. U.; Harris, S. E.; McBride, S.; Rosenberg, T. J.; Detrick, D.; Doolittle, J. L.; Engebretson, M.; Inan, U.; Labelle, J. W.; Lanzerotti, L. J.; Weatherwax, A. T.

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power control system with variable resistor shunts to regulate the power and dissipate the excess energy and at the same time provide heat for a temperature controlled environment for the instrument electronics and data system. We deployed such systems and demonstrated a high degree of reliability in several years of operation in spite of the relative unpredictability of the Antarctic environment. Sample data are shown to demonstrate that the AGOs provide key measurements, which would be impossible without the special technology developed for this type of observing platform.

  16. A grid layout algorithm for automatic drawing of biochemical networks.

    PubMed

    Li, Weijiang; Kurata, Hiroyuki

    2005-05-01

    Visualization is indispensable in the research of complex biochemical networks. Available graph layout algorithms are not adequate for satisfactorily drawing such networks. New methods are required to visualize automatically the topological architectures and facilitate the understanding of the functions of the networks. We propose a novel layout algorithm to draw complex biochemical networks. A network is modeled as a system of interacting nodes on squared grids. A discrete cost function between each node pair is designed based on the topological relation and the geometric positions of the two nodes. The layouts are produced by minimizing the total cost. We design a fast algorithm to minimize the discrete cost function, by which candidate layouts can be produced efficiently. A simulated annealing procedure is used to choose better candidates. Our algorithm demonstrates its ability to exhibit cluster structures clearly in relatively compact layout areas without any prior knowledge. We developed Windows software to implement the algorithm for CADLIVE. All materials can be freely downloaded from http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/ http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/

  17. Learning a detection map for a network of unattended ground sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hung D.; Koch, Mark William

    2010-03-01

    We have developed algorithms to automatically learn a detection map of a deployed sensor field for a virtual presence and extended defense (VPED) system without apriori knowledge of the local terrain. The VPED system is an unattended network of sensor pods, with each pod containing acoustic and seismic sensors. Each pod has the ability to detect and classify moving targets at a limited range. By using a network of pods we can form a virtual perimeter with each pod responsible for a certain section of the perimeter. The site's geography and soil conditions can affect the detection performance of themore » pods. Thus, a network in the field may not have the same performance as a network designed in the lab. To solve this problem we automatically estimate a network's detection performance as it is being installed at a site by a mobile deployment unit (MDU). The MDU will wear a GPS unit, so the system not only knows when it can detect the MDU, but also the MDU's location. In this paper, we demonstrate how to handle anisotropic sensor-configurations, geography, and soil conditions.« less

  18. Automated Induction Of Rule-Based Neural Networks

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.; Goodman, Rodney M.

    1994-01-01

    Prototype expert systems implemented in software and are functionally equivalent to neural networks set up automatically and placed into operation within minutes following information-theoretic approach to automated acquisition of knowledge from large example data bases. Approach based largely on use of ITRULE computer program.

  19. Suggestions for Library Network Design.

    ERIC Educational Resources Information Center

    Salton, Gerald

    1979-01-01

    Various approaches to the design of automatic library systems are described, suggestions for the design of rational and effective automated library processes are posed, and an attempt is made to assess the importance and effect of library network systems on library operations and library effectiveness. (Author/CWM)

  20. Using a CLIPS expert system to automatically manage TCP/IP networks and their components

    NASA Technical Reports Server (NTRS)

    Faul, Ben M.

    1991-01-01

    A expert system that can directly manage networks components on a Transmission Control Protocol/Internet Protocol (TCP/IP) network is described. Previous expert systems for managing networks have focused on managing network faults after they occur. However, this proactive expert system can monitor and control network components in near real time. The ability to directly manage network elements from the C Language Integrated Production System (CLIPS) is accomplished by the integration of the Simple Network Management Protocol (SNMP) and a Abstract Syntax Notation (ASN) parser into the CLIPS artificial intelligence language.

  1. [Assessment of skin aging grading based on computer vision].

    PubMed

    Li, Lingyu; Xue, Jinxia; He, Xiangqian; Zhang, Sheng; Fan, Chu

    2017-06-01

    Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e. , mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.

  2. Neural network for interpretation of multi-meaning Chinese words

    NASA Astrophysics Data System (ADS)

    He, Qianhua; Xu, Bingzheng

    1994-03-01

    We proposed a neural network that can interpret multi-meaning Chinese words correctly by using context information. The self-organized network, designed for translating Chinese to English, builds a context according to key words of the processed text and utilizes it to interpret multi-meaning words correctly. The network is generated automatically basing on a Chinese-English dictionary and a knowledge-base of weights, and can adapt to the change of contexts. Simulation experiments have proved that the network worked as expected.

  3. [Terahertz Spectroscopic Identification with Deep Belief Network].

    PubMed

    Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao

    2015-12-01

    Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.

  4. Automatic Concept-Based Query Expansion Using Term Relational Pathways Built from a Collection-Specific Association Thesaurus

    ERIC Educational Resources Information Center

    Lyall-Wilson, Jennifer Rae

    2013-01-01

    The dissertation research explores an approach to automatic concept-based query expansion to improve search engine performance. It uses a network-based approach for identifying the concept represented by the user's query and is founded on the idea that a collection-specific association thesaurus can be used to create a reasonable representation of…

  5. Teaching with technology: automatically receiving information from the internet and web.

    PubMed

    Wink, Diane M

    2010-01-01

    In this bimonthly series, the author examines how nurse educators can use the Internet and Web-based computer technologies such as search, communication, and collaborative writing tools, social networking and social bookmarking sites, virtual worlds, and Web-based teaching and learning programs. This article presents information and tools related to automatically receiving information from the Internet and Web.

  6. Automatic identification of watercourses in flat and engineered landscapes by computing the skeleton of a LiDAR point cloud

    NASA Astrophysics Data System (ADS)

    Broersen, Tom; Peters, Ravi; Ledoux, Hugo

    2017-09-01

    Drainage networks play a crucial role in protecting land against floods. It is therefore important to have an accurate map of the watercourses that form the drainage network. Previous work on the automatic identification of watercourses was typically based on grids, focused on natural landscapes, and used mostly the slope and curvature of the terrain. We focus in this paper on areas that are characterised by low-lying, flat, and engineered landscapes; these are characteristic to the Netherlands for instance. We propose a new methodology to identify watercourses automatically from elevation data, it uses solely a raw classified LiDAR point cloud as input. We show that by computing twice a skeleton of the point cloud-once in 2D and once in 3D-and that by using the properties of the skeletons we can identify most of the watercourses. We have implemented our methodology and tested it for three different soil types around Utrecht, the Netherlands. We were able to detect 98% of the watercourses for one soil type, and around 75% for the worst case, when we compared to a reference dataset that was obtained semi-automatically.

  7. Collaborative human-machine analysis to disambiguate entities in unstructured text and structured datasets

    NASA Astrophysics Data System (ADS)

    Davenport, Jack H.

    2016-05-01

    Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.

  8. A new tool for rapid and automatic estimation of earthquake source parameters and generation of seismic bulletins

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo

    2016-04-01

    RISS S.r.l. is a Spin-off company recently born from the initiative of the research group constituting the Seismology Laboratory of the Department of Physics of the University of Naples Federico II. RISS is an innovative start-up, based on the decade-long experience in earthquake monitoring systems and seismic data analysis of its members and has the major goal to transform the most recent innovations of the scientific research into technological products and prototypes. With this aim, RISS has recently started the development of a new software, which is an elegant solution to manage and analyse seismic data and to create automatic earthquake bulletins. The software has been initially developed to manage data recorded at the ISNet network (Irpinia Seismic Network), which is a network of seismic stations deployed in Southern Apennines along the active fault system responsible for the 1980, November 23, MS 6.9 Irpinia earthquake. The software, however, is fully exportable and can be used to manage data from different networks, with any kind of station geometry or network configuration and is able to provide reliable estimates of earthquake source parameters, whichever is the background seismicity level of the area of interest. Here we present the real-time automated procedures and the analyses performed by the software package, which is essentially a chain of different modules, each of them aimed at the automatic computation of a specific source parameter. The P-wave arrival times are first detected on the real-time streaming of data and then the software performs the phase association and earthquake binding. As soon as an event is automatically detected by the binder, the earthquake location coordinates and the origin time are rapidly estimated, using a probabilistic, non-linear, exploration algorithm. Then, the software is able to automatically provide three different magnitude estimates. First, the local magnitude (Ml) is computed, using the peak-to-peak amplitude of the equivalent Wood-Anderson displacement recordings. The moment magnitude (Mw) is then estimated from the inversion of displacement spectra. The duration magnitude (Md) is rapidly computed, based on a simple and automatic measurement of the seismic wave coda duration. Starting from the magnitude estimates, other relevant pieces of information are also computed, such as the corner frequency, the seismic moment, the source radius and the seismic energy. The ground-shaking maps on a Google map are produced, for peak ground acceleration (PGA), peak ground velocity (PGV) and instrumental intensity (in SHAKEMAP® format), or a plot of the measured peak ground values. Furthermore, based on a specific decisional scheme, the automatic discrimination between local earthquakes occurred within the network and regional/teleseismic events occurred outside the network is performed. Finally, for largest events, if a consistent number of P-wave polarity reading are available, the focal mechanism is also computed. For each event, all of the available pieces of information are stored in a local database and the results of the automatic analyses are published on an interactive web page. "The Bulletin" shows a map with event location and stations, as well as a table listing all the events, with the associated parameters. The catalogue fields are the event ID, the origin date and time, latitude, longitude, depth, Ml, Mw, Md, the number of triggered stations, the S-displacement spectra, and shaking maps. Some of these entries also provide additional information, such as the focal mechanism (when available). The picked traces are uploaded in the database and from the web interface of the Bulletin the traces can be download for more specific analysis. This innovative software represents a smart solution, with a friendly and interactive interface, for high-level analysis of seismic data analysis and it may represent a relevant tool not only for seismologists, but also for non-expert external users who are interested in the seismological data. The software is a valid tool for the automatic analysis of the background seismicity at different time scales and can be a relevant tool for the monitoring of both natural and induced seismicity.

  9. Modeling and Simulation with INS.

    ERIC Educational Resources Information Center

    Roberts, Stephen D.; And Others

    INS, the Integrated Network Simulation language, puts simulation modeling into a network framework and automatically performs such programming activities as placing the problem into a next event structure, coding events, collecting statistics, monitoring status, and formatting reports. To do this, INS provides a set of symbols (nodes and branches)…

  10. Automatic Car Identification - an Evaluation

    DOT National Transportation Integrated Search

    1972-03-01

    In response to a Federal Railroad Administration request, the Transportation Systems Center evaluated the Automatic Car Identification System (ACI) used on the nation's railroads. The ACI scanner was found to be adequate for reliable data output whil...

  11. Challenges in the Development of a Self-Calibrating Network of Ceilometers.

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Wagner, Frank; Mattis, Ina; Baars, Holger; Haefele, Alexander

    2015-04-01

    There are more than 700 Automatic Lidars and Ceilometers (ALCs) currently operating in Europe. Modern ceilometers can do more than simply measure the cloud base height. They can also measure aerosol layers like volcanic ash, Saharan dust or aerosols within the planetary boundary layer. In the frame of E-PROFILE, which is part of EUMETNET, a European network of automatic lidars and ceilometers will be set up exploiting this new capability. To be able to monitor the evolution of aerosol layers over a large spatial scale, the measurements need to be consistent from one site to another. Currently, most of the instruments do not provide calibrated, only relative measurements. Thus, it is necessary to calibrate the instruments to develop a consistent product for all the instruments from various network and to combine them in an European Network like E-PROFILE. As it is not possible to use an external reference (like a sun photometer or a Raman Lidar) to calibrate all the ALCs in the E-PROFILE network, it is necessary to use a self-calibration algorithm. Two calibration methods have been identified which are suited for automated use in a network: the Rayleigh and the liquid cloud calibration methods In the Rayleigh method, backscatter signals from molecules (this is the Rayleigh signal) can be measured and used to calculate the lidar constant (Wiegner et al. 2012). At the wavelength used for most ceilometers, this signal is weak and can be easily measured only during cloud-free nights. However, with the new algorithm implemented in the frame of the TOPROF COST Action, the Rayleigh calibration was successfully performed on a CHM15k for more than 50% of the nights from October 2013 to September 2014. This method was validated against two reference instruments, the collocated EARLINET PollyXT lidar and the CALIPSO space-borne lidar. The lidar constant was on average within 5.5% compare to the lidar constant determined by the EARLINET lidar. It confirms the validity of the self-calibration method. For 3 CALIPSO overpasses the agreement was on average 20.0%. It is less accurate due to the large uncertainties of CALIPSO data close to the surface. In opposition to the Rayleigh method, Cloud calibration method uses the complete attenuation of the transmitter beam by a liquid water cloud to calculate the lidar constant (O'Connor 2004). The main challenge is the selection of accurately measured water clouds. These clouds should not contain any ice crystals and the detector should not get into saturation. The first problem is especially important during winter time and the second problem is especially important for low clouds. Furthermore the overlap function should be known accurately, especially when the water cloud is located at a distance where the overlap between laser beam and telescope field-of-view is still incomplete. In the E-PROFILE pilot network, the Rayleigh calibration is already performed automatically. This demonstration network maked available, in real time, calibrated ALC measurements from 8 instruments of 4 different types in 6 countries. In collaboration with TOPROF and 20 national weathers services, E-PROFILE will provide, in 2017, near real time ALC measurements in most of Europe.

  12. A Survivable Wavelength Division Multiplexing Passive Optical Network with Both Point-to-Point Service and Broadcast Service Delivery

    NASA Astrophysics Data System (ADS)

    Ma, Xuejiao; Gan, Chaoqin; Deng, Shiqi; Huang, Yan

    2011-11-01

    A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.

  13. Avoiding Accountability: How Charter Operators Evade Ohio's Automatic Closure Law. K-12 Education

    ERIC Educational Resources Information Center

    DePaoli, Jennifer; van Lier, Piet

    2013-01-01

    Ohio's charter-closure law is touted as one of the toughest in the nation because it requires the automatic closure of charter schools that consistently fail to meet academic standards. Ohio's charter-closure law, which became effective in 2008 and was revised in 2011, calls for automatic closure of schools rated in Academic Emergency for at least…

  14. VoIP attacks detection engine based on neural network

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  15. Automated Meteor Detection by All-Sky Digital Camera Systems

    NASA Astrophysics Data System (ADS)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  16. Comparative analyses of different variants of standard ground for automatic control systems of technical processes of oil and gas production

    NASA Astrophysics Data System (ADS)

    Gromakov, E. I.; Gazizov, A. T.; Lukin, V. P.; Chimrov, A. V.

    2017-01-01

    The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies.

  17. Deep convolutional neural network for prostate MR segmentation

    NASA Astrophysics Data System (ADS)

    Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei

    2017-03-01

    Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.

  18. Measurement results obtained from air quality monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracowmore » area could be more intelligible.« less

  19. Fine-Tuning Neural Patient Question Retrieval Model with Generative Adversarial Networks.

    PubMed

    Tang, Guoyu; Ni, Yuan; Wang, Keqiang; Yong, Qin

    2018-01-01

    The online patient question and answering (Q&A) system attracts an increasing amount of users in China. Patient will post their questions and wait for doctors' response. To avoid the lag time involved with the waiting and to reduce the workload on the doctors, a better method is to automatically retrieve the semantically equivalent question from the archive. We present a Generative Adversarial Networks (GAN) based approach to automatically retrieve patient question. We apply supervised deep learning based approaches to determine the similarity between patient questions. Then a GAN framework is used to fine-tune the pre-trained deep learning models. The experiment results show that fine-tuning by GAN can improve the performance.

  20. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  1. Variogram-based feature extraction for neural network recognition of logos

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.

    2003-03-01

    This paper presents a new approach for extracting spatial features of images based on the theory of regionalized variables. These features can be effectively used for automatic recognition of logo images using neural networks. Experimental results on a public-domain logo database show the effectiveness of the proposed approach.

  2. What Information Does Your EHR Contain? Automatic Generation of a Clinical Metadata Warehouse (CMDW) to Support Identification and Data Access Within Distributed Clinical Research Networks.

    PubMed

    Bruland, Philipp; Doods, Justin; Storck, Michael; Dugas, Martin

    2017-01-01

    Data dictionaries provide structural meta-information about data definitions in health information technology (HIT) systems. In this regard, reusing healthcare data for secondary purposes offers several advantages (e.g. reduce documentation times or increased data quality). Prerequisites for data reuse are its quality, availability and identical meaning of data. In diverse projects, research data warehouses serve as core components between heterogeneous clinical databases and various research applications. Given the complexity (high number of data elements) and dynamics (regular updates) of electronic health record (EHR) data structures, we propose a clinical metadata warehouse (CMDW) based on a metadata registry standard. Metadata of two large hospitals were automatically inserted into two CMDWs containing 16,230 forms and 310,519 data elements. Automatic updates of metadata are possible as well as semantic annotations. A CMDW allows metadata discovery, data quality assessment and similarity analyses. Common data models for distributed research networks can be established based on similarity analyses.

  3. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    PubMed

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. A corticostriatal deficit promotes temporal distortion of automatic action in ageing

    PubMed Central

    Matamales, Miriam; Skrbis, Zala; Bailey, Matthew R; Balsam, Peter D; Balleine, Bernard W; Götz, Jürgen

    2017-01-01

    The acquisition of motor skills involves implementing action sequences that increase task efficiency while reducing cognitive loads. This learning capacity depends on specific cortico-basal ganglia circuits that are affected by normal ageing. Here, combining a series of novel behavioural tasks with extensive neuronal mapping and targeted cell manipulations in mice, we explored how ageing of cortico-basal ganglia networks alters the microstructure of action throughout sequence learning. We found that, after extended training, aged mice produced shorter actions and displayed squeezed automatic behaviours characterised by ultrafast oligomeric action chunks that correlated with deficient reorganisation of corticostriatal activity. Chemogenetic disruption of a striatal subcircuit in young mice reproduced age-related within-sequence features, and the introduction of an action-related feedback cue temporarily restored normal sequence structure in aged mice. Our results reveal static properties of aged cortico-basal ganglia networks that introduce temporal limits to action automaticity, something that can compromise procedural learning in ageing. PMID:29058672

  5. Automatic quality assessment of apical four-chamber echocardiograms using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Abdi, Amir H.; Luong, Christina; Tsang, Teresa; Allan, Gregory; Nouranian, Saman; Jue, John; Hawley, Dale; Fleming, Sarah; Gin, Ken; Swift, Jody; Rohling, Robert; Abolmaesumi, Purang

    2017-02-01

    Echocardiography (echo) is the most common test for diagnosis and management of patients with cardiac condi- tions. While most medical imaging modalities benefit from a relatively automated procedure, this is not the case for echo and the quality of the final echo view depends on the competency and experience of the sonographer. It is not uncommon that the sonographer does not have adequate experience to adjust the transducer and acquire a high quality echo, which may further affect the clinical diagnosis. In this work, we aim to aid the operator during image acquisition by automatically assessing the quality of the echo and generating the Automatic Echo Score (AES). This quality assessment method is based on a deep convolutional neural network, trained in an end-to-end fashion on a large dataset of apical four-chamber (A4C) echo images. For this project, an expert car- diologist went through 2,904 A4C images obtained from independent studies and assessed their condition based on a 6-scale grading system. The scores assigned by the expert ranged from 0 to 5. The distribution of scores among the 6 levels were almost uniform. The network was then trained on 80% of the data (2,345 samples). The average absolute error of the trained model in calculating the AES was 0.8 +/- 0:72. The computation time of the GPU implementation of the neural network was estimated at 5 ms per frame, which is sufficient for real-time deployment.

  6. Automatic analysis of attack data from distributed honeypot network

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Voznak, MIroslav; Rezac, Filip; Partila, Pavol; Tomala, Karel

    2013-05-01

    There are many ways of getting real data about malicious activity in a network. One of them relies on masquerading monitoring servers as a production one. These servers are called honeypots and data about attacks on them brings us valuable information about actual attacks and techniques used by hackers. The article describes distributed topology of honeypots, which was developed with a strong orientation on monitoring of IP telephony traffic. IP telephony servers can be easily exposed to various types of attacks, and without protection, this situation can lead to loss of money and other unpleasant consequences. Using a distributed topology with honeypots placed in different geological locations and networks provides more valuable and independent results. With automatic system of gathering information from all honeypots, it is possible to work with all information on one centralized point. Communication between honeypots and centralized data store use secure SSH tunnels and server communicates only with authorized honeypots. The centralized server also automatically analyses data from each honeypot. Results of this analysis and also other statistical data about malicious activity are simply accessible through a built-in web server. All statistical and analysis reports serve as information basis for an algorithm which classifies different types of used VoIP attacks. The web interface then brings a tool for quick comparison and evaluation of actual attacks in all monitored networks. The article describes both, the honeypots nodes in distributed architecture, which monitor suspicious activity, and also methods and algorithms used on the server side for analysis of gathered data.

  7. Automatic Earthquake Detection and Location by Waveform coherency in Alentejo (South Portugal) Using CatchPy

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.

    2015-12-01

    Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates (Grigoli et al. 2013, 2014). The reliability of automatic detections, phase pickings and locations are tested trough the quantitative comparison with manual results. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012

  8. A preliminary architecture for building communication software from traffic captures

    NASA Astrophysics Data System (ADS)

    Acosta, Jaime C.; Estrada, Pedro

    2017-05-01

    Security analysts are tasked with identifying and mitigating network service vulnerabilities. A common problem associated with in-depth testing of network protocols is the availability of software that communicates across disparate protocols. Many times, the software required to communicate with these services is not publicly available. Developing this software is a time-consuming undertaking that requires expertise and understanding of the protocol specification. The work described in this paper aims at developing a software package that is capable of automatically creating communication clients by using packet capture (pcap) and TShark dissectors. Currently, our focus is on simple protocols with fixed fields. The methodologies developed as part of this work will extend to other complex protocols such as the Gateway Load Balancing Protocol (GLBP), Port Aggregation Protocol (PAgP), and Open Shortest Path First (OSPF). Thus far, we have architected a modular pipeline for an automatic traffic-based software generator. We start the transformation of captured network traffic by employing TShark to convert packets into a Packet Details Markup Language (PDML) file. The PDML file contains a parsed, textual, representation of the packet data. Then, we extract field data, types, along with inter and intra-packet dependencies. This information is then utilized to construct an XML file that encompasses the protocol state machine and field vocabulary. Finally, this XML is converted into executable code. Using our methodology, and as a starting point, we have succeeded in automatically generating software that communicates with other hosts using an automatically generated Internet Control Message Protocol (ICMP) client program.

  9. Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum

    PubMed Central

    Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2015-01-01

    We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. PMID:24925772

  10. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  11. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  12. Fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors

    NASA Astrophysics Data System (ADS)

    Mizukami, Masato; Makihara, Mitsuhiro

    2013-07-01

    Conventionally, in intelligent buildings in a metropolitan area network and in small-scale facilities in the optical access network, optical connectors are joined manually using an optical connection board and a patch panel. In this manual connection approach, mistakes occur due to discrepancies between the actual physical settings of the connections and their management because these processes are independent. Moreover, manual cross-connection is time-consuming and expensive because maintenance personnel must be dispatched to remote places to correct mistakes. We have developed a fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors, which are the key elements of automatic optical fiber cross-connect equipment. We evaluate the performance of the equipment, such as its optical characteristics and environmental specifications. We also devise new optical connection mechanisms that enable the automated optical fiber cross-connect module to handle and connect angled physical contact (APC) optical connector plugs. We evaluate the performance of the equipment, such as its optical characteristics. The evaluation results confirm that the automated optical fiber cross-connect equipment can connect APC connectors with low loss and high return loss, indicating that the automated optical fiber cross-connect equipment is suitable for practical use in intelligent buildings and optical access networks.

  13. How does the 'rest-self overlap' mediate the qualitative and automatic features of self-reference?

    PubMed

    Northoff, Georg

    2016-01-01

    The target article points out the qualitative and automatic features of self-reference while leaving open the underlying neural mechanisms. Based on empirical evidence about rest-self overlap and rest-stimulus interaction being special for self-related stimuli, I postulate that the resting state shows self-specific organization. The resting state's self-specific organization may be encoded by activity balances between different networks which in turn predispose the qualitative features of subsequent self-related stimulus-induced activity in, for instance, SAN as well as the automatic features of self-reference effects.

  14. Automatic Implementation of Ttethernet-Based Time-Triggered Avionics Applications

    NASA Astrophysics Data System (ADS)

    Gorcitz, Raul Adrian; Carle, Thomas; Lesens, David; Monchaux, David; Potop-Butucaruy, Dumitru; Sorel, Yves

    2015-09-01

    The design of safety-critical embedded systems such as those used in avionics still involves largely manual phases. But in avionics the definition of standard interfaces embodied in standards such as ARINC 653 or TTEthernet should allow the definition of fully automatic code generation flows that reduce the costs while improving the quality of the generated code, much like compilers have done when replacing manual assembly coding. In this paper, we briefly present such a fully automatic implementation tool, called Lopht, for ARINC653-based time-triggered systems, and then explain how it is currently extended to include support for TTEthernet networks.

  15. Harmonizing clinical terminologies: driving interoperability in healthcare.

    PubMed

    Hamm, Russell A; Knoop, Sarah E; Schwarz, Peter; Block, Aaron D; Davis, Warren L

    2007-01-01

    Internationally, there are countless initiatives to build National Healthcare Information Networks (NHIN) that electronically interconnect healthcare organizations by enhancing and integrating current information technology (IT) capabilities. The realization of such NHINs will enable the simple and immediate exchange of appropriate and vital clinical data among participating organizations. In order for institutions to accurately and automatically exchange information, the electronic clinical documents must make use of established clinical codes, such as those of SNOMED-CT, LOINC and ICD-9 CM. However, there does not exist one universally accepted coding scheme that encapsulates all pertinent clinical information for the purposes of patient care, clinical research and population heatlh reporting. In this paper, we propose a combination of methods and standards that target the harmonization of clinical terminologies and encourage sustainable, interoperable infrastructure for healthcare.

  16. @INGVterremoti: Tweeting the Automatic Detection of Earthquakes

    NASA Astrophysics Data System (ADS)

    Casarotti, E.; Amato, A.; Comunello, F.; Lauciani, V.; Nostro, C.; Polidoro, P.

    2014-12-01

    The use of social media is emerging as a powerful tool fordisseminating trusted information about earthquakes. Since 2009, theTwitter account @INGVterremoti provides constant and timely detailsabout M2+ seismic events detected by the Italian National SeismicNetwork, directly connected with the seismologists on duty at IstitutoNazionale di Geofisica e Vulcanologia (INGV). After the 2012 seismicsequence, the account has been awarded by a national prize as the"most useful Twitter account". Currently, it updates more than 110,000followers (one the first 50 Italian Twitter accounts for number offollowers). Nevertheless, since it provides only the manual revisionof seismic parameters, the timing (approximately between 10 and 20minutes after an event) has started to be under evaluation.Undeniably, mobile internet, social network sites and Twitter in particularrequire a more rapid and "real-time" reaction.During the last 18 months, INGV tested the tweeting of the automaticdetection of M3+ earthquakes, obtaining results reliable enough to bereleased openly 1 or 2 minutes after a seismic event. During the summerof 2014, INGV, with the collaboration of CORIS (Department ofCommunication and Social Research, Sapienza University of Rome),involved the followers of @INGVterremoti and citizens, carrying out aquali-quantitative study (through in-depth interviews and a websurvey) in order to evaluate the best format to deliver suchinformation. In this presentation we will illustrate the results of the reliability test and theanalysis of the survey.

  17. The Italian National Seismic Network

    NASA Astrophysics Data System (ADS)

    Michelini, Alberto

    2016-04-01

    The Italian National Seismic Network is composed by about 400 stations, mainly broadband, installed in the Country and in the surrounding regions. About 110 stations feature also collocated strong motion instruments. The Centro Nazionale Terremoti, (National Earthquake Center), CNT, has installed and operates most of these stations, although a considerable number of stations contributing to the INGV surveillance has been installed and is maintained by other INGV sections (Napoli, Catania, Bologna, Milano) or even other Italian or European Institutions. The important technological upgrades carried out in the last years has allowed for significant improvements of the seismic monitoring of Italy and of the Euro-Mediterranean Countries. The adopted data transmission systems include satellite, wireless connections and wired lines. The Seedlink protocol has been adopted for data transmission. INGV is a primary node of EIDA (European Integrated Data Archive) for archiving and distributing, continuous, quality checked data. The data acquisition system was designed to accomplish, in near-real-time, automatic earthquake detection and hypocenter and magnitude determination (moment tensors, shake maps, etc.). Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment. Overall, the Italian earthquake surveillance service provides, in quasi real-time, hypocenter parameters which are then revised routinely by the analysts of the Bollettino Sismico Nazionale. The results are published on the web page http://cnt.rm.ingv.it/ and are publicly available to both the scientific community and the the general public. This presentation will describe the various activities and resulting products of the Centro Nazionale Terremoti. spanning from data acquisition to archiving, distribution and specialised products.

  18. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.

    PubMed

    Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe

    2018-04-01

    Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter <1 cm). As part of these treatments, effective detection and precise segmentation of lesions are imperative. Many methods based on deep-learning approaches have been developed for the automatic segmentation of gliomas, but very little for that of brain metastases. We adapted an existing 3D convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. An Automatic Diagnosis Method of Facial Acne Vulgaris Based on Convolutional Neural Network.

    PubMed

    Shen, Xiaolei; Zhang, Jiachi; Yan, Chenjun; Zhou, Hong

    2018-04-11

    In this paper, we present a new automatic diagnosis method for facial acne vulgaris which is based on convolutional neural networks (CNNs). To overcome the shortcomings of previous methods which were the inability to classify enough types of acne vulgaris. The core of our method is to extract features of images based on CNNs and achieve classification by classifier. A binary-classifier of skin-and-non-skin is used to detect skin area and a seven-classifier is used to achieve the classification task of facial acne vulgaris and healthy skin. In the experiments, we compare the effectiveness of our CNN and the VGG16 neural network which is pre-trained on the ImageNet data set. We use a ROC curve to evaluate the performance of binary-classifier and use a normalized confusion matrix to evaluate the performance of seven-classifier. The results of our experiments show that the pre-trained VGG16 neural network is effective in extracting features from facial acne vulgaris images. And the features are very useful for the follow-up classifiers. Finally, we try applying the classifiers both based on the pre-trained VGG16 neural network to assist doctors in facial acne vulgaris diagnosis.

  20. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    PubMed Central

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  2. Distributed Common Ground System-Navy Increment 2 (DCGS-N Inc 2)

    DTIC Science & Technology

    2016-03-01

    15 minutes Enter and be Managed in the Network: Reference SvcV-7, Consolidated Afloat Networks and Enterprise Services ( CANES ) CDD, DCGS-N Inc 2...Red, White , Gray Data and Tracks to Command and Control System. Continuous Stream from SCI Common Intelligence Picture to General Service (GENSER...AIS - Automatic Information System AOC - Air Operations Command CANES - Consolidated Afloat Networks and Enterprise Services CID - Center for

  3. Dynamic Testing and Automatic Repair of Reconfigurable Wiring Harnesses

    DTIC Science & Technology

    2006-11-27

    Switch An M ×N grid of switches configured to provide a M -input, N -output routing network. Permutation Network A permutation network performs an...wiring reduces the effective advantage of their reduced switch count, particularly when considering that regular grids (crossbar switches being a...are connected to. The outline circuit shown in Fig. 20 shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a UART

  4. Avoiding Accountability: How Charter Operators Evade Ohio's Automatic Closure Law. K-12 Education. Executive Summary

    ERIC Educational Resources Information Center

    DePaoli, Jennifer; van Lier, Piet

    2013-01-01

    Ohio's charter-closure law is touted as one of the toughest in the nation because it requires the automatic closure of charter schools that consistently fail to meet academic standards. Ohio's charter-closure law, which became effective in 2008 and was revised in 2011, calls for automatic closure of schools rated in Academic Emergency for at least…

  5. Automatic Short Essay Scoring Using Natural Language Processing to Extract Semantic Information in the Form of Propositions. CRESST Report 831

    ERIC Educational Resources Information Center

    Kerr, Deirdre; Mousavi, Hamid; Iseli, Markus R.

    2013-01-01

    The Common Core assessments emphasize short essay constructed-response items over multiple-choice items because they are more precise measures of understanding. However, such items are too costly and time consuming to be used in national assessments unless a way to score them automatically can be found. Current automatic essay-scoring techniques…

  6. Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score

    NASA Astrophysics Data System (ADS)

    Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning

    2017-03-01

    The Gleason grading system was developed for assessing prostate histopathology slides. It is correlated to the outcome and incidence of relapse in prostate cancer. Although this grading is part of a standard protocol performed by pathologists, visual inspection of whole slide images (WSIs) has an inherent subjectivity when evaluated by different pathologists. Computer aided pathology has been proposed to generate an objective and reproducible assessment that can help pathologists in their evaluation of new tissue samples. Deep convolutional neural networks are a promising approach for the automatic classification of histopathology images and can hierarchically learn subtle visual features from the data. However, a large number of manual annotations from pathologists are commonly required to obtain sufficient statistical generalization when training new models that can evaluate the daily generated large amounts of pathology data. A fully automatic approach that detects prostatectomy WSIs with high-grade Gleason score is proposed. We evaluate the performance of various deep learning architectures training them with patches extracted from automatically generated regions-of-interest rather than from manually segmented ones. Relevant parameters for training the deep learning model such as size and number of patches as well as the inclusion or not of data augmentation are compared between the tested deep learning architectures. 235 prostate tissue WSIs with their pathology report from the publicly available TCGA data set were used. An accuracy of 78% was obtained in a balanced set of 46 unseen test images with different Gleason grades in a 2-class decision: high vs. low Gleason grade. Grades 7-8, which represent the boundary decision of the proposed task, were particularly well classified. The method is scalable to larger data sets with straightforward re-training of the model to include data from multiple sources, scanners and acquisition techniques. Automatically generated heatmaps for theWSIs could be useful for improving the selection of patches when training networks for big data sets and to guide the visual inspection of these images.

  7. Toward automatic time-series forecasting using neural networks.

    PubMed

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  8. Recent advances in automatic alignment system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki

    2011-03-01

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

  9. A data delivery system for IMOS, the Australian Integrated Marine Observing System

    NASA Astrophysics Data System (ADS)

    Proctor, R.; Roberts, K.; Ward, B. J.

    2010-09-01

    The Integrated Marine Observing System (IMOS, www.imos.org.au), an AUD 150 m 7-year project (2007-2013), is a distributed set of equipment and data-information services which, among many applications, collectively contribute to meeting the needs of marine climate research in Australia. The observing system provides data in the open oceans around Australia out to a few thousand kilometres as well as the coastal oceans through 11 facilities which effectively observe and measure the 4-dimensional ocean variability, and the physical and biological response of coastal and shelf seas around Australia. Through a national science rationale IMOS is organized as five regional nodes (Western Australia - WAIMOS, South Australian - SAIMOS, Tasmania - TASIMOS, New SouthWales - NSWIMOS and Queensland - QIMOS) surrounded by an oceanic node (Blue Water and Climate). Operationally IMOS is organized as 11 facilities (Argo Australia, Ships of Opportunity, Southern Ocean Automated Time Series Observations, Australian National Facility for Ocean Gliders, Autonomous Underwater Vehicle Facility, Australian National Mooring Network, Australian Coastal Ocean Radar Network, Australian Acoustic Tagging and Monitoring System, Facility for Automated Intelligent Monitoring of Marine Systems, eMarine Information Infrastructure and Satellite Remote Sensing) delivering data. IMOS data is freely available to the public. The data, a combination of near real-time and delayed mode, are made available to researchers through the electronic Marine Information Infrastructure (eMII). eMII utilises the Australian Academic Research Network (AARNET) to support a distributed database on OPeNDAP/THREDDS servers hosted by regional computing centres. IMOS instruments are described through the OGC Specification SensorML and where-ever possible data is in CF compliant netCDF format. Metadata, conforming to standard ISO 19115, is automatically harvested from the netCDF files and the metadata records catalogued in the OGC GeoNetwork Metadata Entry and Search Tool (MEST). Data discovery, access and download occur via web services through the IMOS Ocean Portal (http://imos.aodn.org.au) and tools for the display and integration of near real-time data are in development.

  10. LiverTox: Advanced QSAR and Toxicogeomic Software for Hepatotoxicity Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, P-Y.; Yuracko, K.

    2011-02-25

    YAHSGS LLC and Oak Ridge National Laboratory (ORNL) established a CRADA in an attempt to develop a predictive system using a pre-existing ORNL computational neural network and wavelets format. This was in the interest of addressing national needs for toxicity prediction system to help overcome the significant drain of resources (money and time) being directed toward developing chemical agents for commerce. The research project has been supported through an STTR mechanism and funded by the National Institute of Environmental Health Sciences beginning Phase I in 2004 (CRADA No. ORNL-04-0688) and extending Phase II through 2007 (ORNL NFE-06-00020). To attempt themore » research objectives and aims outlined under this CRADA, state-of-the-art computational neural network and wavelet methods were used in an effort to design a predictive toxicity system that used two independent areas on which to base the system’s predictions. These two areas were quantitative structure-activity relationships and gene-expression data obtained from microarrays. A third area, using the new Massively Parallel Signature Sequencing (MPSS) technology to assess gene expression, also was attempted but had to be dropped because the company holding the rights to this promising MPSS technology went out of business. A research-scale predictive toxicity database system called Multi-Intelligent System for Toxicogenomic Applications (MISTA) was developed and its feasibility for use as a predictor of toxicological activity was tested. The fundamental focus of the CRADA was an attempt and effort to operate the MISTA database using the ORNL neural network. This effort indicated the potential that such a fully developed system might be used to assist in predicting such biological endpoints as hepatotoxcity and neurotoxicity. The MISTA/LiverTox approach if eventually fully developed might also be useful for automatic processing of microarray data to predict modes of action. A technical paper describing the methods and technology used in the CRADA has been published. This paper was entitled “A Toxicity Evaluation and Predictive System Based on Neural Networks and Wavelets” and appeared in an American Chemical Society peer-reviewed publication this year (J. Chem. Inf. Model. 47: 676685, 2007). A patent application was filed but later abandoned.« less

  11. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodionov, Dmitry A; Novichkov, Pavel S

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less

  12. Relative Travel Time Tomography for East Asia

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; CHO, S.

    2016-12-01

    Japan island region is one of the most seismically active region in the world. As a large number of earthquakes have recently occurred along circum-Pacific belt called the ring of fire, concern over earthquakes is increasing in South Korea close to Japan. In this study, we perform seismic imaging based on relative S-wave travel-times to examine S-wave velocity upper mantle structure of East Asia. We used teleseismic events recorded at the Korea Institute of Geoscience and Mineral Resources (KIGAM) network and F-net network operated by the National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel-time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along East and South side of Japan island region. These anomalies may indicate subducting Pacific and Philippine Sea plates, respectively. The velocity structure beneath southwest Japan is revealed very complex because the two slabs interact with each other there. Velocity structure of East Asia is useful to understand the tectonic evolution and the mechanism of earthquakes that occur in this region.

  13. Evaluation of Earthquake Detection Performance in Terms of Quality and Speed in SEISCOMP3 Using New Modules Qceval, Npeval and Sceval

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Weber, B.; Ellguth, E.; Spazier, J.

    2017-12-01

    The geometry of seismic monitoring networks, site conditions and data availability as well as monitoring targets and strategies typically impose trade-offs between data quality, earthquake detection sensitivity, false detections and alert times. Network detection capabilities typically change with alteration of the seismic noise level by human activity or by varying weather and sea conditions. To give helpful information to operators and maintenance coordinators, gempa developed a range of tools to evaluate earthquake detection and network performance including qceval, npeval and sceval. qceval is a module which analyzes waveform quality parameters in real-time and deactivates and reactivates data streams based on waveform quality thresholds for automatic processing. For example, thresholds can be defined for latency, delay, timing quality, spikes and gaps count and rms. As changes in the automatic processing have a direct influence on detection quality and speed, another tool called "npeval" was designed to calculate in real-time the expected time needed to detect and locate earthquakes by evaluating the effective network geometry. The effective network geometry is derived from the configuration of stations participating in the detection. The detection times are shown as an additional layer on the map and updated in real-time as soon as the effective network geometry changes. Yet another new tool, "sceval", is an automatic module which classifies located seismic events (Origins) in real-time. sceval evaluates the spatial distribution of the stations contributing to an Origin. It confirms or rejects the status of Origins, adds comments or leaves the Origin unclassified. The comments are passed to an additional sceval plug-in where the end user can customize event types. This unique identification of real and fake events in earthquake catalogues allows to lower network detection thresholds. In real-time monitoring situations operators can limit the processing to events with unclassified Origins, reducing their workload. Classified Origins can be treated specifically by other procedures. These modules have been calibrated and fully tested by several complex seismic monitoring networks in the region of Indonesia and Northern Chile.

  14. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  15. Dismount Threat Recognition through Automatic Pose Identification

    DTIC Science & Technology

    2012-03-01

    10 2.2.2 Enabling Technologies . . . . . . . . . . . . . . 11 2.2.3 Associative Memory Neural Networks . . . . . . 12 III. Methodology...20 3.2.3 Creating Separability . . . . . . . . . . . . . . . 23 3.3 Training the Associative Memory Neural Network... Effects of Parameter and Method Choices . . . . . . . . 30 4.3.1 Decimel versus Bipolar . . . . . . . . . . . . . . 30 4.3.2 Bipolar and Binary Values

  16. Research Study of River Information Services on the US Inland Waterway Network

    DTIC Science & Technology

    2012-12-01

    management department, team leader and AIS expert • Mario Sattler, development of traffic management department, reporting expert • Christoph Plasil...Coast Guard (USCG) Nationwide Automatic Identification System (NAIS) and the lessons learned from AIS implementation on European waterways the concept...11 7.3.1 Enlarging of the AIS network

  17. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    ERIC Educational Resources Information Center

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  18. Concurrent white matter bundles and grey matter networks using independent component analysis.

    PubMed

    O'Muircheartaigh, Jonathan; Jbabdi, Saad

    2018-04-15

    Developments in non-invasive diffusion MRI tractography techniques have permitted the investigation of both the anatomy of white matter pathways connecting grey matter regions and their structural integrity. In parallel, there has been an expansion in automated techniques aimed at parcellating grey matter into distinct regions based on functional imaging. Here we apply independent component analysis to whole-brain tractography data to automatically extract brain networks based on their associated white matter pathways. This method decomposes the tractography data into components that consist of paired grey matter 'nodes' and white matter 'edges', and automatically separates major white matter bundles, including known cortico-cortical and cortico-subcortical tracts. We show how this framework can be used to investigate individual variations in brain networks (in terms of both nodes and edges) as well as their associations with individual differences in behaviour and anatomy. Finally, we investigate correspondences between tractography-based brain components and several canonical resting-state networks derived from functional MRI. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Developing A National Groundwater-Monitoring Network In Korea

    NASA Astrophysics Data System (ADS)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  20. Replacing the AMOR with the miniDOAS in the ammonia monitoring network in the Netherlands

    NASA Astrophysics Data System (ADS)

    Berkhout, Augustinus J. C.; Swart, Daan P. J.; Volten, Hester; Gast, Lou F. L.; Haaima, Marty; Verboom, Hans; Stefess, Guus; Hafkenscheid, Theo; Hoogerbrugge, Ronald

    2017-11-01

    In this paper we present the continued development of the miniDOAS, an active differential optical absorption spectroscopy (DOAS) instrument used to measure ammonia concentrations in ambient air. The miniDOAS has been adapted for use in the Dutch National Air Quality Monitoring Network. The miniDOAS replaces the life-expired continuous-flow denuder ammonia monitor (AMOR). From September 2014 to December 2015, both instruments measured in parallel before the change from AMOR to miniDOAS was made. The instruments were deployed at six monitoring stations throughout the Netherlands. We report on the results of this intercomparison. Both instruments show a good uptime of ca. 90 %, adequate for an automatic monitoring network. Although both instruments produce 1 min values of ammonia concentrations, a direct comparison on short timescales such as minutes or hours does not give meaningful results because the AMOR response to changing ammonia concentrations is slow. Comparisons between daily and monthly values show good agreement. For monthly averages, we find a small average offset of 0.65 ± 0.28 µg m-3 and a slope of 1.034 ± 0.028, with the miniDOAS measuring slightly higher than the AMOR. The fast time resolution of the miniDOAS makes the instrument suitable not only for monitoring but also for process studies.

  1. Romanian Data Center: A modern way for seismic monitoring

    NASA Astrophysics Data System (ADS)

    Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin

    2014-05-01

    The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating ShakeMap products and interaction with global data centers. National Data Center developed tools to enable centralizing of data from software like Antelope and Seiscomp3. These tools allow rapid distribution of information about damages observed after an earthquake to the public. Another feature of the developed application is the alerting of designated persons, via email and SMS, based on the earthquake parameters. In parallel, Seiscomp3 sends automatic notifications (emails) with the earthquake parameters. The real-time seismic network and software acquisition and data processing used in the National Data Center development have increased the number of events detected locally and globally, the increase of the quality parameters obtained by data processing and potentially increasing visibility on the national and internationally.

  2. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  3. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  4. An automatic aerosol classification for earlinet: application and results

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Amiridis, Vassilis; Binietoglou, Ioannis; D'Amico, Giuseppe; Guma-Claramunt, P.; Schwarz, Anja; Alados-Arboledas, Lucas; Amodeo, Aldo; Apituley, Arnoud; Baars, Holger; Bortoli, Daniele; Comeron, Adolfo; Guerrero-Rascado, Juan Luis; Kokkalis, Panos; Nicolae, Doina; Papayannis, Alex; Pappalardo, Gelsomina; Wandinger, Ulla; Wiegner, Matthias

    2018-04-01

    Aerosol typing is essential for understanding the impact of the different aerosol sources on climate, weather system and air quality. An aerosol classification method for EARLINET (European Aerosol Research Lidar Network) measurements is introduced which makes use the Mahalanobis distance classifier. The performance of the automatic classification is tested against manually classified EARLINET data. Results of the application of the method to an extensive aerosol dataset will be presented.

  5. Instinctive analytics for coalition operations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    de Mel, Geeth R.; La Porta, Thomas; Pham, Tien; Pearson, Gavin

    2017-05-01

    The success of future military coalition operations—be they combat or humanitarian—will increasingly depend on a system's ability to share data and processing services (e.g. aggregation, summarization, fusion), and automatically compose services in support of complex tasks at the network edge. We call such an infrastructure instinctive—i.e., an infrastructure that reacts instinctively to address the analytics task at hand. However, developing such an infrastructure is made complex for the coalition environment due to its dynamism both in terms of user requirements and service availability. In order to address the above challenge, in this paper, we highlight our research vision and sketch some initial solutions into the problem domain. Specifically, we propose means to (1) automatically infer formal task requirements from mission specifications; (2) discover data, services, and their features automatically to satisfy the identified requirements; (3) create and augment shared domain models automatically; (4) efficiently offload services to the network edge and across coalition boundaries adhering to their computational properties and costs; and (5) optimally allocate and adjust services while respecting the constraints of operating environment and service fit. We envision that the research will result in a framework which enables self-description, discover, and assemble capabilities to both data and services in support of coalition mission goals.

  6. Automatic Detection of Welding Defects using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Hou, Wenhui; Wei, Ye; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2018-01-01

    In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.

  7. Monitoring groundwater and river interaction along the Hanford reach of the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, M.D.

    1994-04-01

    As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing.more » This report describes the equipment, procedures, and results from measurements done in 1993.« less

  8. Use of pattern recognition and neural networks for non-metric sex diagnosis from lateral shape of calvarium: an innovative model for computer-aided diagnosis in forensic and physical anthropology.

    PubMed

    Cavalli, Fabio; Lusnig, Luca; Trentin, Edmondo

    2017-05-01

    Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.

  9. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  10. Design of a monitoring network over France in case of a radiological accidental release

    NASA Astrophysics Data System (ADS)

    Abida, Rachid; Bocquet, Marc; Vercauteren, Nikki; Isnard, Olivier

    The Institute of Radiation Protection and Nuclear Safety (France) is planning the set-up of an automatic nuclear aerosol monitoring network over the French territory. Each of the stations will be able to automatically sample the air aerosol content and provide activity concentration measurements on several radionuclides. This should help monitor the French and neighbouring countries nuclear power plants set. It would help evaluate the impact of a radiological incident occurring at one of these nuclear facilities. This paper is devoted to the spatial design of such a network. Here, any potential network is judged on its ability to extrapolate activity concentrations measured on the network stations over the whole domain. The performance of a network is quantitatively assessed through a cost function that measures the discrepancy between the extrapolation and the true concentration fields. These true fields are obtained through the computation of a database of dispersion accidents over one year of meteorology and originating from 20 French nuclear sites. A close to optimal network is then looked for using a simulated annealing optimisation. The results emphasise the importance of the cost function in the design of a network aimed at monitoring an accidental dispersion. Several choices of norm used in the cost function are studied and give way to different designs. The influence of the number of stations is discussed. A comparison with a purely geometric approach which does not involve simulations with a chemistry-transport model is performed.

  11. Hypotheses generation as supervised link discovery with automated class labeling on large-scale biomedical concept networks

    PubMed Central

    2012-01-01

    Computational approaches to generate hypotheses from biomedical literature have been studied intensively in recent years. Nevertheless, it still remains a challenge to automatically discover novel, cross-silo biomedical hypotheses from large-scale literature repositories. In order to address this challenge, we first model a biomedical literature repository as a comprehensive network of biomedical concepts and formulate hypotheses generation as a process of link discovery on the concept network. We extract the relevant information from the biomedical literature corpus and generate a concept network and concept-author map on a cluster using Map-Reduce frame-work. We extract a set of heterogeneous features such as random walk based features, neighborhood features and common author features. The potential number of links to consider for the possibility of link discovery is large in our concept network and to address the scalability problem, the features from a concept network are extracted using a cluster with Map-Reduce framework. We further model link discovery as a classification problem carried out on a training data set automatically extracted from two network snapshots taken in two consecutive time duration. A set of heterogeneous features, which cover both topological and semantic features derived from the concept network, have been studied with respect to their impacts on the accuracy of the proposed supervised link discovery process. A case study of hypotheses generation based on the proposed method has been presented in the paper. PMID:22759614

  12. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments

  13. Design of a real-time tax-data monitoring intelligent card system

    NASA Astrophysics Data System (ADS)

    Gu, Yajun; Bi, Guotang; Chen, Liwei; Wang, Zhiyuan

    2009-07-01

    To solve the current problem of low efficiency of domestic Oil Station's information management, Oil Station's realtime tax data monitoring system has been developed to automatically access tax data of Oil pumping machines, realizing Oil-pumping machines' real-time automatic data collection, displaying and saving. The monitoring system uses the noncontact intelligent card or network to directly collect data which can not be artificially modified and so seals the loopholes and improves the tax collection's automatic level. It can perform real-time collection and management of the Oil Station information, and find the problem promptly, achieves the automatic management for the entire process covering Oil sales accounting and reporting. It can also perform remote query to the Oil Station's operation data. This system has broad application future and economic value.

  14. Advances of FishNet towards a fully automatic monitoring system for fish migration

    NASA Astrophysics Data System (ADS)

    Kratzert, Frederik; Mader, Helmut

    2017-04-01

    Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/

  15. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.

    PubMed

    Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila

    2018-03-27

    Purpose To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) imaging to study knee degenerative diseases such as osteoarthritis (OA). Materials and Methods This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1 ρ -weighted images and (b) three-dimensional (3D) double-echo steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as well as by the automatic segmentations' ability to quantify, in a longitudinally repeatable way, relaxometry and morphology. Results The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1 ρ and T2 values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision of the automatic method was comparable with that of the manual one. Conclusion U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract relaxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA. © RSNA, 2018 Online supplemental material is available for this article.

  16. 76 FR 38124 - Applications for New Awards; Americans With Disabilities Act (ADA) National Network Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ...) National Network Regional Centers and ADA National Network Collaborative Research Projects AGENCY: Office... National Network Regional Centers (formerly the Disability Business Technical Assistance Centers (DBTACs), and ADA National Network Collaborative Research Projects. Notice inviting applications for new awards...

  17. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning.

    PubMed

    Norouzzadeh, Mohammad Sadegh; Nguyen, Anh; Kosmala, Margaret; Swanson, Alexandra; Palmer, Meredith S; Packer, Craig; Clune, Jeff

    2018-06-19

    Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences. Motion-sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild. Copyright © 2018 the Author(s). Published by PNAS.

  18. An AdaBoost Based Approach to Automatic Classification and Detection of Buildings Footprints, Vegetation Areas and Roads from Satellite Images

    NASA Astrophysics Data System (ADS)

    Gonulalan, Cansu

    In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.

  19. Automatic emotional expression analysis from eye area

    NASA Astrophysics Data System (ADS)

    Akkoç, Betül; Arslan, Ahmet

    2015-02-01

    Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.

  20. 23 CFR 658.21 - Identification of National Network.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Identification of National Network. 658.21 Section 658... Identification of National Network. (a) To identify the National Network, a State may sign the routes or provide maps of lists of highways describing the National Network. (b) Exceptional local conditions on the...

  1. 23 CFR 658.21 - Identification of National Network.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Identification of National Network. 658.21 Section 658... Identification of National Network. (a) To identify the National Network, a State may sign the routes or provide maps of lists of highways describing the National Network. (b) Exceptional local conditions on the...

  2. Performance Analysis of Automated Attack Graph Generation Software

    DTIC Science & Technology

    2006-12-01

    MIT Lincoln Laboratory – NetSPA .................................................13 3. Skybox - Skybox View...Lip05*) 3. Skybox - Skybox View Skybox View is a commercially available tool developed by Skybox Security that can automatically generate...each host. It differs from CAULDRON because it requires that Skybox View probe live networks and must be connected to live networks during its

  3. Advanced ASON prototyping research activities in China

    NASA Astrophysics Data System (ADS)

    Hu, WeiSheng; Jin, Yaohui; Guo, Wei; Su, Yikai; He, Hao; Sun, Weiqiang

    2005-02-01

    This paper provides an overview of prototyping research activities of automatically switched optical networks and transport networks (ASONs/ASTNs) in China. In recent years, China has recognized the importance and benefits of the emerging ASON/ASTN techniques. During the period of 2001 and 2002, the national 863 Program of China started the preliminary ASON research projects with the main objectives to build preliminary ASON testbeds, develop control plane protocols and test their performance in the testbeds. During the period of 2003 and 2004, the 863 program started ASTN prototyping equipment projects for more practical applications. Totally 12 ASTN equipments are being developed by three groups led by Chinese venders: ZTE with Beijing University of Posts and Telecommunications (BUPT), Wuhan Research Institute of Posts and Telecommunication (WRI) with Shanghai Jiao Tong University (SJTU), and Huawei Inc. Meanwhile, as the ASTN is maturing, some of the China"s carries are participating in the OIF"s World Interoperability Demonstration, carrying out ASTN test, or deploying ASTN backbone networks. Finally, several ASTN backbone networks being tested or deployed now will be operated by the carries in 2005. The 863 Program will carry out an ASTN field trail in Yangtse River Delta, and finally deploy the 3TNET. 3TNET stands for Tbps transmission, Tbps switching, and Tbps routing, as well as a network integrating the above techniques. A task force under the "863" program is responsible for ASTN equipment specifications and interoperation agreements, technical coordination among all the participants, schedule of the whole project during the project undergoing, and organization of internetworking of all the equipments in the laboratories and field trials.

  4. An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    NASA Astrophysics Data System (ADS)

    Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  5. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.

    PubMed

    Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun

    2018-01-01

    In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.

  6. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  7. Boundedness and convergence of online gradient method with penalty for feedforward neural networks.

    PubMed

    Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen

    2009-06-01

    In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.

  8. Automatic Detection of Landslides at Stromboli Volcano

    NASA Astrophysics Data System (ADS)

    Giudicepietro, F.; Esposito, A. M.; D'Auria, L.; Peluso, R.; Martini, M.

    2011-12-01

    In this work we present an automatic system for the landslide detection at Stromboli volcano that has proved to be effective both during the 2007 effusive eruption and in the recent (2 August 2011) volcanic activity. The study of the landslides at Stromboli is important because they could be considered short-term precursors of effusive eruptions, as seen during the 2007 eruption, and in addition they allow to improve the monitoring of the gravitational instabilities of the Sciara del Fuoco flank. The proposed system uses a two-class MLP (Multi Layer Perceptron) neural network in order to discriminate the landslides from other seismic signals usually recorded at Stromboli, such as explosion-quakes and volcanic tremor. To train and test the network we used a dataset of 537 signals, including 267 landslides and 270 other events (130 explosion-quakes and 140 tremor signals). The net performance is of 98.7%, if averaged over different net configurations, and of 99.5% for the best net performance. Based on the neural network response, the automatic system calculates a Landslide Percentage Index (LPI) defined on the number of signals identified as landslides by the net on a given temporal interval in order to recognize anomalies in the landslide rate. This system was sensitive to the signals produced by the flow of lava front during a recent mild effusive episode on the "La Sciara del Fuoco" slope.

  9. Semantic integration of data on transcriptional regulation

    PubMed Central

    Baitaluk, Michael; Ponomarenko, Julia

    2010-01-01

    Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517

  10. Semantic integration of data on transcriptional regulation.

    PubMed

    Baitaluk, Michael; Ponomarenko, Julia

    2010-07-01

    Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org baitaluk@sdsc.edu Supplementary data are available at Bioinformatics online.

  11. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718

  12. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  13. Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families.

    PubMed

    Reinharz, Vladimir; Soulé, Antoine; Westhof, Eric; Waldispühl, Jérôme; Denise, Alain

    2018-05-04

    The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are made of organised sets of long-range tertiary interactions which connect distinct secondary structure elements in 3D structures. Here, we present a de novo data-driven approach to extract automatically from large data sets of full RNA 3D structures the recurrent interaction networks (RINs). Our methodology enables us for the first time to detect the interaction networks connecting distinct components of the RNA structure, highlighting their diversity and conservation through non-related functional RNAs. We use a graphical model to perform pairwise comparisons of all RNA structures available and to extract RINs and modules. Our analysis yields a complete catalog of RNA 3D structures available in the Protein Data Bank and reveals the intricate hierarchical organization of the RNA interaction networks and modules. We assembled our results in an online database (http://carnaval.lri.fr) which will be regularly updated. Within the site, a tool allows users with a novel RNA structure to detect automatically whether the novel structure contains previously observed RINs.

  14. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    USGS Publications Warehouse

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  15. A Method Based on Artificial Intelligence To Fully Automatize The Evaluation of Bovine Blastocyst Images.

    PubMed

    Rocha, José Celso; Passalia, Felipe José; Matos, Felipe Delestro; Takahashi, Maria Beatriz; Ciniciato, Diego de Souza; Maserati, Marc Peter; Alves, Mayra Fernanda; de Almeida, Tamie Guibu; Cardoso, Bruna Lopes; Basso, Andrea Cristina; Nogueira, Marcelo Fábio Gouveia

    2017-08-09

    Morphological analysis is the standard method of assessing embryo quality; however, its inherent subjectivity tends to generate discrepancies among evaluators. Using genetic algorithms and artificial neural networks (ANNs), we developed a new method for embryo analysis that is more robust and reliable than standard methods. Bovine blastocysts produced in vitro were classified as grade 1 (excellent or good), 2 (fair), or 3 (poor) by three experienced embryologists according to the International Embryo Technology Society (IETS) standard. The images (n = 482) were subjected to automatic feature extraction, and the results were used as input for a supervised learning process. One part of the dataset (15%) was used for a blind test posterior to the fitting, for which the system had an accuracy of 76.4%. Interestingly, when the same embryologists evaluated a sub-sample (10%) of the dataset, there was only 54.0% agreement with the standard (mode for grades). However, when using the ANN to assess this sub-sample, there was 87.5% agreement with the modal values obtained by the evaluators. The presented methodology is covered by National Institute of Industrial Property (INPI) and World Intellectual Property Organization (WIPO) patents and is currently undergoing a commercial evaluation of its feasibility.

  16. Installation and Testing Instructions for the Sandia Automatic Report Generator (ARG).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Robert L.

    Robert L. CLAY Sandia National Laboratories P.O. Box 969 Livermore, CA 94551, U.S.A. rlclay@sandia.gov In this report, we provide detailed and reproducible installation instructions of the Automatic Report Generator (ARG), for both Linux and macOS target platforms.

  17. 12 CFR 19.244 - Automatic removal, suspension, and debarment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF PRACTICE AND PROCEDURE Removal, Suspension, and Debarment of Accountants From Performing Audit Services § 19.244 Automatic removal, suspension, and debarment. (a) An independent public accountant or accounting firm may not perform audit services for insured national banks if the accountant or firm: (1) Is...

  18. 12 CFR 19.244 - Automatic removal, suspension, and debarment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF PRACTICE AND PROCEDURE Removal, Suspension, and Debarment of Accountants From Performing Audit Services § 19.244 Automatic removal, suspension, and debarment. (a) An independent public accountant or accounting firm may not perform audit services for insured national banks if the accountant or firm: (1) Is...

  19. 12 CFR 19.244 - Automatic removal, suspension, and debarment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF PRACTICE AND PROCEDURE Removal, Suspension, and Debarment of Accountants From Performing Audit Services § 19.244 Automatic removal, suspension, and debarment. (a) An independent public accountant or accounting firm may not perform audit services for insured national banks if the accountant or firm: (1) Is...

  20. 12 CFR 19.244 - Automatic removal, suspension, and debarment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF PRACTICE AND PROCEDURE Removal, Suspension, and Debarment of Accountants From Performing Audit Services § 19.244 Automatic removal, suspension, and debarment. (a) An independent public accountant or accounting firm may not perform audit services for insured national banks if the accountant or firm: (1) Is...

  1. OGS improvements in the year 2011 in running the Northeastern Italy Seismic Network

    NASA Astrophysics Data System (ADS)

    Bragato, P. L.; Pesaresi, D.; Saraò, A.; Di Bartolomeo, P.; Durı, G.

    2012-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 15 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. Since 2002 OGS-CRS is using the Antelope software suite on several workstations plus a SUN Cluster as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project "Trans-national seismological networks in the South-Eastern Alps". SeisComP is also used as a real time data exchange server tool. In order to improve the seismological monitoring of the Northeastern Italy area, at OGS-CRS we tuned existing programs and created ad hoc ones like: a customized web server named PickServer to manually relocate earthquakes, a script for automatic moment tensor determination, scripts for web publishing of earthquake parametric data, waveforms, state of health parameters and shaking maps, noise characterization by means of automatic spectra analysis, and last but not least scripts for email/SMS/fax alerting. The OGS-CRS Real Time Seismological website (RTS, http://rts.crs.inogs.it/) operative since several years was initially developed in the framework of the Italian DPC-INGV S3 Project: the RTS website shows classic earthquake locations parametric data plus ShakeMap and moment tensor information. At OGS-CRS we also spent a considerable amount of efforts in improving the long-period performances of broadband seismic stations, either by carrying out full re-installations and/or applying thermal insulations to the seismometers: more examples of PSD plots of the PRED broad band seismic station installation in the cave tunnel of Cave del Predil using a Quanterra Q330HR high resolution digitizer and a Sterckeisen STS-2 broadband seismometer will be illustrated. Efforts in strengthening the reliability of data links, exploring the use of redundant satellite/radio/GPRS links will also be shown.

  2. PSNet: prostate segmentation on MRI based on a convolutional neural network.

    PubMed

    Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei

    2018-04-01

    Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.

  3. Method for stitching microbial images using a neural network

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.; Tolstova, I. V.

    2017-05-01

    Currently an analog microscope has a wide distribution in the following fields: medicine, animal husbandry, monitoring technological objects, oceanography, agriculture and others. Automatic method is preferred because it will greatly reduce the work involved. Stepper motors are used to move the microscope slide and allow to adjust the focus in semi-automatic or automatic mode view with transfer images of microbiological objects from the eyepiece of the microscope to the computer screen. Scene analysis allows to locate regions with pronounced abnormalities for focusing specialist attention. This paper considers the method for stitching microbial images, obtained of semi-automatic microscope. The method allows to keep the boundaries of objects located in the area of capturing optical systems. Objects searching are based on the analysis of the data located in the area of the camera view. We propose to use a neural network for the boundaries searching. The stitching image boundary is held of the analysis borders of the objects. To auto focus, we use the criterion of the minimum thickness of the line boundaries of object. Analysis produced the object located in the focal axis of the camera. We use method of recovery of objects borders and projective transform for the boundary of objects which are based on shifted relative to the focal axis. Several examples considered in this paper show the effectiveness of the proposed approach on several test images.

  4. Rebooting Computers as Learning Machines

    DOE PAGES

    DeBenedictis, Erik P.

    2016-06-13

    Artificial neural networks could become the technological driver that replaces Moore's law, boosting computers' utlity through a process akin to automatic programming--although physics and computer architecture would are also a factor.

  5. Rebooting Computers as Learning Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Erik P.

    Artificial neural networks could become the technological driver that replaces Moore's law, boosting computers' utlity through a process akin to automatic programming--although physics and computer architecture would are also a factor.

  6. Automatic Keyword Identification by Artificial Neural Networks Compared to Manual Identification by Users of Filtering Systems.

    ERIC Educational Resources Information Center

    Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha

    2001-01-01

    Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)

  7. Impact of Machine-Translated Text on Entity and Relationship Extraction

    DTIC Science & Technology

    2014-12-01

    20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL

  8. Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-Modification.

    PubMed

    Turner, Alexander P; Caves, Leo S D; Stepney, Susan; Tyrrell, Andy M; Lones, Michael A

    2017-01-01

    This paper describes the artificial epigenetic network, a recurrent connectionist architecture that is able to dynamically modify its topology in order to automatically decompose and solve dynamical problems. The approach is motivated by the behavior of gene regulatory networks, particularly the epigenetic process of chromatin remodeling that leads to topological change and which underlies the differentiation of cells within complex biological organisms. We expected this approach to be useful in situations where there is a need to switch between different dynamical behaviors, and do so in a sensitive and robust manner in the absence of a priori information about problem structure. This hypothesis was tested using a series of dynamical control tasks, each requiring solutions that could express different dynamical behaviors at different stages within the task. In each case, the addition of topological self-modification was shown to improve the performance and robustness of controllers. We believe this is due to the ability of topological changes to stabilize attractors, promoting stability within a dynamical regime while allowing rapid switching between different regimes. Post hoc analysis of the controllers also demonstrated how the partitioning of the networks could provide new insights into problem structure.

  9. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  10. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  11. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  12. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  13. 10 CFR 95.49 - Security of automatic data processing (ADP) systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security of automatic data processing (ADP) systems. 95.49 Section 95.49 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.49 Security of...

  14. Integrating an Automatic Judge into an Open Source LMS

    ERIC Educational Resources Information Center

    Georgouli, Katerina; Guerreiro, Pedro

    2011-01-01

    This paper presents the successful integration of the evaluation engine of Mooshak into the open source learning management system Claroline. Mooshak is an open source online automatic judge that has been used for international and national programming competitions. although it was originally designed for programming competitions, Mooshak has also…

  15. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... Network (NAHLN) for public review and comment. The NAHLN is a nationally coordinated network and... Coordinator, National Animal Health Laboratory Network, Veterinary Services, APHIS, 2140 Centre Avenue...

  16. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  17. PollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Althausen, Dietrich; Engelmann, Ronny; Heese, Birgit; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Skupin, Annett; Komppula, Mika; Giannakaki, Eleni; Filioglou, Maria; Bortoli, Daniele; Silva, Ana Maria; Pereira, Sergio; Stachlewska, Iwona S.; Kumala, Wojciech; Szczepanik, Dominika; Amiridis, Vassilis; Marinou, Eleni; Kottas, Michail; Mattis, Ina; Müller, Gerhard

    2018-04-01

    PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.

  18. Retina Image Screening and Analysis Software Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Aykac, Deniz

    2009-04-01

    The software allows physicians or researchers to ground-truth images of retinas, identifying key physiological features and lesions that are indicative of disease. The software features methods to automatically detect the physiological features and lesions. The software contains code to measure the quality of images received from a telemedicine network; create and populate a database for a telemedicine network; review and report the diagnosis of a set of images; and also contains components to transmit images from a Zeiss camera to the network through SFTP.

  19. Networked Guidance and Control for Mobile Multi-Agent Systems: A Multi-terminal (Network) Information Theoretic Approach

    DTIC Science & Technology

    2012-01-19

    time , i.e., the state of the system is the input delayed by one time unit. In contrast with classical approaches, here the control action must be a...Transactions on Automatic Control , Vol. 56, No. 9, September 2011, Pages 2013-2025 Consider a first order linear time -invariant discrete time system driven by...1, January 2010, Pages 175-179 Consider a discrete- time networked control system , in which the controller has direct access to noisy

  20. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    PubMed

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  1. Evaluating the Potential Benefits of Advanced Automatic Crash Notification.

    PubMed

    Plevin, Rebecca E; Kaufman, Robert; Fraade-Blanar, Laura; Bulger, Eileen M

    2017-04-01

    Advanced Automatic Collision Notification (AACN) services in passenger vehicles capture crash data during collisions that could be transferred to Emergency Medical Services (EMS) providers. This study explored how EMS response times and other crash factors impacted the odds of fatality. The goal was to determine if information transmitted by AACN could help decrease mortality by allowing EMS providers to be better prepared upon arrival at the scene of a collision. The Crash Injury Research and Engineering Network (CIREN) database of the US Department of Transportation/National Highway Traffic Safety Administration (USDOT/NHTSA; Washington DC, USA) was searched for all fatal crashes between 1996 and 2012. The CIREN database also was searched for illustrative cases. The NHTSA's Fatal Analysis Reporting System (FARS) and National Automotive Sampling System Crashworthiness Data System (NASS CDS) databases were queried for all fatal crashes between 2000 and 2011 that involved a passenger vehicle. Detailed EMS time data were divided into prehospital time segments and analyzed descriptively as well as via multiple logistic regression models. The CIREN data showed that longer times from the collision to notification of EMS providers were associated with more frequent invasive interventions within the first three hours of hospital admission and more transfers from a regional hospital to a trauma center. The NASS CDS and FARS data showed that rural collisions with crash-notification times >30 minutes were more likely to be fatal than collisions with similar crash-notification times occurring in urban environments. The majority of a patient's prehospital time occurred between the arrival of EMS providers on-scene and arrival at a hospital. The need for extrication increased the on-scene time segment as well as total prehospital time. An AACN may help decrease mortality following a motor vehicle collision (MVC) by alerting EMS providers earlier and helping them discern when specialized equipment will be necessary in order to quickly extricate patients from the collision site and facilitate expeditious transfer to an appropriate hospital or trauma center. Plevin RE , Kaufman R , Fraade-Blanar L , Bulger EM . Evaluating the potential benefits of advanced automatic crash notification. Prehosp Disaster Med. 2017;32(2):156-164.

  2. Zigbee networking technology and its application in Lamost optical fiber positioning and control system

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng

    2010-07-01

    4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.

  3. Fully automatic time-window selection using machine learning for global adjoint tomography

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.

    2017-12-01

    Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error compared to existing selection methods (e.g. FLEXWIN). We will introduce in detail the mathematical formulation of the window-selection-oriented MPNN and show very encouraging results when applying the new algorithm to real earthquake data.

  4. Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Shen, Yuzhong

    2011-03-01

    3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.

  5. Empirical study on neural network based predictive techniques for automatic number plate recognition

    NASA Astrophysics Data System (ADS)

    Shashidhara, M. S.; Indrakumar, S. S.

    2011-10-01

    The objective of this study is to provide an easy, accurate and effective technology for the Bangalore city traffic control. This is based on the techniques of image processing and laser beam technology. The core concept chosen here is an image processing technology by the method of automatic number plate recognition system. First number plate is recognized if any vehicle breaks the traffic rules in the signals. The number is fetched from the database of the RTO office by the process of automatic database fetching. Next this sends the notice and penalty related information to the vehicle owner email-id and an SMS sent to vehicle owner. In this paper, we use of cameras with zooming options & laser beams to get accurate pictures further applied image processing techniques such as Edge detection to understand the vehicle, Identifying the location of the number plate, Identifying the number plate for further use, Plain plate number, Number plate with additional information, Number plates in the different fonts. Accessing the database of the vehicle registration office to identify the name and address and other information of the vehicle number. The updates to be made to the database for the recording of the violation and penalty issues. A feed forward artificial neural network is used for OCR. This procedure is particularly important for glyphs that are visually similar such as '8' and '9' and results in training sets of between 25,000 and 40,000 training samples. Over training of the neural network is prevented by Bayesian regularization. The neural network output value is set to 0.05 when the input is not desired glyph, and 0.95 for correct input.

  6. Prototyping sensor network system for automatic vital signs collection. Evaluation of a location based automated assignment of measured vital signs to patients.

    PubMed

    Kuroda, T; Noma, H; Naito, C; Tada, M; Yamanaka, H; Takemura, T; Nin, K; Yoshihara, H

    2013-01-01

    Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors. The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Bluetooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis. The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system's "confidence", i.e. the probability of estimation error, must be effective to reduce the oversights. This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.

  7. An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS

    NASA Astrophysics Data System (ADS)

    Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.

    2009-04-01

    In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification of the automatic seismic results and the estimation of the tsunami potential for a given event.

  8. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    PubMed

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  9. Recommendations to harmonize European early warning dosimetry network systems

    NASA Astrophysics Data System (ADS)

    Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.

    2017-12-01

    After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    AllamehZadeh, Mostafa, E-mail: dibaparima@yahoo.com

    A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neuralmore » system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.« less

  11. Modeling and Performance Optimization of Large-Scale Data-Communication Networks.

    DTIC Science & Technology

    1981-06-01

    IT-17, no. 1, pp. 71-76, 1971. 12. Y. Ho, M. Kastner, and E. Wong, "Teams, market signalling, and information theory," IEEE Trans. Automat. Contr...modifies the flow assignment to satisfy end-to-end delay constraints. 3.2.1 Rationale for Min-Hop Strategr The Min-Hop algorithm proposed in this...Prentice-Hall, 1980. Ho, Y., M. Kostner and E. Wong, "Teams, market signalling, and information theory," IEEE Trans. Automat. Contr., vol. AC-23, pp

  12. Automatic Tool for Local Assembly Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whole community shotgun sequencing of total DNA (i.e. metagenomics) and total RNA (i.e. metatranscriptomics) has provided a wealth of information in the microbial community structure, predicted functions, metabolic networks, and is even able to reconstruct complete genomes directly. Here we present ATLAS (Automatic Tool for Local Assembly Structures) a comprehensive pipeline for assembly, annotation, genomic binning of metagenomic and metatranscriptomic data with an integrated framework for Multi-Omics. This will provide an open source tool for the Multi-Omic community at large.

  13. Automatic lumbar vertebrae detection based on feature fusion deep learning for partial occluded C-arm X-ray images.

    PubMed

    Yang Li; Wei Liang; Yinlong Zhang; Haibo An; Jindong Tan

    2016-08-01

    Automatic and accurate lumbar vertebrae detection is an essential step of image-guided minimally invasive spine surgery (IG-MISS). However, traditional methods still require human intervention due to the similarity of vertebrae, abnormal pathological conditions and uncertain imaging angle. In this paper, we present a novel convolutional neural network (CNN) model to automatically detect lumbar vertebrae for C-arm X-ray images. Training data is augmented by DRR and automatic segmentation of ROI is able to reduce the computational complexity. Furthermore, a feature fusion deep learning (FFDL) model is introduced to combine two types of features of lumbar vertebrae X-ray images, which uses sobel kernel and Gabor kernel to obtain the contour and texture of lumbar vertebrae, respectively. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model performs more accurate in abnormal cases with pathologies and surgical implants in multi-angle views.

  14. PACS quality control and automatic problem notifier

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Jones, Douglas; Frost, Meryll M.; Staab, Edward V.

    1997-05-01

    One side effect of installing a clinical PACS Is that users become dependent upon the technology and in some cases it can be very difficult to revert back to a film based system if components fail. The nature of system failures range from slow deterioration of function as seen in the loss of monitor luminance through sudden catastrophic loss of the entire PACS networks. This paper describes the quality control procedures in place at the University of Florida and the automatic notification system that alerts PACS personnel when a failure has happened or is anticipated. The goal is to recover from a failure with a minimum of downtime and no data loss. Routine quality control is practiced on all aspects of PACS, from acquisition, through network routing, through display, and including archiving. Whenever possible, the system components perform self and between platform checks for active processes, file system status, errors in log files, and system uptime. When an error is detected or a exception occurs, an automatic page is sent to a pager with a diagnostic code. Documentation on each code, trouble shooting procedures, and repairs are kept on an intranet server accessible only to people involved in maintaining the PACS. In addition to the automatic paging system for error conditions, acquisition is assured by an automatic fax report sent on a daily basis to all technologists acquiring PACS images to be used as a cross check that all studies are archived prior to being removed from the acquisition systems. Daily quality control is preformed to assure that studies can be moved from each acquisition and contrast adjustment. The results of selected quality control reports will be presented. The intranet documentation server will be described with the automatic pager system. Monitor quality control reports will be described and the cost of quality control will be quantified. As PACS is accepted as a clinical tool, the same standards of quality control must be established as are expected on other equipment used in the diagnostic process.

  15. Neural networks in astronomy.

    PubMed

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  16. A network of automatic atmospherics analyzer

    NASA Technical Reports Server (NTRS)

    Schaefer, J.; Volland, H.; Ingmann, P.; Eriksson, A. J.; Heydt, G.

    1980-01-01

    The design and function of an atmospheric analyzer which uses a computer are discussed. Mathematical models which show the method of measurement are presented. The data analysis and recording procedures of the analyzer are discussed.

  17. 76 FR 4443 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... located nearby. The computer room is protected by an automatic sprinkler system, automatic sensors (e.g... 1974; Report of Modified or Altered System of Records AGENCY: National Center for HIV, STD and TB... Services (DHHS). ACTION: Notification of Proposed Altered System of Records. SUMMARY: The Department of...

  18. The Masculinity of Money: Automatic Stereotypes Predict Gender Differences in Estimated Salaries

    ERIC Educational Resources Information Center

    Williams, Melissa J.; Paluck, Elizabeth Levy; Spencer-Rodgers, Julie

    2010-01-01

    We present the first empirical investigation of why men are assumed to earn higher salaries than women (the "salary estimation effect"). Although this phenomenon is typically attributed to conscious consideration of the national wage gap (i.e., real inequities in salary), we hypothesize instead that it reflects differential, automatic economic…

  19. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

    PubMed Central

    Bharioke, Arjun; Chklovskii, Dmitri B.

    2015-01-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  20. Global Infrasound Association Based on Probabilistic Clutter Categorization

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Mialle, Pierrick

    2016-04-01

    The IDC advances its methods and continuously improves its automatic system for the infrasound technology. The IDC focuses on enhancing the automatic system for the identification of valid signals and the optimization of the network detection threshold by identifying ways to refine signal characterization methodology and association criteria. An objective of this study is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the reviewed event bulletins. Indeed, a considerable number of signal detections are due to local clutter sources such as microbaroms, waterfalls, dams, gas flares, surf (ocean breaking waves) etc. These sources are either too diffuse or too local to form events. Worse still, the repetitive nature of this clutter leads to a large number of false event hypotheses due to the random matching of clutter at multiple stations. Previous studies, for example [1], have worked on categorization of clutter using long term trends on detection azimuth, frequency, and amplitude at each station. In this work we continue the same line of reasoning to build a probabilistic model of clutter that is used as part of NETVISA [2], a Bayesian approach to network processing. The resulting model is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] Infrasound categorization Towards a statistics based approach. J. Vergoz, P. Gaillard, A. Le Pichon, N. Brachet, and L. Ceranna. ITW 2011 [2] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  1. A deep-learning based automatic pulmonary nodule detection system

    NASA Astrophysics Data System (ADS)

    Zhao, Yiyuan; Zhao, Liang; Yan, Zhennan; Wolf, Matthias; Zhan, Yiqiang

    2018-02-01

    Lung cancer is the deadliest cancer worldwide. Early detection of lung cancer is a promising way to lower the risk of dying. Accurate pulmonary nodule detection in computed tomography (CT) images is crucial for early diagnosis of lung cancer. The development of computer-aided detection (CAD) system of pulmonary nodules contributes to making the CT analysis more accurate and with more efficiency. Recent studies from other groups have been focusing on lung cancer diagnosis CAD system by detecting medium to large nodules. However, to fully investigate the relevance between nodule features and cancer diagnosis, a CAD that is capable of detecting nodules with all sizes is needed. In this paper, we present a deep-learning based automatic all size pulmonary nodule detection system by cascading two artificial neural networks. We firstly use a U-net like 3D network to generate nodule candidates from CT images. Then, we use another 3D neural network to refine the locations of the nodule candidates generated from the previous subsystem. With the second sub-system, we bring the nodule candidates closer to the center of the ground truth nodule locations. We evaluate our system on a public CT dataset provided by the Lung Nodule Analysis (LUNA) 2016 grand challenge. The performance on the testing dataset shows that our system achieves 90% sensitivity with an average of 4 false positives per scan. This indicates that our system can be an aid for automatic nodule detection, which is beneficial for lung cancer diagnosis.

  2. USSR Report: Machine Tools and Metalworking Equipment.

    DTIC Science & Technology

    1986-01-23

    between satellite stop and the camshaft of the programer unit. The line has 23 positions including 12 automatic ones. Specification of line Number...technological, processes, automated research, etc.) are as follows.: a monochannel based on a shared trunk line, ring, star and tree (polychannel...line or ring networks based on decentralized control of data exchange between subscribers are very robust. A tree -form network has star structure

  3. Study on feed forward neural network convex optimization for LiFePO4 battery parameters

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.

  4. Using Virtualization and Automatic Evaluation: Adapting Network Services Management Courses to the EHEA

    ERIC Educational Resources Information Center

    Ros, S.; Robles-Gomez, A.; Hernandez, R.; Caminero, A. C.; Pastor, R.

    2012-01-01

    This paper outlines the adaptation of a course on the management of network services in operating systems, called NetServicesOS, to the context of the new European Higher Education Area (EHEA). NetServicesOS is a mandatory course in one of the official graduate programs in the Faculty of Computer Science at the Universidad Nacional de Educacion a…

  5. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  6. National Allergy Bureau Pollen and Mold Report

    MedlinePlus

    ... Search AAAAI National Allergy Bureau Pollen and Mold Report Date: July 02, 2018 Location: San Antonio (2), ... 28/2018 ( click here to view ). Our Allergen Report Email Service can automatically email you daily pollen ...

  7. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werley, Kenneth Alan; Mccown, Andrew William

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less

  8. Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

    PubMed Central

    2014-01-01

    Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614

  9. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era.

    PubMed

    Best, Michele; Sakande, Jean

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.

  10. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era

    PubMed Central

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137

  11. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    PubMed

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  12. Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG.

    PubMed

    Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Cheong Took, Clive

    2017-12-01

    Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.

  13. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  14. 77 FR 33229 - Notice of Proposed Information Collection: Comment Request; National Resource Network

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Information Collection: Comment Request; National Resource Network AGENCY: Office of the Assistant Secretary... information: Title of Proposal: National Resource Network. OMB Control Number, if applicable: None... and reporting information related to the proposed National Resource Network. The U.S. Department of...

  15. Emotion regulation, attention to emotion, and the ventral attentional network

    PubMed Central

    Viviani, Roberto

    2013-01-01

    Accounts of the effect of emotional information on behavioral response and current models of emotion regulation are based on two opposed but interacting processes: automatic bottom-up processes (triggered by emotionally arousing stimuli) and top-down control processes (mapped to prefrontal cortical areas). Data on the existence of a third attentional network operating without recourse to limited-capacity processes but influencing response raise the issue of how it is integrated in emotion regulation. We summarize here data from attention to emotion, voluntary emotion regulation, and on the origin of biases against negative content suggesting that the ventral network is modulated by exposure to emotional stimuli when the task does not constrain the handling of emotional content. In the parietal lobes, preferential activation of ventral areas associated with “bottom-up” attention by ventral network theorists is strongest in studies of cognitive reappraisal. In conditions when no explicit instruction is given to change one's response to emotional stimuli, control of emotionally arousing stimuli is observed without concomitant activation of the dorsal attentional network, replaced by a shift of activation toward ventral areas. In contrast, in studies where emotional stimuli are placed in the role of distracter, the observed deactivation of these ventral semantic association areas is consistent with the existence of proactive control on the role emotional representations are allowed to take in generating response. It is here argued that attentional orienting mechanisms located in the ventral network constitute an intermediate kind of process, with features only partially in common with effortful and automatic processes, which plays an important role in handling emotion by conveying the influence of semantic networks, with which the ventral network is co-localized. Current neuroimaging work in emotion regulation has neglected this system by focusing on a bottom-up/top-down dichotomy of attentional control. PMID:24223546

  16. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  17. Weed Growth Stage Estimator Using Deep Convolutional Neural Networks.

    PubMed

    Teimouri, Nima; Dyrmann, Mads; Nielsen, Per Rydahl; Mathiassen, Solvejg Kopp; Somerville, Gayle J; Jørgensen, Rasmus Nyholm

    2018-05-16

    This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516 images, which also varied in term of crop, soil type, image resolution and light conditions. The overall performance of this approach achieved a maximum accuracy of 78% for identifying Polygonum spp. and a minimum accuracy of 46% for blackgrass. In addition, it achieved an average 70% accuracy rate in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species.

  18. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification

    NASA Astrophysics Data System (ADS)

    Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2017-03-01

    In large disasters, dental record plays an important role in forensic identification. However, filing dental charts for corpses is not an easy task for general dentists. Moreover, it is laborious and time-consuming work in cases of large scale disasters. We have been investigating a tooth labeling method on dental cone-beam CT images for the purpose of automatic filing of dental charts. In our method, individual tooth in CT images are detected and classified into seven tooth types using deep convolutional neural network. We employed the fully convolutional network using AlexNet architecture for detecting each tooth and applied our previous method using regular AlexNet for classifying the detected teeth into 7 tooth types. From 52 CT volumes obtained by two imaging systems, five images each were randomly selected as test data, and the remaining 42 cases were used as training data. The result showed the tooth detection accuracy of 77.4% with the average false detection of 5.8 per image. The result indicates the potential utility of the proposed method for automatic recording of dental information.

  19. Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.

    PubMed

    Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi

    2018-06-01

    A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.

  20. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment.

    PubMed

    Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding

    2016-11-18

    In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO₂) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO₂ control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO₂ concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO₂ concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.

  1. Fault-Tolerant Local-Area Network

    NASA Technical Reports Server (NTRS)

    Morales, Sergio; Friedman, Gary L.

    1988-01-01

    Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.

  2. Structural Properties of the Brazilian Air Transportation Network.

    PubMed

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  3. National networks of Healthy Cities in Europe.

    PubMed

    Janss Lafond, Leah; Heritage, Zoë

    2009-11-01

    National networks of Healthy Cities emerged in the late 1980s as a spontaneous reaction to a great demand by cities to participate in the Healthy Cities movement. Today, they engage at least 1300 cities in the European region and form the backbone of the Healthy Cities movement. This article provides an analysis of the results of the regular surveys of national networks that have been carried out principally since 1997. The main functions and achievements of national networks are presented alongside some of their most pressing challenges. Although networks have differing priorities and organizational characteristics, they do share common goals and strategic directions based on the Healthy Cities model (see other articles in this special edition of HPI). Therefore, it has been possible to identify a set of organizational and strategic factors that contribute to the success of networks. These factors form the basis of a set of accreditation criteria for national networks and provide guidance for the establishment of new national networks. Although national networks have made substantial achievements, they continue to face a number of dilemmas that are discussed in the article. Problems a national network must deal with include how to obtain sustainable funding, how to raise the standard of work in cities without creating exclusive participation criteria and how to balance the need to provide direct support to cities with its role as a national player. These dilemmas are similar to other public sector networks. During the last 15 years, the pooling of practical expertise in urban health has made Healthy Cities networks an important resource for national as well as local governments. Not only do they provide valuable support to their members but they often advise ministries and other national institutions on effective models to promote sustainable urban health development.

  4. Automatic three-dimensional measurement of large-scale structure based on vision metrology.

    PubMed

    Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng

    2014-01-01

    All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.

  5. Automatic extraction of road features in urban environments using dense ALS data

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra

    2018-02-01

    This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.

  6. Optimizing automatic traffic recorders network in Minnesota.

    DOT National Transportation Integrated Search

    2016-01-01

    Accurate traffic counts are important for budgeting, traffic planning, and roadway design. With thousands of : centerline miles of roadways, it is not possible to install continuous counters at all locations of interest (e.g., : intersections). There...

  7. A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks.

    PubMed

    Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2017-04-01

    Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.

  8. Automatic activation of alcohol cues by child maltreatment related words: a replication attempt in a different treatment setting.

    PubMed

    Potthast, Nadine; Neuner, Frank; Catani, Claudia

    2017-01-03

    A growing body of research attempts to clarify the underlying mechanisms of the association between emotional maltreatment and alcohol dependence (AD). In a preceding study, we found considerable support for a specific priming effect in subjects with AD and emotional abuse experiences receiving alcohol rehabilitation treatment. We concluded that maltreatment related cues can automatically activate an associative memory network comprising cues eliciting craving as well as alcohol-related responses. Generalizability of the results to other treatment settings remains unclear because of considerable differences in German treatment settings as well as insufficiently clarified influences of selection effects. As replication studies in other settings are necessary, the current study aimed to replicate the specific priming effect in a qualified detoxification sample. 22 AD subjects (n = 10 with emotional abuse vs. n = 12 without emotional abuse) participated in a priming experiment. Comparison data from 34 healthy control subjects were derived from the prior study. Contrary to our hypothesis, we did not find a specific priming effect. We could not replicate the result of an automatic network activation by maltreatment related words in a sample of subjects with AD and emotional abuse experiences receiving qualified detoxification treatment. This discrepancy might be attributed to reasons related to treatment settings as well as to methodological limitations. Future work is required to determine the generalizability of the specific priming effect before valid conclusions regarding automatic activation can be drawn.

  9. Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine.

    PubMed

    Zare, Marzieh; Rezvani, Zahra; Benasich, April A

    2016-07-01

    This study assesses the ability of a novel, "automatic classification" approach to facilitate identification of infants at highest familial risk for language-learning disorders (LLD) and to provide converging assessments to enable earlier detection of developmental disorders that disrupt language acquisition. Network connectivity measures derived from 62-channel electroencephalogram (EEG) recording were used to identify selected features within two infant groups who differed on LLD risk: infants with a family history of LLD (FH+) and typically-developing infants without such a history (FH-). A support vector machine was deployed; global efficiency and global and local clustering coefficients were computed. A novel minimum spanning tree (MST) approach was also applied. Cross-validation was employed to assess the resultant classification. Infants were classified with about 80% accuracy into FH+ and FH- groups with 89% specificity and precision of 92%. Clustering patterns differed by risk group and MST network analysis suggests that FH+ infants' EEG complexity patterns were significantly different from FH- infants. The automatic classification techniques used here were shown to be both robust and reliable and should provide valuable information when applied to early identification of risk or clinical groups. The ability to identify infants at highest risk for LLD using "automatic classification" strategies is a novel convergent approach that may facilitate earlier diagnosis and remediation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    NASA Astrophysics Data System (ADS)

    Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.

    2014-05-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.

  11. A convolutional neural network-based screening tool for X-ray serial crystallography

    PubMed Central

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K.

    2018-01-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. PMID:29714177

  12. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  13. A convolutional neural network-based screening tool for X-ray serial crystallography.

    PubMed

    Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K

    2018-05-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.

  14. A convolutional neural network-based screening tool for X-ray serial crystallography

    DOE PAGES

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; ...

    2018-04-24

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

  15. A convolutional neural network-based screening tool for X-ray serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

  16. Monitoring Research in the Context of CTBT Negotiations and Networks,

    DTIC Science & Technology

    1995-08-14

    1995) estimates, using infrasound and satellite data, that these sources generate explosion-like signals worldwide at a rate of approximately 1/yr at...coupling and the waveform appearance of atmospheric explosions. In infrasound there is the development of new array designs and of new automatic detection ...sensors. The principal daily use of the hydroacoustic network is for purposes of simple discrimination of those oceanic earthquakes detected by the seismic

  17. Massively-Parallel Architectures for Automatic Recognition of Visual Speech Signals

    DTIC Science & Technology

    1988-10-12

    Secusrity Clamifieation, Nlassively-Parallel Architectures for Automa ic Recognitio of Visua, Speech Signals 12. PERSONAL AUTHOR(S) Terrence J...characteristics of speech from tJhe, visual speech signals. Neural networks have been trained on a database of vowels. The rqw images of faces , aligned and...images of faces , aligned and preprocessed, were used as input to these network which were trained to estimate the corresponding envelope of the

  18. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Homer; Ashok Varikuti; Xinming Ou

    Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less

  20. Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at

    Science.gov Websites

    National Parks Electric Vehicle Charging Network Expands at National Parks to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at National Parks on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at National

  1. 34 CFR 412.4 - What is the National Network of Directors Council?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the National Network of Directors Council? 412...) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.4 What is the National Network of Directors...

  2. 34 CFR 412.1 - What is the National Network for Curriculum Coordination in Vocational and Technical Education?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the National Network for Curriculum... EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.1 What is the National Network for Curriculum Coordination in Vocational and Technical Education? The...

  3. 34 CFR 412.4 - What is the National Network of Directors Council?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the National Network of Directors Council? 412...) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.4 What is the National Network of Directors...

  4. 34 CFR 412.1 - What is the National Network for Curriculum Coordination in Vocational and Technical Education?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the National Network for Curriculum... EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.1 What is the National Network for Curriculum Coordination in Vocational and Technical Education? The...

  5. Toward the automated generation of genome-scale metabolic networks in the SEED.

    PubMed

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the stage for the automated generation of substantially complete metabolic networks for over 400 complete genome sequences currently in the SEED. With each genome that is processed using our tools, the database of common components grows to cover more of the diversity of metabolic pathways. This increases the likelihood that components of reaction networks for subsequently processed genomes can be retrieved from the database, rather than assembled and verified manually.

  6. Centrality measures in temporal networks with time series analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  7. Automatic lung nodule graph cuts segmentation with deep learning false positive reduction

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Tseng, Tzu-Liang Bill; Qian, Wei

    2017-03-01

    To automatic detect lung nodules from CT images, we designed a two stage computer aided detection (CAD) system. The first stage is graph cuts segmentation to identify and segment the nodule candidates, and the second stage is convolutional neural network for false positive reduction. The dataset contains 595 CT cases randomly selected from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) and the 305 pulmonary nodules achieved diagnosis consensus by all four experienced radiologists were our detection targets. Consider each slice as an individual sample, 2844 nodules were included in our database. The graph cuts segmentation was conducted in a two-dimension manner, 2733 lung nodule ROIs are successfully identified and segmented. With a false positive reduction by a seven-layer convolutional neural network, 2535 nodules remain detected while the false positive dropped to 31.6%. The average F-measure of segmented lung nodule tissue is 0.8501.

  8. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

    PubMed

    Godino-Llorente, J I; Gómez-Vilda, P

    2004-02-01

    It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

  10. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    PubMed Central

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  11. The Researching on Evaluation of Automatic Voltage Control Based on Improved Zoning Methodology

    NASA Astrophysics Data System (ADS)

    Xiao-jun, ZHU; Ang, FU; Guang-de, DONG; Rui-miao, WANG; De-fen, ZHU

    2018-03-01

    According to the present serious phenomenon of increasing size and structure of power system, hierarchically structured automatic voltage control(AVC) has been the researching spot. In the paper, the reduced control model is built and the adaptive reduced control model is researched to improve the voltage control effect. The theories of HCSD, HCVS, SKC and FCM are introduced and the effect on coordinated voltage regulation caused by different zoning methodologies is also researched. The generic framework for evaluating performance of coordinated voltage regulation is built. Finally, the IEEE-96 stsyem is used to divide the network. The 2383-bus Polish system is built to verify that the selection of a zoning methodology affects not only the coordinated voltage regulation operation, but also its robustness to erroneous data and proposes a comprehensive generic framework for evaluating its performance. The New England 39-bus network is used to verify the adaptive reduced control models’ performance.

  12. Energy modelling in sensor networks

    NASA Astrophysics Data System (ADS)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  13. Convolutional neural networks with balanced batches for facial expressions recognition

    NASA Astrophysics Data System (ADS)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  14. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    PubMed Central

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  15. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    PubMed

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  16. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    PubMed

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  17. Evaluating automatic attentional capture by self-relevant information.

    PubMed

    Ocampo, Brenda; Kahan, Todd A

    2016-01-01

    Our everyday decisions and memories are inadvertently influenced by self-relevant information. For example, we are faster and more accurate at making perceptual judgments about stimuli associated with ourselves, such as our own face or name, as compared with familiar non-self-relevant stimuli. Humphreys and Sui propose a "self-attention network" to account for these effects, wherein self-relevant stimuli automatically capture our attention and subsequently enhance the perceptual processing of self-relevant information. We propose that the masked priming paradigm and continuous flash suppression represent two ways to experimentally examine these controversial claims.

  18. An Analysis of Automated Solutions for the Certification and Accreditation of Navy Medicine Information Assets

    DTIC Science & Technology

    2005-09-01

    discovery of network security threats and vulnerabilities will be done by doing penetration testing during the C&A process. This can be done on a...2.1.1; Appendix E, J COBR -1 Protection of Backup and Restoration Assets Availability 1.3.1; 2.1.3; 2.1.7; 3.1; 4.3; Appendix J, M CODB-2 Data... discovery , inventory, scanning and loading of C&A information in its central database, (2) automatic generation of the SRTM , (3) automatic generation

  19. A modular (almost) automatic set-up for elastic multi-tenants cloud (micro)infrastructures

    NASA Astrophysics Data System (ADS)

    Amoroso, A.; Astorino, F.; Bagnasco, S.; Balashov, N. A.; Bianchi, F.; Destefanis, M.; Lusso, S.; Maggiora, M.; Pellegrino, J.; Yan, L.; Yan, T.; Zhang, X.; Zhao, X.

    2017-10-01

    An auto-installing tool on an usb drive can allow for a quick and easy automatic deployment of OpenNebula-based cloud infrastructures remotely managed by a central VMDIRAC instance. A single team, in the main site of an HEP Collaboration or elsewhere, can manage and run a relatively large network of federated (micro-)cloud infrastructures, making an highly dynamic and elastic use of computing resources. Exploiting such an approach can lead to modular systems of cloud-bursting infrastructures addressing complex real-life scenarios.

  20. [Automated anesthesia record system].

    PubMed

    Zhu, Tao; Liu, Jin

    2005-12-01

    Based on Client/Server architecture, a software of automated anesthesia record system running under Windows operation system and networks has been developed and programmed with Microsoft Visual C++ 6.0, Visual Basic 6.0 and SQL Server. The system can deal with patient's information throughout the anesthesia. It can collect and integrate the data from several kinds of medical equipment such as monitor, infusion pump and anesthesia machine automatically and real-time. After that, the system presents the anesthesia sheets automatically. The record system makes the anesthesia record more accurate and integral and can raise the anesthesiologist's working efficiency.

  1. Simple Automatic File Exchange (SAFE) to Support Low-Cost Spacecraft Operation via the Internet

    NASA Technical Reports Server (NTRS)

    Baker, Paul; Repaci, Max; Sames, David

    1998-01-01

    Various issues associated with Simple Automatic File Exchange (SAFE) are presented in viewgraph form. Specific topics include: 1) Packet telemetry, Internet IP networks and cost reduction; 2) Basic functions and technical features of SAFE; 3) Project goals, including low-cost satellite transmission to data centers to be distributed via an Internet; 4) Operations with a replicated file protocol; 5) File exchange operation; 6) Ground stations as gateways; 7) Lessons learned from demonstrations and tests with SAFE; and 8) Feedback and future initiatives.

  2. Research on time synchronization scheme of MES systems in manufacturing enterprise

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Wu, Kun; Sui, Changhao; Gu, Jin

    2018-04-01

    With the popularity of information and automatic production in the manufacturing enterprise, data interaction between business systems is more and more frequent. Therefore, the accuracy of time is getting higher and higher. However, the NTP network time synchronization methods lack the corresponding redundancy and monitoring mechanisms. When failure occurs, it can only make up operations after the event, which has a great effect on production data and systems interaction. Based on this, the paper proposes a RHCS-based NTP server architecture, automatically detect NTP status and failover by script.

  3. Automated measurement of retinal vascular tortuosity.

    PubMed Central

    Hart, W. E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M. R.

    1997-01-01

    Automatic measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. We describe a suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images. The tortuosity measures were evaluated in two classification tasks: (1) classifying the tortuosity of blood vessel segments and (2) classifying the tortuosity of blood vessel networks. These tortuosity measures were able to achieve a classification rate of 91% for the first problem and 95% on the second problem, which confirms that they capture much of the ophthalmologists' notion of tortuosity. Images Figure 1 PMID:9357668

  4. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate final minimum 1D P and S velocity models for the region with appropriate stations corrections. Finally, all the events are relocated with the NonLinLoc algorithm in combination with the updated 1D models. The proposed procedure represents the first step towards uniform earthquake catalog for the entire greater Alpine region using the AASN.

  5. 75 FR 8101 - 30-Day Federal Register Notice of Intention To Request Clearance of Collection of Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ..., National Manager, National Underground Railroad Network to Freedom Program, National Park Service, Midwest... Control Number: 1024-0232. Title: NPS National Underground Railroad Network to Freedom Application. Form: National Underground Railroad Network to Freedom Application. Expiration Date: 2/28/2010. Type of request...

  6. 78 FR 29775 - Information Collection Request Sent to the Office of Management and Budget (OMB) for Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... Underground Railroad Network to Freedom Program AGENCY: National Park Service, Interior. ACTION: Notice... Miller, National Manager, National Underground Railroad Network to Freedom Program, National Park Service...: OMB Control Number: 1024-0232. Title: National Underground Railroad Network to Freedom Program...

  7. Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.

    2017-09-01

    Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.

  8. Compartmental and Spatial Rule-Based Modeling with Virtual Cell.

    PubMed

    Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M

    2017-10-03

    In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  10. Integrated Bio-Entity Network: A System for Biological Knowledge Discovery

    PubMed Central

    Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng

    2011-01-01

    A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677

  11. A two-stage flow-based intrusion detection model for next-generation networks.

    PubMed

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  12. A two-stage flow-based intrusion detection model for next-generation networks

    PubMed Central

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results. PMID:29329294

  13. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  14. Systemic risk on different interbank network topologies

    NASA Astrophysics Data System (ADS)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  15. Toward of a highly integrated probe for improving wireless network quality

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Song, Aiguo; Wu, Zhenyang; Pan, Zhiwen; You, Xiaohu

    2016-10-01

    Quality of service and customer perception is the focus of the telecommunications industry. This paper proposes a low-cost approach to the acquisition of terminal data, collected from LTE networks with the application of a soft probe, based on the Java language. The soft probe includes support for fast call in the form of a referenced library, and can be integrated into various Android-based applications to automatically monitor any exception event in the network. Soft probe-based acquisition of terminal data has the advantages of low cost and can be applied on large scale. Experiment shows that a soft probe can efficiently obtain terminal network data. With this method, the quality of service of LTE networks can be determined from acquired wireless data. This work contributes to efficient network optimization, and the analysis of abnormal network events.

  16. Network monitoring in the Tier2 site in Prague

    NASA Astrophysics Data System (ADS)

    Eliáš, Marek; Fiala, Lukáš; Horký, Jiří; Chudoba, Jiří; Kouba, Tomáš; Kundrát, Jan; Švec, Jan

    2011-12-01

    Network monitoring provides different types of view on the network traffic. It's output enables computing centre staff to make qualified decisions about changes in the organization of computing centre network and to spot possible problems. In this paper we present network monitoring framework used at Tier-2 in Prague in Institute of Physics (FZU). The framework consists of standard software and custom tools. We discuss our system for hardware failures detection using syslog logging and Nagios active checks, bandwidth monitoring of physical links and analysis of NetFlow exports from Cisco routers. We present tool for automatic detection of network layout based on SNMP. This tool also records topology changes into SVN repository. Adapted weathermap4rrd is used to visualize recorded data to get fast overview showing current bandwidth usage of links in network.

  17. 1997 Hardwood Research Award Winner: "Automatic Color Sorting of Hardwood Edge-Glued Panel Parts"

    Treesearch

    D. Earl Kline; Richard Conners; Qiang Lu; Philip A. Araman

    1997-01-01

    The National Hardwood Lumber Association's 1997 Hardwood Research Award was presented to D. Earl Kline, Richard Conners, Qiang Lu and Philip Araman at the 25th Annual Hardwood Symposium for developing an automatic system for color sorting hardwood edge-glued panel parts. The researchers comprise a team from Virginia Tech University and the USDA Forest Service in...

  18. Automatic Data Reduction from Aerial Photographs - Phase 1 Report

    DOT National Transportation Integrated Search

    2005-11-01

    This report provides a snapshot of freight transportation, focusing on the volume and value of freight shipments, the extent of the freight network, industry employment and productivity patterns, its safety record, energy use, and the environmental c...

  19. Wireless sensor networks for irrigation management

    USDA-ARS?s Scientific Manuscript database

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  20. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  1. Perceptual tools for quality-aware video networks

    NASA Astrophysics Data System (ADS)

    Bovik, A. C.

    2014-01-01

    Monitoring and controlling the quality of the viewing experience of videos transmitted over increasingly congested networks (especially wireless networks) is a pressing problem owing to rapid advances in video-centric mobile communication and display devices that are straining the capacity of the network infrastructure. New developments in automatic perceptual video quality models offer tools that have the potential to be used to perceptually optimize wireless video, leading to more efficient video data delivery and better received quality. In this talk I will review key perceptual principles that are, or could be used to create effective video quality prediction models, and leading quality prediction models that utilize these principles. The goal is to be able to monitor and perceptually optimize video networks by making them "quality-aware."

  2. A neural network model for credit risk evaluation.

    PubMed

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  3. NPS Collaborative Technology Testbed for ONR CKM Program

    DTIC Science & Technology

    2005-01-11

    or have access to the MIT E-Wall hosted by the TOC. The combination of E-Wall and agents lend themselves to the dynamic gathering and display of...display, intuitive icons or menus that is easy to activate and customize , and automatically seeks and connects to other like services/networks/agents...integration creates network- centric memory mechanism for developing shared understanding of SA events Data Base Integration of Sensor-DM Agents and

  4. A Scalable and Dynamic Testbed for Conducting Penetration-Test Training in a Laboratory Environment

    DTIC Science & Technology

    2015-03-01

    entry point through which to execute a payload to accomplish a higher-level goal: executing arbitrary code, escalating privileges , pivoting...Mobile Ad Hoc Network Emulator (EMANE)26 can emulate the entire network stack (physical to application -layer protocols). 2. Methodology To build a...to host Windows, Linux, MacOS, Android , and other operating systems without much effort. 4 E. A simple and automatic “restore” function: Many

  5. Modular Neural Networks for Speech Recognition.

    DTIC Science & Technology

    1996-08-01

    automatic speech rccogni- tion, understanding and translation since the early 1950’ s . Although researchers have demonstrated impressive results with...nodes. It serves only as a data source for the following hidden layer( s ). Finally, the networks output is computed by neurons in the output layer. The...following update rule for weights in the hidden layer: w (,,•+I) ("’) E/V S (W W k- = wj, -- 7 - / v It is easy to generalize the backpropagation

  6. An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang

    2018-05-01

    In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.

  7. A hybrid model based on neural networks for biomedical relation extraction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure

    PubMed Central

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  9. Assessment of the French National Health Insurance Information System as a tool for epidemiological surveillance of malaria.

    PubMed

    Delon, François; Mayet, Aurélie; Thellier, Marc; Kendjo, Eric; Michel, Rémy; Ollivier, Lénaïck; Chatellier, Gilles; Desjeux, Guillaume

    2017-05-01

    Epidemiological surveillance of malaria in France is based on a hospital laboratory sentinel surveillance network. There is no comprehensive population surveillance. The objective of this study was to assess the ability of the French National Health Insurance Information System to support nationwide malaria surveillance in continental France. A case identification algorithm was built in a 2-step process. First, inclusion rules giving priority to sensitivity were defined. Then, based on data description, exclusion rules to increase specificity were applied. To validate our results, we compared them to data from the French National Reference Center for Malaria on case counts, distribution within subgroups, and disease onset date trends. We built a reusable automatized tool. From July 1, 2013, to June 30, 2014, we identified 4077 incident malaria cases that occurred in continental France. Our algorithm provided data for hospitalized patients, patients treated by private physicians, and outpatients for the entire population. Our results were similar to those of the National Reference Center for Malaria for each of the outcome criteria. We provided a reliable algorithm for implementing epidemiological surveillance of malaria based on the French National Health Insurance Information System. Our method allowed us to work on the entire population living in continental France, including subpopulations poorly covered by existing surveillance methods. Traditional epidemiological surveillance and the approach presented in this paper are complementary, but a formal validation framework for case identification algorithms is necessary. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs

    NASA Astrophysics Data System (ADS)

    Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.

    2018-01-01

    The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.

  11. The NFSNET: Beginnings of a National Research Internet.

    ERIC Educational Resources Information Center

    Catlett, Charles E.

    1989-01-01

    Describes the development, current status, and possible future of NSFNET, which is a backbone network designed to connect five national supercomputer centers established by the National Science Foundation. The discussion covers the implications of this network for research and national networking needs. (CLB)

  12. Software Defined Networking challenges and future direction: A case study of implementing SDN features on OpenStack private cloud

    NASA Astrophysics Data System (ADS)

    Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.

    2016-03-01

    Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.

  13. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera system, will be discussed.

  14. Evidence for a Role of a Cortico-Subcortical Network for Automatic and Unconscious Motor Inhibition of Manual Responses

    PubMed Central

    D’Ostilio, Kevin; Collette, Fabienne; Phillips, Christophe; Garraux, Gaëtan

    2012-01-01

    It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long been associated with impairment in automatic motor control. In addition, a key role of the medial frontal cortex has been suggested by administrating a subliminal masked prime task to a patient with a small lesion restricted to the supplementary motor area (SMA). In this task, invisible masked arrows stimuli were followed by visible arrow targets for a left or right hand response at different interstimuli intervals (ISI), producing a traditional facilitation effect for compatible trials at short ISI and a reversal inhibitory effect at longer ISI. Here, by using fast event-related fMRI and a weighted parametric analysis, we showed BOLD related activity changes in a cortico-subcortical network, especially in the SMA and the striatum, directly linked to the individual behavioral pattern. This new imaging result corroborates previous works on subliminal priming using lesional approaches. This finding implies that one of the roles of these regions was to suppress a partially activated movement below the threshold of awareness. PMID:23110158

  15. Evidence for a role of a cortico-subcortical network for automatic and unconscious motor inhibition of manual responses.

    PubMed

    D'Ostilio, Kevin; Collette, Fabienne; Phillips, Christophe; Garraux, Gaëtan

    2012-01-01

    It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long been associated with impairment in automatic motor control. In addition, a key role of the medial frontal cortex has been suggested by administrating a subliminal masked prime task to a patient with a small lesion restricted to the supplementary motor area (SMA). In this task, invisible masked arrows stimuli were followed by visible arrow targets for a left or right hand response at different interstimuli intervals (ISI), producing a traditional facilitation effect for compatible trials at short ISI and a reversal inhibitory effect at longer ISI. Here, by using fast event-related fMRI and a weighted parametric analysis, we showed BOLD related activity changes in a cortico-subcortical network, especially in the SMA and the striatum, directly linked to the individual behavioral pattern. This new imaging result corroborates previous works on subliminal priming using lesional approaches. This finding implies that one of the roles of these regions was to suppress a partially activated movement below the threshold of awareness.

  16. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network

    PubMed Central

    Dietz, Hans Peter; D’hooge, Jan; Barratt, Dean; Deprest, Jan

    2018-01-01

    Abstract. Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams’ index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach. PMID:29340289

  17. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Sindhwani, Nikhil; Dietz, Hans Peter; D'hooge, Jan; Barratt, Dean; Deprest, Jan; Vercauteren, Tom

    2018-04-01

    Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach.

  18. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  19. Automaticity of phonological and semantic processing during visual word recognition.

    PubMed

    Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C

    2017-04-01

    Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Revised Earthquake Catalogue for South Iceland

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Zechar, J. Douglas; Vogfjörd, Kristín S.; Eberhard, David A. J.

    2016-01-01

    In 1991, a new seismic monitoring network named SIL was started in Iceland with a digital seismic system and automatic operation. The system is equipped with software that reports the automatic location and magnitude of earthquakes, usually within 1-2 min of their occurrence. Normally, automatic locations are manually checked and re-estimated with corrected phase picks, but locations are subject to random errors and systematic biases. In this article, we consider the quality of the catalogue and produce a revised catalogue for South Iceland, the area with the highest seismic risk in Iceland. We explore the effects of filtering events using some common recommendations based on network geometry and station spacing and, as an alternative, filtering based on a multivariate analysis that identifies outliers in the hypocentre error distribution. We identify and remove quarry blasts, and we re-estimate the magnitude of many events. This revised catalogue which we consider to be filtered, cleaned, and corrected should be valuable for building future seismicity models and for assessing seismic hazard and risk. We present a comparative seismicity analysis using the original and revised catalogues: we report characteristics of South Iceland seismicity in terms of b value and magnitude of completeness. Our work demonstrates the importance of carefully checking an earthquake catalogue before proceeding with seismicity analysis.

  1. A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images.

    PubMed

    Tang, Sheng; Chen, Si-ping

    2009-09-01

    Severe sex ratio imbalance at birth is now becoming an important issue in several Asian countries. Its leading immediate cause is prenatal sex-selective abortion following illegal sex identification by ultrasound scanning. In this paper, a fast automatic recognition and location algorithm for fetal genital organs is proposed as an effective method to help prevent ultrasound technicians from unethically and illegally identifying the sex of the fetus. This automatic recognition algorithm can be divided into two stages. In the 'rough' stage, a few pixels in the image, which are likely to represent the genital organs, are automatically chosen as points of interest (POIs) according to certain salient characteristics of fetal genital organs. In the 'fine' stage, a specifically supervised learning framework, which fuses an effective feature data preprocessing mechanism into the multiple classifier architecture, is applied to every POI. The basic classifiers in the framework are selected from three widely used classifiers: radial basis function network, backpropagation network, and support vector machine. The classification results of all the POIs are then synthesized to determine whether the fetal genital organ is present in the image, and to locate the genital organ within the positive image. Experiments were designed and carried out based on an image dataset comprising 658 positive images (images with fetal genital organs) and 500 negative images (images without fetal genital organs). The experimental results showed true positive (TP) and true negative (TN) results from 80.5% (265 from 329) and 83.0% (415 from 500) of samples, respectively. The average computation time was 453 ms per image.

  2. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.

    PubMed

    Lu, Fang; Wu, Fa; Hu, Peijun; Peng, Zhiyi; Kong, Dexing

    2017-02-01

    Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans. The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map. The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively. The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.

  3. Resource Aware Intelligent Network Services (RAINS) Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Tom; Yang, Xi

    The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate, maintain, and distribute MRML based resource descriptions. Once all of the resource topologies are absorbed by the RCE, a connected graph of the full distributed system topology is constructed, which forms the basis for computation and workflow processing. The RCE includes a Modular Computation Element (MCE) framework which allows for tailoring of the computation process to the specific set of resources under control, and the services desired. The input and output of an MCE are both model data based on MRS/MRML ontology and schema. Some of the RAINS project accomplishments include: Development of general and extensible multi-resource modeling framework; Design of a Resource Computation Engine (RCE) system which includes the following key capabilities; Absorb a variety of multi-resource model types and build integrated models; Novel architecture which uses model based communications across the full stack for all Flexible provision of abstract or intent based user facing interfaces; Workflow processing based on model descriptions; Release of the RCE as an open source software; Deployment of RCE in the University of Maryland/Mid-Atlantic Crossroad ScienceDMZ in prototype mode with a plan under way to transition to production; Deployment at the Argonne National Laboratory DTN Facility in prototype mode; Selection of RCE by the DOE SENSE (SDN for End-to-end Networked Science at the Exascale) project as the basis for their orchestration service.« less

  4. Rapid Characterization of Large Earthquakes in Chile

    NASA Astrophysics Data System (ADS)

    Barrientos, S. E.; Team, C.

    2015-12-01

    Chile, along 3000 km of it 4200 km long coast, is regularly affected by very large earthquakes (up to magnitude 9.5) resulting from the convergence and subduction of the Nazca plate beneath the South American plate. These megathrust earthquakes exhibit long rupture regions reaching several hundreds of km with fault displacements of several tens of meters. Minimum delay characterization of these giant events to establish their rupture extent and slip distribution is of the utmost importance for rapid estimations of the shaking area and their corresponding tsunami-genic potential evaluation, particularly when there are only few minutes to warn the coastal population for immediate actions. The task of a rapid evaluation of large earthquakes is accomplished in Chile through a network of sensors being implemented by the National Seismological Center of the University of Chile. The network is mainly composed approximately by one hundred broad-band and strong motion instruments and 130 GNSS devices; all will be connected in real time. Forty units present an optional RTX capability, where satellite orbits and clock corrections are sent to the field device producing a 1-Hz stream at 4-cm level. Tests are being conducted to stream the real-time raw data to be later processed at the central facility. Hypocentral locations and magnitudes are estimated after few minutes by automatic processing software based on wave arrival; for magnitudes less than 7.0 the rapid estimation works within acceptable bounds. For larger events, we are currently developing automatic detectors and amplitude estimators of displacement coming out from the real time GNSS streams. This software has been tested for several cases showing that, for plate interface events, the minimum magnitude threshold detectability reaches values within 6.2 and 6.5 (1-2 cm coastal displacement), providing an excellent tool for earthquake early characterization from a tsunamigenic perspective.

  5. Structure-based manual screening and automatic networking for systematically exploring sansanmycin analogues using high performance liquid chromatography tandem mass spectroscopy.

    PubMed

    Jiang, Zhi-Bo; Ren, Wei-Cong; Shi, Yuan-Yuan; Li, Xing-Xing; Lei, Xuan; Fan, Jia-Hui; Zhang, Cong; Gu, Ren-Jie; Wang, Li-Fei; Xie, Yun-Ying; Hong, Bin

    2018-05-18

    Sansanmycins (SS), one of several known uridyl peptide antibiotics (UPAs) possessing a unique chemical scaffold, showed a good inhibitory effect on the highly refractory pathogens Pseudomonas aeruginosa and Mycobacterium tuberculosis, especially on the multi-drug resistant M. tuberculosis. This study employed high performance liquid chromatography-mass spectrometry detector (HPLC-MSD) ion trap and LTQ orbitrap tandem mass spectrometry (MS/MS) to explore sansanmycin analogues manually and automatically by re-analysis of the Streptomyces sp. SS fermentation broth. The structure-based manual screening method, based on analysis of the fragmentation pathway of known UPAs and on comparisons of the MS/MS spectra with that of sansanmycin A (SS-A), resulted in identifying twenty sansanmycin analogues, including twelve new structures (1-12). Furthermore, to deeply explore sansanmycin analogues, we utilized a GNPS based molecular networking workflow to re-analyze the HPLC-MS/MS data automatically. As a result, eight more new sansanmycins (13-20) were discovered. Compound 1 was discovered to lose two amino acids of residue 1 (AA 1 ) and (2S, 3S)-N 3 -methyl-2,3-diamino butyric acid (DABA) from the N-terminus, and compounds 6, 11 and 12 were found to contain a 2',3'-dehydrated 4',5'-enamine-3'-deoxyuridyl moiety, which have not been reported before. Interestingly, three trace components with novel 5,6-dihydro-5'-aminouridyl group (16-18) were detected for the first time in the sansanmycin-producing strain. Their structures were primarily determined by detail analysis of the data from MS/MS. Compounds 8 and 10 were further confirmed by nuclear magnetic resonance (NMR) data, which proved the efficiency and accuracy of the method of HPLC-MS/MS for exploration of novel UPAs. Comparing to manual screening, the networking method can provide systematic visualization results. Manual screening and networking method may complement with each other to facilitate the mining of novel UPAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  7. Dynamic Pricing in Electronic Commerce Using Neural Network

    NASA Astrophysics Data System (ADS)

    Ghose, Tapu Kumar; Tran, Thomas T.

    In this paper, we propose an approach where feed-forward neural network is used for dynamically calculating a competitive price of a product in order to maximize sellers’ revenue. In the approach we considered that along with product price other attributes such as product quality, delivery time, after sales service and seller’s reputation contribute in consumers purchase decision. We showed that once the sellers, by using their limited prior knowledge, set an initial price of a product our model adjusts the price automatically with the help of neural network so that sellers’ revenue is maximized.

  8. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  9. Automatic benchmarking of homogenization packages applied to synthetic monthly series within the frame of the MULTITEST project

    NASA Astrophysics Data System (ADS)

    Guijarro, José A.; López, José A.; Aguilar, Enric; Domonkos, Peter; Venema, Victor; Sigró, Javier; Brunet, Manola

    2017-04-01

    After the successful inter-comparison of homogenization methods carried out in the COST Action ES0601 (HOME), many methods kept improving their algorithms, suggesting the need of performing new inter-comparison exercises. However, manual applications of the methodologies to a large number of testing networks cannot be afforded without involving the work of many researchers over an extended time. The alternative is to make the comparisons as automatic as possible, as in the MULTITEST project, which, funded by the Spanish Ministry of Economy and Competitiveness, tests homogenization methods by applying them to a large number of synthetic networks of monthly temperature and precipitation. One hundred networks of 10 series were sampled from different master networks containing 100 series of 720 values (60 years times 12 months). Three master temperature networks were built with different degree of cross-correlations between the series in order to simulate conditions of different station densities or climatic heterogeneity. Also three master synthetic networks were developed for precipitation, this time mimicking the characteristics of three different climates: Atlantic temperate, Mediterranean and monsoonal. Inhomogeneities were introduced in every network sampled from the master networks, and all publicly available homogenization methods that we could run in an automatic way were applied to them: ACMANT 3.0, Climatol 3.0, MASH 3.03, RHTestV4, USHCN v52d and HOMER 2.6. Most of them were tested with different settings, and their comparative results can be inspected in box-plot graphics of Root Mean Squared Errors and trend biases computed between the homogenized data and their original homogeneous series. In a first stage, inhomogeneities were applied to the synthetic homogeneous series with five different settings with increasing difficulty and realism: i) big shifts in half of the series; ii) the same with a strong seasonality; iii) short term platforms and local trends; iv) random number of shifts with random size and location in all series; and v) the same plus seasonality of random amplitude. The shifts were additive for temperature and multiplicative for precipitation. The second stage is dedicated to study the impact of the number of series in the networks, seasonalities other than sinusoidal, and the occurrence of simultaneous shifts in a high number of series. Finally, tests will be performed on a longer and more realistic benchmark, with varying number of missing data along time, similar to that used in the COST Action ES0601. These inter-comparisons will be valuable both to the users and to the developers of the tested packages, who can see how their algorithms behave under varied climate conditions.

  10. ReNE: A Cytoscape Plugin for Regulatory Network Enhancement

    PubMed Central

    Politano, Gianfranco; Benso, Alfredo; Savino, Alessandro; Di Carlo, Stefano

    2014-01-01

    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by ReNE is exportable in multiple formats for further analysis via third party applications. ReNE can be freely installed from the Cytoscape App Store (http://apps.cytoscape.org/apps/rene) and the full source code is freely available for download through a SVN repository accessible at http://www.sysbio.polito.it/tools_svn/BioInformatics/Rene/releases/. ReNE enhances a network by only integrating data from public repositories, without any inference or prediction. The reliability of the introduced interactions only depends on the reliability of the source data, which is out of control of ReNe developers. PMID:25541727

  11. Automated selection of computed tomography display parameters using neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Neu, Scott; Valentino, Daniel J.

    2001-07-01

    A collection of artificial neural networks (ANN's) was trained to identify simple anatomical structures in a set of x-ray computed tomography (CT) images. These neural networks learned to associate a point in an image with the anatomical structure containing the point by using the image pixels located on the horizontal and vertical lines that ran through the point. The neural networks were integrated into a computer software tool whose function is to select an index into a list of CT window/level values from the location of the user's mouse cursor. Based upon the anatomical structure selected by the user, the software tool automatically adjusts the image display to optimally view the structure.

  12. Prediction in Health Domain Using Bayesian Networks Optimization Based on Induction Learning Techniques

    NASA Astrophysics Data System (ADS)

    Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón

    A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.

  13. Chaos in a neural network circuit

    NASA Astrophysics Data System (ADS)

    Kepler, Thomas B.; Datt, Sumeet; Meyer, Robert B.; Abott, L. F.

    1990-12-01

    We have constructed a neural network circuit of four clipped, high-grain, integrating operational amplifiers coupled to each other through an array of digitally programmable resistor ladders (MDACs). In addition to fixed-point and cyclic behavior, the circuit exhibits chaotic behavior with complex strange attractors which are approached through period doubling, intermittent attractor expansion and/or quasiperiodic pathways. Couplings between the nonlinear circuit elements are controlled by a computer which can automatically search through the space of couplings for interesting phenomena. We report some initial statistical results relating the behavior of the network to properties of its coupling matrix. Through these results and further research the circuit should help resolve fundamental issues concerning chaos in neural networks.

  14. Automatic theory generation from analyst text files using coherence networks

    NASA Astrophysics Data System (ADS)

    Shaffer, Steven C.

    2014-05-01

    This paper describes a three-phase process of extracting knowledge from analyst textual reports. Phase 1 involves performing natural language processing on the source text to extract subject-predicate-object triples. In phase 2, these triples are then fed into a coherence network analysis process, using a genetic algorithm optimization. Finally, the highest-value sub networks are processed into a semantic network graph for display. Initial work on a well- known data set (a Wikipedia article on Abraham Lincoln) has shown excellent results without any specific tuning. Next, we ran the process on the SYNthetic Counter-INsurgency (SYNCOIN) data set, developed at Penn State, yielding interesting and potentially useful results.

  15. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now available within a few minutes after the earthquake occurred. One of the greatest challenges in the near future is to provide shaking intensity maps and other ground motion parameters, within 5 minutes post-event, on the Internet and GIS-based format in order to improve emergency response, public information, preparedness and hazard mitigation

  16. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  17. Cellular neural network-based hybrid approach toward automatic image registration

    NASA Astrophysics Data System (ADS)

    Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar

    2013-01-01

    Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.

  18. Fully convolutional neural network for removing background in noisy images of uranium bearing particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarolli, Jay G.; Naes, Benjamin E.; Butler, Lamar

    A fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8,000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy. Background eliminated images were then segmented using a watershed technique in order to determine isotopic ratios of particles. A comparisonmore » of the isotopic distributions of an independent data set segmented using the neural network, compared to a commercially available automated particle measurement (APM) program developed by CAMECA, highlighted the necessity for effective background removal to ensure that resulting particle identification is not only accurate, but preserves valuable signal that could be lost due to improper segmentation. The FCN approach improves the robustness of current state-of-the-art particle searching algorithms by reducing user input biases, resulting in an improved absolute signal per particle and decreased uncertainty of the determined isotope ratios.« less

  19. 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT.

    PubMed

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-01-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  20. 3D convolutional neural network for automatic detection of lung nodules in chest CT

    NASA Astrophysics Data System (ADS)

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-03-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  1. Progresses with Net-VISA on Global Infrasound Association

    NASA Astrophysics Data System (ADS)

    Mialle, Pierrick; Arora, Nimar

    2017-04-01

    Global Infrasound Association algorithms are an important area of active development at the International Data Centre (IDC). These algorithms play an important part of the automatic processing system for verification technologies. A key focus at the IDC is to enhance association and signal characterization methods by incorporating the identification of signals of interest and the optimization of the network detection threshold. The overall objective is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the Reviewed Event Bulletins (REB), and hence reduce IDC analyst workload. Despite good accuracy by the IDC categorization, a number of signal detections due to clutter sources such as microbaroms or surf are built into events. In this work we aim to optimize the association criteria based on knowledge acquired by IDC in the last 6 years, and focus on the specificity of seismo-acoustic events. The resulting work has been incorporated into NETVISA [1], a Bayesian approach to network processing. The model that we propose is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  2. Progresses with Net-VISA on Global Infrasound Association

    NASA Astrophysics Data System (ADS)

    Mialle, P.; Arora, N. S.

    2016-12-01

    Global Infrasound Association algorithms are an important area of active development at the International Data Centre (IDC). These algorithms play an important part of the automatic processing system for verification technologies. A key focus at the IDC is to enhance association and signal characterization methods by incorporating the identification of signals of interest and the optimization of the network detection threshold. The overall objective is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the Reviewed Event Bulletins (REB), and hence reduce IDC analyst workload. Despite good accuracy by the IDC categorization, a number of signal detections due to clutter sources such as microbaroms or surf are built into events. In this work we aim to optimize the association criteria based on knowledge acquired by IDC in the last 6 years, and focus on the specificity of seismo-acoustic events. The resulting work has been incorporated into NETVISA [1], a Bayesian approach to network processing. The model that we propose is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  3. Design of Provider-Provisioned Website Protection Scheme against Malware Distribution

    NASA Astrophysics Data System (ADS)

    Yagi, Takeshi; Tanimoto, Naoto; Hariu, Takeo; Itoh, Mitsutaka

    Vulnerabilities in web applications expose computer networks to security threats, and many websites are used by attackers as hopping sites to attack other websites and user terminals. These incidents prevent service providers from constructing secure networking environments. To protect websites from attacks exploiting vulnerabilities in web applications, service providers use web application firewalls (WAFs). WAFs filter accesses from attackers by using signatures, which are generated based on the exploit codes of previous attacks. However, WAFs cannot filter unknown attacks because the signatures cannot reflect new types of attacks. In service provider environments, the number of exploit codes has recently increased rapidly because of the spread of vulnerable web applications that have been developed through cloud computing. Thus, generating signatures for all exploit codes is difficult. To solve these problems, our proposed scheme detects and filters malware downloads that are sent from websites which have already received exploit codes. In addition, to collect information for detecting malware downloads, web honeypots, which automatically extract the communication records of exploit codes, are used. According to the results of experiments using a prototype, our scheme can filter attacks automatically so that service providers can provide secure and cost-effective network environments.

  4. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment

    PubMed Central

    Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding

    2016-01-01

    In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse. PMID:27869725

  5. Neural networks for learning and prediction with applications to remote sensing and speech perception

    NASA Astrophysics Data System (ADS)

    Gjaja, Marin N.

    1997-11-01

    Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.

  6. Spatial spreading of infectious disease via local and national mobility networks in South Korea

    NASA Astrophysics Data System (ADS)

    Kwon, Okyu; Son, Woo-Sik

    2017-12-01

    We study the spread of infectious disease based on local- and national-scale mobility networks. We construct a local mobility network using data on urban bus services to estimate local-scale movement of people. We also construct a national mobility network from orientation-destination data of vehicular traffic between highway tollgates to evaluate national-scale movement of people. A metapopulation model is used to simulate the spread of epidemics. Thus, the number of infected people is simulated using a susceptible-infectious-recovered (SIR) model within the administrative division, and inter-division spread of infected people is determined through local and national mobility networks. In this paper, we consider two scenarios for epidemic spread. In the first, the infectious disease only spreads through local-scale movement of people, that is, the local mobility network. In the second, it spreads via both local and national mobility networks. For the former, the simulation results show infected people sequentially spread to neighboring divisions. Yet for the latter, we observe a faster spreading pattern to distant divisions. Thus, we confirm the national mobility network enhances synchronization among the incidence profiles of all administrative divisions.

  7. 78 FR 12397 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Granting Approval to Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...''), that is priced more aggressively than the Protected National Best Bid or Offer (``Protected NBBO'') \\10..., generally, the Protected Bid and Protected Offer, and the national best bid (``NBB'') and national best... automatic execution. In such case, the Exchange states that the Protected NBBO would be the best-priced...

  8. Research-oriented image registry for multimodal image integration.

    PubMed

    Tanaka, M; Sadato, N; Ishimori, Y; Yonekura, Y; Yamashita, Y; Komuro, H; Hayahsi, N; Ishii, Y

    1998-01-01

    To provide multimodal biomedical images automatically, we constructed the research-oriented image registry, Data Delivery System (DDS). DDS was constructed on the campus local area network. Machines which generate images (imagers: DSA, ultrasound, PET, MRI, SPECT and CT) were connected to the campus LAN. Once a patient is registered, all his images are automatically picked up by DDS as they are generated, transferred through the gateway server to the intermediate server, and copied into the directory of the user who registered the patient. DDS informs the user through e-mail that new data have been generated and transferred. Data format is automatically converted into one which is chosen by the user. Data inactive for a certain period in the intermediate server are automatically achieved into the final and permanent data server based on compact disk. As a soft link is automatically generated through this step, a user has access to all (old or new) image data of the patient of his interest. As DDS runs with minimal maintenance, cost and time for data transfer are significantly saved. By making the complex process of data transfer and conversion invisible, DDS has made it easy for naive-to-computer researchers to concentrate on their biomedical interest.

  9. Clinical significance of automatic warning function of cardiac remote monitoring systems in preventing acute cardiac episodes

    PubMed Central

    Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing

    2014-01-01

    Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124

  10. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  11. Truth in Reporting: How Data Capture Methods Obfuscate Actual Surgical Site Infection Rates within a Health Care Network System.

    PubMed

    Bordeianou, Liliana; Cauley, Christy E; Antonelli, Donna; Bird, Sarah; Rattner, David; Hutter, Matthew; Mahmood, Sadiqa; Schnipper, Deborah; Rubin, Marc; Bleday, Ronald; Kenney, Pardon; Berger, David

    2017-01-01

    Two systems measure surgical site infection rates following colorectal surgeries: the American College of Surgeons National Surgical Quality Improvement Program and the Centers for Disease Control and Prevention National Healthcare Safety Network. The Centers for Medicare & Medicaid Services pay-for-performance initiatives use National Healthcare Safety Network data for hospital comparisons. This study aimed to compare database concordance. This is a multi-institution cohort study of systemwide Colorectal Surgery Collaborative. The National Surgical Quality Improvement Program requires rigorous, standardized data capture techniques; National Healthcare Safety Network allows 5 data capture techniques. Standardized surgical site infection rates were compared between databases. The Cohen κ-coefficient was calculated. This study was conducted at Boston-area hospitals. National Healthcare Safety Network or National Surgical Quality Improvement Program patients undergoing colorectal surgery were included. Standardized surgical site infection rates were the primary outcomes of interest. Thirty-day surgical site infection rates of 3547 (National Surgical Quality Improvement Program) vs 5179 (National Healthcare Safety Network) colorectal procedures (2012-2014). Discrepancies appeared: National Surgical Quality Improvement Program database of hospital 1 (N = 1480 patients) routinely found surgical site infection rates of approximately 10%, routinely deemed rate "exemplary" or "as expected" (100%). National Healthcare Safety Network data from the same hospital and time period (N = 1881) revealed a similar overall surgical site infection rate (10%), but standardized rates were deemed "worse than national average" 80% of the time. Overall, hospitals using less rigorous capture methods had improved surgical site infection rates for National Healthcare Safety Network compared with standardized National Surgical Quality Improvement Program reports. The correlation coefficient between standardized infection rates was 0.03 (p = 0.88). During 25 site-time period observations, National Surgical Quality Improvement Program and National Healthcare Safety Network data matched for 52% of observations (13/25). κ = 0.10 (95% CI, -0.1366 to 0.3402; p = 0.403), indicating poor agreement. This study investigated hospitals located in the Northeastern United States only. Variation in Centers for Medicare & Medicaid Services-mandated National Healthcare Safety Network infection surveillance methodology leads to unreliable results, which is apparent when these results are compared with standardized data. High-quality data would improve care quality and compare outcomes among institutions.

  12. Using artificial intelligence strategies for process-related automated inspection in the production environment

    NASA Astrophysics Data System (ADS)

    Anding, K.; Kuritcyn, P.; Garten, D.

    2016-11-01

    In this paper a new method for the automatic visual inspection of metallic surfaces is proposed by using Convolutional Neural Networks (CNN). The different combinations of network parameters were developed and tested. The obtained results of CNN were analysed and compared with the results of our previous investigations with color and texture features as input parameters for a Support Vector Machine. Advantages and disadvantages of the different classifying methods are explained.

  13. Research on the Construction of Remote Sensing Automatic Interpretation Symbol Big Data

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Liu, R.; Liu, J.; Cheng, T.

    2018-04-01

    Remote sensing automatic interpretation symbol (RSAIS) is an inexpensive and fast method in providing precise in-situ information for image interpretation and accuracy. This study designed a scientific and precise RSAIS data characterization method, as well as a distributed and cloud architecture massive data storage method. Additionally, it introduced an offline and online data update mode and a dynamic data evaluation mechanism, with the aim to create an efficient approach for RSAIS big data construction. Finally, a national RSAIS database with more than 3 million samples covering 86 land types was constructed during 2013-2015 based on the National Geographic Conditions Monitoring Project of China and then annually updated since the 2016 period. The RSAIS big data has proven to be a good method for large scale image interpretation and field validation. It is also notable that it has the potential to solve image automatic interpretation with the assistance of deep learning technology in the remote sensing big data era.

  14. Designing Predictive Diagnose Method for Insulation Resistance Degradation of the Electrical Power Cables from Neutral Insulated Power Networks

    NASA Astrophysics Data System (ADS)

    Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.

    2017-06-01

    This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.

  15. Integrating data from biological experiments into metabolic networks with the DBE information system.

    PubMed

    Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk

    2005-01-01

    Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.

  16. Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems

    DOEpatents

    Bailey, David A [Schenectady, NY

    2004-11-16

    An automated process defines and maintains connectivity regions within a dynamic network. The automated process requires an initial input of a network component around which a connectivity region will be defined. The process automatically and autonomously generates a region around the initial input, stores the region's definition, and monitors the network for a change. Upon detecting a change in the network, the effect is evaluated, and if necessary the regions are adjusted and redefined to accommodate the change. Only those regions of the network affected by the change will be updated. This process eliminates the need for an operator to manually evaluate connectivity regions within a network. Since the automated process maintains the network, the reliance on an operator is minimized; thus, reducing the potential for operator error. This combination of region maintenance and reduced operator reliance, results in a reduction of overall error.

  17. Method and apparatus for eliminating unsuccessful tries in a search tree

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward (Inventor); Madan, Herb S. (Inventor)

    1991-01-01

    A circuit switching system in an M-ary, n-cube connected network completes a best-first path from an originating node to a destination node by latching valid legs of the path as the path is being sought out. Each network node is provided with a routing hyperswitch sub-network, (HSN) connected between that node and bidirectional high capacity communication channels of the n-cube network. The sub-networks are all controlled by routing algorithms which respond to message identification headings (headers) on messages to be routed along one or more routing legs. The header includes information embedded therein which is interpreted by each sub-network to route and historically update the header. A logic circuit, available at every node, implements the algorithm and automatically forwards or back-tracks the header in the network legs of various paths until a completed path is latched.

  18. 78 FR 27249 - Announcement of Funding Awards for Fiscal Year 2012/2013; Strong Cities, Strong Communities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Awards for Fiscal Year 2012/2013; Strong Cities, Strong Communities National Resource Network AGENCY... 2012/2013 Strong Cities, Strong Communities National Resource Network (SC2 Network). The purpose of... SC2 Network is a capacity building program targeted to assisting the nation's most distressed...

  19. Automatic Picking of Foraminifera: Design of the Foraminifera Image Recognition and Sorting Tool (FIRST) Prototype and Results of the Image Classification Scheme

    NASA Astrophysics Data System (ADS)

    de Garidel-Thoron, T.; Marchant, R.; Soto, E.; Gally, Y.; Beaufort, L.; Bolton, C. T.; Bouslama, M.; Licari, L.; Mazur, J. C.; Brutti, J. M.; Norsa, F.

    2017-12-01

    Foraminifera tests are the main proxy carriers for paleoceanographic reconstructions. Both geochemical and taxonomical studies require large numbers of tests to achieve statistical relevance. To date, the extraction of foraminifera from the sediment coarse fraction is still done by hand and thus time-consuming. Moreover, the recognition of morphotypes, ecologically relevant, requires some taxonomical skills not easily taught. The automatic recognition and extraction of foraminifera would largely help paleoceanographers to overcome these issues. Recent advances in automatic image classification using machine learning opens the way to automatic extraction of foraminifera. Here we detail progress on the design of an automatic picking machine as part of the FIRST project. The machine handles 30 pre-sieved samples (100-1000µm), separating them into individual particles (including foraminifera) and imaging each in pseudo-3D. The particles are classified and specimens of interest are sorted either for Individual Foraminifera Analyses (44 per slide) and/or for classical multiple analyses (8 morphological classes per slide, up to 1000 individuals per hole). The classification is based on machine learning using Convolutional Neural Networks (CNNs), similar to the approach used in the coccolithophorid imaging system SYRACO. To prove its feasibility, we built two training image datasets of modern planktonic foraminifera containing approximately 2000 and 5000 images each, corresponding to 15 & 25 morphological classes. Using a CNN with a residual topology (ResNet) we achieve over 95% correct classification for each dataset. We tested the network on 160,000 images from 45 depths of a sediment core from the Pacific ocean, for which we have human counts. The current algorithm is able to reproduce the downcore variability in both Globigerinoides ruber and the fragmentation index (r2 = 0.58 and 0.88 respectively). The FIRST prototype yields some promising results for high-resolution paleoceanographic studies and evolutionary studies.

  20. Extraction of tidal channel networks from airborne scanning laser altimetry

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.

Top