Sample records for national climate assessment

  1. Understanding National Models for Climate Assessments

    NASA Astrophysics Data System (ADS)

    Dave, A.; Weingartner, K.

    2017-12-01

    National-level climate assessments have been produced or are underway in a number of countries. These efforts showcase a variety of approaches to mapping climate impacts onto human and natural systems, and involve a variety of development processes, organizational structures, and intended purposes. This presentation will provide a comparative overview of national `models' for climate assessments worldwide, drawing from a geographically diverse group of nations with varying capacities to conduct such assessments. Using an illustrative sampling of assessment models, the presentation will highlight the range of assessment mandates and requirements that drive this work, methodologies employed, focal areas, and the degree to which international dimensions are included for each nation's assessment. This not only allows the U.S. National Climate Assessment to be better understood within an international context, but provides the user with an entry point into other national climate assessments around the world, enabling a better understanding of the risks and vulnerabilities societies face.

  2. National Climate Assessment

    NASA Image and Video Library

    2014-05-06

    NASA Earth Science Division Director Michael Freilich shows meteorologists a model of the Global Precipitation Measurement (GPM) Core Observatory during a media event for the release of the Third U.S. National Climate Assessment, South Lawn of the White House in Washington, Tuesday, May 6, 2014. NASA Earth-observing satellite observations and analysis by the NASA-supported research community underlie many of the findings in the new climate change assessment. Photo Credit: (NASA/Bill Ingalls)

  3. National Climate Assessment

    NASA Image and Video Library

    2014-05-06

    NASA Earth Science Division Director Michael Freilich shows meteorologists an AERONET sun photometer, right, and a model of the Global Precipitation Measurement (GPM) Core Observatory during a media event for the release of the Third U.S. National Climate Assessment, South Lawn of the White House in Washington, Tuesday, May 6, 2014. NASA Earth-observing satellite observations and analysis by the NASA-supported research community underlie many of the findings in the new climate change assessment. Photo Credit: (NASA/Bill Ingalls)

  4. 77 FR 20794 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment.... SUMMARY: This notice announces the selection of the authors for the report of the next National Climate Assessment by the National Climate Assessment and Development Advisory Committee (NCADAC). The next National...

  5. 77 FR 61574 - National Climate Assessment and Development Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... National Climate Assessment and Development Advisory Committee (NCADAC). DATES: Time and Date: The meeting... to dial into the call. Please check the National Climate Assessment Web site for additional...

  6. 77 FR 56191 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... National Climate Assessment and Development Advisory Committee (NCADAC). DATES: The meeting will be held... dial into the call. Please check the National Climate Assessment Web site for additional information at...

  7. 76 FR 25309 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... meeting of the DOC NOAA National Climate Assessment and Development Advisory Committee (NCADAC). The... available at a location to be determined. Please check the National Climate Assessment Web site for this...

  8. 77 FR 64491 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The meeting will be... One Veterans Place Silver Spring, MD 20910. Please check the National Climate Assessment Web site for...

  9. 78 FR 64481 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The meeting will be... public will not be able to dial into the call. Please check the National Climate Assessment Web site for...

  10. 78 FR 51711 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The meeting will be... public will not be able to dial into the call. Please check the National Climate Assessment Web site for...

  11. 78 FR 21598 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The meeting will be... public will not be able to dial into the call. Please check the National Climate Assessment Web site for...

  12. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate... NOAA National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The..., DC 20006. The public will not be able to dial into the call. Please check the National Climate...

  13. 78 FR 4132 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ...-3013-0] RIN 0648-XC433 National Climate Assessment and Development Advisory Committee AGENCY: Office of... Oceanic and Atmospheric Research (OAR) publishes this notice on behalf of the National Climate Assessment and Development Advisory Committee (NCADAC) to announce the availability of a Draft Climate Assessment...

  14. NOAA's State Climate Summaries for the National Climate Assessment: A Sustained Assessment Product

    NASA Astrophysics Data System (ADS)

    Kunkel, K.; Champion, S.; Frankson, R.; Easterling, D. R.; Griffin, J.; Runkle, J. D.; Stevens, L. E.; Stewart, B. C.; Sun, L.; Veasey, S.

    2016-12-01

    A set of State Climate Summaries have been produced for all 50 U.S. states as part of the National Climate Assessment Sustained Assessment and represent a NOAA contribution to this process. Each summary includes information on observed and projected climate change conditions and impacts associated with future greenhouse gas emissions pathways. The summaries focus on the physical climate and coastal issues as a part of NOAA's mission. Core climate data and simulations used to produce these summaries have been previously published, and have been analyzed to represent a targeted synthesis of historical and plausible future climate conditions. As these are intended to be supplemental to major climate assessment development, the scope of the content remains true to a "summary" style document. Each state's Climate Summary includes its climatology and projections of future temperatures and precipitation, which are presented in order to provide a context for the assessment of future impacts. The climatological component focuses on temperature, precipitation, and noteworthy weather events specific to each state and relevant to the climate change discussion. Future climate scenarios are also briefly discussed, using well-known and consistent sets of climate model simulations based on two possible futures of greenhouse gas emissions. These future scenarios present an internally consistent climate picture for every state and are intended to inform the potential impacts of climate change. These 50 State Climate Summaries were produced by NOAA's National Centers for Environmental Information (NCEI) and the North Carolina State University Cooperative Institute for Climate and Satellites - NC (CICS-NC) with additional input provided by climate experts, including the NOAA Regional Climate Centers and State Climatologists. Each summary document also underwent a comprehensive and anonymous peer review. Each summary contains text, figures, and an interactive web presentation. A full

  15. 78 FR 56866 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... open meeting. SUMMARY: The National Climate Assessment and Development Advisory Committee (NCADAC) was... synthesize and summarize the science and information pertaining to current and future impacts of climate...

  16. Risk assessment of climate systems for national security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  17. 77 FR 17406 - National Climate Assessment and Development Advisory Committee (NCADAC) Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... DEPARTMENT OF COMMERCE National Climate Assessment and Development Advisory Committee (NCADAC... sets forth the schedule and proposed agenda of a forthcoming meeting of the DoC NOAA National Climate... Pennsylvania Avenue NW., Washington, DC 20006. Please check the National Climate Assessment Web site for...

  18. 77 FR 43574 - National Climate Assessment and Development Advisory Committee (NCADAC); Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate... NOAA National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The... check the National Climate Assessment Web site for additional information at http://www.globalchange.gov...

  19. 75 FR 81233 - National Climate Assessment Development and Advisory Committee; Establishment and Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... Public Meeting. SUMMARY: This Notice advises of the public of the establishment of the National Climate... establishment of the National Climate Assessment Development and Advisory Committee (NCADAC) is in the public...

  20. 76 FR 44307 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate...: Notice of open meeting. SUMMARY: The National Climate Assessment and Development Advisory Committee... impacts of climate. Time and Date: The meeting will be held August 16 and 17, 2011, from 9 a.m to 6 p.m...

  1. Vegetation Health and Productivity Indicators for Sustained National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Running, S. W.

    2014-12-01

    The National Climate Assessment process is developing a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public. Implementing a 14 year record of Gross and Net Primary Productivity (GPP/NPP) derived from the NASA EOS MODIS satellite sensor we demonstrate how these products can serve as Ecosystem Productivity and Vegetation Health National Climate Indicators for implementation in sustained National Climate Assessments. The NPP product combines MODIS vegetation data with daily global meteorology to calculate annual growth of all plant material at 1 sq. km resolution. NPP anomalies identify regions with above or below average plant growth that may result from climate fluctuations and can inform carbon source/sink dynamics, agricultural and forestry yield measures, and response to wildfire or drought conditions. The GPP product provides a high temporal resolution (8-day) metric of vegetation growth which can be used to monitor short-term vegetation response to extreme events and implemented to derive vegetation phenology metrics; growing season start, end, and length, which can elucidate land cover and regionally specific vegetation responses to a changing climate. The high spatial resolution GPP and NPP indicators can also inform and clarify responses seen from other proposed Pilot Indicators such as forest growth/productivity, land cover, crop production, and phenology. The GPP and NPP data are in continuous production and will be sustained into the future with the next generation satellite missions. The long-term Ecosystem Productivity and Vegetation Health Indicators are ideal for use in sustained National Climate Assessments, providing regionally specific responses to a changing climate and complete coverage at the national scale.

  2. Climate Change Vulnerability Assessment for Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less

  3. 77 FR 32572 - (NOAA) National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate...: Notice of Open Meeting. SUMMARY: The National Climate Assessment and Development Advisory Committee... impacts of climate. Time and Date: The meeting will be held June 14, 2012 from 1:00 p.m. to 5:30 p.m. and...

  4. 76 FR 27020 - National Climate Assessment and Development Advisory Committee (NCADAC); Notice of Open Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... proposed agenda of a forthcoming meeting of the DoC NOAA National Climate Assessment and Development... Climate Assessment Web site for additional information at http://www.globalchange.gov/what-we-do...

  5. The National Climate Assessment: A Treasure Trove for Education, Communications and Outreach

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Connolly, R.; Niepold, F., III; Poppleton, K. L. I.; Cloyd, E.; Ledley, T. S.

    2014-12-01

    Required by Congress under the Global Change Act of 1990 to inform the nation on the findings of current climate research, the Third U.S. National Climate Assessment (NCA), released in May 2014, is a rich resource for climate change education, communications and outreach (ECO). Using a website design with mobile applications in mind, NCA takes advantage of mobile learning technology which is revolutionizing how, when and where learning occurs. In an effort to maximize the "teachable moments" inherent in the assessment, a community of experts from the National Center for Science Education and the CLEAN Network, working under the auspices of the National Climate Assessment Network (NCAnet) Education Affinity Group, have developed a series of NCA Learning Pathways that match key NCA messages and resources with reviewed educational materials and trusted online information sources, thereby adding pedagogical depth to the assessment. The NCA Learning Pathways, which focus on the regional chapters of the report, are designed make climate change science more local, human, relevant and, if properly framed by educators and communicators, hopeful for learners. This paper touches on the challenges and opportunities of infusing climate education, communications and outreach into curriculum and society, and details the development and content of NCA Learning Pathways, which are available online through NOAA's Climate.gov website: http://www.climate.gov/teaching

  6. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  7. Sustained Climate Assessments in California: Linkages with Local and National Efforts

    NASA Astrophysics Data System (ADS)

    Franco, G.; Bedsworth, L. W.

    2016-12-01

    This presentation will include discussions about the nature of the sustained Climate Assessments in California and their links to local, regional, and national efforts. The State of California has been supporting regional climate change science for more than two decades to complement federal and international research efforts. State sponsored research has been extremely useful to inform climate policy action and long-term planning in California. California has undertaken six climate assessments since 1998; the last three of these began in 2006 in response to an Executive Order from the Governor. California is now coordinating its next assessment (2018) not only with local/regional efforts (e.g., a group of studies focused on the San Francisco Bay region) but also with USGCRP and the next National Assessment. California is also already supporting foundation work for models and tools that would be used for the 2022 California Assessment.

  8. 76 FR 17626 - National Climate Assessment Development and Advisory Committee; Announcement of Time Change and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory Committee; Announcement of Time Change and Meeting Location AGENCY: National Oceanic and Atmospheric Administration, Department of Commerce. ACTION: National Climate Assessment...

  9. Indicators of climate impacts for forests: recommendations for the US National Climate Assessment indicators system

    Treesearch

    Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart

    2015-01-01

    The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...

  10. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila

    2011-01-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of

  11. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    O'Brien, S.; Kenney, M.; Chen, R. S.; Baptista, S. R.; Quattrochi, D. A.

    2011-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation's activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: -How do we know that there is a changing climate and how is it expected to change in the future? -Are important climate impacts and opportunities occurring or predicted to occur in the future? -Are we adapting successfully? -What are the vulnerabilities and resiliencies given a changing climate? -Are we preparing adequately for extreme events? It is not expected that the NCA indicators would be linked directly to a single decision or portfolio of decisions

  12. 76 FR 41217 - Technical Inputs and Assessment Capacity on Topics Related to 2013 U.S. National Climate Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ...-01] Technical Inputs and Assessment Capacity on Topics Related to 2013 U.S. National Climate... Capacity Related to Regional, Sectoral, and Cross-Cutting Assessments for the 2013 U.S. National Climate... if applicable, institutional affiliation(s) if applicable). In addition, it is recommended that EOIs...

  13. Appendix: Assessment of watershed vulnerability to climate change - Pilot National Forest reports

    Treesearch

    Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark Weinhold

    2013-01-01

    Assessment of watershed vulnerability to climate change. Pilot National Forest reports: Gallatin National Forest, Helena National Forest, Grand Mesa, Uncompahgre, and Gunnison National Forests, White River National Forest, Coconino National Forest, Sawtooth National Forest, Shasta-Trinity National Forest, Umatilla National Forest, Umatilla National Forest, Ouachita...

  14. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  15. The Climate Science Special Report (CSSR) of the Fourth National Climate Assessment (NCA4)

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Fahey, D. W.; Hibbard, K. A.

    2016-12-01

    The Climate Science Special Report (CSSR) will provide key input into the Fourth National Climate Assessment (NCA4). The report was initiated in 2016 under the guidance of the U.S. Global Change Research Program (USGCRP) as a new, stand-alone report of the state-of-science relating to climate change and its physical impacts. The report is undergoing peer and public review in late 2016 with the aim for final publication in the fourth quarter of 2017. CSSR will provide a comprehensive assessment of the science underlying the changes occurring in the Earth's climate system, with a special focus on the United States. CSSR will serve several purposes for NCA4, including 1) providing an updated detailed analysis of the findings of how climate change is affecting weather and climate across the United States, 2) providing an executive summary that will be used as the basis for the climate science discussion in NCA4, and 3) providing foundational information and projections for climate change, including extremes, to improve "end-to-end" consistency in sectoral, regional, and resilience analyses for NCA4. We will present a summary of the origins and development of CSSR, the writing team, the chapter topics and the relation of CSSR content to NCA4, other assessments and relevance to policy and research communities.

  16. Lightning-Related Indicators for National Climate Assessment (NCA) Studies

    NASA Technical Reports Server (NTRS)

    Koshak, W.

    2017-01-01

    Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).

  17. 78 FR 17640 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    .... SUMMARY: The Department of Commerce's Chief Financial Officer and Assistant Secretary for Administration... the USGCRP.'' Dated: March 5, 2013. Jason Donaldson, Chief Financial Officer/Chief Administrative... INFORMATION CONTACT: Dr. Cynthia J. Decker, Designated Federal Officer, National Climate Assessment and...

  18. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  19. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Richard H.; Engle, Nathan L.; Hall, John

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for releasemore » in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes

  20. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    NASA Astrophysics Data System (ADS)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  1. Variation of a Lightning NOx Indicator for National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Koshak, William; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    Lightning nitrogen oxides (LNOx) indirectly influences our climate since these molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere [Huntrieser et al., 1998]. In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS; Christian et al. [1999]; Cecil et al. [2014]) data is used to estimate LNOx production over the southern portion of the conterminous US for the 16 year period 1998-2013.

  2. National housing and impervious surface scenarios for integrated climate impact assessments

    PubMed Central

    Bierwagen, Britta G.; Theobald, David M.; Pyke, Christopher R.; Choate, Anne; Groth, Philip; Thomas, John V.; Morefield, Philip

    2010-01-01

    Understanding the impacts of climate change on people and the environment requires an understanding of the dynamics of both climate and land use/land cover changes. A range of future climate scenarios is available for the conterminous United States that have been developed based on widely used international greenhouse gas emissions storylines. Climate scenarios derived from these emissions storylines have not been matched with logically consistent land use/cover maps for the United States. This gap is a critical barrier to conducting effective integrated assessments. This study develops novel national scenarios of housing density and impervious surface cover that are logically consistent with emissions storylines. Analysis of these scenarios suggests that combinations of climate and land use/cover can be important in determining environmental conditions regulated under the Clean Air and Clean Water Acts. We found significant differences in patterns of habitat loss and the distribution of potentially impaired watersheds among scenarios, indicating that compact development patterns can reduce habitat loss and the number of impaired watersheds. These scenarios are also associated with lower global greenhouse gas emissions and, consequently, the potential to reduce both the drivers of anthropogenic climate change and the impacts of changing conditions. The residential housing and impervious surface datasets provide a substantial first step toward comprehensive national land use/land cover scenarios, which have broad applicability for integrated assessments as these data and tools are publicly available. PMID:21078956

  3. National climate assessment technical report on the impacts of climate and land use and land cover change

    Treesearch

    Thomas Loveland; Rezaul Mahmood; Toral Patel-Weynand; Krista Karstensen; Kari Beckendorf; Norman Bliss; Andrew Carleton

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature...

  4. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  5. Land Cover Indicators for U.S. National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Channan, S.; Thomson, A. M.; Collins, K. M.; Sexton, J. O.; Torrens, P.; Emanuel, W. R.

    2014-12-01

    Land is a critical resource for human habitat and for the vast majority of human activities. Many natural resources are derived from terrestrial ecosystems or otherwise extracted from the landscape. Terrestrial biodiversity depends on land attributes as do people's perceptions of the value of land, including its value for recreation or tourism. Furthermore, land surface properties and processes affect weather and climate, and land cover change and land management affect emissions of greenhouse gases. Thus, land cover with its close association with climate is so pervasive that a land cover indicator is of fundamental importance to U.S. national climate assessments and related research. Moderate resolution remote sensing products (MODIS) were used to provide systematic data on annual distributions of land cover over the period 2001-2012. Selected Landsat observations and data products further characterize land cover at higher resolution. Here we will present the prototype for a suite of land cover indicators including land cover maps as well as charts depicting attributes such as composition by land cover class, statistical indicators of landscape characteristics, and tabular data summaries indispensable for communicating the status and trends of U.S. land cover at national, regional and state levels.

  6. 77 FR 64492 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... and Development Advisory Committee (NCADAC) AGENCY: Office of Oceanic and Atmospheric Research (OAR... of Open Meeting. SUMMARY: Notice is hereby given cancelling the DoC NOAA National Climate Assessment... States; and to provide advice and recommendations toward the development of an ongoing, sustainable...

  7. Integrating Communication Best Practices in the Third National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Hassol, S. J.

    2014-12-01

    Modern climate science assessments now have a history of nearly a quarter-century. This experience, together with important advances in relevant social sciences, has greatly improved our ability to communicate climate science effectively. As a result, the Third National Climate Assessment (NCA) was designed to be truly accessible and useful to all its intended audiences, while still being comprehensive and scientifically accurate. At a time when meeting the challenge of climate change is increasingly recognized as an urgent national and global priority, the NCA is proving to be valuable to decision-makers, the media, and the public. In producing this latest NCA, a communication perspective was an important part of the process from the beginning, rather than an afterthought as has often been the case with scientific reports. Lessons learned from past projects and science communications research fed into developing the communication strategy for the Third NCA. A team of editors and graphic designers worked closely with the authors on language, graphics, and photographs throughout the development of the report, Highlights document, and other products. A web design team helped bring the report to life online. There were also innovations in outreach, including a network of organizations intended to extend the reach of the assessment by engaging stakeholders throughout the process. Professional slide set development and media training were part of the preparation for the report's release. The launch of the NCA in May 2014 saw widespread and ongoing media coverage, continued references to the NCA by decision-makers, and praise from many quarters for its excellence in making complex science clear and accessible. This NCA is a professionally crafted report that exemplifies best practices in 21st century communications.

  8. A systems framework for national assessment of climate risks to infrastructure.

    PubMed

    Dawson, Richard J; Thompson, David; Johns, Daniel; Wood, Ruth; Darch, Geoff; Chapman, Lee; Hughes, Paul N; Watson, Geoff V R; Paulson, Kevin; Bell, Sarah; Gosling, Simon N; Powrie, William; Hall, Jim W

    2018-06-13

    Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.

  9. A systems framework for national assessment of climate risks to infrastructure

    NASA Astrophysics Data System (ADS)

    Dawson, Richard J.; Thompson, David; Johns, Daniel; Wood, Ruth; Darch, Geoff; Chapman, Lee; Hughes, Paul N.; Watson, Geoff V. R.; Paulson, Kevin; Bell, Sarah; Gosling, Simon N.; Powrie, William; Hall, Jim W.

    2018-06-01

    Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  10. A systems framework for national assessment of climate risks to infrastructure

    PubMed Central

    Thompson, David; Johns, Daniel; Darch, Geoff; Paulson, Kevin

    2018-01-01

    Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712793

  11. Lightning-Related Indicators for National Climate Assessment (NCA) Studies

    NASA Astrophysics Data System (ADS)

    Koshak, W. J.

    2017-12-01

    With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.

  12. The National Climate Assessment as a Resource for Science Communication

    NASA Astrophysics Data System (ADS)

    Somerville, R. C. J.

    2014-12-01

    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  13. The Fourth National Climate Assessment: Progress and Next Steps

    NASA Astrophysics Data System (ADS)

    Reidmiller, D.; Lewis, K.; Reeves, K.

    2017-12-01

    The Global Change Research Act of 1990 mandates the production of a quadrennial National Climate Assessment (NCA) that integrates, evaluates, and interprets global change science. The NCA analyzes observed and projected trends in global change and evaluates related impacts across a range of sectors and regions in the United States. The fourth assessment, NCA4, is currently under development by nearly 300 Federal and non-Federal experts and is expected to be available for public comment in Fall 2017 and released in late 2018. NCA4 is a key component of the US Global Change Research Program's Sustained Assessment process, which aims to advance the science of global change and provide authoritative, relevant information for decision makers. This talk will highlight the progress of NCA4, including an overview of the current draft of the assessment and advances since the third NCA, released in 2014. It will highlight the Climate Science Special Report, an essential component of NCA4, as well as provide insight into the public engagement process-including opportunities to participate-and identify scientific inputs and tools critical to its development, such as the 2nd State of the Carbon Cycle Report and USGCRP's new scenario products website.

  14. OpenNEX, a private-public partnership in support of the national climate assessment

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Wang, W.; Michaelis, A.; Votava, P.; Ganguly, S.

    2016-12-01

    The NASA Earth Exchange (NEX) is a collaborative computing platform that has been developed with the objective of bringing scientists together with the software tools, massive global datasets, and supercomputing resources necessary to accelerate research in Earth systems science and global change. NEX is funded as an enabling tool for sustaining the national climate assessment. Over the past five years, researchers have used the NEX platform and produced a number of data sets highly relevant to the National Climate Assessment. These include high-resolution climate projections using different downscaling techniques and trends in historical climate from satellite data. To enable a broader community in exploiting the above datasets, the NEX team partnered with public cloud providers to create the OpenNEX platform. OpenNEX provides ready access to NEX data holdings on a number of public cloud platforms along with pertinent analysis tools and workflows in the form of Machine Images and Docker Containers, lectures and tutorials by experts. We will showcase some of the applications of OpenNEX data and tools by the community on Amazon Web Services, Google Cloud and the NEX Sandbox.

  15. 77 FR 74175 - Solicitation of Review Editors for the Draft Report of the National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... impacts of climate change upon the United States; and to provide advice and recommendations toward the... to produce a proposed National Climate Assessment that meets the requirements of the Global Change... Report Chapters: Our Changing Climate; Water Resources; Energy Supply and Use; Transportation...

  16. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, J.; O'Grady, M.; Renfrow, S.

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities andmore » the aspects of NREL's mission or operations that may be affected by a changing climate.« less

  17. 76 FR 70116 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...: Notice of time changes for public meeting and public comment period. SUMMARY: The National Climate... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate... authority of the Global Change Research Act of 1990 to synthesize and summarize the science and information...

  18. Aspirations and common tensions: larger lessons from the third US national climate assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Susanne C.; Melillo, Jerry M.; Jacobs, Katharine L.

    2015-10-21

    The Third US National Climate Assessment (NCA3) was produced by experts in response to the US Global Change Research Act of 1990. Based on lessons learned from previous domestic and international assessments, the NCA3 was designed to speak to a broad public and inform the concerns of policy- and decision-makers at different scales. The NCA3 was also intended to be the first step in an ongoing assessment process that would build the nation’s capacity to respond to climate change. This concluding paper draws larger lessons from the insights gained throughout the assessment process that are of significance to future USmore » and international assessment designers. We bring attention to process and products delivered, communication and engagement efforts, and how they contributed to the sustained assessment. Based on areas where expectations were exceeded or not fully met, we address four common tensions that all assessment designers must confront and manage: between (1) core assessment ingredients (knowledge base, institutional set-up, principled process, and the people involved), (2) national scope and subnational adaptive management information needs, (3) scope, complexity, and manageability, and (4) deliberate evaluation and ongoing learning approaches. Managing these tensions, amidst the social and political contexts in which assessments are conducted, is critical to ensure that assessments are feasible and productive, while its outcomes are perceived as credible, salient, and legitimate.« less

  19. Climate change vulnerability assessment for the Chugach National Forest and the Kenai Peninsula

    Treesearch

    Gregory H. Hayward; Steve Colt; Monica L. McTeague; Teresa N. Hollingsworth

    2017-01-01

    This assessment evaluates the effects of future climate change on a select set of ecological systems and ecosystem services in Alaska’s Kenai Peninsula and Chugach National Forest regions. The focus of the assessment was established during a multi-agency/organization workshop that established the goal to conduct a rigorous evaluation of a limited range of topics rather...

  20. Reframing climate change assessments around risk: recommendations for the US National Climate Assessment

    DOE PAGES

    Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.; ...

    2017-07-21

    Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.

  1. Reframing climate change assessments around risk: recommendations for the US National Climate Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.

    Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.

  2. Advancing national climate change risk assessment to deliver national adaptation plans

    NASA Astrophysics Data System (ADS)

    Warren, R. F.; Wilby, R. L.; Brown, K.; Watkiss, P.; Betts, Richard A.; Murphy, James M.; Lowe, Jason A.

    2018-06-01

    A wide range of climate vulnerability and risk assessments have been implemented using different approaches at different scales, some with a broad multi-sectoral scope and others focused on single risks or sectors. This paper describes the novel approach to vulnerability and risk assessment which was designed and put into practice in the United Kingdom's Second Climate Change Risk Assessment (CCRA2) so as to build upon its earlier assessment (CCRA1). First, we summarize and critique the CCRA1 approach, and second describe the steps taken in the CCRA2 approach in detail, providing examples of how each was applied in practice. Novel elements of the approach include assessment of both present day and future vulnerability, a focus on the urgency of adaptation action, and a structure focused around systems of receptors rather than conventional sectors. Both stakeholders and reviewers generally regarded the approach as successful in providing advice on current risks and future opportunities to the UK from climate change, and the fulfilment of statutory duty. The need for a well-supported and open suite of impact indicators going forward is highlighted. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  3. Advancing national climate change risk assessment to deliver national adaptation plans.

    PubMed

    Warren, R F; Wilby, R L; Brown, K; Watkiss, P; Betts, Richard A; Murphy, James M; Lowe, Jason A

    2018-06-13

    A wide range of climate vulnerability and risk assessments have been implemented using different approaches at different scales, some with a broad multi-sectoral scope and others focused on single risks or sectors. This paper describes the novel approach to vulnerability and risk assessment which was designed and put into practice in the United Kingdom's Second Climate Change Risk Assessment (CCRA2) so as to build upon its earlier assessment (CCRA1). First, we summarize and critique the CCRA1 approach, and second describe the steps taken in the CCRA2 approach in detail, providing examples of how each was applied in practice. Novel elements of the approach include assessment of both present day and future vulnerability, a focus on the urgency of adaptation action, and a structure focused around systems of receptors rather than conventional sectors. Both stakeholders and reviewers generally regarded the approach as successful in providing advice on current risks and future opportunities to the UK from climate change, and the fulfilment of statutory duty. The need for a well-supported and open suite of impact indicators going forward is highlighted.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  4. NASA Earth Exchange (NEX) Supporting Analyses for National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Thrasher, B. L.; Wang, W.; Lee, T. J.; Melton, F. S.; Dungan, J. L.; Michaelis, A.

    2015-12-01

    The NASA Earth Exchange (NEX) is a collaborative computing platform that has been developed with the objective of bringing scientists together with the software tools, massive global datasets, and supercomputing resources necessary to accelerate research in Earth systems science and global change. NEX supports several research projects that are closely related with the National Climate Assessment including the generation of high-resolution climate projections, identification of trends and extremes in climate variables and the evaluation of their impacts on regional carbon/water cycles and biodiversity, the development of land-use management and adaptation strategies for climate-change scenarios, and even the exploration of climate mitigation through geo-engineering. Scientists also use the large collection of satellite data on NEX to conduct research on quantifying spatial and temporal changes in land surface processes in response to climate and land-cover-land-use changes. Researchers, leveraging NEX's massive compute/storage resources, have used statistical techniques to downscale the coarse-resolution CMIP5 projections to fulfill the demands of the community for a wide range of climate change impact analyses. The DCP-30 (Downscaled Climate Projections at 30 arcsecond) for the conterminous US at monthly, ~1km resolution and the GDDP (Global Daily Downscaled Projections) for the entire world at daily, 25km resolution are now widely used in climate research and applications, as well as for communicating climate change. In order to serve a broader community, the NEX team in collaboration with Amazon, Inc, created the OpenNEX platform. OpenNEX provides ready access to NEX data holdings, including the NEX-DCP30 and GDDP datasets along with a number of pertinent analysis tools and workflows on the AWS infrastructure in the form of publicly available, self contained, fully functional Amazon Machine Images (AMI's) for anyone interested in global climate change.

  5. Scenarios and US National Climate Assessments: Where have they been and where could they go?

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2015-12-01

    U.S. National Climate Assessments (NCA), conducted under the auspices of the U.S. Global Change Research Program, analyze the effects of global change on the United States and examine current and projected changes out to 100 years. Scenarios of global change have been incorporated in all NCAs to date, although such scenarios have typically been developed late in the assessment cycle, limiting the depth of their use in regional and sectoral assessments. This lack of use is particularly notable for scenarios focused on aspects other than climate and associated projections of temperature and precipitation. Here, we review how scenarios have been incorporated in previous NCAs and present potential options for both the development and inclusion of a wider range of scenarios topics in future quadrennial NCA reports and other sustained assessment activities within USGCRP and federal agencies. Incorporating a broad range of U.S. scenarios will present both intellectual and programmatic challenges, as scenario developers from relatively disparate communities will need to come together to create internally consistent assumptions within each type of scenario (e.g. climate, land cover and land use, population) for sub-national scales. As USGCRP moves forward with a sustained assessment process, a richer set of scenarios can serve as a bridge between the research community, decision makers, and practitioners.

  6. Assessing climate risks across different business sectors and industries: an investigation of methodological challenges at national scale for the UK

    NASA Astrophysics Data System (ADS)

    Surminski, Swenja; Di Mauro, Manuela; Baglee, J. Alastair R.; Connell, Richenda K.; Hankinson, Joel; Haworth, Anna R.; Ingirige, Bingunath; Proverbs, David

    2018-06-01

    Climate change poses severe risks for businesses, which companies as well as governments need to understand in order to take appropriate steps to manage those. This, however, represents a significant challenge as climate change risk assessment is itself a complex, dynamic and geographically diverse process. A wide range of factors including the nature of production processes and value chains, the location of business sites as well as relationships and interdependencies with customers and suppliers play a role in determining if and how companies are impacted by climate risks. This research explores the methodological challenges for a national-scale assessment of climate risks through the lens of the UK Climate Change Risk Assessment (UKCCRA) process and compares the approaches adopted in the first and second UKCCRA (2011, 2016), while also reflecting on international experiences elsewhere. A review of these issues is presented, drawing on a wide body of contemporary evidence from a range of sources including the research disciplines, grey literature and government policy. The study reveals the methodological challenges and highlights six broad themes, namely scale, evidence base, adaptation responses, scope, interdependencies and public policy. The paper concludes by identifying suitable lessons for future national climate risk assessments, which should guide the next phase of research in preparation for UKCCRA3 and those of national-level risk assessments elsewhere. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  7. Assessing climate risks across different business sectors and industries: an investigation of methodological challenges at national scale for the UK.

    PubMed

    Surminski, Swenja; Di Mauro, Manuela; Baglee, J Alastair R; Connell, Richenda K; Hankinson, Joel; Haworth, Anna R; Ingirige, Bingunath; Proverbs, David

    2018-06-13

    Climate change poses severe risks for businesses, which companies as well as governments need to understand in order to take appropriate steps to manage those. This, however, represents a significant challenge as climate change risk assessment is itself a complex, dynamic and geographically diverse process. A wide range of factors including the nature of production processes and value chains, the location of business sites as well as relationships and interdependencies with customers and suppliers play a role in determining if and how companies are impacted by climate risks. This research explores the methodological challenges for a national-scale assessment of climate risks through the lens of the UK Climate Change Risk Assessment (UKCCRA) process and compares the approaches adopted in the first and second UKCCRA (2011, 2016), while also reflecting on international experiences elsewhere. A review of these issues is presented, drawing on a wide body of contemporary evidence from a range of sources including the research disciplines, grey literature and government policy. The study reveals the methodological challenges and highlights six broad themes, namely scale, evidence base, adaptation responses, scope, interdependencies and public policy. The paper concludes by identifying suitable lessons for future national climate risk assessments, which should guide the next phase of research in preparation for UKCCRA3 and those of national-level risk assessments elsewhere.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  8. U.S. 2013 National Climate Assessment of Oceans and Marine Resources

    NASA Astrophysics Data System (ADS)

    Doney, S. C.; Rosenberg, A.

    2012-12-01

    We will discuss the key findings from the Oceans and Marine Resources chapter of the U.S. 2013 National Climate Assessment. As a nation, we depend on the ocean for seafood, recreation and tourism, cultural heritage, transportation of goods, and increasingly, energy and other critical resources. The U.S. ocean Exclusive Economic Zone extends 200 nautical miles seaward from the coast, spanning an area about 1.7 times the land area of the continental United States and encompassing waters along the U.S. east, west and Gulf coasts, around Alaska and Hawaii, and including the U.S. territories in the Pacific and Caribbean. This vast region is host to a rich diversity of marine plants and animals and a wide range of ecosystems from tropical coral reefs to sea-ice covered, polar waters in the Arctic. We will highlight the current state of knowledge on changing ocean climate conditions, such as warming, sea-ice retreat and ocean acidification, and how these may be impacting valuable marine ecosystems and the array of resources and services we derive from the sea now and into the future. We will also touch on the interaction of climate change impacts with other human factors including pollution and over-fishing.

  9. Adapting to climate change at Olympic National Forest and Olympic National Park

    USGS Publications Warehouse

    Halofsky, Jessica E.; Peterson, David L.; O'Halloran, Kathy A.; Hoffman, Catherine H.

    2011-01-01

    Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to counteract the negative effects of climate change. We began a climate change adaptation case study at Olympic National Forest (ONF) in partnership with Olympic National Park (ONP) to determine how to adapt management of federal lands on the Olympic Peninsula, Washington, to climate change. The case study began in the summer of 2008 and continued for 1½ years. The case study process involved science-based sensitivity assessments, review of management activities and constraints, and adaptation workshops in each of four focus areas (hydrology and roads, fish, vegetation, and wildlife). The process produced adaptation options for ONF and ONP, and illustrated the utility of place-based vulnerability assessment and science-management workshops in adapting to climate change. The case study process provides an example for other national forests, national parks, and natural resource agencies of how federal land management units can collaborate in the initial stages of climate change adaptation. Many of the ideas generated through this process can potentially be applied in other locations and in other agencies

  10. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  11. Enabling Research Tools for Sustained Climate Assessment

    NASA Technical Reports Server (NTRS)

    Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.

    2016-01-01

    The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.

  12. 75 FR 57539 - U.S. National Climate Assessment Objectives, Proposed Topics, and Next Steps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... OFFICE OF SCIENCE & TECHNOLOGY POLICY U.S. National Climate Assessment Objectives, Proposed Topics, and Next Steps Correction In notice document 2010-22229 beginning on page 54403 in the issue of Tuesday, September 7, 2010 make the following correction: On page 54403 under the SUMMARY section, in the...

  13. Variation of a Lightning NOx Indicator for National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; McCaul, Eugene W., Jr.; Peterson, Harold S.; Vant-Hull, Brian

    2014-01-01

    During the past couple of years, an analysis tool was developed by the NASA Marshall Space Flight Center (MSFC) for the National Climate Assessment (NCA) program. The tool monitors and examines changes in lightning characteristics over the conterminous US (CONUS) on a continual basis. In this study, we have expanded the capability of the tool so that it can compute a new climate assessment variable that is called the Lightning NOx Indicator (LNI). Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence our climate, and lightning NOx is the most important source of NOx in the upper troposphere (particularly in the tropics). The LNI is derived using Lightning Imaging Sensor (LIS) data and is computed by summing up the product of flash area x flash brightness over all flashes that occur in a particular region and period. Therefore, it is suggested that the LNI is a proxy to lightning NOx production. Specifically, larger flash areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are of course complicating factors. We analyze LIS data for the years 2003-2013 and provide geographical plots of the time-evolution of the LNI in order to determine if there are any significant changes or trends between like seasons, or from year to year.

  14. Development of A Dust Climate Indicator for the US National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Tong, D.; Wang, J. X. L.; Gill, T. E.; Van Pelt, S.; Kim, D.

    2016-12-01

    Dust activity is a relatively simple but practical indicator to document the response of dryland ecosystems to climate change, making it an integral part of the National Climate Assessment (NCA). We present here a multi-agency collaboration that aims at developing a suite of dust climate indicators to document and monitor the long-term variability and trend of dust storm activity in the western United States. Recent dust observations have revealed rapid intensification of dust storm activity in the western United States. This trend is also closely correlated with a rapid increase in dust deposition in rainwater and "valley fever" hospitalization in southwestern states. It remains unclear, however, if such a trend, when enhanced by predicted warming and rainfall oscillation in the Southwest, will result in irreversible environmental development such as desertification or even another "Dust Bowl". Based on continuous ground aerosol monitoring, we have reconstructed a long-term dust storm climatology in the western United States. We report here direct evidence of rapid intensification of dust storm activity over US deserts in the past decades (1990 to 2013), in contrast to the decreasing trends in Asia and Africa. The US trend is spatially and temporally correlated with incidences of valley fever, an infectious disease caused by soil-dwelling fungus that has increased eight-fold in the past decade. We further investigate the linkage between dust variations and possible climate drivers and find that the regional dust trends are likely driven by large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation (PDO). Future study will explore the link between the temporal and spatial trends of increase in dustiness and vegetation change in southwestern semi-arid and arid ecosystems.

  15. GC31G-1182: Opennex, a Private-Public Partnership in Support of the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Ganguly, Sangram

    2016-01-01

    The NASA Earth Exchange (NEX) is a collaborative computing platform that has been developed with the objective of bringing scientists together with the software tools, massive global datasets, and supercomputing resources necessary to accelerate research in Earth systems science and global change. NEX is funded as an enabling tool for sustaining the national climate assessment. Over the past five years, researchers have used the NEX platform and produced a number of data sets highly relevant to the National Climate Assessment. These include high-resolution climate projections using different downscaling techniques and trends in historical climate from satellite data. To enable a broader community in exploiting the above datasets, the NEX team partnered with public cloud providers to create the OpenNEX platform. OpenNEX provides ready access to NEX data holdings on a number of public cloud platforms along with pertinent analysis tools and workflows in the form of Machine Images and Docker Containers, lectures and tutorials by experts. We will showcase some of the applications of OpenNEX data and tools by the community on Amazon Web Services, Google Cloud and the NEX Sandbox.

  16. Observed changes in phenology across the USA: A regional review for the 2013 National Climate Assessment, Southwest Regional Information Sheet

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Enquist, Carolyn A.F.; Weltzin, Jake F.

    2013-01-01

    This information was developed in support of the U.S. Global Change Research Program’s National Climate Assessment and can be used to facilitate preparation for the cascading effects of ongoing climate change.

  17. An approach to designing a national climate service

    PubMed Central

    Miles, E. L.; Snover, A. K.; Whitely Binder, L. C.; Sarachik, E. S.; Mote, P. W.; Mantua, N.

    2006-01-01

    Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams. PMID:17158218

  18. An approach to designing a national climate service.

    PubMed

    Miles, E L; Snover, A K; Whitely Binder, L C; Sarachik, E S; Mote, P W; Mantua, N

    2006-12-26

    Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams.

  19. Making Information Useful: Engagement in the Sustained National Climate Assessment Process

    NASA Astrophysics Data System (ADS)

    Lough, G. C.; Cloyd, E.

    2015-12-01

    Creation of actionable information requires that the producers of that information understand the needs of the intended users and decision makers. To that end, the U.S. Global Change Research Program's sustained National Climate Assessment process includes a focus on engaging users through an inclusive, broad-based, and ongoing process. Such a process provides opportunities for scientific experts and decision makers to share knowledge about the climate-related issues, impacts, and potential response actions that are most important in a particular region or sector. Such a process is also highly transparent in order to produce results that are credible, salient, and legitimate for both scientists and decision makers, ultimately making the results extremely useful. To implement these principles, USGCRP implements a broad-based engagement strategy that invites participation from users and stakeholder communities and considers methods for communicating with potential users at every step. The strategy elicits contributions to help shape the framing of the assessment process and products, improve the transparency of the process, and increase the utility of the final information. Specific user inputs are gathered through workshops, public comment opportunities, town hall meetings, presentations, requests for information, submitted documents, and open meetings. Further, a network of contributors self-organizes around topics of interest to extend assessment activities to a wider range of user groups. Here, we describe the outcomes of these innovations in assessment engagement and identify clear successes, notable surprises, future evaluation needs, and areas for new ideas.

  20. Assessment of climate change effects on Canada's National Park system.

    PubMed

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  1. Northwest Regional Climate Assessment

    NASA Technical Reports Server (NTRS)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  2. Making Information Useful: Engagement in the National Climate Assessment Process

    NASA Astrophysics Data System (ADS)

    Lough, G. C.; Cloyd, E.

    2014-12-01

    Creation of actionable information requires that the producers of that information understand the needs of the intended users and decision makers. To that end, development of the Third National Climate Assessment included a focus on engaging users through an inclusive, broad-based, and sustained process. Such a process provides opportunities for scientific experts and decision makers to share knowledge about the climate-related issues, impacts, and potential response actions that are most important in a particular region or sector. Such a process is also highly transparent in order to produce results that are credible, salient, and legitimate for both scientists and decision makers, ultimately making the results extremely useful. To implement these principles for the recent NCA, a broad-based engagement strategy was implemented from the start of the process. The strategy invited participation from users and stakeholder communities at each stage of the process, and considered methods for communicating with potential users at every step. The strategy was designed to elicit contributions to help shape the framing of the assessment, improve the transparency of the process, and increase the utility of the final information. Specific user inputs were gathered through a series of workshops, public comment opportunities, town hall meetings, presentations, requests for information, submitted documents, and open meetings. Further, a network of contributors self-organized around topics of interest to extend the NCA to a wider range of user groups. Here, we describe the outcomes of these innovations in assessment engagement and identify clear successes, notable surprises, future evaluation needs, and areas for new ideas.

  3. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio

  4. Developing a Process for Sustained Climate Assessment in the US Southwest Region

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Rick, U. K.; McNie, E. C.

    2017-12-01

    Climate information needs often vary across states, regions, and sectors. While a national assessment provides foundational guidance about the science and impacts of climate change, there is also value in an ongoing climate assessment process with a more targeted regional geographic scale and sectoral focus. Such a process could provide timely and relevant climate information that is sometimes more detailed than what can be included in a national assessment, while also providing a foundation of knowledge and relationships that can be drawn on in larger-scale assessment processes. In the Sustained Climate Assessment in the Southwest project, researchers are investigating opportunities for sustained assessment in the US Southwest National Climate Assessment (NCA) region - an area that consists of Arizona, California, Colorado, Nevada, New Mexico, and Utah. This work is focused on identifying key elements of an ongoing climate assessment process for the region in collaboration with climate service providers and users, with the goal of connecting providers and users to increase access to information and understanding of climate impacts in decision-making contexts. It is focused on four key sectors that represent a range of existing capacity in the region: water, oceans and coasts, agriculture, and transportation. Recommendations for an ongoing assessment process may vary by sector - a reflection of the capacity and opportunity associated with each. In this presentation, we will share case studies of particularly useful or successful existing assessment activities and identify common characteristics across the case studies. We will also share preliminary recommendations for a regional sustained climate assessment process that draws on the broad existing capacity for climate assessment in the region and complements national-scale assessment processes.

  5. Data Management and the National Climate Assessment: Best Practices, Lessons Learned, and Future Applications: A Data Quality Solution

    NASA Astrophysics Data System (ADS)

    Kunkel, K.; Champion, S.

    2015-12-01

    Data Management and the National Climate Assessment: A Data Quality Solution Sarah M. Champion and Kenneth E. Kunkel Cooperative Institute for Climate and Satellites, Asheville, NC The Third National Climate Assessment (NCA), anticipated for its authoritative climate change analysis, was also a vanguard in climate communication. From the cutting-edge website to the organization of information, the Assessment content appealed to, and could be accessed by, many demographics. One such pivotal presentation of information in the NCA was the availability of complex metadata directly connected to graphical products. While the basic metadata requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, the NCA is also deemed a Highly Influential Scientific Assessment, which requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the NCA embarked on building a system for collecting and presenting metadata that not only met these requirements, but one that has since been employed in support of additional Assessments. The metadata effort for this NCA proved invaluable for many reasons, one of which being that it showcased that there is a critical need for a culture change within the scientific community to support collection and transparency of data and methods to the level produced with the NCA. Irregardless of being federally mandated, it proves to simply be a good practice in science communication. This presentation will detail the collection system built by the TSU, the improvements employed with additional Assessment products, as well as illustrate examples of successful transparency. Through this presentation, we hope to impel the discussion in support of detailed metadata becoming the cultural norm within the scientific community to support influential and highly policy-relevant documents such as the NCA.

  6. Developing perturbations for Climate Change Impact Assessments

    NASA Astrophysics Data System (ADS)

    Hewitson, Bruce

    Following the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report [TAR; IPCC, 2001], and the paucity of climate change impact assessments from developing nations, there has been a significant growth in activities to redress this shortcoming. However, undertaking impact assessments (in relation to malaria, crop stress, regional water supply, etc.) is contingent on available climate-scale scenarios at time and space scales of relevance to the regional issues of importance. These scales are commonly far finer than even the native resolution of the Global Climate Models (GCMs) (the principal tools for climate change research), let alone the skillful resolution (scales of aggregation at which GCM observational error is acceptable for a given application) of GCMs.Consequently, there is a growing demand for regional-scale scenarios, which in turn are reliant on techniques to downscale from GCMs, such as empirical downscaling or nested Regional Climate Models (RCMs). These methods require significant skill, experiential knowledge, and computational infrastructure in order to derive credible regional-scale scenarios. In contrast, it is often the case that impact assessment researchers in developing nations have inadequate resources with limited access to scientists in the broader international scientific community who have the time and expertise to assist. However, where developing effective downscaled scenarios is problematic, it is possible that much useful information can still be obtained for impact assessments by examining the system sensitivity to largerscale climate perturbations. Consequently, one may argue that the early phase of assessing sensitivity and vulnerability should first be characterized by evaluation of the first-order impacts, rather than immediately addressing the finer, secondary factors that are dependant on scenarios derived through downscaling.

  7. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  8. Northwest Climate Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mote, P.; Dalton, M. M.; Snover, A. K.

    2012-12-01

    As part of the US National Climate Assessment, the Northwest region undertook a process of climate risk assessment. This process included an expert evaluation of previously identified impacts, their likelihoods, and consequences, and engaged experts from both academia and natural resource management practice (federal, tribal, state, local, private, and non-profit) in a workshop setting. An important input was a list of 11 risks compiled by state agencies in Oregon and similar adaptation efforts in Washington. By considering jointly the likelihoods, consequences, and adaptive capacity, participants arrived at an approximately ranked list of risks which was further assessed and prioritized through a series of risk scoring exercises to arrive at the top three climate risks facing the Northwest: 1) changes in amount and timing of streamflow related to snowmelt, causing far-reaching ecological and socioeconomic consequences; 2) coastal erosion and inundation, and changing ocean acidity, combined with low adaptive capacity in the coastal zone to create large risks; and 3) the combined effects of wildfire, insect outbreaks, and diseases will cause large areas of forest mortality and long-term transformation of forest landscapes.

  9. NCA-LDAS: A Terrestrial Water Analysis System Enabling Sustained Assessment and Dissemination of National Climate Indicators

    NASA Astrophysics Data System (ADS)

    Jasinski, M. F.; Kumar, S.; Peters-Lidard, C. D.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kempler, S.; Li, B.; Mocko, D. M.; Rodell, M.; Rui, H.; Silberstein, D. S.; Teng, W. L.; Vollmer, B.

    2016-12-01

    The National Climate Assessment - Land Data Assimilation System, or NCA-LDAS, is an integrated terrestrial water analysis system created as an end-to-end enabling tool for sustained assessment and dissemination of terrestrial hydrologic indicators in support of the NCA. The primary features are i) gridded, daily time series of over forty hydrologic variables including terrestrial water and energy balance stores, states and fluxes over the continental U.S. derived from land surface modeling with multivariate satellite data record assimilation (1979-2015), ii) estimated trends of the principal water balance components over a wide range of scales and locations, and iii) public dissemination of all NCA-LDAS model forcings, and input and output data products through dedicated NCA-LDAS and NASA GES-DISC websites. NCA-LDAS supports sustained assessment of our national terrestrial hydrologic climate for improved scientific understanding, and the adaptation and management of water resources and related energy sectors. This presentation provides an overview of the NCA-LDAS system together with an evaluation of the initial release of NCA-LDAS data products and trends using two land surface models; Noah Ver. 3.3 and Catchment Ver. Fortuna 2.5, and a listing of several available pathways for public access and visualization of NCA-LDAS background information and data products.

  10. Assessment of watershed vulnerability to climate change for the Uinta-Wasatch-Cache and Ashley National Forests, Utah

    Treesearch

    Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Sarah Leahy; Christopher Plunkett; Charles Condrat; Linda A. Joyce

    2017-01-01

    Watersheds on the Uinta-Wasatch-Cache and Ashley National Forests provide many ecosystem services, and climate change poses a risk to these services. We developed a watershed vulnerability assessment to provide scientific information for land managers facing the challenge of managing these watersheds. Literature-based information and expert elicitation is used to...

  11. Vulnerability Assessments in Support of the Climate Ready ...

    EPA Pesticide Factsheets

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared this draft report exploring a new methodology for climate change vulnerability assessments using San Francisco Bay’s salt marsh and mudflat ecosystems as a demonstration. N/A

  12. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  13. Sustained Assessment Metadata as a Pathway to Trustworthiness of Climate Science Information

    NASA Astrophysics Data System (ADS)

    Champion, S. M.; Kunkel, K.

    2017-12-01

    The Sustained Assessment process has produced a suite of climate change reports: The Third National Climate Assessment (NCA3), Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United States: Differences, Similarities, and Implications for the U.S. National Climate Assessment, Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, The State Climate Summaries, as well as the anticipated Climate Science Special Report and Fourth National Climate Assessment. Not only are these groundbreaking reports of climate change science, they are also the first suite of climate science reports to provide access to complex metadata directly connected to the report figures and graphics products. While the basic metadata documentation requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, Sustained Assessment products are also deemed Highly Influential Scientific Assessments, which further requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the Sustained Assessment embarked on building a system for not only collecting and documenting metadata to the required standards, but one that also provides consumers unprecedented access to the underlying data and methods. As our process and documentation have evolved, the value of both continue to grow in parallel with the consumer expectation of quality, accessible climate science information. This presentation will detail the how the TSU accomplishes the mandated requirements with their metadata collection and documentation process, as well as the technical solution designed to demonstrate compliance while also providing access to the content for the general public. We will also illustrate how our accessibility platforms guide consumers through the Assessment science at a level of transparency that builds trust and confidence in the report

  14. Vulnerability Assessments in Support of the Climate Ready ...

    EPA Pesticide Factsheets

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology for climate change vulnerability assessments using Massachusetts Bays’ salt marsh ecosystem as a demonstration. The aim is to synthesize place-based information on the potential implications of climate change for key ecosystem processes in each estuary, in a form that will enable managers to undertake management adaptation planning.

  15. Advances in risk assessment for climate change adaptation policy.

    PubMed

    Adger, W Neil; Brown, Iain; Surminski, Swenja

    2018-06-13

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  16. Advances in risk assessment for climate change adaptation policy

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-06-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  17. Advances in risk assessment for climate change adaptation policy

    PubMed Central

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-01-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800

  18. Developing a methodology for the national-scale assessment of rainfall-induced landslide hazard in a changing climate

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta; Micu, Dana; Sima, Mihaela; Bălteanu, Dan; Bojariu, Roxana; Dumitrescu, Alexandru; Dragotă, Carmen; Micu, Mihai; Senzaconi, Francisc

    2017-04-01

    Landslides together with earthquakes and floods represent the main natural hazards in Romania, causing major impacts to human activities. The RO-RISK (Disaster Risk Evaluation at a National Level) project is a flagship project aimed to strengthen risk prevention and management in Romania, by evaluating - among the specific risks in the country - landslide hazard and risk at a national level. Landslide hazard is defined as "the probability of occurrence within a specified period of time and within a given area of a landslide of a given magnitude" (Varnes 1984; Guzzetti et al. 1999). Nevertheless, most landslide ʿhazardʾ maps only consist in susceptibility (i.e. spatial probability) zonations without considering temporal or magnitude information on the hazard. This study proposes a methodology for the assessment of landslide hazard at the national scale on a scenario basis, while also considering changes in hazard patterns and levels under climate change conditions. A national landslide database consisting of more than 3,000 records has been analyzed against a meteorological observation dataset in order to assess the relationship between precipitation and landslides. Various extreme climate indices were computed in order to account for the different rainfall patterns able to prepare/trigger landslides (e.g. extreme levels of seasonal rainfall, 3-days rainfall or number of consecutive rainy days with different return periods). In order to derive national rainfall thresholds, i.e. valid for diverse climatic environments across the country, values in the parameter maps were rendered comparable by means of normalization with the mean annual precipitation and the rainy-day-normal. A hazard assessment builds on a frequency-magnitude relationship. In the current hazard scenario approach, frequency was kept constant for each single map, while the magnitude of the expected geomorphic event was modeled in relation to the distributed magnitude of the triggering factor. Given

  19. Formal Provenance Representation of the Data and Information Supporting the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2014-01-01

    The Global Change Information System (GCIS) provides a framework for the formal representation of structured metadata about data and information about global change. The pilot deployment of the system supports the National Climate Assessment (NCA), a major report of the U.S. Global Change Research Program (USGCRP). A consumer of that report can use the system to browse and explore that supporting information. Additionally, capturing that information into a structured data model and presenting it in standard formats through well defined open inter- faces, including query interfaces suitable for data mining and linking with other databases, the information becomes valuable for other analytic uses as well.

  20. Satellite-based Assessment of Climate Controls on US Burned Area

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and

  1. A National Road Map to a Climate Literate Society: Advancing Climate Literacy by Coordinating Federal Climate Change Educational Programs (Invited)

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Karsten, J. L.

    2009-12-01

    Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009

  2. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  3. Assessing Ozone-Related Health Impacts under a Changing Climate

    PubMed Central

    Knowlton, Kim; Rosenthal, Joyce E.; Hogrefe, Christian; Lynn, Barry; Gaffin, Stuart; Goldberg, Richard; Rosenzweig, Cynthia; Civerolo, Kevin; Ku, Jia-Yeong; Kinney, Patrick L.

    2004-01-01

    Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O3 concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O3-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration–Goddard Institute for Space Studies global climate model at 4° × 5° resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O3 in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O3-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O3 precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O3-related acute mortality across the 31 counties. Incorporating O3 precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O3 mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change. PMID:15531442

  4. Variation of a Lightning NOx Indicator for National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).

  5. Climate Change in Voyageurs National Park

    NASA Astrophysics Data System (ADS)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  6. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  7. Improved National Response to Climate Change: Aligning USGCRP reports and the U.S. Climate Resilience Toolkit

    NASA Astrophysics Data System (ADS)

    Lipschultz, F.; Dahlman, L. E.; Herring, D.; Fox, J. F.

    2017-12-01

    As part of an effort to coordinate production and distribution of scientific climate information across the U.S. Government, and to spur adaptation actions across the nation, the U.S. Global Change Research Program (USGCRP) has worked to better integrate the U.S. Climate Resilience Toolkit (CRT) and its Climate Explorer (CE) tool into USGCRP activities and products. Much of the initial CRT content was based on the Third National Climate Assessment (NCA3). The opportunity to integrate current development of NCA4—scheduled for release in late 2018—with CRT and CE can enhance all three projects and result in a useable and "living" NCA that is part of USGCRP's approach to sustained climate assessment. To coordinate this work, a USGCRP-led science team worked with CRT staff and CE developers to update the set of climate projections displayed in the CE tool. In concert with the USGCRP scenarios effort, the combined team selected the Localized Constructed Analogs (LOCA) dataset for the updated version of CE, based on its capabilities for capturing climate extremes and local climate variations. The team identified 28 variables from the LOCA dataset for display in the CE; many of these variables will also be used in USGCRP reports. In CRT engagements, communities with vulnerable assets have expressed a high value for the ability to integrate climate data available through the CE with data related to non-climate stressors in their locations. Moving forward, the teams intend to serve climate information needs at additional spatial scales by making NCA4 content available via CE's capability for dynamic interaction with climate-relevant datasets. This will permit users to customize the extent of data they access for decision-making, starting with the static NCA4 report. Additionally, NCA4 case studies and other content can be linked to more in-depth content within the CRT site. This capability will enable more frequent content updates than can be managed with quadrennial

  8. Validation of an organizational communication climate assessment toolkit.

    PubMed

    Wynia, Matthew K; Johnson, Megan; McCoy, Thomas P; Griffin, Leah Passmore; Osborn, Chandra Y

    2010-01-01

    Effective communication is critical to providing quality health care and can be affected by a number of modifiable organizational factors. The authors performed a prospective multisite validation study of an organizational communication climate assessment tool in 13 geographically and ethnically diverse health care organizations. Communication climate was measured across 9 discrete domains. Patient and staff surveys with matched items in each domain were developed using a national consensus process, which then underwent psychometric field testing and assessment of domain coherence. The authors found meaningful within-site and between-site performance score variability in all domains. In multivariable models, most communication domains were significant predictors of patient-reported quality of care and trust. The authors conclude that these assessment tools provide a valid empirical assessment of organizational communication climate in 9 domains. Assessment results may be useful to track organizational performance, to benchmark, and to inform tailored quality improvement interventions.

  9. Linking global scenarios to national assessments: Experiences from the Resources Planning Act (RPA) Assessment

    Treesearch

    Linda L. Langner; Peter J. Ince

    2012-01-01

    The Resources Planning Act (RPA) Assessment provides a nationally consistent analysis of the status and trends of the Nation's renewable forest resources. A global scenario approach was taken for the 2010 RPA Assessment to provide a shared world view of potential futures. The RPA Assessment scenarios were linked to the global scenarios and climate projections used...

  10. Assessing climate impacts

    PubMed Central

    Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321

  11. Climate Prediction - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  12. Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey

    USGS Publications Warehouse

    Dalton, Melinda S.; Jones, Sonya A.

    2010-01-01

    Project "Climate Change in the Southeastern U.S. and its Impacts on Bird Distributions and Habitats," (4) a sea-level rise impacts study envisioned jointly with the National Oceanic and Atmospheric Administration (NOAA), and (5) two USGS sea-level rise impact assessment projects that address inundation hazards and provide probabilistic forecasts of coastal geomorphic change. The SERAP will expand on these existing projects and include the following tasks, which were initiated in summer 2009: * Regionally downscaled probabilistic climate-change projections * Integrated coastal assessment * Integrated terrestrial assessment * Multi-resolution assessment of potential climate change effects on biological resources: aquatic and hydrologic dynamics * Optimal conservation strategies to cope with climate change The SERAP seeks to formally integrate these tasks to aid conservation planning and design so that ecosystem management decisions can be optimized for providing desirable outcomes across a range of species and environments. The following chapters detail SERAP's efforts in providing a suite of regional climate, watershed, and landscape-change analyses and develop the interdisciplinary framework required for the biological planning phases of adaptive management and strategic conservation. The planning phase will include the identification of conservation alternatives, development of predictive models and decision support tools, and development of a template to address similar challenges and goals in other regions. The project teams will explore and develop ways to link the various ecological models arising from each component. The SERAP project team also will work closely with members of the LCCs and other partnerships throughout the life of the project to ensure that the objectives of the project meet resources mangers needs in the Southeast.

  13. USGCRP assessments: Meeting the challenges of climate and global change

    NASA Astrophysics Data System (ADS)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  14. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment

    EPA Science Inventory

    This assessment strengthens and expands our understanding of climate-related health impacts by providing a more definitive description of climate-related health burdens in the United States. It builds on the 2014 USGCRP National Climate Assessment and reviews and synthesizes key ...

  15. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    EPA Science Inventory

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  16. The contribution of sectoral climate change mitigation options to national targets: a quantitative assessment of dairy production in Kenya

    NASA Astrophysics Data System (ADS)

    Brandt, Patric; Herold, Martin; Rufino, Mariana C.

    2018-03-01

    Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed

  17. National, ready-to-use climate indicators calculation and dissemination

    NASA Astrophysics Data System (ADS)

    Desiato, F.; Fioravanti, G.; Fraschetti, P.; Perconti, W.; Toreti, A.

    2010-09-01

    In Italy, meteorological data necessary and useful for climate studies are collected, processed and archived by a wide range of national and regional institutions. As a result, the density of the stations, the length and frequency of the observations, the quality control procedures and the database structure vary from one dataset to the other. In order to maximize the use of those data for climate knowledge and climate change assessments, a computerized system for the collection, quality control, calculation, regular update and rapid dissemination of climate indicators (denominated SCIA) was developed. Along with the pieces of information provided by complete metadata, climate indicators consist of statistics (mean, extremes, date of occurrence, standard deviation) over ten-days, monthly and yearly time periods of meteorological variables, including temperature, precipitation, humidity, wind, water balance, evapotranspitaton, degree-days, cloud cover, sea level pressure, solar radiation. In addition, normal values over thirty-year reference climatological periods and yearly anomalies are calculated and made available. All climate indicators, as well as their time series at a single location or spatial distribution at a selected time, are available through a dedicated web site (www.scia.sinanet.apat.it). In addition, secondary products like high resolution temperature maps obtained by kriging spatial interpolation, are made available. Over the last three years, about 40000 visitors accessed to the SCIA web site, with an average of 45 visitors per day. Most frequent visitors belong to categories like universities and research institutes; private companies and general public are present as well. Apart from research purposes, climate indicators disseminated through SCIA may be used in several socio-economic sectors like energy consumption, water management, agriculture, tourism and health. With regards to our activity, we base on these indicators for the estimation of

  18. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http

  19. Climate Change and Risks to National Security

    NASA Astrophysics Data System (ADS)

    Titley, D.

    2017-12-01

    Climate change impacts national security in three ways: through changes in the operating environments of the military; by increasing risks to security infrastructure, specifically bases and training ranges; and by exacerbating and accelerating the risks of state collapse and conflict in regions that are already fragile and unstable. Additionally there will be unique security challenges in the Arctic as sea-ice melts out and human activities increase across multiple dimensions. Military forces will also likely see increased demand for Humanitarian Assistance and Disaster Relief resulting from a combination of increased human population, rising sea-level, and potentially stronger and wetter storms. The talk will explore some of the lesser known aspects of these changes, examine selected climate-driven 'wild cards' that have the potential to disrupt regional and global security, and explore how migration in the face of a changing climate may heighten security issues. I will assess the positions U.S. executive and legislative branches with respect to climate & security, and how those positions have evolved since the November 2016 election, sometimes in counter-intuitive ways. The talk will close with some recommended courses of action the security enterprise can take to manage this climate risk.

  20. The climate change performance scorecard and carbon estimates for national forest

    Treesearch

    John W. Coulston; Kellen Nelson; Christopher W. Woodall; David Meriwether; Gregory A. Reams

    2012-01-01

    The U.S. Forest Service manages 20 percent of the forest land in the United States. Both the Climate Change Performance Scorecard and the revised National Forest Management Act require the assessment of carbon stocks on these lands. We present circa 2010 estimates of carbon stocks for each national forest and recommendations to improve these estimates.

  1. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  2. The National Climate Change and Wildlife Science Center annual report for 2012

    USGS Publications Warehouse

    Varela-Acevedo, Elda; O'Malley, Robin

    2013-01-01

    Welcome to the inaugural edition of the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) annual report. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $70 million in cutting-edge climate change research and, in response to Secretarial Order No. 3289,established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). The mission of the NCCWSC is to provide natural resource managers with the tools and information they need to develop and execute management strategies that address the impacts of climate and other ongoing global changes on fish and wildlife and their habitats. The DOI CSCs are joint Federal-university partnerships that focus their scientific work on regional priorities identified by DOI Landscape Conservation Cooperatives (LCCs) as well as Federal, State, Tribal, and other resource managers. The CSCs provide access to a wide range of scientific capabilities through their network of university partners along with the USGS and other Federal agency scientists. The focus of the NCCWSC on multiregion and national priorities complements the regionally focused agendas of the CSCs.

  3. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    NASA Astrophysics Data System (ADS)

    Fu, Linyun; Ma, Xiaogang; Zheng, Jin; Goldstein, Justin; Duggan, Brian; West, Patrick; Aulenbach, Steve; Tilmes, Curt; Fox, Peter

    2014-05-01

    This poster will show how we used a case-driven iterative methodology to develop an ontology to represent the content structure and the associated provenance information in a National Climate Assessment (NCA) report of the US Global Change Research Program (USGCRP). We applied the W3C PROV-O ontology to implement a formal representation of provenance. We argue that the use case-driven, iterative development process and the application of a formal provenance ontology help efficiently incorporate domain knowledge from earth and environmental scientists in a well-structured model interoperable in the context of the Web of Data.

  4. Assessing the vulnerability of watersheds to climate change: results of national forest watershed vulnerability pilot assessments

    Treesearch

    Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark Weinhold

    2013-01-01

    Existing models and predictions project serious changes to worldwide hydrologic processes as a result of global climate change. Projections indicate that significant change may threaten National Forest System watersheds that are an important source of water used to support people, economies, and ecosystems.Wildland managers are expected to anticipate and...

  5. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  6. Phase I of a National Phenological Assessment

    NASA Astrophysics Data System (ADS)

    Betancourt, J. L.; Henebry, G. M.

    2009-12-01

    Phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal timescales. We propose a scoping study to identify, formulate, and refine approaches to the first National Phenological Assessment (NPA) for the U.S. The NPA should be viewed as a data product of the USA-National Phenology Network that will help guide future phenological monitoring and research at the national level. We envision three main objectives for the first NPA: 1) Establish a suite of indicators of phenological change (IPCs) at regional to continental scales, following the Heinz Center model for such national assessments; 2) Using sufficiently long and broad-scale time series of IPCs and legacy phenological data, assess phenological responses to what many scientists are calling the early stages of anthropogenic climate change, specifically the abrupt advance in spring onset in the late 1970’s/early 1980’s 3) Project large-scale phenological changes into 21st Century using GCM and RCM model realizations. Toward this end we see the following tasks as critical preliminary work to plan the first NPA: a) Identify, evaluate, and refine IPCs based on indices developed from standard weather observations, streamflow and other hydrological observations (e.g., center of mass, lake freeze/thaw, etc.), plant and animal phenology observations from legacy datasets, remote sensing datastreams, flux tower observations, and GCM and RCM model realizations; b) Evaluate covariability between IPCs, legacy phenological data, and large-scale modes of climate variability to help detection and attribution of supposed secular trends and development of short and long-lead forecasts for phenological variations; c) identify, evaluate, and refine optimal methods for quantifying what constitutes significant statistical and ecological change in

  7. Assessment of the health impacts of climate change in Kiribati.

    PubMed

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-05-14

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  8. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  9. Quantifying historical carbon and climate debts among nations

    NASA Astrophysics Data System (ADS)

    Matthews, H. Damon

    2016-01-01

    Contributions to historical climate change have varied substantially among nations. These differences reflect underlying inequalities in wealth and development, and pose a fundamental challenge to the implementation of a globally equitable climate mitigation strategy. This Letter presents a new way to quantify historical inequalities among nations using carbon and climate debts, defined as the amount by which national climate contributions have exceeded a hypothetical equal per-capita share over time. Considering only national CO2 emissions from fossil fuel combustion, accumulated carbon debts across all nations from 1990 to 2013 total 250 billion tonnes of CO2, representing 40% of cumulative world emissions since 1990. Expanding this to reflect the temperature response to a range of emissions, historical climate debts accrued between 1990 and 2010 total 0.11 °C, close to a third of observed warming over that period. Large fractions of this debt are carried by industrialized countries, but also by countries with high levels of deforestation and agriculture. These calculations could contribute to discussions of climate responsibility by providing a tangible way to quantify historical inequalities, which could then inform the funding of mitigation, adaptation and the costs of loss and damages in those countries that have contributed less to historical warming.

  10. Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment

    PubMed Central

    Ebi, Kristie L.; Mills, David M.; Smith, Joel B.; Grambsch, Anne

    2006-01-01

    The health sector component of the first U.S. National Assessment, published in 2000, synthesized the anticipated health impacts of climate variability and change for five categories of health outcomes: impacts attributable to temperature, extreme weather events (e.g., storms and floods), air pollution, water- and food-borne diseases, and vector- and rodent-borne diseases. The Health Sector Assessment (HSA) concluded that climate variability and change are likely to increase morbidity and mortality risks for several climate-sensitive health outcomes, with the net impact uncertain. The objective of this study was to update the first HSA based on recent publications that address the potential impacts of climate variability and change in the United States for the five health outcome categories. The literature published since the first HSA supports the initial conclusions, with new data refining quantitative exposure–response relationships for several health end points, particularly for extreme heat events and air pollution. The United States continues to have a very high capacity to plan for and respond to climate change, although relatively little progress has been noted in the literature on implementing adaptive strategies and measures. Large knowledge gaps remain, resulting in a substantial need for additional research to improve our understanding of how weather and climate, both directly and indirectly, can influence human health. Filling these knowledge gaps will help better define the potential health impacts of climate change and identify specific public health adaptations to increase resilience. PMID:16966082

  11. Climate Change Education Roundtable: A Coherent National Strategy

    NASA Astrophysics Data System (ADS)

    Storksdieck, M.; Feder, M.; Climate Change Education Roundtable

    2010-12-01

    The Climate Change Education (CCE) Roundtable fosters ongoing discussion of the challenges to and strategies for improving public understanding of climate science and climate change among federal agencies, the business community, non-profit, and academic sectors. The CCE Roundtable is provides a critical mechanism for developing a coherent, national strategy to advance climate change education guided by the best available research evidence. Through its meetings and workshops, the roundtable brings together 30 federal and state policymakers, educators, communications and media experts, and members from the business and scientific community. The roundtable includes a number of ex officio members from federal agencies with dedicated interests in climate change education, including officials from the National Science Foundation’s EHR Directorate and its collaborating partner divisions, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Interior, the Department of Energy, and the Department of Education. The issues that are addressed by the roundtable include: - ways to incorporate knowledge about learning and understanding in developing informative programs and materials for decision-makers who must cope with climate change - the design of educational programs for professionals such as local planners, water managers, and the like, to enable them to better understand the implications of climate change for their decisions - development of training programs for scientists to help them become better communicators to decision-makers about implications of, and solutions to climate change - coordinated and collaborative efforts at the national level between federal agencies and other stakeholders This presenation will describe how the roundtable is fostering a coherent direction for climate change education.

  12. An Integrated Multivariable Visualization Tool for Marine Sanctuary Climate Assessments

    NASA Astrophysics Data System (ADS)

    Shein, K. A.; Johnston, S.; Stachniewicz, J.; Duncan, B.; Cecil, D.; Ansari, S.; Urzen, M.

    2012-12-01

    The comprehensive development and use of ecological climate impact assessments by ecosystem managers can be limited by data access and visualization methods that require a priori knowledge about the various large and complex climate data products necessary to those impact assessments. In addition, it can be difficult to geographically and temporally integrate climate and ecological data to fully characterize climate-driven ecological impacts. To address these considerations, we have enhanced and extended the functionality of the NOAA National Climatic Data Center's Weather and Climate Toolkit (WCT). The WCT is a freely available Java-based tool designed to access and display NCDC's georeferenced climate data products (e.g., satellite, radar, and reanalysis gridded data). However, the WCT requires users already know how to obtain the data products, which products are preferred for a given variable, and which products are most relevant to their needs. Developed in cooperation with research and management customers at the Gulf of the Farallones National Marine Sanctuary, the Integrated Marine Protected Area Climate Tools (IMPACT) modification to the WCT simplifies or eliminates these requirements, while simultaneously adding core analytical functionality to the tool. Designed for use by marine ecosystem managers, WCT-IMPACT accesses a suite of data products that have been identified as relevant to marine ecosystem climate impact assessments, such as NOAA's Climate Data Records. WCT-IMPACT regularly crops these products to the geographic boundaries of each included marine protected area (MPA), and those clipped regions are processed to produce MPA-specific analytics. The tool retrieves the most appropriate data files based on the user selection of MPA, environmental variable(s), and time frame. Once the data are loaded, they may be visualized, explored, analyzed, and exported to other formats (e.g., Google KML). Multiple variables may be simultaneously visualized using

  13. Evolving the US Climate Resilience Toolkit to Support a Climate-Smart Nation

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Niepold, F., III; Fox, J. F.; Herring, D.; Dahlman, L. E.; Hall, N.; Gardiner, N.

    2015-12-01

    Communities, businesses, resource managers, and decision-makers at all levels of government need information to understand and ameliorate climate-related risks. Likewise, climate information can expose latent opportunities. Moving from climate science to social and economic decisions raises complex questions about how to communicate the causes and impacts of climate variability and change; how to characterize and quantify vulnerabilities, risks, and opportunities faced by communities and businesses; and how to make and implement "win-win" adaptation plans at local, regional, and national scales. A broad coalition of federal agencies launched the U.S. Climate Resilience Toolkit (toolkit.climate.gov) in November 2014 to help our nation build resilience to climate-related extreme events. The site's primary audience is planners and decision makers in business, resource management, and government (at all levels) who seek science-based climate information and tools to help them in their near- and long-term planning. The Executive Office of the President assembled a task force of dozens of subject experts from across the 13 agencies of the U.S. Global Change Research Program to guide the site's development. The site's ongoing evolution is driven by feedback from the target audience. For example, based on feedback, climate projections will soon play a more prominent role in the site's "Climate Explorer" tool and case studies. The site's five-step adaptation planning process is being improved to better facilitate people getting started and to provide clear benchmarks for evaluating progress along the way. In this session, we will share lessons learned from a series of user engagements around the nation and evidence that the Toolkit couples climate information with actionable decision-making processes in ways that are helping Americans build resilience to climate-related stressors.

  14. Delivering Climate Science for the Nation's Fish, Wildlife, and Ecosystems: The U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Beard, T. Douglas

    2011-01-01

    Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).

  15. Climate Leadership Literacy as a Component of Climate Literacy

    NASA Astrophysics Data System (ADS)

    Kothavala, D. L.

    2014-12-01

    How can the 3rd National Climate Assessment be used to go beyond climate change literacy, to include literacy in climate leadership and its improvement? The National Climate Assessment refers to "no-regrets" strategies (i.e., beneficial despite uncertainty), such as, e.g., energy efficiency, cultivating networks, and growing our adaptive capacity. As we cultivate our capacity as a species to pivot, climate leadership performance and its improvement become legitimate - and essential - realms of research, planning, and practice. However, climate leadership across sectors is not yet well-articulated; and operationalizing literacy expressed as 'what to do' may be viewed as overtly prescriptive by scientists. This talk examines approaches and illustrative examples provided in the Climate Assessment at the scale of cities, states, and firms; along with key findings from the National Academies on communicating science to decision makers; in identifying factors to enhance literacy in climate leadership and performance.

  16. Engage, discover, apply, learn, repeat: Implementing a Sustained National Climate Assessment within the United States

    NASA Astrophysics Data System (ADS)

    Moss, R. H.

    2017-12-01

    Assessment of potential impacts and adaptations to global environmental change evaluate the continuously evolving state of science through the lens of relevance to challenges such as planning long-lived infrastructure and managing risks to property, ecosystems, public health, and other valued assets or objectives. These planning and decision contexts present varied challenges, including: multiple attributes at risk from interacting environmental and socioeconomic trends; uncertainties (scientific and otherwise); partial solutions with indefinite costs and benefits; and tradeoffs across stakeholder groups. Research and evaluation of assessments indicate they convey information that is more usable and relevant to decision makers if they are designed as sustained interactions of pertinent scientific and user communities and result in products beyond written reports. This talk will report on the work of a Federal Advisory Committee for the Sustained National Climate Assessment (SNCA) to develop recommendations to increase the SNCA's relevance and usability. The recommendations build on the conclusions of a 2013 report by the predecessor SNCA advisory committee and suggest next steps for (1) engagement, (2) provision of core scientific products, (3) tailoring of information and tools to provide insights under uncertainty, and (4) evaluation of products and outcomes. The recommended process focuses on providing insights relevant to consideration of risks and solutions. While resulting in a wide range of products and outcomes on an ongoing basis, aggregation and assessment of emerging insights and good practice for supporting decision making under uncertainty would recur over a four-year adaptive management cycle in the context of the preparation of the US national assessment report mandated under the Global Change Research Act. Uncertainty about the future role of Federal agencies in the assessment process and opportunities for increased engagement by non-Federal actors

  17. 75 FR 54403 - U.S. National Climate Assessment Objectives, Proposed Topics, and Next Steps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ..., methods and design, tools for assessing climate change and impacts, dealing with uncertainty, sources of..., coordination with other Federal climate-related programs, design of documents and tailored communications with... methodological perspectives related to selecting model and downscaling outputs and approaches for their use in...

  18. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern".

    PubMed

    Smith, Joel B; Schneider, Stephen H; Oppenheimer, Michael; Yohe, Gary W; Hare, William; Mastrandrea, Michael D; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H D; Füssel, Hans-Martin; Pittock, A Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-03-17

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that "would prevent dangerous anthropogenic interference (DAI) with the climate system." In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 "reasons for concern" (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the "burning embers diagram." In presenting the "embers" in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 "reasons for concern."

  19. Moving from awareness to action: Advancing climate change vulnerability assessments and adaptation planning for Idaho and Montana National Forests

    USGS Publications Warehouse

    Kershner, Jessi; Woodward, Andrea; Torregrosa, Alicia

    2016-01-01

    The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project will support climate-smart conservation and management across forests of northern Idaho and western Montana through three main components: (1) fostering partnerships among scientists, land managers, regional landowners, conservation practitioners, and the public; (2) assessing the vulnerability of a suite of regionally important resources to climate change and other stressors; and (3) creating a portfolio of adaptation strategies and actions to help resource managers prepare for and respond to the likely impacts of climate change. The results of this project will be used to inform the upcoming land management plan revisions for national forests, helping ensure that the most effective and robust conservation and management strategies are implemented to preserve our natural resources.

  20. Acadia National Park Climate Change Scenario Planning Workshop summary

    USGS Publications Warehouse

    Star, Jonathan; Fisichelli, Nicholas; Bryan, Alexander; Babson, Amanda; Cole-Will, Rebecca; Miller-Rushing, Abraham J.

    2016-01-01

    This report summarizes outcomes from a two-day scenario planning workshop for Acadia National Park, Maine (ACAD). The primary objective of the workshop was to help ACAD senior leadership make management and planning decisions based on up-to-date climate science and assessments of future uncertainty. The workshop was also designed as a training program, helping build participants' capabilities to develop and use scenarios. The details of the workshop are given in later sections. The climate scenarios presented here are based on published global climate model output. The scenario implications for resources and management decisions are based on expert knowledge distilled through scientist-manager interaction during workgroup break-out sessions at the workshop. Thus, the descriptions below are from these small-group discussions in a workshop setting and should not be taken as vetted research statements of responses to the climate scenarios, but rather as insights and examinations of possible futures (Martin et al. 2011, McBride et al. 2012).

  1. National Climate Program: Early achievements and future directions

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities of the National Climate Program since 1978 are reviewed, and outlines new directions which should be emphasized over the next five years or so. These are discussed under the subentities of climate system research; climate impacts; and climatic data, information, and services.

  2. Climate change assessments

    Treesearch

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  3. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  4. Improving the Nation's Climate Literacy through the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Grogan, M.; Niepold, F.; Ledley, T. S.; Gold, A. U.; Breslyn, W. G.; Carley, S.

    2013-12-01

    Climate Literacy: The Essential Principles of Climate Science (2009) presented the information that is deemed important for individuals and communities to know and understand about Earth's climate, impacts of climate change, and approaches to adaptation or mitigation by a group of federal agencies, science and educational partners. These principles guided the development of the NRC Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012) and the Next Generation Science Standards (NGSS, 2013). National Science Foundation recently funded two partnership projects which support the implementation of the climate component of the NGSS using the Climate Literacy framework. The first project, the Climate Literacy and Energy Awareness Network (CLEAN), was launched in 2010 as a National Science Digital Library (NSDL) Pathways project. CLEAN's primary effort is to steward a collection of educational resources around energy and climate topics and foster a community that supports learning about climate and energy topics. CLEAN's focus has been to integrate the effective use of the educational resources across all grade levels - with a particular focus on the middle-school through undergraduate levels (grades 6-16) and align the resources with educational standards. The second project, the Maryland and Delaware Climate Change Education, Assessment and Research (MADE-CLEAR) program is supported by a Phase II Climate Change Education Partnership (CCEP) grant awarded to the University System of Maryland (USM) by the National Science Foundation. The MADE-CLEAR project's related goals are to support innovations in interdisciplinary P-20 (preschool through graduate school) climate change education, and develop new pathways for teacher education and professional development leading to expertise in climate change content and pedagogy. Work in Maryland, Delaware (MADE-CLEAR) and other states on the implementation of the NGSS, that will utilize the

  5. Extending the Reach of National Assessments: Addressing Local and Regional Needs

    NASA Astrophysics Data System (ADS)

    Lewis, K.; Carter, T.

    2016-12-01

    While climate change is global in scope, many impacts of greatest societal concern (and accompanying response decisions) occur on local to regional scales. The U.S. Global Change Research Program (USGCRP) is tasked with conducting quadrennial national climate assessments, and efforts for the fourth such assessment (NCA4) are underway. Recognizing that there is a growing appetite for climate information on more local scales, however, USGCRP is actively pursuing higher-resolution scientific information, while also seeking engagement with local and regional entities to ensure that NCA4 is well-positioned to address users' needs across geospatial scales. Effectively meeting user needs at regional scales requires robust observations and projections at sub-national scales, as well as a widespread network of agencies and organizations. We discuss our efforts to leverage existing relationships to identify potential users and their needs early in the assessment process. We also discuss plans for future mechanisms to engage additional regional stakeholders from resource managers to policy makers and scientists not only for quadrennial assessment but as part of a sustained process.

  6. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  7. A Framework for Bridging Scientists, Knowledge Brokers and Local Decision Makers in State-level Climate Assessments

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Nash, J. L.

    2016-12-01

    Large-scale analyses like the National Climate Assessment (NCA) contain a wealth of information critical to national and regional responses to climate change but tend to be insufficiently detailed for action at state or local levels. Many states now develop assessments (SCAs) to provide relevant, actionable information to state and local authorities. These assessments generate new or additional primary information, build networks and inform stakeholders. Based on our experience in the Vermont Climate Assessment (VCA), we present a SCA framework to engage local decision makers, using a fluid network of scientific experts and knowledge brokers to conduct subject area prioritization, data analysis, and writing. Knowledge brokers bridged the scientific and stakeholder communities, providing a two-way flow of information by capitalizing on their existing networks. Rich citizen records of climate and climate change impacts associated a human voice, a memorable story, or personal observation with a climate record, improving climate information salience. This engagement process that created salient climate information perceived as credible and legitimate by local and state decision makers. We present this framework as an effective structure for SCAs to foster interaction among scientists, knowledge brokers and stakeholders. We include a qualitative impact evaluation and lessons learned for future SCAs.

  8. The Evolving Risk of Climate Change and National Security: People not Polar Bears

    NASA Astrophysics Data System (ADS)

    Titley, D.

    2014-12-01

    This talk will provide a general overview of climate change and discuss why this is a national security issue. Climate change is about people, about water, and about change itself. Understanding the rate of climate change, relative to the abilities of both humans and ecosystems to adapt is critical. I will briefly describe the multiple, independent lines of evidence that the climate is changing, and that the primary cause of this change is a change in atmospheric composition caused by the burning of fossil fuels. I will cover the history of climate change as seen within the U.S. Department of Defense and U.S. Navy, how this challenge is being addressed from budgetary, policy, and political angles, and what are the greatest challenges to national security that arise from climate change and in particular, the associated changes in the Arctic. I will conclude with an assessment of future challenges and opportunities regarding climate change, from science, policy, and political perspectives, and why we know enough to take significant action now, even if we don't know every detail about the future. In addition, this talk will address how to effectively talk about climate change through the use of analogies, plain, non-jargon English, and even a little humor.

  9. Pacific Islands Regional Climate Assessment: Building a Framework to Track Physical and Social Indicators of Climate Change Across Pacific Islands

    NASA Astrophysics Data System (ADS)

    Grecni, Z. N.; Keener, V. W.

    2016-12-01

    Assessments inform regional and local climate change governance and provide the critical scientific basis for U.S. climate policy. Despite the centrality of scientific information to public discourse and decision making, comprehensive assessments of climate change drivers, impacts, and the vulnerability of human and ecological systems at regional or local scales are often conducted on an ad hoc basis. Methods for sustained assessment and communication of scientific information are diverse and nascent. The Pacific Islands Regional Climate Assessment (PIRCA) is a collaborative effort to assess climate change indicators, impacts, and adaptive capacity of the Hawaiian archipelago and the US-Affiliated Pacific Islands (USAPI). In 2012, PIRCA released the first comprehensive report summarizing the state of scientific knowledge about climate change in the region as a technical input to the U.S. National Climate Assessment. A multi-method evaluation of PIRCA outputs and delivery revealed that the vast majority of key stakeholders view the report as extremely credible and use it as a resource. The current study will present PIRCA's approach to establishing physical and social indicators to track on an ongoing basis, starting with the Republic of the Marshall Islands as an initial location of focus for providing a cross-sectoral indicators framework. Identifying and tracking useful indicators is aimed at sustaining the process of knowledge coproduction with decision makers who seek to better understand the climate variability and change and its impacts on Pacific Island communities.

  10. School Climate and the National School Climate Standards

    ERIC Educational Resources Information Center

    Ciccone, Patricia A.; Freibeg, Jo Ann

    2013-01-01

    Increasingly, more and more areas of educational practice are being guided by sets of national standards for content, leadership, professional ethics, family-school partnerships, and school accreditation, among others. Similarly, there is growing appreciation that standards are needed to effectively measure improvement in school climate. The…

  11. Climate Change Impact Assessment of Food- and Waterborne Diseases.

    PubMed

    Semenza, Jan C; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2012-04-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998-2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options.

  12. Climate Change Impact Assessment of Food- and Waterborne Diseases

    PubMed Central

    Semenza, Jan C.; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2011-01-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720

  13. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”

    PubMed Central

    Smith, Joel B.; Schneider, Stephen H.; Oppenheimer, Michael; Yohe, Gary W.; Hare, William; Mastrandrea, Michael D.; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H. D.; Füssel, Hans-Martin; Pittock, A. Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-01-01

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic interference (DAI) with the climate system.” In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 “reasons for concern” (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the “burning embers diagram.” In presenting the “embers” in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 “reasons for concern.” PMID:19251662

  14. The Climate Voices Speakers Network: Collaborating with Nontraditional, National Networks to Develop Climate Literacy on a Local Level

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Schmidt, C.; Herrin, S.

    2015-12-01

    How can we leverage the successes of the numerous organizations in the climate change communication arena to build momentum rather than reinvent the wheel? Over the past two years, Climate Voices (climatevoices.org) has established a network of nearly 400 speakers and established partnerships to scale programs that address climate change communication and community engagement. In this presentation, we will present how we have identified and fostered win-win partnerships with organizations, such as GreenFaith Interfaith Partners for the Environment and Rotary International, to reach the broader general public. We will also share how, by drawing on the resources from the National Climate Assessment and the expertise of our own community, we developed and provided our speakers the tools to provide their audiences access to basic climate science - contributing to each audience's ability to understand local impacts, make informed decisions, and gain the confidence to engage in solutions-based actions in response to climate change. We will also discuss how we have created webinar coaching presentations by speakers who aren't climate scientists- and why we have chosen to do so.

  15. A design for a sustained assessment of climate forcings and feedbacks on land use land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul

    2014-01-01

    Land use and land cover change (LULCC) significantly influences the climate system. Hence, to prepare the nation for future climate change and variability, a sustained assessment of LULCC and its climatic impacts needs to be undertaken. To address this objective, not only do we need to determine contemporary trends in land use and land cover that affect, or are affected by, weather and climate but also identify sectors and regions that are most affected by weather and climate variability. Moreover, it is critical that we recognize land cover and regions that are most vulnerable to climate change and how end-use practices are adapting to climate change. This paper identifies a series of steps that need to be undertaken to address these key items. In addition, national-scale institutional capabilities are identified and discussed. Included in the discussions are challenges and opportunities for collaboration among these institutions for a sustained assessment.

  16. Climate negotiators' and scientists' assessments of the climate negotiations

    NASA Astrophysics Data System (ADS)

    Dannenberg, Astrid; Zitzelsberger, Sonja; Tavoni, Alessandro

    2017-06-01

    Climate negotiation outcomes are difficult to evaluate objectively because there are no clear reference scenarios. Subjective assessments from those directly involved in the negotiations are particularly important, as this may influence strategy and future negotiation participation. Here we analyse the perceived success of the climate negotiations in a sample of 656 experts involved in international climate policy. Respondents were pessimistic when asked for specific assessments of the current approach centred on voluntary pledges, but were more optimistic when asked for general assessments of the outcomes and usefulness of the climate negotiations. Individuals who were more involved in the negotiation process tended to be more optimistic, especially in terms of general assessments. Our results indicate that two reinforcing effects are at work: a high degree of involvement changes individuals' perceptions and more optimistic individuals are more inclined to remain involved in the negotiations.

  17. A systematic review of dynamics in climate risk and vulnerability assessments

    NASA Astrophysics Data System (ADS)

    Jurgilevich, Alexandra; Räsänen, Aleksi; Groundstroem, Fanny; Juhola, Sirkku

    2017-01-01

    Understanding climate risk is crucial for effective adaptation action, and a number of assessment methodologies have emerged. We argue that the dynamics of the individual components in climate risk and vulnerability assessments has received little attention. In order to highlight this, we systematically reviewed 42 sub-national climate risk and vulnerability assessments. We analysed the assessments using an analytical framework with which we evaluated (1) the conceptual approaches to vulnerability and exposure used, (2) if current or future risks were assessed, and (3) if and how changes over time (i.e. dynamics) were considered. Of the reviewed assessments, over half addressed future risks or vulnerability; and of these future-oriented studies, less than 1/3 considered both vulnerability and exposure dynamics. While the number of studies that include dynamics is growing, and while all studies included socio-economic aspects, often only biophysical dynamics was taken into account. We discuss the challenges of assessing socio-economic and spatial dynamics, particularly the poor availability of data and methods. We suggest that future-oriented studies assessing risk dynamics would benefit from larger stakeholder involvement, discussion of the assessment purpose, the use of multiple methods, inclusion of uncertainty/sensitivity analyses and pathway approaches.

  18. Vulnerabilities of national parks in the American Midwest to climate and land use changes

    USGS Publications Warehouse

    Stroh, Esther D.; Struckhoff, Matthew A.; Shaver, David; Karstensen, Krista A.

    2016-06-08

    Many national parks in the American Midwest are surrounded by agricultural or urban areas or are in highly fragmented or rapidly changing landscapes. An environmental stressor is a physical, chemical, or biological condition that affects the functioning or productivity of species or ecosystems. Climate change is just one of many stressors on park natural resources; others include urbanization, land use change, air and water pollution, and so on. Understanding and comparing the relative vulnerability of a suite of parks to projected climate and land use changes is important for region-wide planning. A vulnerability assessment of 60 units in the 13-state U.S. National Park Service Midwestern administrative region to climate and land use change used existing data from multiple sources. Assessment included three components: individual park exposure (5 metrics), sensitivity (5 metrics), and constraints to adaptive capacity (8 metrics) under 2 future climate scenarios. The three components were combined into an overall vulnerability score. Metrics were measures of existing or projected conditions within park boundaries, within 10-kilometer buffers surrounding parks, and within ecoregions that contain or intersect them. Data were normalized within the range of values for all assessed parks, resulting in high, medium, and low relative rankings for exposure, sensitivity, constraints to adaptive capacity, and overall vulnerability. Results are consistent with assessments regarding patterns and rates of climate change nationwide but provide greater detail and relative risk for Midwestern parks. Park overall relative vulnerability did not differ between climate scenarios. Rankings for exposure, sensitivity, and constraints to adaptive capacity varied geographically and indicate regional conservation planning opportunities. The most important stressors for the most vulnerable Midwestern parks are those related to sensitivity (intrinsic characteristics of the park) and

  19. A Climate Ready Estuaries Vulnerability Assessment

    EPA Science Inventory

    The purpose of the the Climate Ready Estuaries program is to build capacity in the National Estuary Programs (NEPs) for local leadership and expertise to adapt to the effects of climate change through a joint effort with the NEPs and EPA.

    Background
    The Climate Ready...

  20. Engaging Visitors in Climate Change Communication: A Case Study of Southern Florida's National Parks and Wildlife Refuges

    ERIC Educational Resources Information Center

    Beard, Caroline A.; Thompson, Jessica Leigh

    2012-01-01

    Through the lens of place-based climate change communication, this manuscript compares results from internal and external assessments of capacity to communicate about climate change at national parks and refuges in southern Florida. The internal survey sample included agency staff, stakeholders, community partners, and concessionaires; the…

  1. A National Climate for Creativity and Invention.

    ERIC Educational Resources Information Center

    Torrance, E. Paul

    1992-01-01

    This article offers guidelines for developing a national climate for creativity and invention. It recalls the post-Sputnik climate in the United States and notes evidence of Japan's increasing commitment to creativity. It recommends encouraging students to imagine themselves as inventors, providing early training in inventing skills, and…

  2. Climate negotiators’ and scientists’ assessments of the climate negotiations

    PubMed Central

    Dannenberg, Astrid; Zitzelsberger, Sonja; Tavoni, Alessandro

    2017-01-01

    Climate negotiation outcomes are difficult to evaluate objectively because there are no clear reference scenarios. Subjective assessments from those directly involved in the negotiations are particularly important, as this may influence strategy and future negotiation participation. Here we analyze the perceived success of the climate negotiations in a sample of more than 600 experts involved in international climate policy. Respondents were pessimistic when asked for specific assessments of the current approach centered on voluntary pledges, but were more optimistic when asked for general assessments of the outcomes and usefulness of the climate negotiations. Individuals who are more involved in the negotiation process tended to be more optimistic, especially in terms of general assessments. Our results indicate that two reinforcing effects are at work: a high degree of involvement changes individuals’ perceptions and more optimistic individuals are more inclined to remain involved in the negotiations. PMID:28603558

  3. Pacific Northwest National Laboratory’s Climate Resiliency Planning Process and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Judd, Kathleen S.; Brandenberger, Jill M.

    2016-02-22

    In 2015, the Pacific Northwest National Laboratory (PNNL) developed its first Climate Resilience Plan for its Richland Campus. PNNL has performed Climate Resilience Planning for the Department of Defense, Nuclear Regulatory Commission, and Department of Energy (DOE) over the past 5 years. The assessment team included climate scientists, social scientists, engineers, and operations managers. A multi-disciplinary team was needed to understand the potential exposures to future changes at the site, the state of the science on future impacts, and the best process for “mainstreaming” new actions into existing activities. The team uncovered that the site’s greatest vulnerabilities, and therefore prioritiesmore » for climate resilience planning, are high temperature due to degraded infrastructure, increased wildfire frequency, and intense precipitation impacts on stormwater conveyance systems.« less

  4. Delivering climate science about the Nation's fish, wildlife, and ecosystems: the U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Varela-Acevedo, Elda

    2014-01-01

    Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.

  5. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  6. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; hide

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  7. Climate change vulnerability for species-Assessing the assessments.

    PubMed

    Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D

    2017-09-01

    Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  8. An assessment of climate change and the vulnerability of wildlife in the Sky Islands of the Southwest

    Treesearch

    Sharon J. Coe; Deborah M. Finch; Megan M. Friggens

    2012-01-01

    We evaluated the historical and projected trends in climate and vegetation relevant to the Coronado National Forest in southeast Arizona, USA. We then applied this information in an assessment of the vulnerability of 30 species of terrestrial vertebrates on the Coronado National Forest to the potential effects of future climate change. We used a pilot version of a...

  9. Providing rapid climate risk assessments to support cities (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W.; Horton, R. M.; Bader, D.; Ali, S.

    2013-12-01

    Hurricane Sandy struck the East Coast of the United States on October 29, 2012 and brought the issue of urban resilience to the forefront of public discussion not only in New York City, but in cities around the world. While Hurricane Sandy as an individual extreme climate event cannot be attributed to climate change, it can serve as a warning for cities regarding disaster risks, focus attention on the importance of reducing climate vulnerability, and the need to include increasing climate risks and resilience into rebuilding programs. As severe as Sandy was, the the storm could have been much worse. The science behind potential impacts was ';in place' and ';in time,' i.e., climate risks were well understood before the storm, due to work by scientists in the region starting in the late 1990s. In the wake of this transformative storm, the rebuilding process in New York is being informed by the potential for a changing climate. The $20 billion Special Initiative for Rebuilding and Resiliency (SIRR) Plan for New York is grounded upon climate risk information provided by the New York City Panel on Climate Change (NPCC). This expert panel, tasked with advising on the City on climate-related issues, completed a 'rapid response' climate assessment with updated climate projections and coastal flood maps. Cities are emerging as the ';first responders' to climate change in both adaptation and mitigation. Their efforts are playing a role in catalyzing national and international responses as well. New York City's actions in the wake of Hurricane Sandy are an example of a positive tipping-point response. The Urban Climate Change Research Network, a consortium of over 450 scholars and practitioners in developing and developed country cities around the world, was established in 2007 to enhance science-based decision-making on climate and other sustainability related issues in urban areas around the world. The UCCRN's first major publication is the First UCCRN Assessment Report on

  10. Assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.

    2010-04-01

    Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-modelmore » ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.« less

  11. Assessment of the Health Impacts of Climate Change in Kiribati

    PubMed Central

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  12. The GCRP Climate Health Assessment: From Scientific Literature to Climate Health Literacy

    NASA Astrophysics Data System (ADS)

    Crimmins, A. R.; Balbus, J. M.

    2016-12-01

    As noted by the new report from the US GCRP, the Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, climate change is a significant threat to the health of the American people. Despite a growing awareness of the significance of climate change in general among Americans, however, recognition of the health significance of climate change is lacking. Not only are the general public and many climate scientists relatively uninformed about the myriad health implications of climate change; health professionals, including physicians and nurses, are in need of enhanced climate literacy. This presentation will provide an overview of the new GCRP Climate Health Assessment, introducing the audience to the systems thinking that underlies the assessment of health impacts, and reviewing frameworks that tie climate and earth systems phenomena to human vulnerability and health. The impacts on health through changes in temperature, precipitation, severity of weather extremes and climate variability, and alteration of ecosystems and phenology will be explored. The process of developing the assessment report will be discussed in the context of raising climate and health literacy within the federal government.

  13. India's National Action Plan on Climate Change.

    PubMed

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  14. Should the United Nations Framework Convention on Climate Change recognize climate migrants?

    NASA Astrophysics Data System (ADS)

    Gibb, Christine; Ford, James

    2012-12-01

    Climate change is expected to increase migration flows, especially from socially and environmentally vulnerable populations. These ‘climate migrants’ do not have any official protection under international law, which has implications for the human security of migrants. This work argues that the United Nations Framework Convention on Climate Change (UNFCCC) can and should recognize climate migrants, and is the most relevant international framework for doing so. While not legally binding, the acknowledgment of climate displacement, migration and planned relocation issues in the UNFCCC’s Cancun Adaptation Framework indicates a willingness to address the issue through an adaptation lens. Herein, the paper proposes a framework for setting the institutional groundwork for recognizing climate migrants, focusing on the most vulnerable, promoting targeted research and policy agendas, and situating policies within a comprehensive strategy.

  15. Resiliency of the Nation's Power Grid: Assessing Risks of Premature Failure of Large Power Transformers Under Climate Warming and Increased Heat Waves

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Gao, X.; Morgan, E.

    2017-12-01

    The aging pieces of our nation's power grid - the largest machine ever built - are at a critical time. Key assets in the transmission system, including large power transformers (LPTs), are approaching their originally designed lifetimes. Moreover, extreme weather and climate events upon which these design lifetimes are partially based are expected to change. In particular, more frequent and intense heat waves can accelerate the degradation of LPTs' insulation/cooling system. Thus, there are likely thousands of LPTs across the United States under increasing risk of premature failure - yet this risk has not been assessed. In this study, we investigate the impact of climate warming and corresponding shifts in heat waves for critical LPTs located in the Northeast corridor of the United States to assess: To what extent do changes in heat waves/events present a rising threat to the transformer network over the Northeast U.S. and to what extent can climate mitigation reduce this risk? This study focuses on a collection of LPTs with a high degree of "betweenness" - while recognizing other factors such as: connectivity, voltage rating, MVA rating, approximate price, weight, location/proximity to major transportation routes, and age. To assess the risk of future change in heat wave occurrence we use an analogue method, which detects the occurrence of heat waves based on associated large-scale atmospheric conditions. This method is compared to the more conventional approach that uses model-simulated daily maximum temperature. Under future climate warming scenarios, multi-model medians of both methods indicate strong increases in heat wave frequency during the latter half of this century. Under weak climate mitigation - the risks imposed from heat wave occurrence could quadruple, but a modest mitigation scenario cuts the increasing threat in half. As important, the analogue method substantially improves the model consensus through reduction of the interquartile range by a

  16. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    NASA Astrophysics Data System (ADS)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  17. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO): Science at Your Fingertips

    NASA Astrophysics Data System (ADS)

    Jennings, L. N.; Treasure, E.; Moore Myers, J.; McNulty, S.

    2012-12-01

    There is an ever-increasing volume of useful scientific knowledge about climate change effects and management options for natural ecosystems. Agencies such as the USDA Forest Service have been charged with the need to evaluate this body of knowledge and if necessary adapt to the impacts of climate change in their forest planning and management. However, the combined volume of existing information and rate of development of new information, lack of climate change specialists, and limited technology transfer mechanisms make efficient access and use difficult. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) addresses this difficulty through its publically accessible web-based tool that puts current and concise climate change science at the fingertips of forest planners and managers. A collaborative product of the USDA Forest Service Research Stations and the National Forest System, TACCIMO integrates peer-reviewed research with management and planning options through search and reporting tools that connect land managers with information they can trust. TACCIMO highlights elements from the wealth of climate change science with attention to what natural resource planners and managers need through a searchable repository of over 4,000 effects of climate change and close to 1,000 adaptive management options, all excerpted from a growing body of peer-reviewed scientific literature. A geospatial mapping application provides downscaled climate data for the nation and other spatially explicit models relevant to evaluating climate change impacts on forests. Report generators assist users in capturing outputs specific to a given location and resource area in a consistent and organized manner. For USDA Forest Service users, science findings can be readily linked with management conditions and capabilities from national forest management plans. The development of TACCIMO was guided by interactions with natural resource professionals, resulting

  18. Preparedness for climate change among local health department officials in New York state: a comparison with national survey results.

    PubMed

    Carr, Jessie L; Sheffield, Perry E; Kinney, Patrick L

    2012-01-01

    Climate-change adaptation strategies that address locally specific climate hazards are critical for preventing negative health outcomes, and local public health care officials are key foci for adaptation planning. To assess New York State Local Health Department officials' perceptions and preparedness related to climate-sensitive health areas, and compare these with a national sample. Online survey instrument, originally used in a national survey of local health department (LHD) officials. New York State. Eligible participants included all New York State city and county LHD officials, 1 respondent per LHD. LHD officials' perceptions of (1) local climate-related public health effects, (2) preparation status and programming areas of LHDs, and (3) necessary resources to better address climate-related health risks. : Survey participants, representing a 54% response rate (with 93% of respondents completing more than 90% of the questions), perceived climate change as relevant to public health, and most noted that some of their existing programs already use or are planning to use climate adaptation strategies. Overall, fewer New York State respondents identified concerns or related expertise compared with the previous national survey. Many respondents expressed uncertainty regarding necessary additional resources. This type of assessment makes clear the high variability in perceived impacts and capacity at the level of LHD jurisdictions, and underscores the importance of sustained support for local climate-change preparedness programming. The implications of these findings are germane to other states with similar decentralized jurisdiction of public health. Findings from such surveys can bolster existing LHD programs, as well as inform long-term and emergency planning for climate change.

  19. Data of a willingness to pay survey for national climate change mitigation policies in Germany.

    PubMed

    Uehleke, Reinhard

    2016-06-01

    The dataset includes responses from a contingent valuation study about the national climate change mitigation policies in Germany. The online survey was carried out in the spring of 2014. It assesses the willingness to pay for an increase of the national CO2 reduction target by 10 percentage points, which closely represents Germany׳s climate change mitigation strategy. Respondents were randomly allocated to one of the following three question formats: The dichotomous choice referendum, the dissonance minimizing referendum and the two-sided payment ladder. The data can be used to investigate the influence of alternative statistical approaches on the willingness to pay measures and their comparison across question formats.

  20. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  1. America's Climate Choices: Adapting to the Impacts of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Wilbanks, T.; Yohe, G.; Mengelt, C.; Casola, J.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study assessed, this study assessed how the nation can begin to adapt to the impacts of climate change. Much of the nation’s experience to date in managing and protecting its people, resources, and infrastructure is based on the historic record of climate variability during a period of relatively stable climate. Adaptation to climate change calls for a new paradigm - one that considers a range of possible future climate conditions and associated impacts. The Adapting to the Impacts of Climate Change report calls for action at all levels of government, NGOs, and the private sector to assess vulnerabilities to the impacts of climate change and identify options for adaptation. Current adaptation efforts are hampered by a lack of solid information about the benefits, costs, and effectiveness of various adaptation options, by uncertainty about future climate change impacts at a scale necessary for decision-making, and by a lack of coordination. The report outlines a risk management framework that can be applied to assess vulnerabilities, compare and evaluate potential adaptation options, recognizing that decision makers across the country are likely to pursue a diverse set of adaptation measures. A major research effort is needed to improve knowledge about current and future vulnerabilities, explore new adaptation options, and better inform adaptation decisions. Therefore, the report also emphasizes the need to continually re-assess adaptation decisions as the experience and knowledge regarding effective adaptation evolves. A national adaptation strategy is needed in which the federal government would support and enhance adaptation activities undertaken by state, local, tribal, and private entities; identify and modify

  2. Climate change adaptation for the US National Wildlife Refuge System

    USGS Publications Warehouse

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  3. The Intersection of National Security and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hund, Gretchen; Fankhauser, Jana G.; Kurzrok, Andrew J.

    On June 4, 2014, the Henry M. Jackson Foundation and the Pacific Northwest National Laboratory hosted a groundbreaking symposium in Seattle, Washington, that brought together 36 leaders from federal agencies, state and local governments, NGOs, business, and academia. The participants examined approaches and tools to help decision makers make informed choices about the climate and security risks they face. The following executive summary is based on the day’s discussions and examines the problem of climate change and its impact on national security, the responses to date, and future considerations.

  4. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    PubMed

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  5. Probabilistic Integrated Assessment of ``Dangerous'' Climate Change

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Michael D.; Schneider, Stephen H.

    2004-04-01

    Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.

  6. BASINS Climate Assessment Tool Tutorials

    EPA Pesticide Factsheets

    The BASINS Climate Assessment Tool (CAT) provides a flexible set of capabilities for exploring the potential effects of climate change on streamflow and water quality using different watershed models in BASINS.

  7. Assessing climate change impact by integrated hydrological modelling

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  8. Assessing simulated ecosystem processes for climate variability research at Glacier National Park, USA

    USGS Publications Warehouse

    White, J.D.; Running, S.W.; Thornton, P.E.; Keane, R.E.; Ryan, K.C.; Fagre, D.B.; Key, C.H.

    1998-01-01

    Glacier National Park served as a test site for ecosystem analyses than involved a suite of integrated models embedded within a geographic information system. The goal of the exercise was to provide managers with maps that could illustrate probable shifts in vegetation, net primary production (NPP), and hydrologic responses associated with two selected climatic scenarios. The climatic scenarios were (a) a recent 12-yr record of weather data, and (b) a reconstituted set that sequentially introduced in repeated 3-yr intervals wetter-cooler, drier-warmer, and typical conditions. To extrapolate the implications of changes in ecosystem processes and resulting growth and distribution of vegetation and snowpack, the model incorporated geographic data. With underlying digital elevation maps, soil depth and texture, extrapolated climate, and current information on vegetation types and satellite-derived estimates of a leaf area indices, simulations were extended to envision how the park might look after 120 yr. The predictions of change included underlying processes affecting the availability of water and nitrogen. Considerable field data were acquired to compare with model predictions under current climatic conditions. In general, the integrated landscape models of ecosystem processes had good agreement with measured NPP, snowpack, and streamflow, but the exercise revealed the difficulty and necessity of averaging point measurements across landscapes to achieve comparable results with modeled values. Under the extremely variable climate scenario significant changes in vegetation composition and growth as well as hydrologic responses were predicted across the park. In particular, a general rise in both the upper and lower limits of treeline was predicted. These shifts would probably occur along with a variety of disturbances (fire, insect, and disease outbreaks) as predictions of physiological stress (water, nutrients, light) altered competitive relations and hydrologic

  9. Assessement of user needs for climate change scenarios in Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  10. National climate policies across Europe and their impacts on cities strategies.

    PubMed

    Heidrich, O; Reckien, D; Olazabal, M; Foley, A; Salvia, M; de Gregorio Hurtado, S; Orru, H; Flacke, J; Geneletti, D; Pietrapertosa, F; Hamann, J J-P; Tiwary, A; Feliu, E; Dawson, R J

    2016-03-01

    Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Testing a theory of organizational culture, climate and youth outcomes in child welfare systems: a United States national study.

    PubMed

    Williams, Nathaniel J; Glisson, Charles

    2014-04-01

    Theories of organizational culture and climate (OCC) applied to child welfare systems hypothesize that strategic dimensions of organizational culture influence organizational climate and that OCC explains system variance in youth outcomes. This study provides the first structural test of the direct and indirect effects of culture and climate on youth outcomes in a national sample of child welfare systems and isolates specific culture and climate dimensions most associated with youth outcomes. The study applies multilevel path analysis (ML-PA) to a U.S. nationwide sample of 2,380 youth in 73 child welfare systems participating in the second National Survey of Child and Adolescent Well-being. Youths were selected in a national, two-stage, stratified random sample design. Youths' psychosocial functioning was assessed by caregivers' responses to the Child Behavior Checklist at intake and at 18-month follow-up. OCC was assessed by front-line caseworkers' (N=1,740) aggregated responses to the Organizational Social Context measure. Comparison of the a priori and subsequent trimmed models confirmed a reduced model that excluded rigid organizational culture and explained 70% of the system variance in youth outcomes. Controlling for youth- and system-level covariates, systems with more proficient and less resistant organizational cultures exhibited more functional, more engaged, and less stressful climates. Systems with more proficient cultures and more engaged, more functional, and more stressful climates exhibited superior youth outcomes. Findings suggest child welfare administrators can support service effectiveness with interventions that improve specific dimensions of culture and climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Testing a theory of organizational culture, climate and youth outcomes in child welfare systems: A United States national study

    PubMed Central

    Williams, Nathaniel J.; Glisson, Charles

    2013-01-01

    Theories of organizational culture and climate (OCC) applied to child welfare systems hypothesize that strategic dimensions of organizational culture influence organizational climate and that OCC explains system variance in youth outcomes. This study provides the first structural test of the direct and indirect effects of culture and climate on youth outcomes in a national sample of child welfare systems and isolates specific culture and climate dimensions most associated with youth outcomes. The study applies multilevel path analysis (ML-PA) to a U.S. nationwide sample of 2,380 youth in 73 child welfare systems participating in the second National Survey of Child and Adolescent Well-being. Youths were selected in a national, two-stage, stratified random sample design. Youths’ psychosocial functioning was assessed by caregivers’ responses to the Child Behavior Checklist at intake and at 18-month follow-up. OCC was assessed by front-line caseworkers’ (N=1,740) aggregated responses to the Organizational Social Context measure. Comparison of the a priori and subsequent trimmed models confirmed a reduced model that excluded rigid organizational culture and explained 70% of the system variance in youth outcomes. Controlling for youth- and system-level covariates, systems with more proficient and less resistant organizational cultures exhibited more functional, more engaged, and less stressful climates. Systems with more proficient cultures and more engaged, more functional, and more stressful climates exhibited superior youth outcomes. Findings suggest child welfare administrators can support service effectiveness with interventions that improve specific dimensions of culture and climate. PMID:24094999

  13. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  14. U.S. National forests adapt to climate change through science-management partnerships

    Treesearch

    Jeremy S. Littell; David L. Peterson; Constance I. Millar; Kathy A. O' Halloran

    2011-01-01

    Developing appropriate management options for adapting to climate change is a new challenge for land managers, and integration of climate change concepts into operational management and planning on United States national forests is just starting. We established science-management partnerships on the Olympic National Forest (Washington) and Tahoe National Forest (...

  15. Potential impacts of climate change on the built environment: ASHRAE climate zones, building codes and national energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Kumar, Jitendra; Hoffman, Forrest M.

    Statement of the Problem: ASHRAE releases updates to 90.1 “Energy Standard for Buildings except Low-Rise Residential Buildings” every three years resulting in a 3.7%-17.3% increase in energy efficiency for buildings with each release. This is adopted by or informs building codes in nations across the globe, is the National Standard for the US, and individual states elect which release year of the standard they will enforce. These codes are built upon Standard 169 “Climatic Data for Building Design Standards,” the latest 2017 release of which defines climate zones based on 8, 118 weather stations throughout the world and data frommore » the past 8-25 years. This data may not be indicative of the weather that new buildings built today, will see during their upcoming 30-120 year lifespan. Methodology & Theoretical Orientation: Using more modern, high-resolution datasets from climate satellites, IPCC climate models (PCM and HadGCM), high performance computing resources (Titan) and new capabilities for clustering and optimization the authors briefly analyzed different methods for redefining climate zones. Using bottom-up analysis of multiple meteorological variables which were the subject matter, experts selected as being important to energy consumption, rather than the heating/cooling degree days currently used. Findings: We analyzed the accuracy of redefined climate zones, compared to current climate zones and how the climate zones moved under different climate change scenarios, and quantified the accuracy of these methods on a local level, at a national scale for the US. Conclusion & Significance: There is likely to be a significant annual, national energy and cost (billions USD) savings that could be realized by adjusting climate zones to take into account anticipated trends or scenarios in regional weather patterns.« less

  16. Differences between immigrant and national students in motivational variables and classroom-motivational-climate perception.

    PubMed

    Alonso-Tapia, Jesús; Simón, Carmen

    2012-03-01

    The objective of this study is to see whether Immigrant (IM) and Spanish (National) students (SP) need different kinds of help from teachers due to differences in motivation, family expectancies and interests and classroom-motivational-climate perception. A sample of Secondary Students -242 Spanish and 243 Immigrants- completed questionnaires assessing goal orientations and expectancies, family attitudes towards academic work, perception of classroom motivational climate and of its effects, satisfaction, disruptive behavior and achievement. ANOVAs showed differences in many of the motivational variables assessed as well as in family attitudes. In most cases, Immigrant students scored lower than Spanish students in the relevant variables. Regression analyses showed that personal and family differences were related to student's satisfaction, achievement and disruptive behavior. Finally, multi-group analysis of classroom-motivational-climate (CMC) showed similarities and differences in the motivational value attributed by IM and SP to each specific teaching pattern that configure the CMC. IM lower self-esteem could explain these results, whose implications for teaching and research are discussed.

  17. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  18. Climate Prediction Center - Global Tropical Hazards Assessment

    Science.gov Websites

    Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Organization Search Go Search the CPC Go Climate Outlooks Climate & Weather Link El Niño/La Niña MJO

  19. Climate change & extreme weather vulnerability assessment framework.

    DOT National Transportation Integrated Search

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  20. National Lakes Assessment

    EPA Pesticide Factsheets

    The National Lakes Assessment is a collaborative, statistical survey of the nation's lakes. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  1. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    USGS Publications Warehouse

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  2. National Security and the Threat of Climate Change

    DTIC Science & Technology

    2007-01-01

    life by preventing the formation of shells and skeletons of some very numerous and important zoo- plankton [48]. Coral reefs are particularly...http://lwf.ncdc.noaa.gov/oa/climate/research/trends.html 48. James C. Orr, Scott Doney, et al. 2005. Anthropogenic Ocean Acidification Over the...National Oceanic and Atmospheric Administration provided many valuable insights into climate science and reviewed our draft report. Dr. Robert Frosch

  3. An Integrated Hydro-Economic Model for Economy-Wide Climate Change Impact Assessment for Zambia

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Thurlow, J.; Diao, X.

    2008-12-01

    Zambia is a landlocked country in Southern Africa, with a total population of about 11 million and a total area of about 752 thousand square kilometers. Agriculture in the country depends heavily on rainfall as the majority of cultivated land is rain-fed. Significant rainfall variability has been a huge challenge for the country to keep a sustainable agricultural growth, which is an important condition for the country to meet the United Nations Millennium Development Goals. The situation is expected to become even more complex as climate change would impose additional impacts on rainwater availability and crop water requirements, among other changes. To understand the impacts of climate variability and change on agricultural production and national economy, a soil hydrology model and a crop water production model are developed to simulate actual crop water uses and yield losses under water stress which provide annual shocks for a recursive dynamic computational general equilibrium (CGE) model developed for Zambia. Observed meteorological data of the past three decades are used in the integrated hydro-economic model for climate variability impact analysis, and as baseline climatology for climate change impact assessment together with several GCM-based climate change scenarios that cover a broad range of climate projections. We found that climate variability can explain a significant portion of the annual variations of agricultural production and GDP of Zambia in the past. Hidden beneath climate variability, climate change is found to have modest impacts on agriculture and national economy of Zambia around 2025 but the impacts would be pronounced in the far future if appropriate adaptations are not implemented. Policy recommendations are provided based on scenario analysis.

  4. BASINs and WEPP Climate Assessment Tools (CAT): Case ...

    EPA Pesticide Factsheets

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & Non-point Sources (BASINS) and the Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT). The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential effects of climate change on streamflow and water quality. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  5. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    USGS Publications Warehouse

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  6. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    USGS Publications Warehouse

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  7. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy.

    PubMed

    Brown, Iain

    2018-06-13

    Climate change policy requires prioritization of adaptation actions across many diverse issues. The policy agenda for the natural environment includes not only biodiversity, soils and water, but also associated human benefits through agriculture, forestry, water resources, hazard alleviation, climate regulation and amenity value. To address this broad agenda, the use of comparative risk assessment is investigated with reference to statutory requirements of the UK Climate Change Risk Assessment. Risk prioritization was defined by current adaptation progress relative to risk magnitude and implementation lead times. Use of an ecosystem approach provided insights into risk interactions, but challenges remain in quantifying ecosystem services. For all risks, indirect effects and potential systemic risks were identified from land-use change, responding to both climate and socio-economic drivers, and causing increased competition for land and water resources. Adaptation strategies enhancing natural ecosystem resilience can buffer risks and sustain ecosystem services but require improved cross-sectoral coordination and recognition of dynamic change. To facilitate this, risk assessments need to be reflexive and explicitly assess decision outcomes contingent on their riskiness and adaptability, including required levels of human intervention, influence of uncertainty and ethical dimensions. More national-scale information is also required on adaptation occurring in practice and its efficacy in moderating risks.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  8. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy

    NASA Astrophysics Data System (ADS)

    Brown, Iain

    2018-06-01

    Climate change policy requires prioritization of adaptation actions across many diverse issues. The policy agenda for the natural environment includes not only biodiversity, soils and water, but also associated human benefits through agriculture, forestry, water resources, hazard alleviation, climate regulation and amenity value. To address this broad agenda, the use of comparative risk assessment is investigated with reference to statutory requirements of the UK Climate Change Risk Assessment. Risk prioritization was defined by current adaptation progress relative to risk magnitude and implementation lead times. Use of an ecosystem approach provided insights into risk interactions, but challenges remain in quantifying ecosystem services. For all risks, indirect effects and potential systemic risks were identified from land-use change, responding to both climate and socio-economic drivers, and causing increased competition for land and water resources. Adaptation strategies enhancing natural ecosystem resilience can buffer risks and sustain ecosystem services but require improved cross-sectoral coordination and recognition of dynamic change. To facilitate this, risk assessments need to be reflexive and explicitly assess decision outcomes contingent on their riskiness and adaptability, including required levels of human intervention, influence of uncertainty and ethical dimensions. More national-scale information is also required on adaptation occurring in practice and its efficacy in moderating risks. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  9. Assessing species vulnerability to climate change

    NASA Astrophysics Data System (ADS)

    Pacifici, Michela; Foden, Wendy B.; Visconti, Piero; Watson, James E. M.; Butchart, Stuart H. M.; Kovacs, Kit M.; Scheffers, Brett R.; Hole, David G.; Martin, Tara G.; Akçakaya, H. Resit; Corlett, Richard T.; Huntley, Brian; Bickford, David; Carr, Jamie A.; Hoffmann, Ary A.; Midgley, Guy F.; Pearce-Kelly, Paul; Pearson, Richard G.; Williams, Stephen E.; Willis, Stephen G.; Young, Bruce; Rondinini, Carlo

    2015-03-01

    The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

  10. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  11. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  12. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  13. The Role of Decision Support in Adapting to Climate Change: Findings from Three Place-based Regional Assessments

    EPA Science Inventory

    This report summarizes the methodologies and findings of three regional assessments and considers the role of decision support in assisting adaptation to climate change. Background. In conjunction with the US Global Change Research Program’s (USGCRP’s) National Assessment of ...

  14. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  15. Climate Prediction Center - Expert Assessments: East Pacific Hurricane

    Science.gov Websites

    influence seasonal eastern Pacific hurricane activity, along with climate model forecasts. The outlook also National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map Administration (NOAA) Climate Prediction Center (CPC), and is produced in collaboration with scientists from the

  16. NOAA Climate Program Office Contributions to National ESPC

    NASA Astrophysics Data System (ADS)

    Higgins, W.; Huang, J.; Mariotti, A.; Archambault, H. M.; Barrie, D.; Lucas, S. E.; Mathis, J. T.; Legler, D. M.; Pulwarty, R. S.; Nierenberg, C.; Jones, H.; Cortinas, J. V., Jr.; Carman, J.

    2016-12-01

    NOAA is one of five federal agencies (DOD, DOE, NASA, NOAA, and NSF) which signed an updated charter in 2016 to partner on the National Earth System Prediction Capability (ESPC). Situated within NOAA's Office of Oceanic and Atmospheric Research (OAR), NOAA Climate Program Office (CPO) programs contribute significantly to the National ESPC goals and activities. This presentation will provide an overview of CPO contributions to National ESPC. First, we will discuss selected CPO research and transition activities that directly benefit the ESPC coupled model prediction capability, including The North American Multi-Model Ensemble (NMME) seasonal prediction system The Subseasonal Experiment (SubX) project to test real-time subseasonal ensemble prediction systems. Improvements to the NOAA operational Climate Forecast System (CFS), including software infrastructure and data assimilation. Next, we will show how CPO's foundational research activities are advancing future ESPC capabilities. Highlights will include: The Tropical Pacific Observing System (TPOS) to provide the basis for predicting climate on subseasonal to decadal timescales. Subseasonal-to-Seasonal (S2S) processes and predictability studies to improve understanding, modeling and prediction of the MJO. An Arctic Research Program to address urgent needs for advancing monitoring and prediction capabilities in this major area of concern. Advances towards building an experimental multi-decadal prediction system through studies on the Atlantic Meridional Overturning Circulation (AMOC). Finally, CPO has embraced Integrated Information Systems (IIS's) that build on the innovation of programs such as the National Integrated Drought Information System (NIDIS) to develop and deliver end to end environmental information for key societal challenges (e.g. extreme heat; coastal flooding). These contributions will help the National ESPC better understand and address societal needs and decision support requirements.

  17. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  18. Assessment of the Effects of Climate Change on Federal Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Michael J.; Shih-Chieh, Kao; Ashfaq, Moetasim

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  19. Climate policy in India: what shapes international, national and state policy?

    PubMed

    Atteridge, Aaron; Shrivastava, Manish Kumar; Pahuja, Neha; Upadhyay, Himani

    2012-01-01

    At the international level, India is emerging as a key actor in climate negotiations, while at the national and sub-national levels, the climate policy landscape is becoming more active and more ambitious. It is essential to unravel this complex landscape if we are to understand why policy looks the way it does, and the extent to which India might contribute to a future international framework for tackling climate change as well as how international parties might cooperate with and support India's domestic efforts. Drawing on both primary and secondary data, this paper analyzes the material and ideational drivers that are most strongly influencing policy choices at different levels, from international negotiations down to individual states. We argue that at each level of decision making in India, climate policy is embedded in wider policy concerns. In the international realm, it is being woven into broader foreign policy strategy, while domestically, it is being shaped to serve national and sub-national development interests. While our analysis highlights some common drivers at all levels, it also finds that their influences over policy are not uniform across the different arenas, and in some cases, they work in different ways at different levels of policy. We also indicate what this may mean for the likely acceptability within India of various climate policies being pushed at the international level.

  20. Climate Change and a Global City: An Assessment of the Metropolitan East Coast Region

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William

    1999-01-01

    The objective of the research is to derive an assessment of the potential climate change impacts on a global city - in this case the 31 county region that comprises the New York City metropolitan area. This study comprises one of the regional components that contribute to the ongoing U.S. National Assessment: The Potential Consequences of Climate Variability and Change and is an application of state-of-the-art climate change science to a set of linked sectoral assessment analyses for the Metro East Coast (MEC) region. We illustrate how three interacting elements of global cities react and respond to climate variability and change with a broad conceptual model. These elements include: people (e.g., socio- demographic conditions), place (e.g., physical systems), and pulse (e.g., decision-making and economic activities). The model assumes that a comprehensive assessment of potential climate change can be derived from examining the impacts within each of these elements and at their intersections. Thus, the assessment attempts to determine the within-element and the inter-element effects. Five interacting sector studies representing the three intersecting elements are evaluated. They include the Coastal Zone, Infrastructure, Water Supply, Public Health, and Institutional Decision-making. Each study assesses potential climate change impacts on the sector and on the intersecting elements, through the analysis of the following parts: 1. Current conditions of sector in the region; 2. Lessons and evidence derived from past climate variability; 3. Scenario predictions affecting sector; potential impacts of scenario predictions; 4. Knowledge/information gaps and critical issues including identification of additional research questions, effectiveness of modeling efforts, equity of impacts, potential non-local interactions, and policy recommendations; and 5. Identification of coping strategies - i.e., resilience building, mitigation strategies, new technologies, education that

  1. Development of National Future Extreme Heat Scenario to Enable the Assessment of Climate Impacts on Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Cresson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G.

    2013-01-01

    The project's emphasis is on providing assessments of the magnitude, frequency and geographic distribution of EHEs to facilitate public health studies. We focus on the daily to weekly time scales on which EHEs occur, not on decadal-scale climate changes. There is, however, a very strong connection between air temperature patterns at the two time scales and long-term climatic changes will certainly alter the frequency of EHEs.

  2. Vulnerability assessment of skiing-dependent businesses to the effects of climate change in Banff and Jasper National Parks, Canada

    NASA Astrophysics Data System (ADS)

    Reynolds, David Michael

    This qualitative study examines the potential positive and negative socio-economic impacts that may emerge from the long-term effects of climate change on skiing-dependent businesses in Banff and Jasper National Parks, Canada. My goal was to determine whether or not skiing-related tourism in the parks in the 2020s and 2050s is more or less socio-economically vulnerable to the effects of climate change on snow cover, temperatures and ski season length at ski resorts in the parks. My study explored the level of awareness and personal perceptions of 60 skiing-dependent business managers about how the impact of climate change on ski resorts may influence future socio-economics of ski tourism businesses. I employed a vulnerability assessment approach and adopted some elements of grounded theory. My primary data sources are interviews with managers and the outcome of the geographical factors index (GFI). Supporting methods include: an analysis and interpretation of climate model data and an interpretation of the economic analysis of skiing in the parks. The interview data were sorted and coded to establish concepts and findings by interview questions, while the GFI model rated and ranked 24 regional ski resorts in the Canadian Cordillera. The findings answered the research questions and helped me conclude what the future socio-economic vulnerability may be of skiing-dependent businesses in the parks. The interviews revealed that managers are not informed about climate change and they have not seen any urgency to consider the effects on business. The GFI revealed that the ski resorts in the parks ranked in the top ten of 24 ski resorts in the Cordillera based on 14 common geographical factors. The economic reports suggest skiing is the foundation of the winter economy in the parks and any impact on skiing would directly impact other skiing-dependent businesses. Research indicates that the effects of climate change may have less economic impact on skiing

  3. Global Climate Change - U.S. Economic and National Security Opportunity

    DTIC Science & Technology

    2009-03-20

    The most recent findings of the Intergovernmental Panel on Climate Change (IPCC) state that the current trajectory of greenhouse gas (GHG) emissions...challenges and opportunities for the United States as they balance national security and economic interests. The effects of climate change could act as a...are various opportunities associated with climate change including opening arctic navigational channels and the vast oil and natural gas resources

  4. BASINS and WEPP Climate Assessment Tools (CAT): Case ...

    EPA Pesticide Factsheets

    This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential future effects of climate change on water resources. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  5. Building Capacity: The National Network for Ocean and Climate Change Interpretation

    NASA Astrophysics Data System (ADS)

    Spitzer, W.

    2014-12-01

    In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the population. Research shows that these visitors are receptive to learning about climate change, and expect these institutions to provide reliable information about environmental issues and solutions. These informal science venues play a critical role in shaping public understanding. Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. After two years of project implementation, key findings include: 1. Importance of adaptive management - We continue to make ongoing changes in training format, content, and roles of facilitators and participants. 2. Impacts on interpreters - We have multiple lines of evidence for changes in knowledge, skills, attitudes, and behaviors. 3. Social radiation - Trained interpreters have a significant influence on their friends, family and colleagues. 4. Visitor impacts - "Exposure to "strategically framed" interpretation does change visitors' perceptions about climate change. 5. Community of practice - We are seeing evidence of growing participation, leadership, and sustainability. 6. Diffusion of innovation - Peer networks are facilitating dissemination throughout the informal science education community. Over the next five years, NNOCCI will achieve a systemic national impact across the ISE community, embed its work within multiple ongoing regional and national climate change education

  6. Assessing Climate Misconceptions of Middle School Learners and Teachers

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.

    2012-12-01

    Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1

  7. Climate Change Education as an Integral Part of the United Nations Framework Convention on Climate Change

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2012

    2012-01-01

    The United Nations Framework Convention on Climate Change (UNFCCC), through its Article 6, and the Convention's Kyoto Protocol, through its Article 10 (e), call on governments to develop and implement educational programmes on climate change and its effects. In particular, Article 6 of the Convention, which addresses the issue of climate…

  8. Putting the Nation on a Path for Climate Resilience and Preparedness

    EPA Pesticide Factsheets

    Putting current data in a historical context, NOAA publishes the monthly State of the Climate Report that includes analyses of the Nation's recent climate conditions, their unusualness, and their rank within long‐term trends.

  9. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.

    PubMed Central

    Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J

    2000-01-01

    We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change. PMID:10753097

  10. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.

    PubMed

    Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J

    2000-04-01

    We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change.

  11. The influence of spatial resolution on human health risk co-benefit estimates for global climate policy assessments.

    PubMed

    Shih, Hsiu-Ching; Crawford-Brown, Douglas; Ma, Hwong-wen

    2015-03-15

    Assessment of the ability of climate policies to produce desired improvements in public health through co-benefits of air pollution reduction can consume resources in both time and research funds. These resources increase significantly as the spatial resolution of models increases. In addition, the level of spatial detail available in macroeconomic models at the heart of climate policy assessments is much lower than that available in traditional human health risk modeling. It is therefore important to determine whether increasing spatial resolution considerably affects risk-based decisions; which kinds of decisions might be affected; and under what conditions they will be affected. Human health risk co-benefits from carbon emissions reductions that bring about concurrent reductions in Particulate Matter (PM10) emissions is therefore examined here at four levels of spatial resolution (Uniform Nation, Uniform Region, Uniform County/city, Health Risk Assessment) in a case study of Taiwan as one of the geographic regions of a global macroeceonomic model, with results that are representative of small, industrialized nations within that global model. A metric of human health risk mortality (YOLL, years of life lost in life expectancy) is compared under assessments ranging from a "uniform simulation" in which there is no spatial resolution of changes in ambient air concentration under a policy to a "highly spatially resolved simulation" (called here Health Risk Assessment). PM10 is chosen in this study as the indicator of air pollution for which risks are assessed due to its significance as a co-benefit of carbon emissions reductions within climate mitigation policy. For the policy examined, the four estimates of mortality in the entirety of Taiwan are 747 YOLL, 834 YOLL, 984 YOLL and 916 YOLL, under Uniform Taiwan, Uniform Region, Uniform County and Health Risk Assessment respectively; or differences of 18%, 9%, 7% if the HRA methodology is taken as the baseline. While

  12. Assessing the Assessment Methods: Climate Change and Hydrologic Impacts

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2014-12-01

    The Bureau of Reclamation, the U.S. Army Corps of Engineers, and other water management agencies have an interest in developing reliable, science-based methods for incorporating climate change information into longer-term water resources planning. Such assessments must quantify projections of future climate and hydrology, typically relying on some form of spatial downscaling and bias correction to produce watershed-scale weather information that subsequently drives hydrology and other water resource management analyses (e.g., water demands, water quality, and environmental habitat). Water agencies continue to face challenging method decisions in these endeavors: (1) which downscaling method should be applied and at what resolution; (2) what observational dataset should be used to drive downscaling and hydrologic analysis; (3) what hydrologic model(s) should be used and how should these models be configured and calibrated? There is a critical need to understand the ramification of these method decisions, as they affect the signal and uncertainties produced by climate change assessments and, thus, adaptation planning. This presentation summarizes results from a three-year effort to identify strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic conditions. Methods were evaluated from two perspectives: historical fidelity, and tendency to modulate a global climate model's climate change signal. On downscaling, four methods were applied at multiple resolutions: statistically using Bias Correction Spatial Disaggregation, Bias Correction Constructed Analogs, and Asynchronous Regression; dynamically using the Weather Research and Forecasting model. Downscaling results were then used to drive hydrologic analyses over the contiguous U.S. using multiple models (VIC, CLM, PRMS), with added focus placed on case study basins within the Colorado Headwaters. The presentation will identify which types of climate changes are

  13. An assessment of safety climate, job satisfaction and turnover intention relationships using a national sample of workers from the USA.

    PubMed

    Smith, Todd D

    2018-03-01

    The association between safety climate, job satisfaction and turnover intention has not been thoroughly researched. This research is needed so that safety researchers and practitioners can begin to delineate the impact of safety on organizational and business outcomes. A path analysis was completed using data from a national sample of workers from the USA (n = 1525). The overall fit of the model was excellent and analyses determined that both training and resource adequacy positively affected safety climate and job satisfaction. Safety climate also positively influenced job satisfaction. Both safety climate and job satisfaction were negatively associated with respondents' turnover intention. In the study, the relationship between job satisfaction and turnover intention is reiterated in a sample of workers across many industries. This study is novel because it is one of the first studies to confirm that turnover intention is reduced with increased safety climate in a diverse sample of workers.

  14. Responding to Climate Change at the Poles: Findings from the National Research Council's Reports on Climate Intervention

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; McNutt, M. K.; Abdalati, W.; Caldeira, K.; Doney, S. C.; Falkowski, P. G.; Fetter, S.; Fleming, J. R.; Hamburg, S.; Morgan, G.; Penner, J.; Pierrehumbert, R.; Rasch, P. J.; Snow, J. T.; Wilcox, J.

    2015-12-01

    Earlier this year the National Research Council of the US National Academy of Sciences released a pair of reports on two strategies of climate intervention in order to reduce the risks of negative impacts from climate change. The first of the pair of reports discusses the opportunities and challenges in carbon capture and long-term, safe sequestration. The second report discusses several approaches to reflecting sunlight to cool Earth, including the risks, time scales, costs, and socio-economic, and political considerations. The primary conclusion from these pair of reports is that mitigation and adaptation are still our best choices in terms of cost and low risk for reducing harmful effects from climate change: there is no "silver bullet." Given that the polar regions of the planet are the most sensitive to climate change, the reports also touched on the potential for regional climate intervention. The majority of the methods that are currently under discussion and for which there is a body of peer-reviewed research would have global impacts, with but few exceptions.

  15. Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.

    PubMed

    Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang

    2017-06-01

    Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.

  16. Nation-building policies in Timor-Leste: disaster risk reduction, including climate change adaptation.

    PubMed

    Mercer, Jessica; Kelman, Ilan; do Rosario, Francisco; de Deus de Jesus Lima, Abilio; da Silva, Augusto; Beloff, Anna-Maija; McClean, Alex

    2014-10-01

    Few studies have explored the relationships between nation-building, disaster risk reduction and climate change adaptation. Focusing on small island developing states, this paper examines nation-building in Timor-Leste, a small island developing state that recently achieved independence. Nation-building in Timor-Leste is explored in the context of disaster risk reduction, which necessarily includes climate change adaptation. The study presents a synopsis of Timor-Leste's history and its nation-building efforts as well as an overview of the state of knowledge of disaster risk reduction including climate change adaptation. It also offers an analysis of significant gaps and challenges in terms of vertical and horizontal governance, large donor presence, data availability and the integration of disaster risk reduction and climate change adaptation for nation-building in Timor-Leste. Relevant and applicable lessons are provided from other small island developing states to assist Timor-Leste in identifying its own trajectory out of underdevelopment while it builds on existing strengths. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  17. Advancing Science Literacy Through the Climate Change National Forum

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.; Quirke, M.; Lefer, B. L.; Hester, T.

    2014-12-01

    The Climate Change National Forum (http://climatechangenationalforum.org) was established almost a year ago to provide a publicly visible platform for discussion of scientific issues related to climate change and, at a later date, policy options motivated by climate change science. The site is also designed to promote public literacy in the culture and conduct of science by incorporating dozens of active scientists in a broad range of climate science and related fields and encouraging dialogue among those scientists. The forum provides a rare window into scientific debate, allowing non-scientists to see how scientists evaluate the work of others, construct meaning out of various bits of evidence, formulate ideas, challenge their colleagues, and (on occasion) develop a consensus. As such, the site is intended to have educational value well beyond its climate science focus.

  18. National Security Implications of Climate-related Risks and a Changing Climate

    DTIC Science & Technology

    2015-07-23

    ocean acidification , and increased ocean warming pose threats to fish stocks, coral, mangroves, recreation and tourism, and the control of disease...vulnerable locations. USSOUTHCOM similarly highlights the threat that sea 23 July 2015 8 level rise and ocean acidification and warming...aids to GCCs. In addition, the National Oceanic and Atmospheric Administration (NOAA) provides long-term global climate projections, weather

  19. National assessment of geologic carbon dioxide storage resources: methodology implementation

    USGS Publications Warehouse

    Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.

    2013-01-01

    In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.

  20. Assessing NARCCAP climate model effects using spatial confidence regions.

    PubMed

    French, Joshua P; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  1. Assessing NARCCAP climate model effects using spatial confidence regions

    PubMed Central

    French, Joshua P.; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference. PMID:28936474

  2. The 2008 California climate change assessment

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2008-12-01

    In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.

  3. Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception.

    PubMed

    Lin, Tzu-Ping; Yang, Shing-Ru; Matzarakis, Andreas

    2015-12-01

    Climate not only influences the behavior of people in urban environments but also affects people's schedules and travel plans. Therefore, providing people with appropriate long-term climate evaluation information is crucial. Therefore, we developed an innovative climate assessment system based on field investigations conducted in three cities located in Northern, Central, and Southern Taiwan. The field investigations included the questionnaire surveys and climate data collection. We first analyzed the relationship between the participants and climate parameters comprising physiologically equivalent temperature, air temperature, humidity, wind speed, solar radiation, cloud cover, and precipitation. Second, we established the neutral value, comfort range, and dissatisfied range of each parameter. Third, after verifying that the subjects' perception toward the climate parameters vary based on individual preferences, we developed the customized rating assessment of climate suitability (CRACS) approach, which featured functions such as personalized and default climate suitability information to be used by users exhibiting varying demands. Finally, we performed calculations using the climate conditions of two cities during the past 10 years to demonstrate the performance of the CRACS approach. The results can be used as a reference when planning activities in the city or when organizing future travel plans. The flexibility of the assessment system enables it to be adjusted for varying regions and usage characteristics.

  4. Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Matzarakis, Andreas

    2015-12-01

    Climate not only influences the behavior of people in urban environments but also affects people's schedules and travel plans. Therefore, providing people with appropriate long-term climate evaluation information is crucial. Therefore, we developed an innovative climate assessment system based on field investigations conducted in three cities located in Northern, Central, and Southern Taiwan. The field investigations included the questionnaire surveys and climate data collection. We first analyzed the relationship between the participants and climate parameters comprising physiologically equivalent temperature, air temperature, humidity, wind speed, solar radiation, cloud cover, and precipitation. Second, we established the neutral value, comfort range, and dissatisfied range of each parameter. Third, after verifying that the subjects' perception toward the climate parameters vary based on individual preferences, we developed the customized rating assessment of climate suitability (CRACS) approach, which featured functions such as personalized and default climate suitability information to be used by users exhibiting varying demands. Finally, we performed calculations using the climate conditions of two cities during the past 10 years to demonstrate the performance of the CRACS approach. The results can be used as a reference when planning activities in the city or when organizing future travel plans. The flexibility of the assessment system enables it to be adjusted for varying regions and usage characteristics.

  5. Climate-Change Impacts on Major Societal and Environmental Sectors: a National View

    NASA Astrophysics Data System (ADS)

    Melillo, J. M.

    2009-05-01

    The U.S. Climate Change Science Program's Unified Synthesis Product reports on extant and possible future impacts of climate change for seven sectors at the national level - water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The sectoral analyses provide an integrated national picture of the climate-change consequences, now and in the future, for society and the environment, albeit a picture with regional texture. Major report findings for each sector will be presented. In addition to the specific sectoral findings, several overarching messages emerge from this component of the synthesis activity. First, it is important to think about interactions between and among sectors with regard to climate impacts. For example, the projected changes in the timing and amount of precipitation, and hence water supply, will very likely have significant implications for other sectors considered in the report. Changes in water supply have the potential to affect hydropower generation, river transportation, crop timing and management, in-stream ecosystem services including fish habitat, and human health issues related to links between heavy rains ad water-borne diseases. Second, the report concludes that climate-change impacts on the sectors must be considered in the context of a range of environmental and social factors including pollution, population growth, over use of resources, and urbanization. The multi-factor analysis provides insight into our understanding of where, when and how climate change combines with other environmental and social changes to affect the sectors. It also provides some understanding of how these interactions can either amplify or dampen climate-change impacts. This message has profound implications for the design of research programs and information systems at the national, regional and local levels. Furthermore, it demands that a true partnership be forged between the natural and social sciences

  6. Integrated Climate Change Impacts Assessment in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  7. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.

    PubMed

    McMenamin, Sarah K; Hadly, Elizabeth A; Wright, Christopher K

    2008-11-04

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts.

  8. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park

    PubMed Central

    McMenamin, Sarah K.; Hadly, Elizabeth A.; Wright, Christopher K.

    2008-01-01

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts. PMID:18955700

  9. "It Takes a Network": Building National Capacity for Climate Change Interpretation

    NASA Astrophysics Data System (ADS)

    Spitzer, W.

    2014-12-01

    Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. More than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the U.S. population. These visitors expect reliable information about environmental issues and solutions. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. Beyond providing in-depth training, we have found that our "alumni network" is assuming an increasingly important role in achieving our goals: 1. Ongoing learning - Training must be ongoing given continuous advances in climate and social science research. 2. Implementation support - Social support is critical as interpreters move from learning to practice, given complex and potentially contentious subject matter. 3. Leadership development - We rely on a national cadre of interpretive leaders to conduct workshops, facilitate study circle trainings, and support alumni. 4. Coalition building - A peer network helps to build and maintain connections with colleagues, and supports further dissemination through the informal science community. We are experimenting with a variety of online and face to face strategies to support the growing alumni network. Our goals are to achieve a systemic national

  10. Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.

  11. A National Energy-Water System Assessment Framework (NEWS): Synopsis of Stage 1 Research Strategy and Results

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Miara, A.; Macknick, J.; Newmark, R. L.; Cohen, S.; Sun, Y.; Tidwell, V. C.; Corsi, F.; Melillo, J. M.; Fekete, B. M.; Proussevitch, A. A.; Glidden, S.; Suh, S.

    2017-12-01

    The focus of this talk is on climate adaptation and the reliability of power supply infrastructure when viewed through the lens of strategic water issues. Power supply is critically dependent upon water resources, particularly to cool thermoelectric plants, making the sector particularly sensitive to any shifts in the geography or seasonality of water supply. We report on results from an NSF-Funded Water Sustainability and Climate effort aimed at uncovering key energy and economic system vulnerabilities. We have developed the National Energy-Water System assessment framework (NEWS) to systematically evaluate: a) the performance of the nation's electricity sector under multiple climate scenarios; b) the feasibility of alternative pathways to improve climate adaptation; and, c) the impacts of energy technology and investment tradeoffs on the economic productivity, water availability and aquatic ecosystem condition. Our project combines core engineering and geophysical models (ReEDS [Regional Energy Deployment System], TP2M [Thermoelectric Power and Thermal Pollution], and WBM [Water Balance]) through unique digital "handshake" protocols that operate across different institutions and modeling platforms. Combined system outputs are fed into a regional-to-national scale economic input/output model to evaluate economic consequences of climate constraints, technology choices, and environmental regulation. The impact assessments in NEWS are carried out through a series of climate/energy policy scenario studies to 2050. We find that despite significant climate-water impacts on individual plants, the current US power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. However, the magnitude and implications of climate-water impacts vary depending on the configuration of the future power sector. To evaluate future power supply performance, we

  12. Radicalization in the National Economic Climate: Discovery Workshop at DRDC Toronto 7-8 December 2009

    DTIC Science & Technology

    2010-04-01

    self-blame, and guilt or shame. The model provides an account of how economic Radicalization in the National Economic Climate Discovery Workshop at...RADICALIZATION IN THE NATIONAL ECONOMIC CLIMATE DISCOVERY WORKSHOP AT DRDC TORONTO 7-8 DECEMBER 2009 Gauthier, M.; Lamoureux, T. CAE...1 0 . Radicalization in the National Economic Climate Discovery Workshop at DRDC Toronto 7-8 December 2009 April 2010 – ii – © Her Majesty

  13. Methodology of risk assessment of loss of water resources due to climate changes

    NASA Astrophysics Data System (ADS)

    Israfilov, Yusif; Israfilov, Rauf; Guliyev, Hatam; Afandiyev, Galib

    2016-04-01

    For sustainable development and management of rational use of water resources of Azerbaijan Republic it is actual to forecast their changes taking into account different scenarios of climate changes and assessment of possible risks of loss of sections of water resources. The major part of the Azerbaijani territory is located in the arid climate and the vast majority of water is used in the national economic production. An optimal use of conditional groundwater and surface water is of great strategic importance for economy of the country in terms of lack of common water resources. Low annual rate of sediments, high evaporation and complex natural and hydrogeological conditions prevent sustainable formation of conditioned resources of ground and surface water. In addition, reserves of fresh water resources are not equally distributed throughout the Azerbaijani territory. The lack of the common water balance creates tension in the rational use of fresh water resources in various sectors of the national economy, especially in agriculture, and as a result, in food security of the republic. However, the fresh water resources of the republic have direct proportional dependence on climatic factors. 75-85% of the resources of ground stratum-pore water of piedmont plains and fracture-vein water of mountain regions are formed by the infiltration of rainfall and condensate water. Changes of climate parameters involve changes in the hydrological cycle of the hydrosphere and as a rule, are reflected on their resources. Forecasting changes of water resources of the hydrosphere with different scenarios of climate change in regional mathematical models allowed estimating the extent of their relationship and improving the quality of decisions. At the same time, it is extremely necessary to obtain additional data for risk assessment and management to reduce water resources for a detailed analysis, forecasting the quantitative and qualitative parameters of resources, and also for

  14. Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Tong, S.; Yang, J.

    2011-12-01

    Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.

  15. Adaptations to climate change: Colville and Okanogan-Wenatchee National Forests

    Treesearch

    William L. Gaines; David W. Peterson; Cameron A. Thomas; Richy J. Harrod

    2012-01-01

    Forest managers are seeking practical guidance on how to adapt their current practices and, if necessary, their management goals, in response to climate change. Science-management collaboration was initiated on national forests in eastern Washington where resource managers showed a keen interest in science-based options for adapting to climate change at a 2-day...

  16. Exposure of U.S. National Parks to land use and climate change 1900-2100.

    PubMed

    Hansen, Andrew J; Piekielek, Nathan; Davis, Cory; Haas, Jessica; Theobald, David M; Gross, John E; Monahan, William B; Olliff, Tom; Running, Steven W

    2014-04-01

    Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological principles. We then drew on existing land use, invasive species, climate, and biome data sets and models to quantify exposure of PACEs from 1900 through 2100. Most PACEs experienced substantial change over the 20th century (> 740% average increase in housing density since 1940, 13% of vascular plants are presently nonnative, temperature increase of 1 degree C/100 yr since 1895 in 80% of PACEs), and projections suggest that many of these trends will continue at similar or increasingly greater rates (255% increase in housing density by 2100, temperature increase of 2.5 degrees-4.5 degrees C/100 yr, 30% of PACE areas may lose their current biomes by 2030). In the coming century, housing densities are projected to increase in PACEs at about 82% of the rate of since 1940. The rate of climate warming in the coming century is projected to be 2.5-5.8 times higher than that measured in the past century. Underlying these averages, exposure of individual park PACEs to change agents differ in important ways. For example, parks such as Great Smoky Mountains exhibit high land use and low climate exposure, others such as Great Sand Dunes exhibit low land use and high climate exposure, and a few such as Point Reyes exhibit high exposure on both axes. The cumulative and synergistic effects of such changes in land use, invasives, and climate are

  17. Impacts of Climate Change on Human Health in the United ...

    EPA Pesticide Factsheets

    Climate change threatens human health and well-being in the United States. To address this growing threat, the Interagency Group on Climate Change and Human Health (CCHHG), a working group of the U.S. Global Change Research Program’s (USGCRP), has developed this assessment as part of the ongoing efforts of the USGCRP’s National Climate Assessment (NCA) and as called for under the President’s Climate Action Plan. The authors of this assessment have compiled and assessed current research on human health impacts of climate change and summarized the current “state of the science” for a number of key impact areas. This assessment provides a comprehensive update to the most recent detailed technical assessment for the health impacts of climate change, 2008 Synthesis and Assessment Product 4.6 (SAP 4.6) Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems (CCSP 2008). It also updates and builds upon the health chapter of the third NCA (Melillo et al. 2014). The lead and coordinating Federal agencies for the USGCRP Climate and Health Assessment are the Centers for Disease Control and Prevention (CDC), Environmental Protection Agency (EPA), National Institute of Health (NIH), and National Oceanic and Atmospheric Administration (NOAA). Available at https://health2016.globalchange.gov/ The interagency U.S. Global Change Research Program (USGCRP) has developed this assessment as part of the ongoing efforts of their National C

  18. Planning for climate change on the National Wildlife Refuge System

    Treesearch

    B. Czech; S. Covington; T. M. Crimmins; J. A. Ericson; C. Flather; M. Gale; K. Gerst; M. Higgins; M. Kaib; E. Marino; T. Moran; J. Morton; N. Niemuth; H. Peckett; D. Savignano; L. Saperstein; S. Skorupa; E. Wagener; B. Wilen; B. Wolfe

    2014-01-01

    This document originated in 2008 as a collaborative project of the U.S. Fish and Wildlife Service (FWS) and the University of Maryland's Graduate Program in Sustainable Development and Conservation Biology. The original title was A Primer on Climate Change for the National Wildlife Refuge System. The Primer has evolved into Planning for Climate Change on the...

  19. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park

    USGS Publications Warehouse

    Lutz, James A.; Van Wagtendonk, Jan W.; Franklin, Jerry F.

    2010-01-01

    Aim  (1) To calculate annual potential evapotranspiration (PET), actual evapotranspiration (AET) and climatic water deficit (Deficit) with high spatial resolution; (2) to describe distributions for 17 tree species over a 2300-m elevation gradient in a 3000-km2 landscape relative to AET and Deficit; (3) to examine changes in AET and Deficit between past (c. 1700), present (1971–2000) and future (2020–49) climatological means derived from proxies, observations and projections; and (4) to infer how the magnitude of changing Deficit may contribute to changes in forest structure and composition.Location  Yosemite National Park, California, USA.Methods  We calculated the water balance within Yosemite National Park using a modified Thornthwaite-type method and correlated AET and Deficit with tree species distribution. We used input data sets with different spatial resolutions parameterized for variation in latitude, precipitation, temperature, soil water-holding capacity, slope and aspect. We used climate proxies and climate projections to model AET and Deficit for past and future climate. We compared the modelled future water balance in Yosemite with current species water-balance ranges in North America.Results  We calculated species climatic envelopes over broad ranges of environmental gradients – a range of 310 mm for soil water-holding capacity, 48.3°C for mean monthly temperature (January minima to July maxima), and 918 mm yr−1 for annual precipitation. Tree species means were differentiated by AET and Deficit, and at higher levels of Deficit, species means were increasingly differentiated. Modelled Deficit for all species increased by a mean of 5% between past (c. 1700) and present (1971–2000). Projected increases in Deficit between present and future (2020–49) were 23% across all plots.Main conclusions  Modelled changes in Deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and

  20. Classroom Simulation of United Nations Conference on Climate Change

    NASA Astrophysics Data System (ADS)

    Hastings, D. W.

    2009-12-01

    Mechanisms (specifically whether forests should be used as a carbon sink); and b) emissions trading. Informal negotiations (often at a local café) are included in an effort to make the process more realistic. Fact or Fiction? This exercise is largely on reality, but some of it will be fictitious. While I encourage students to base arguments and proposals on real, documented information I encourage them to develop creative and innovative proposals. This exercise relies on educational material and resources designed for Model United Nations simulations; numerous on-line resources are available for students. At the end of the exercise both science and non-science students have enjoyed immersing themselves in challenging questions that confronts all practitioners of climate policy. This approach gives traditional science students an opportunity to experience the challenges and problems associated with implementing policy solutions, and allows those with interests in policy to explore their interests in depth. Rather than a static, text-oriented approach, students engage in active learning, which is appropriate for this quickly evolving subject. Details of classroom logistics, assessment tools, and handouts will be provided.

  1. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012

    PubMed Central

    Roser-Renouf, Connie; Maibach, Edward W.; Li, Jennifer

    2016-01-01

    Background Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. Methods We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011–2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Results Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed. PMID:26991658

  2. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012.

    PubMed

    Roser-Renouf, Connie; Maibach, Edward W; Li, Jennifer

    2016-01-01

    Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011-2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed.

  3. Data Integration Plans for the NOAA National Climate Model Portal (NCMP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, G. K.; Williams, D. N.; Deluca, C.; Hankin, S. C.; Compo, G. P.

    2010-12-01

    NOAA’s National Climatic Data Center (NCDC) and its collaborators have initiated a five-year development and implementation of an operational access capability for the next generation weather and climate model datasets. The NOAA National Climate Model Portal (NCMP) is being designed using format neutral open web based standards and tools where users at all levels of expertise can gain access and understanding to many of NOAA’s climate and weather model products. NCMP will closely coordinate with and reside under the emerging NOAA Climate Services Portal (NCSP). To carry out its mission, NOAA must be able to successfully integrate model output and other data and information from all of its discipline specific areas to understand and address the complexity of many environmental problems. The NCMP will be an initial access point for the emerging NOAA Climate Services Portal (NCSP), which is the basis for unified access to NOAA climate products and services. NCMP is currently collaborating with the emerging Environmental Projection Center (EPC) expected to be developed at the Earth System Research Laboratory in Boulder CO. Specifically, NCMP is being designed to: - Enable policy makers and resource managers to make informed national and global policy decisions using integrated climate and weather model outputs, observations, information, products, and other services for the scientist and the non-scientist; - Identify model to observational interoperability requirements for climate and weather system analysis and diagnostics; - Promote the coordination of an international reanalysis observational clearinghouse (i.e.., Reanalysis.org) spanning the worlds numerical processing Center’s for an “Ongoing Analysis of the Climate System”. NCMP will initially provide access capabilities to 3 of NOAA’s high volume Reanalysis data sets of the weather and climate systems: 1) NCEP’s Climate Forecast System Reanalysis (CFS-R); 2) NOAA’s Climate Diagnostics Center

  4. Assessment of Climate Suitability of Maize in South Korea

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Choi, D.; Seo, B.

    2017-12-01

    Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.

  5. BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use

  6. U.S. Department of Defense deems climate change a national security threat

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-10-01

    Climate change is a "threat multiplier," according to a new report by the U.S. Department of Defense (DOD). The report, entitled 2014 Climate Change Adaptation Roadmap and released on 13 October, lays out ways in which DOD will work with other nations to combat the challenges associated with, adapt to, and mitigate climate change.

  7. Managing the Nation's water in a changing climate

    USGS Publications Warehouse

    Lins, H.F.; Stakhiv, E.Z.

    1998-01-01

    Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydrological events.

  8. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  9. National Assessment of Human Health Effects of Climate Change in Portugal: Approach and Key Findings

    PubMed Central

    Casimiro, Elsa; Calheiros, Jose; Santos, Filipe Duarte; Kovats, Sari

    2006-01-01

    In this study we investigated the potential impact of climate change in Portugal on heat-related mortality, air pollution–related health effects, and selected vectorborne diseases. The assessment used climate scenarios from two regional climate models for a range of future time periods. The annual heat-related death rates in Lisbon may increase from between 5.4 and 6 per 100,000 in 1980–1998 to between 8.5 and 12.1 by the 2020s and to a maximum of 29.5 by the 2050s, if no adaptations occur. The projected warmer and more variable weather may result in better dispersion of nitrogen dioxide levels in winter, whereas the higher temperatures may reduce air quality during the warmer months by increasing tropospheric ozone levels. We estimated the future risk of zoonoses using ecologic scenarios to describe future changes in vectors and parasites. Malaria and schistosomiasis, which are currently not endemic in Portugal, are more sensitive to the introduction of infected vectors than to temperature changes. Higher temperatures may increase the transmission risk of zoonoses that are currently endemic to Portugal, such as leishmaniasis, Lyme disease, and Mediterranean spotted fever. PMID:17185290

  10. 78 FR 58343 - Information Collection Activities: Visitor Perceptions of Climate Change in U.S. National Parks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ....NM0000] Information Collection Activities: Visitor Perceptions of Climate Change in U.S. National Parks... Information Collection 1024-NEW, Visitor Perceptions of Climate Change in U.S. National Parks in the subject line. FOR FURTHER INFORMATION CONTACT: Angie Richman, Communication Specialist, Climate Change Response...

  11. An Organizational Climate Assessment of the Army Contracting Workforce

    DTIC Science & Technology

    2016-12-01

    WITHIN THE ARMY ............................32  L.  THE ARMY CONTRACTING STRUCTURE AND ITS ORGANIZATIONAL CLIMATE...describes the dimensions used to assess organizational climate. Responses to a web- based survey administered to the Army’s contracting workforce...workforce. Based on the survey results, this project provides an assessment of the Army’s contracting workforce organizational climate. Additionally

  12. [Climate change risk of nature reserve and its assessment: A case study of Dalinuoer National Nature Reserve in Inner Mongolia Autonomous Region].

    PubMed

    Zhao, Wei; Shen, Wei Shou; Liu, Hai Yue

    2016-12-01

    According to the theoretical framework of addressing climate change based on risk mana-gement and the challenge to nature reserve management under climate change, climate change risk of nature reserve was analyzed and defined. Focus on birds and water habitat, grassland habitat, forest habitat, wetland habitat in Dalinuoer Nature Reserve, risk assessment method of nature reserve under climate change was formulated, climate change risks to Dalinuoer Nature Reserve and its habitats were assessed and predicted. The results showed that, during the period from 1997 to 2010, there was significant volatility in dynamic changes of climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region, Dalinuoer Nature Reserve and its habitats were in status of risk in 1999, 2001, 2005 and 2008, wetland habitat was also in status of risk in 2002 and 2004. Under scenario A, B and C, climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region would be more serious in 2020 and 2030, compared with the 2010 level. Climate change risks to different habitats were different significantly, with most serious climate change risk to wetland habitat due to its sensitivity to climate change and rich bird resources. The effect of climate change on nature reserve and related risk would be aggravated by excess utilization of water resource and grassland resource. As climate change risks had appeared in Dalinuoer Nature Reserve, risk management associated with climate change could greatly help to maintain and enhance biodiversity protection function of nature reserves.

  13. Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2014-12-01

    The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on

  14. Adapting to climate change at Glacier National Park, Montana, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.

    2009-12-01

    The impact of climate change on mountain watersheds has been studied at Glacier National Park, Montana since 1991. Despite a 14% increase in annual precipitation, glaciers have receded, snow packs have diminished, and late season stream discharge has declined. Snow melts one month earlier in the spring, leading to earlier hydrologic peaks and tree invasions of subalpine meadows. This has been largely driven by annual temperature increases that are 2-3 times greater than the global average for the past century. How do scientists and park managers adapt? Although stopping the glaciers from disappearing is not a management option, park staff have embarked on an aggressive education and interpretation effort to use melting glaciers as the segue into dialog about climate change. Media such as podcasts, handouts, posters, visitor center displays and roadside signage complement interpretive ranger-led talks about climate change and incorporate the latest glacial data from ongoing research. With few historic data on most animal populations, Glacier Park staff and other scientists are unable to assess the impacts of climate change to resources that the public cares about. They have recently initiated alpine wildlife monitoring programs to track populations of potentially climate-sensitive organisms such as the American pika (Ochotona princeps). Recognizing that climate change increases the frequency and severity of extreme weather events, design specifications for reconstruction of an alpine highway were adjusted to include larger culverts and hardened rock walls. Species that are dependent on cold water will be at risk as glaciers and snowfields disappear but managers cannot control these processes. However, they are proactively reducing other stressors to sensitive native fish species by removing exotic, introduced species that are competitors. In addition to these adaptation measures, Glacier Park has implemented shuttles, fleet conversions and enhanced building

  15. Climate change vulnerability assessment in Georgia

    Treesearch

    Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither

    2015-01-01

    Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...

  16. Climate Change Effects: Issues for International and US National Security

    DTIC Science & Technology

    2009-07-01

    impacts such as heat waves, major concerns are significant spreading of conditions for vector-borne diseases, such as dengue fever and malaria, and...U.S. national directives and strategic-level documents, and notable reports on specific climate change impacts or especially vulnerable regions ...add to tensions even in stable world regions . There is greater potential for failed states and political instability. Climate change acts as a

  17. NATIONAL COASTAL ASSESSMENT

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. Based on NCA monitoring from 1999-2001, 100% of the nation's estuarine waters (at over 2500 locati...

  18. Assessing Ecosystem Service Provision Under Climate Change to Support Conservation and Development Planning in Myanmar

    NASA Technical Reports Server (NTRS)

    Mandle, Lisa; Wolny, Stacie; Bhagabati, Nirmal; Helsingen, Hanna; Hamel, Perrine; Bartlett, Ryan; Dixon, Adam; Horton, Radley M.; Lesk, Corey; Manley, Danielle; hide

    2017-01-01

    Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flowunder current and future climate conditionsis especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the countrys people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies

  19. Vulnerability to Climate Change in Rural Nicaragua

    NASA Astrophysics Data System (ADS)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  20. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    NASA Astrophysics Data System (ADS)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate

  1. National ecosystem assessments supported by scientific and local knowledge

    USGS Publications Warehouse

    Herrick, J.E.; Lessard, V.C.; Spaeth, K.E.; Shaver, P.L.; Dayton, R.S.; Pyke, D.A.; Jolley, L.; Goebel, J.J.

    2010-01-01

    An understanding of the extent of land degradation and recovery is necessary to guide land-use policy and management, yet currently available land-quality assessments are widely known to be inadequate. Here, we present the results of the first statistically based application of a new approach to national assessments that integrates scientific and local knowledge. Qualitative observations completed at over 10 000 plots in the United States showed that while soil degradation remains an issue, loss of biotic integrity is more widespread. Quantitative soil and vegetation data collected at the same locations support the assessments and serve as a baseline for monitoring the effectiveness of policy and management initiatives, including responses to climate change. These results provide the information necessary to support strategic decisions by land managers and policy makers. ?? The Ecological Society of America.

  2. National ecosystem assessments supported by scientific and local knowledge

    USGS Publications Warehouse

    Herrick, Jeffrey E.; Lessard, Veronica C.; Spaeth, Kenneth E.; Shaver, Patrick L.; Dayton, Robert S.; Pyke, David A.; Jolley, Leonard; Goebel, J. Jeffery

    2010-01-01

    An understanding of the extent of land degradation and recovery is necessary to guide land-use policy and management, yet currently available land-quality assessments are widely known to be inadequate. Here, we present the results of the first statistically based application of a new approach to national assessments that integrates scientific and local knowledge. Qualitative observations completed at over 10 000 plots in the United States showed that while soil degradation remains an issue, loss of biotic integrity is more widespread. Quantitative soil and vegetation data collected at the same locations support the assessments and serve as a baseline for monitoring the effectiveness of policy and management initiatives, including responses to climate change. These results provide the information necessary to support strategic decisions by land managers and policy makers.

  3. Assessing climate-sensitive ecosystems in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  4. National Sample Assessment Protocols

    ERIC Educational Resources Information Center

    Ministerial Council on Education, Employment, Training and Youth Affairs (NJ1), 2012

    2012-01-01

    These protocols represent a working guide for planning and implementing national sample assessments in connection with the national Key Performance Measures (KPMs). The protocols are intended for agencies involved in planning or conducting national sample assessments and personnel responsible for administering associated tenders or contracts,…

  5. A National Program for Analysis of the Climate System

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Arkin, Phil; Kalnay, Eugenia; Laver, James; Trenberth, Kevin

    2002-01-01

    Perhaps the single greatest roadblock to fundamental advances in our understanding of climate variability and climate change is the lack of robust and unbiased long-term global observations of the climate system. Such observations are critical for the identification and diagnosis of climate variations, and provide the constraints necessary for developing and validating climate models. The first generation of reanalysis efforts, by using fixed analysis systems, eliminated the artificial climate signals that occurred in analyses generated at the operational numerical weather prediction centers. These datasets are now widely used by the scientific community in a variety of applications including atmosphere-ocean interactions, seasonal prediction, climate monitoring, the hydrological cycle, and a host of regional and other diagnostic studies. These reanalyses, however, had problems that made them sub-optimal or even unusable for some applications. Perhaps the most serious problem for climate applications was that, while the assimilation system remained fixed, changes in the observing systems did produce spurious changes in the perceived climate. The first generation reanalysis products also exposed problems with physical consistency of the products and the accurate representation of physical processes in the climate system. Examples are bias in the estimates of ocean surface fluxes, and inadequate representation of polar hydrology. In this talk, I will describe some initial plans for a national program on reananlysis. The program is envisioned to be part of an on-going activity to maintain, improve, and reprocess our record of climate observations. I will discuss various issues affecting the quality of reanalyses, with a special focus on those relevant to the ocean.

  6. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  7. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE PAGES

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; ...

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  8. Assessing the optimality of ASHRAE climate zones using high resolution meteorological data sets

    NASA Astrophysics Data System (ADS)

    Fils, P. D.; Kumar, J.; Collier, N.; Hoffman, F. M.; Xu, M.; Forbes, W.

    2017-12-01

    Energy consumed by built infrastructure constitutes a significant fraction of the nation's energy budget. According to 2015 US Energy Information Agency report, 41% of the energy used in the US was going to residential and commercial buildings. Additional research has shown that 32% of commercial building energy goes into heating and cooling the building. The American National Standards Institute and the American Society of Heating Refrigerating and Air-Conditioning Engineers Standard 90.1 provides climate zones for current state-of-practice since heating and cooling demands are strongly influenced by spatio-temporal weather variations. For this reason, we have been assessing the optimality of the climate zones using high resolution daily climate data from NASA's DAYMET database. We analyzed time series of meteorological data sets for all ASHRAE climate zones between 1980-2016 inclusively. We computed the mean, standard deviation, and other statistics for a set of meteorological variables (solar radiation, maximum and minimum temperature)within each zone. By plotting all the zonal statistics, we analyzed patterns and trends in those data over the past 36 years. We compared the means of each zone to its standard deviation to determine the range of spatial variability that exist within each zone. If the band around the mean is too large, it indicates that regions in the zone experience a wide range of weather conditions and perhaps a common set of building design guidelines would lead to a non-optimal energy consumption scenario. In this study we have observed a strong variation in the different climate zones. Some have shown consistent patterns in the past 36 years, indicating that the zone was well constructed, while others have greatly deviated from their mean indicating that the zone needs to be reconstructed. We also looked at redesigning the climate zones based on high resolution climate data. We are using building simulations models like EnergyPlus to develop

  9. Assessing the Climate Resilience of Transport Infrastructure Investments in Tanzania

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Pant, R.; Koks, E.; Thacker, S.; Russell, T.

    2017-12-01

    Whilst there is an urgent need for infrastructure investment in developing countries, there is a risk that poorly planned and built infrastructure will introduce new vulnerabilities. As climate change increases the magnitudes and frequency of natural hazard events, incidence of disruptive infrastructure failures are likely to become more frequent. Therefore, it is important that infrastructure planning and investment is underpinned by climate risk assessment that can inform adaptation planning. Tanzania's rapid economic growth is placing considerable strain on the country's transportation infrastructure (roads, railways, shipping and aviation); especially at the port of Dar es Salaam and its linking transport corridors. A growing number of natural hazard events, in particular flooding, are impacting the reliability of this already over-used network. Here we report on new methodology to analyse vulnerabilities and risks due to failures of key locations in the intermodal transport network of Tanzania, including strategic connectivity to neighboring countries. To perform the national-scale risk analysis we will utilize a system-of-systems methodology. The main components of this general risk assessment, when applied to transportation systems, include: (1) Assembling data on: spatially coherent extreme hazards and intermodal transportation networks; (2) Intersecting hazards with transport network models to initiate failure conditions that trigger failure propagation across interdependent networks; (3) Quantifying failure outcomes in terms of social impacts (customers/passengers disrupted) and/or macroeconomic consequences (across multiple sectors); and (4) Simulating, testing and collecting multiple failure scenarios to perform an exhaustive risk assessment in terms of probabilities and consequences. The methodology is being used to pinpoint vulnerability and reduce climate risks to transport infrastructure investments.

  10. Building A National Network for Ocean and Climate Change Interpretation (Invited)

    NASA Astrophysics Data System (ADS)

    Spitzer, W.; Anderson, J.

    2013-12-01

    In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the population. Research shows that these visitors are receptive to learning about climate change, and expect these institutions to provide reliable information about environmental issues and solutions. Given that we spend less than 5% of our lifetime in a classroom, informal science venues play a critical role in shaping public understanding. Since 2007, the New England Aquarium (NEAq) has led a national effort to increase the capacity of informal science education institutions (ISEIs) to effectively communicate about the impacts of climate change on the oceans. NEAq is now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI's design is based on best practices in informal science learning, cognitive/social psychology, community and network building: Interpreters as Communication Strategists - Interpreters can serve not merely as educators disseminating information, but can also be leaders in influencing public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. Communities of Practice - Learning is a social activity that is created through engagement in a supportive community context. Social support is particularly important in addressing a complex, contentious and distressing subject. Diffusion of Innovation - Peer networks are of primary importance in spreading innovations. Leaders serve as 'early adopters' and influence others to achieve a critical mass of implementation. Over the next five years, NNOCCI will achieve a

  11. Using climate model simulations to assess the current climate risk to maize production

    NASA Astrophysics Data System (ADS)

    Kent, Chris; Pope, Edward; Thompson, Vikki; Lewis, Kirsty; Scaife, Adam A.; Dunstone, Nick

    2017-05-01

    The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world’s maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions—a multi-breadbasket failure—is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.

  12. Climate Change Through a Poverty Lens

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  13. Climate change through a poverty lens

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stephane; Rozenberg, Julie

    2017-04-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  14. Population and reproductive health in National Adaptation Programmes of Action (NAPAs) for climate change in Africa.

    PubMed

    Mutunga, Clive; Hardee, Karen

    2010-12-01

    This paper reviews 44 National Adaptation Programmes of Action (NAPAs) to assess the NAPA process and identify the range of interventions included in countries' priority adaptation actions and highlight how population issues and reproductive health/family planning (RH/FP) are addressed as part of the adaptation agenda. A majority of the 44 NAPAs identify rapid population growth as a key component of vulnerability to climate change impacts. However, few chose to prioritise NAPA funds for family planning/reproductive health programmes. The paper emphasizes the need to translate the recognition of population pressure as a factor related to countries' ability to adapt to climate change into relevant project activities. Such projects should include access to RH/FP, in addition to other strategies such as girls' education and women's empowerment that lead to lower fertility. Attention to population and integrated strategies should be central and aligned to longer-term national adaptation plans and strategies.

  15. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.

    PubMed

    Tao, Fulu; Rötter, Reimund P; Palosuo, Taru; Gregorio Hernández Díaz-Ambrona, Carlos; Mínguez, M Inés; Semenov, Mikhail A; Kersebaum, Kurt Christian; Nendel, Claas; Specka, Xenia; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Cammarano, Davide; Schulman, Alan H

    2018-03-01

    Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive

  16. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9198-8] National Drinking Water Advisory Council's Climate... final in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC). The purpose of this meeting is to review and discuss final changes...

  17. Assessment of hi-resolution multi-ensemble statistical downscaling regional climate scenarios over Japan

    NASA Astrophysics Data System (ADS)

    Dairaku, K.

    2017-12-01

    The Asia-Pacific regions are increasingly threatened by large scale natural disasters. Growing concerns that loss and damages of natural disasters are projected to further exacerbate by climate change and socio-economic change. Climate information and services for risk assessments are of great concern. Fundamental regional climate information is indispensable for understanding changing climate and making decisions on when and how to act. To meet with the needs of stakeholders such as National/local governments, spatio-temporal comprehensive and consistent information is necessary and useful for decision making. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 37 GCMs (RCP8.5) and a statistical downscaling (Bias Corrected Spatial Disaggregation (BCSD)) to investigate uncertainty of projected change associated with structural differences of the GCMs for the periods of historical climate (1950-2005) and near future climate (2026-2050). Statistical downscaling regional climate scenarios show good performance for annual and seasonal averages for precipitation and temperature. The regional climate scenarios show systematic underestimate of extreme events such as hot days of over 35 Celsius and annual maximum daily precipitation because of the interpolation processes in the BCSD method. Each model projected different responses in near future climate because of structural differences. The most of CMIP5 37 models show qualitatively consistent increase of average and extreme temperature and precipitation. The added values of statistical/dynamical downscaling methods are also investigated for locally forced nonlinear phenomena, extreme events.

  18. The Climate Resilience Toolkit: Central gateway for risk assessment and resilience planning at all governance scales

    NASA Astrophysics Data System (ADS)

    Herring, D.; Lipschultz, F.

    2016-12-01

    As people and organizations grapple with a changing climate amid a range of other factors simultaneously shifting, there is a need for credible, legitimate & salient scientific information in useful formats. In addition, an assessment framework is needed to guide the process of planning and implementing projects that allow communities and businesses to adapt to specific changing conditions, while also building overall resilience to future change. We will discuss how the U.S. Climate Resilience Toolkit (CRT) can improve people's ability to understand and manage their climate-related risks and opportunities, and help them make their communities and businesses more resilient. In close coordination with the U.S. Climate Data Initiative, the CRT is continually evolving to offer actionable authoritative information, relevant tools, and subject matter expertise from across the U.S. federal government in one easy-to-use location. The Toolkit's "Climate Explorer" is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Since climate is only one of many changing factors affecting decisions about the future, it also ties climate information to a wide range of relevant variables to help users explore vulnerabilities and impacts. New topic areas have been added, such as "Fisheries," "Regions," and "Built Environment" sections that feature case studies and personal experiences in making adaptation decisions. A curated "Reports" section is integrated with semantic web capabilities to help users locate the most relevant information sources. As part of the USGCRP's sustained assessment process, the CRT is aligning with other federal activities, such as the upcoming 4th National Climate Assessment.

  19. Vulnerability of Forests in India: A National Scale Assessment.

    PubMed

    Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H

    2017-09-01

    Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.

  20. Vulnerability of Forests in India: A National Scale Assessment

    NASA Astrophysics Data System (ADS)

    Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N. H.

    2017-09-01

    Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.

  1. Assessing School and Classroom Climate. A Consumer's Guide.

    ERIC Educational Resources Information Center

    Arter, Judith A.

    School and classroom climate is often cited in effective schools research as being important for student achievement. This consumer guide is intended to help educators evaluate their own educational climate by providing reviews and descriptions of the major tests and surveys used to assess climate. Section 2 presents reasons for examining school…

  2. The United Nations and Climate Change: Legal and Policy Developments

    NASA Astrophysics Data System (ADS)

    Bunn, Isabella D.

    2009-07-01

    The Secretary-General of the United Nations, Ban Ki-moon, has declared that climate change is "the defining challenge of our times." Climate change trends indicate increasingly severe negative impacts on the majority of countries, with disproportionate effects on poor and vulnerable populations. The scientific reports of the Intergovernmental Panel on Climate Change (IPCC), as well as the negotiations under the UN Framework Convention on Climate Change (UNFCCC), have placed the issue on the forefront of the international agenda. This article examines how climate change is shaping legal and policy developments in five key areas of UN responsibility: international law, humanitarian affairs, human rights, development, and peace and security. It concludes with some observations about high-level efforts to coordinate the response of multilateral institutions, the changing stance of the US government, and the role of environmental protection in addressing the current global economic crisis.

  3. Climate change on the Shoshone National Forest, Wyoming: a synthesis of past climate, climate projections, and ecosystem implications

    Treesearch

    Janine Rice; Andrew Tredennick; Linda A. Joyce

    2012-01-01

    The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...

  4. The Data Platform for Climate Research and Action: Introducing Climate Watch

    NASA Astrophysics Data System (ADS)

    Hennig, R. J.; Ge, M.; Friedrich, J.; Lebling, K.; Carlock, G.; Arcipowska, A.; Mangan, E.; Biru, H.; Tankou, A.; Chaudhury, M.

    2017-12-01

    The Paris Agreement, adopted through Decision 1/CP.21, brings all nations together to take on ambitious efforts to combat climate change. Open access to climate data supporting climate research, advancing knowledge, and informing decision making is key to encourage and strengthen efforts of stakeholders at all levels to address and respond to effects of climate change. Climate Watch is a robust online data platform developed in response to the urgent needs of knowledge and tools to empower climate research and action, including those of researchers, policy makers, the private sector, civil society, and all other non-state actors. Building on the rapid growing technology of open data and information sharing, Climate Watch is equipped with extensive amount of climate data, informative visualizations, concise yet efficient user interface, and connection to resources users need to gather insightful information on national and global progress towards delivering on the objective of the Convention and the Paris Agreement. Climate Watch brings together hundreds of quantitative and qualitative indicators for easy explore, visualize, compare, download at global, national, and sectoral levels: Greenhouse gas (GHG) emissions for more than 190 countries over the1850-2014 time period, covering all seven Kyoto Gases following IPCC source/sink categories; Structured information on over 150 NDCs facilitating the clarity, understanding and transparency of countries' contributions to address climate change; Over 6500 identified linkages between climate actions in NDCs across the 169 targets of the sustainable development goals (SDG); Over 200 indicators describing low carbon pathways from models and scenarios by integrated assessment models (IAMs) and national sources; and Data on vulnerability and risk, policies, finance, and many more. Climate Watch platform is developed as part of the broader efforts within the World Resources Institute, the NDC Partnership, and in collaboration

  5. Summarizing components of U.S. Department of the Interior vulnerability assessments to focus climate adaptation planning

    USGS Publications Warehouse

    Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.

    2015-09-29

    A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability

  6. How robust is the pre-1931 National Climatic Data Center—climate divisional dataset? Examples from Georgia and Louisiana

    NASA Astrophysics Data System (ADS)

    Allard, Jason; Thompson, Clint; Keim, Barry D.

    2015-04-01

    The National Climatic Data Center's climate divisional dataset (CDD) is commonly used in climate change analyses. This dataset is a spatially continuous dataset for the conterminous USA from 1895 to the present. The CDD since 1931 is computed by averaging all available representative cooperative weather station data into a single monthly value for each of the 344 climate divisions of the conterminous USA, while pre-1931 data for climate divisions are derived from statewide averages using regression equations. This study examines the veracity of these pre-1931 data. All available Cooperative Observer Program (COOP) stations within each climate division in Georgia and Louisiana were averaged into a single monthly value for each month and each climate division from 1897 to 1930 to generate a divisional dataset (COOP DD), using similar methods to those used by the National Climatic Data Center to generate the post-1931 CDD. The reliability of the official CDD—derived from statewide averages—to produce temperature and precipitation means and trends prior to 1931 are then evaluated by comparing that dataset with the COOP DD with difference-of-means tests, correlations, and linear regression techniques. The CDD and the COOP DD are also compared to a divisional dataset derived from the United States Historical Climatology Network (USHCN) data (USHCN DD), with difference of means and correlation techniques, to demonstrate potential impacts of inhomogeneities within the CDD and the COOP DD. The statistical results, taken as a whole, not only indicate broad similarities between the CDD and COOP DD but also show that the CDD does not adequately portray pre-1931 temperature and precipitation in certain climate divisions within Georgia and Louisiana. In comparison with the USHCN DD, both the CDD and the COOP DD appear to be subject to biases that probably result from changing stations within climate divisions. As such, the CDD should be used judiciously for long-term studies

  7. Facilitating climate change assessments by providing easy access to data and decision-support tools on-line

    NASA Astrophysics Data System (ADS)

    Bachelet, D. M.

    2012-12-01

    Public land managers are under increasing pressure to consider the potential impacts of climate change but they often lack access to the necessary scientific information and the support to interpret projections. Over 27% of the United States land area are designated as protected areas (e.g. National Parks and Wilderness Areas) including 76,900,000 ha of National Forests areas for which management plans need to be revised to prepare for climate change. Projections of warmer drier conditions raise concerns about extended summer drought, increased fire risks and potential pest/insect outbreaks threatening the carbon sequestration potential of the region as well as late summer water availability. Downscaled climate projections, soil vulnerability indices, and simulated climate change impacts on vegetation cover, fire frequency, carbon stocks, as well as species range shifts, have been uploaded in databasin.org to provide easy access to documented information that can be displayed, shared, and freely manipulated on line. We have uploaded NARCCAP scenarios and provided animations and time series display to look at regional and temporal trends in climate projections. We have uploaded simulation results of vegetation shifts from the global scale to local national parks and shared results with concerned managers. We have used combinations of vegetation models and niche models to evaluate wildlife resilience to future conditions. We have designed fuzzy logic models for ecological assessment projects and made them available on the Data Basin web site. We describe how we have used all this information to quantify climate change vulnerability for a variety of ecosystems, developing new web tools to provide comparative summaries of the various types of spatial and temporal data available for different regions.

  8. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    USGS Publications Warehouse

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  9. A high-resolution, empirical approach to climate impact assessment for regulatory analysis

    NASA Astrophysics Data System (ADS)

    Delgado, M.; Simcock, J. G.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Rising, J. A.; Nath, I.; Yuan, J.; Rode, A.; Chong, T.; Dobbels, G.; Hussain, A.; Wang, J.; Song, Y.; Mohan, S.; Larsen, K.; Houser, T.

    2017-12-01

    Recent breakthroughs in computing, data availability, and methodology have precipitated significant advances in the understanding of the relationship between climate and socioeconomic outcomes [1]. And while the use of estimates of the global marginal costs of greenhouse gas emissions (e.g. the SCC) are a mandatory component of regulatory policy in many jurisdictions, existing SCC-IAMs have lagged advances in impact assessment and valuation [2]. Recent work shows that incorporating high spatial and temporal resolution can significantly affect the observed relationships of economic outcomes to climate and socioeconomic factors [3] and that maintaining this granularity is critical to understanding the sensitivity of aggregate measures of valuation to inequality and risk adjustment methodologies [4]. We propose a novel framework that decomposes uncertainty in the SCC along multiple sources, including aggregate climate response parameters, the translation of global climate into local weather, the effect of weather on physical and economic systems, human and macro-economic responses, and impact valuation methodologies. This work extends Hsiang et al. (2017) [4] to directly estimate local response functions for multiple sectors in each of 24,378 global regions and to estimate impacts at this resolution daily, incorporating endogenous, empirically-estimated adaptation and costs. The goal of this work is to provide insight into the heterogeneity of climate impacts and to work with other modeling teams to enhance the empirical grounding of integrated climate impact assessment in more complex energy-environment-economics models. [1] T. Carleton and S. Hsiang (2016), DOI: 10.1126/science.aad9837. [2] National Academies of Sciences, Engineering, and Medicine (2017), DOI: 10.17226/24651. [3] Burke, M., S. Hsiang, and E. Miguel (2015), DOI: 10.1038/nature15725. [4] S. Hsiang et al. (2017), DOI: 10.1126/science.aal4369.

  10. National Climate Change and Wildlife Science Center, Version 2.0

    USGS Publications Warehouse

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  11. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    NASA Astrophysics Data System (ADS)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  12. Correlation between safety climate and contractor safety assessment programs in construction

    PubMed Central

    Sparer, EH1; Murphy, LA; Taylor, KM; Dennerlein, Jt

    2015-01-01

    Background Contractor safety assessment programs (CSAPs) measure safety performance by integrating multiple data sources together; however, the relationship between these measures of safety performance and safety climate within the construction industry is unknown. Methods 401 construction workers employed by 68 companies on 26 sites and 11 safety managers employed by 11 companies completed brief surveys containing a nine-item safety climate scale developed for the construction industry. CSAP scores from ConstructSecure, Inc., an online CSAP database, classified these 68 companies as high or low scorers, with the median score of the sample population as the threshold. Spearman rank correlations evaluated the association between the CSAP score and the safety climate score at the individual level, as well as with various grouping methodologies. In addition, Spearman correlations evaluated the comparison between manager-assessed safety climate and worker-assessed safety climate. Results There were no statistically significant differences between safety climate scores reported by workers in the high and low CSAP groups. There were, at best, weak correlations between workers’ safety climate scores and the company CSAP scores, with marginal statistical significance with two groupings of the data. There were also no significant differences between the manager-assessed safety climate and the worker-assessed safety climate scores. Conclusions A CSAP safety performance score does not appear to capture safety climate, as measured in this study. The nature of safety climate in construction is complex, which may be reflective of the challenges in measuring safety climate within this industry. PMID:24038403

  13. Applying a Systems Approach to Monitoring and Assessing Climate Change Mitigation Potential in Mexico's Forest Sector

    NASA Astrophysics Data System (ADS)

    Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.

    2017-12-01

    Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).

  14. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-10-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  15. Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar

    PubMed Central

    Wolny, Stacie; Bhagabati, Nirmal; Helsingen, Hanna; Hamel, Perrine; Bartlett, Ryan; Dixon, Adam; Horton, Radley; Lesk, Corey; Manley, Danielle; De Mel, Manishka; Bader, Daniel; Nay Won Myint, Sai; Myint, Win; Su Mon, Myat

    2017-01-01

    Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flow–under current and future climate conditions–is especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the country’s people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies. PMID:28934282

  16. Assessing the observed impact of anthropogenic climate change

    DOE PAGES

    Hansen, Gerrit; Stone, Dáithí

    2015-12-21

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here in this work, we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is stillmore » weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Finally, hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.« less

  17. Uncertainties in assessing climate change impacts on the hydrology of Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Ludwig, Ralf

    2013-04-01

    There is substantial evidence in historical and recent observations that the Mediterranean and neighboring regions are especially vulnerable to the impacts of climate change. Numerous climate projections, stemming from ensembles of global and regional climate models, agree on severe changes in the climate forcing which are likely to exacerbate subsequent ecological, economic and social impacts. Many of these causal connections are closely linked to the general expectation that water availability will decline in the already water-stressed basins of Africa, the Mediterranean region and the Near East, even though considerable regional variances must be expected. Consequently, climate change impacts on water resources are raising concerns regarding their possible management and security implications. Decreasing access to water resources and other related factors could be a cause or a 'multiplier' of tensions within and between countries. Whether security threats arise from climate impacts or options for cooperation evolve does not depend only on the severity of the impacts themselves, but on social, economic, and institutional vulnerabilities or resilience as well as factors that influence local, national and international relations. However, an assessment of vulnerability and risks hinges on natural, socio-economic, and political conditions and responses, all of which are uncertain. Multidisciplinary research is needed to tackle the multi-facet complexity of climate change impacts on water resources in the Mediterranean and neighboring countries. This is particularly true in a region of overall data scarcity and poor data management and exchange structures. The current potential to develop appropriate regional adaptation measures towards climate change impacts suffers heavily from large uncertainties. These spread along a long chain of components, starting from the definition of emission scenarios to global and regional climate modeling to impact models and a

  18. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  19. The Colorado Climate Preparedness Project: A Systematic Approach to Assessing Efforts Supporting State-Level Adaptation

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gordon, E.

    2010-12-01

    . Project results can also inform numerous other ongoing database efforts connected to the U.S. National Assessment of Climate Change.

  20. Does climate undermine subjective well-being? A 58-nation study.

    PubMed

    Fischer, Ronald; Van de Vliert, Evert

    2011-08-01

    The authors test predictions from climato-economic theories of culture that climate and wealth interact in their influence on psychological processes. Demanding climates (defined as colder than temperate and hotter than temperate climates) create potential threats for humans. If these demands can be met by available economic resources, individuals experience challenging opportunities for self-expression and personal growth and consequently will report lowest levels of ill-being. If threatening climatic demands cannot be met by resources, resulting levels of reported ill-being will be highest. These predictions are confirmed in nation-level means of health complaints, burnout, anxiety, and depression across 58 societies. Climate, wealth, and their interaction together account for 35% of the variation in overall subjective ill-being, even when controlling for known predictors of subjective well-being. Further investigations of the process suggest that cultural individualism does not mediate these effects, but subjective well-being may function as a mediator of the impact of ecological variables on ill-being.

  1. Constrained range expansion and climate change assessments

    Treesearch

    Yohay Carmel; Curtis H. Flather

    2006-01-01

    Modeling the future distribution of keystone species has proved to be an important approach to assessing the potential ecological consequences of climate change (Loehle and LeBlanc 1996; Hansen et al. 2001). Predictions of range shifts are typically based on empirical models derived from simple correlative relationships between climatic characteristics of occupied and...

  2. Methodology for qualitative uncertainty assessment of climate impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Rechid, Diana; Hänsler, Andreas; Pfeifer, Susanne; Roth, Ellinor; Jacob, Daniela

    2016-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing an integrated platform of climate data services to provide a single point of access for authoritative scientific information on climate change and climate change impacts. In this project, the Climate Service Center Germany (GERICS) has been in charge of the development of a methodology on how to assess the uncertainties related to climate impact indicators. Existing climate data portals mainly treat the uncertainties in two ways: Either they provide generic guidance and/or express with statistical measures the quantifiable fraction of the uncertainty. However, none of the climate data portals give the users a qualitative guidance how confident they can be in the validity of the displayed data. The need for such guidance was identified in CLIPC user consultations. Therefore, we aim to provide an uncertainty assessment that provides the users with climate impact indicator-specific guidance on the degree to which they can trust the outcome. We will present an approach that provides information on the importance of different sources of uncertainties associated with a specific climate impact indicator and how these sources affect the overall 'degree of confidence' of this respective indicator. To meet users requirements in the effective communication of uncertainties, their feedback has been involved during the development process of the methodology. Assessing and visualising the quantitative component of uncertainty is part of the qualitative guidance. As visual analysis method, we apply the Climate Signal Maps (Pfeifer et al. 2015), which highlight only those areas with robust climate change signals. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Reference Pfeifer, S., Bülow, K., Gobiet, A., Hänsler, A., Mudelsee, M., Otto, J., Rechid, D., Teichmann, C. and Jacob, D.: Robustness of Ensemble Climate Projections

  3. Correlation between safety climate and contractor safety assessment programs in construction.

    PubMed

    Sparer, Emily H; Murphy, Lauren A; Taylor, Kathryn M; Dennerlein, Jack T

    2013-12-01

    Contractor safety assessment programs (CSAPs) measure safety performance by integrating multiple data sources together; however, the relationship between these measures of safety performance and safety climate within the construction industry is unknown. Four hundred and one construction workers employed by 68 companies on 26 sites and 11 safety managers employed by 11 companies completed brief surveys containing a nine-item safety climate scale developed for the construction industry. CSAP scores from ConstructSecure, Inc., an online CSAP database, classified these 68 companies as high or low scorers, with the median score of the sample population as the threshold. Spearman rank correlations evaluated the association between the CSAP score and the safety climate score at the individual level, as well as with various grouping methodologies. In addition, Spearman correlations evaluated the comparison between manager-assessed safety climate and worker-assessed safety climate. There were no statistically significant differences between safety climate scores reported by workers in the high and low CSAP groups. There were, at best, weak correlations between workers' safety climate scores and the company CSAP scores, with marginal statistical significance with two groupings of the data. There were also no significant differences between the manager-assessed safety climate and the worker-assessed safety climate scores. A CSAP safety performance score does not appear to capture safety climate, as measured in this study. The nature of safety climate in construction is complex, which may be reflective of the challenges in measuring safety climate within this industry. Am. J. Ind. Med. 56:1463-1472, 2013. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  4. National Assessment's Consumer Skills Assessments.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO. National Assessment of Educational Progress.

    The National Assessment of Educational Progress (NAEP) encountered problems when developing a comprehensive assessment of consumer skills of 17-year-olds in 1978. When NAEP conducted a nationwide assessment of basic life skills of 17-year-olds in 1977, there was considerable interest in the consumer skills portion. Therefore, it was decided to…

  5. Climatic Warmth and National Wealth: Some Culture-Level Determinants of National Character Stereotypes.

    PubMed

    McCrae, Robert R; Terracciano, Antonio; Realo, Anu; Allik, Jüri

    2007-12-01

    National character stereotypes are widely shared, but do not reflect assessed levels of personality traits. In this article we present data illustrating the divergence of stereotypes and assessed personality traits in north and south Italy, test hypotheses about the associations of temperature and national wealth with national character stereotypes in 49 cultures, and explore possible links to national values and beliefs. Results suggest that warmth and wealth are common determinants of national stereotypes, but that there are also idiosyncratic influences on the perceptions of individual nations.

  6. Indicators and metrics for the assessment of climate engineering

    NASA Astrophysics Data System (ADS)

    Oschlies, A.; Held, H.; Keller, D.; Keller, K.; Mengis, N.; Quaas, M.; Rickels, W.; Schmidt, H.

    2017-01-01

    Selecting appropriate indicators is essential to aggregate the information provided by climate model outputs into a manageable set of relevant metrics on which assessments of climate engineering (CE) can be based. From all the variables potentially available from climate models, indicators need to be selected that are able to inform scientists and society on the development of the Earth system under CE, as well as on possible impacts and side effects of various ways of deploying CE or not. However, the indicators used so far have been largely identical to those used in climate change assessments and do not visibly reflect the fact that indicators for assessing CE (and thus the metrics composed of these indicators) may be different from those used to assess global warming. Until now, there has been little dedicated effort to identifying specific indicators and metrics for assessing CE. We here propose that such an effort should be facilitated by a more decision-oriented approach and an iterative procedure in close interaction between academia, decision makers, and stakeholders. Specifically, synergies and trade-offs between social objectives reflected by individual indicators, as well as decision-relevant uncertainties should be considered in the development of metrics, so that society can take informed decisions about climate policy measures under the impression of the options available, their likely effects and side effects, and the quality of the underlying knowledge base.

  7. Methodology for the assessment of the impacts of climate change on land degradation at multiple scales: Use of high resolution satellite imagery, modelling, and ground measurements for the assessment in Ethiopia

    NASA Astrophysics Data System (ADS)

    Ahmed, Oumer

    In this study, a new multi-scalar methodology for assessing land degradation response to climate change is presented by analyzing 22 years of both climatic data and satellite observations, together with future projections from modelling, for Ethiopia. A comprehensive analysis of the impacts of climate change on land degradation was performed as evidenced from the integration of a host of land degradation indicators, namely: normalized difference vegetation Index (NDVI), net primary productivity (NPP), crop yield, biomass, length of growing period (LGP), rainfall use efficiency (RUE), energy use efficiency (EUE) and aridity index (AI). The results from the national level assessment indicate that over the period of 1984-2006, NPP decreased overall. Degrading areas occupy 30% of the country and suffer an average loss of NPP 10.3 kg C ha-1 y-1. The crop yield prediction results indicate a wide range of outcomes is to be expected for the country, due to the heterogeneity of the agro-climatic resources as well as of projected climate change. The results of the sub-national level assessment show that about 29% of the Awash watershed is degrading, and these degrading areas experience an average loss of NPP 4.6 kg C ha-1 y-1. Further, about 33.8% of the degrading area in the watershed is associated with bare land and 25% with agricultural land. Finally, since remotely sensed estimates are frequently used to assess land degradation at multiple scales, scale transfer methods are evaluated in this study to provide a tool to rank both upscaling and downscaling procedures.

  8. A strategy for assessing potential future changes in climate, hydrology, and vegetation in the Western United States

    USGS Publications Warehouse

    Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.

    1998-01-01

    Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.

  9. The use of climate information in vulnerability assessments.

    DOT National Transportation Integrated Search

    2011-01-01

    This memorandum focuses on the use of climate information when performing a vulnerability : assessment, a topic that was discussed at the Newark Pilot Peer Exchange Workshop on May 4-5, : 2011. The memorandum describes several sources of climate info...

  10. Climatic Warmth and National Wealth: Some Culture-Level Determinants of National Character Stereotypes

    PubMed Central

    McCrae, Robert R.; Terracciano, Antonio; Realo, Anu; Allik, Jüri

    2009-01-01

    National character stereotypes are widely shared, but do not reflect assessed levels of personality traits. In this article we present data illustrating the divergence of stereotypes and assessed personality traits in north and south Italy, test hypotheses about the associations of temperature and national wealth with national character stereotypes in 49 cultures, and explore possible links to national values and beliefs. Results suggest that warmth and wealth are common determinants of national stereotypes, but that there are also idiosyncratic influences on the perceptions of individual nations. PMID:20046546

  11. Bivariate analysis of floods in climate impact assessments.

    PubMed

    Brunner, Manuela Irene; Sikorska, Anna E; Seibert, Jan

    2018-03-01

    Climate impact studies regarding floods usually focus on peak discharges and a bivariate assessment of peak discharges and hydrograph volumes is not commonly included. A joint consideration of peak discharges and hydrograph volumes, however, is crucial when assessing flood risks for current and future climate conditions. Here, we present a methodology to develop synthetic design hydrographs for future climate conditions that jointly consider peak discharges and hydrograph volumes. First, change factors are derived based on a regional climate model and are applied to observed precipitation and temperature time series. Second, the modified time series are fed into a calibrated hydrological model to simulate runoff time series for future conditions. Third, these time series are used to construct synthetic design hydrographs. The bivariate flood frequency analysis used in the construction of synthetic design hydrographs takes into account the dependence between peak discharges and hydrograph volumes, and represents the shape of the hydrograph. The latter is modeled using a probability density function while the dependence between the design variables peak discharge and hydrograph volume is modeled using a copula. We applied this approach to a set of eight mountainous catchments in Switzerland to construct catchment-specific and season-specific design hydrographs for a control and three scenario climates. Our work demonstrates that projected climate changes have an impact not only on peak discharges but also on hydrograph volumes and on hydrograph shapes both at an annual and at a seasonal scale. These changes are not necessarily proportional which implies that climate impact assessments on future floods should consider more flood characteristics than just flood peaks. Copyright © 2017. Published by Elsevier B.V.

  12. Towards a comprehensive climate impacts assessment of solar geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.

    Here, despite a growing literature on the projected physical climate responses to solar geoengineering — i.e. proposals to cool the planet by increasing the planetary albedo — there is no clear picture of the subsequent impacts of such a modified climate on natural and human systems such as agriculture, health, water resources, and ecosystems. Here we argue that engaging the climate impacts research community is necessary to evaluate and communicate how solar geoengineering might reduce some risks, exacerbate others, and give rise to novel risks. We review the current state of knowledge on consequences of solar geoengineering and conclude thatmore » a thorough assessment of its impacts can proceed by building upon the frameworks developed for assessing impacts of climate change. However, the climate response to solar geoengineering will depend on the form under consideration and the manner in which it is deployed, presenting a novel challenge for the climate impacts research community.« less

  13. Towards a comprehensive climate impacts assessment of solar geoengineering

    DOE PAGES

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; ...

    2016-11-23

    Here, despite a growing literature on the projected physical climate responses to solar geoengineering — i.e. proposals to cool the planet by increasing the planetary albedo — there is no clear picture of the subsequent impacts of such a modified climate on natural and human systems such as agriculture, health, water resources, and ecosystems. Here we argue that engaging the climate impacts research community is necessary to evaluate and communicate how solar geoengineering might reduce some risks, exacerbate others, and give rise to novel risks. We review the current state of knowledge on consequences of solar geoengineering and conclude thatmore » a thorough assessment of its impacts can proceed by building upon the frameworks developed for assessing impacts of climate change. However, the climate response to solar geoengineering will depend on the form under consideration and the manner in which it is deployed, presenting a novel challenge for the climate impacts research community.« less

  14. How do you know things are getting better (or not?) Assessing resource conditions in National Parks and Protected Areas

    Treesearch

    James D. Nations

    2011-01-01

    The National Parks Conservation Association’s Center for State of the Parks uses an easily explained, fact-based methodology to determine the condition of natural and cultural resources in the United States National Park System. Researchers assess and numerically score natural resources that include water quality and quantity, climate change impacts, forest...

  15. Big emitting nations and the 2°C target:beyond integrated assessment

    NASA Astrophysics Data System (ADS)

    Bows-Larkin, Alice; Sharmina, Maria; Kuriakose, Jaise; Anderson, Kevin

    2015-04-01

    This year, the United Nations Conference of the Parties in Paris is tasked with delivering a land-mark agreement on avoiding the 2°C warming associated with 'dangerous interference with the climate system'. If this happens, it will re-invigorate analyses of how global and national energy systems can deliver the rates of mitigation accompanying the 2°C threshold. Commonly such studies rely on detailed integrated assessment models combining economic and physical relationships to describe climate and energy systems. These allow the user to develop 'feasible' scenarios in terms of technology, infrastructure and efficiency change. This paper reflects upon the reliance of decision makers on the outcomes of these models, and their suitability for producing plausible outcomes. One criticism is how they can explore future societies under the pressures of climate change mitigation and adaptation given that their economic parameterisations are underpinned by historical relationships fit for a world unperturbed by climate change. A second relates to their theoretical basis being appropriate for articulating the outcome of marginal change, when the very futures they are set up to explore involve non-marginal adjustments - very radical cuts in CO2, or severe climate change impacts. Quantifying societal responses within such models is a particular challenge. Finally, these models downplay risks through disregarding low-probability, high-impact events and their consequences, including wars and migration. It is argued here that as currently formulated these tools are unsuitable for modelling the revolutionary transformations necessary to stay within 2°C carbon budgets, or similarly, futures with higher levels of warming and subsequent impacts. To address this deficiency, this paper takes a complementary approach to contextually explore the 'possibility space' appropriate for avoiding 2°C. In contrast to exercises that build future scenarios using 'immutable' relationships

  16. AgMIP's Transdisciplinary Agricultural Systems Approach to Regional Integrated Assessment of Climate Impacts, Vulnerability, and Adaptation

    NASA Technical Reports Server (NTRS)

    Antle, John M.; Valdivia, Roberto O.; Boote, Kenneth J.; Janssen, Sander; Jones, James W.; Porter, Cheryl H.; Rosenzweig, Cynthia; Ruane, Alexander C.; Thorburn, Peter J.

    2015-01-01

    This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.

  17. A Screening Assessment of the Potential Impacts of Climate ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications climate change has had on combined sewer overflow (CSO) mitigation in the Great Lakes and New England Regions. This report describes the potential scope and magnitude of climate change impacts on combined sewer overflow (CSOs) mitigation efforts in the Great Lakes Region and New England Region.

  18. Incorporating climate-system and carbon-cycle uncertainties in integrated assessments of climate change. (Invited)

    NASA Astrophysics Data System (ADS)

    Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.

    2013-12-01

    The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.

  19. An assessment of streamflow vulnerability to climate using ...

    EPA Pesticide Factsheets

    Identifying regions with similar hydrology is useful for assessing water quality and quantity across the U.S., especially areas that are difficult or costly to monitor. For example, hydrologic landscapes (HLs) have been used to map streamflow variability and assess the spatial distribution of climatic response in Oregon, Alaska, and the Pacific Northwest. HLs have also been applied to assess historic and projected climatic impacts across the Western U.S. In this project, we summarized (1) the HL classification methodology and (2) the utility of using HLs as a tool to classify the vulnerability of streams to climatic changes in the Western U.S. During the HL classification process, we analyzed climate, seasonality, aquifer permeability, terrain, and soil permeability as the primary hydrologic drivers (and precipitation intensity as a secondary driver) associated with large scale hydrologic processes (storage, conveyance, and flow of water into or out of the watershed) in the West. We derived the dominant hydrologic pathways (surface runoff or deep or shallow groundwater) from the HL classification of different catchments to test our hypotheses: 1) Changes in climate will have greater impacts on streamflow in catchments dominated by surface runoff. 2) Catchments historically fed by surface runoff from winter snowmelt in the spring will experience greater impact if precipitation falls as rain instead of snow. We calculated S* (precipitation surplus, which includes

  20. Assessment of Climate Change in the Southwest United States: Key Findings

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.

    2012-12-01

    The Assessment of Climate Change in the Southwest United States, is a technical input to the National Climate Assessment. The 121-author report summarizes knowledge about climate change and its impacts across Arizona, California, Colorado, Nevada, New Mexico, and Utah. The report looks at links between climate and natural resources, vulnerabilities to climate variability and change across the region and along the U.S.-Mexico border, and adaptation and mitigation choices for addressing future changes. The period since 1950 has been warmer than any period of comparable length in the last 600 years. Droughts of the past 2,000 years have exceeded the most severe and sustained drought during 1901-2010. In the last decade, flows in the major river basins of the Southwest have been lower than their 20th century averages; many snowmelt-fed streams in the region exhibited earlier snowmelt and earlier center of mass of annual streamflows. Climate models project continued temperature increases, with longer and hotter summer heat waves. Average precipitation is projected to decrease in the southern part of the region. Reduced streamflows are projected for the Rio Grande, Colorado, and San Joaquin rivers. More frequent and intense winter flooding is projected for the western Sierra Nevada, whereas Colorado Front Range summer flooding is projected to increase. Observed ecosystems impacts include changes in phenology, widespread forest disturbance due to the confluence of drought, increased temperatures, and changes to insect life cycles. Area burned by wildfire is projected to increase in most of the Southwest. Plant and animal species' distributions will be affected by climate change, and studies show that observed climate changes are strongly associated with observed changes in species' distributions. California coastal ecosystems will be affected by a combination of ocean warming, reduced oxygen content, sea level rise and ocean acidification. When west coast sea levels are

  1. 77 FR 76034 - National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0943; FRL9716-6] National Water Program 2012... availability. SUMMARY: The Environmental Protection Agency (EPA) is publishing the final ``National Water...-term visions and goals for the management of water resources in light of climate change and charts key...

  2. NATIONAL LAKE ASSESSMENT MONITORING DESIGN

    EPA Science Inventory

    The USEPA designed the National Lake Assessment in 2005-6 with field sampling being completed in 2007. The objective of the assessment is to estimate the ecological condition of lakes and reservoirs nationally. The objective of this paper is to describe the national survey desi...

  3. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  4. [Research advances in vulnerability assessment of natural ecosystem response to climate change].

    PubMed

    Zhao, Hui-xia; Wu, Shao-hong; Jiang, Lu-guang

    2007-02-01

    Climate change with global warming as the sign has been caught great attention by the governments, international organizations, and scientists in the world. Human society and natural ecosystem are both exposed to climate change, and more and more people are waked up by its increasing harm. Vulnerability analysis and assessment are the key and basis for adapting and mitigating climate change, being the highlight in the research fields of climate change and ecology in recent years. The vulnerability assessment of climate change is being carried out in various research fields and on different scales, and much progress has been made. This paper introduced the concept of vulnerability, and summarized the research progress in vulnerability assessment of climate change, with the focus on the frame and methodology of vulnerability assessment of natural ecosystem response to climate change. The existed problems and future prospects in this research area were also discussed.

  5. U.S. National Academy panel reviews climate change science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Could the administration of George W. Bush, which has rejected the Kyoto Protocol to reduce worldwide emissions of greenhouse gases—and which has reneged on a campaign pledge to regulate U.S. carbon dioxide emissions—sincerely be seeking the facts about climate change in time for the resumption of international negotiations on the issue in July?That is the hope of an 11-member committee of the U.S. National Academy of Sciences (NAS) that is working on an incredibly fast-tracked report “The Science of Climate Change,” at the request of the administration. The project largely will review and synthesize findings from a number of earlier studies.

  6. The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest

    NASA Astrophysics Data System (ADS)

    Mantua, N.; Snover, A.

    2006-12-01

    Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.

  7. National Wetland Condition Assessment

    EPA Pesticide Factsheets

    The NWCA is a collaborative, statistical survey of the nation's wetlands. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  8. Case study applications of the BASINS climate assessment tool (CAT)

    EPA Science Inventory

    This EPA report will illustrate the application of different climate assessment capabilities within EPA’s BASINS modeling system for assessing a range of potential questions about the effects of climate change on streamflow and water quality in different watershed settings and us...

  9. National Assessment Technical Quality.

    ERIC Educational Resources Information Center

    Chelimsky, Eleanor

    In 1991 the National Assessment Governing Board (NAGB) released a report interpreting the achievement of U.S. students in mathematics on the 1990 National Assessment of Educational Progress in terms of a set of performance standards. The NAGB had been designing and implementing an approach to defining basic, proficient, and advanced levels of…

  10. The predictive state: Science, territory and the future of the Indian climate.

    PubMed

    Mahony, Martin

    2014-02-01

    Acts of scientific calculation have long been considered central to the formation of the modern nation state, yet the transnational spaces of knowledge generation and political action associated with climate change seem to challenge territorial modes of political order. This article explores the changing geographies of climate prediction through a study of the ways in which climate change is rendered knowable at the national scale in India. The recent controversy surrounding an erroneous prediction of melting Himalayan glaciers by the Intergovernmental Panel on Climate Change provides a window onto the complex and, at times, antagonistic relationship between the Panel and Indian political and scientific communities. The Indian reaction to the error, made public in 2009, drew upon a national history of contestation around climate change science and corresponded with the establishment of a scientific assessment network, the Indian Network for Climate Change Assessment, which has given the state a new platform on which to bring together knowledge about the future climate. I argue that the Indian Network for Climate Change Assessment is indicative of the growing use of regional climate models within longer traditions of national territorial knowledge-making, allowing a rescaling of climate change according to local norms and practices of linking scientific knowledge to political action. I illustrate the complex co-production of the epistemic and the normative in climate politics, but also seek to show how co-productionist understandings of science and politics can function as strategic resources in the ongoing negotiation of social order. In this case, scientific rationalities and modes of environmental governance contribute to the contested epistemic construction of territory and the evolving spatiality of the modern nation state under a changing climate.

  11. Toward a U.S. National Phenological Assessment

    NASA Astrophysics Data System (ADS)

    Henebry, Geoffrey M.; Betancourt, Julio L.

    2010-01-01

    Third USA National Phenology Network (USA-NPN) and Research Coordination Network (RCN) Annual Meeting; Milwaukee, Wisconsin, 5-9 October 2009; Directional climate change will have profound and lasting effects throughout society that are best understood through fundamental physical and biological processes. One such process is phenology: how the timing of recurring biological events is affected by biotic and abiotic forces. Phenology is an early and integrative indicator of climate change readily understood by nonspecialists. Phenology affects the planting, maturation, and harvesting of food and fiber; pollination; timing and magnitude of allergies and disease; recreation and tourism; water quantity and quality; and ecosystem function and resilience. Thus, phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal time scales. Changes in phenologies have already manifested myriad effects of directional climate change. As these changes continue, it is critical to establish a comprehensive suite of benchmarks that can be tracked and mapped at local to continental scales with observations and climate models.

  12. National Assessment of Educational Progress. 1969-1970 Writing: National Results.

    ERIC Educational Resources Information Center

    Norris, Eleanor L.; And Others

    National results for writing, one of the three subject areas assessed during the first year of data collection by National Assessment, are presented in this volume. National results for the other two subjects, science and citizenship, are presented in separate volumes. The purpose of this project is to explore whether an assessment of educational…

  13. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  14. Northwest regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    This assessment draws from a large bank of information developed by scientists and extension specialists in the Northwest to describe where we need to focus when dealing with climate risks to working landscapes. The changing climate has many secondary effects, such as irrigation water loss, increase...

  15. Building a stakeholder network for the Indiana Climate Change Impacts Assessment

    NASA Astrophysics Data System (ADS)

    Dukes, J. S.; Widhalm, M.

    2017-12-01

    The Indiana Climate Change Impacts Assessment (IN CCIA) is a stakeholder-informed, service-driven resource developed under the coordination of the Purdue Climate Change Research Center (PCCRC) and with involvement from a diverse mix of contributors throughout the state. The IN CCIA brings together the best available climate change research into a series of reports aimed at helping Hoosiers better understand climate change-related risks so they can prepare for challenges and capitalize on opportunities. The IN CCIA development process aims to 1) increase the dialogue about climate change across the state, 2) provide Indiana decision makers with accessible, credible climate impact information, and 3) build a network of experts and stakeholders to support ongoing assessment efforts and knowledge sharing. This presentation will report on our experience with developing and maintaining a diverse stakeholder network. We will describe our efforts to connect with stakeholders before, during, and after the development of assessment reports and share the top themes that emerged from our pre-assessment inquires and other interactions.

  16. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retentionmore » issues, and more.« less

  17. National Assessment of Educational Progress.

    ERIC Educational Resources Information Center

    National Center for Education Statistics (ED), Washington, DC.

    The National Center for Education Statistics (NCES) recently unveiled a new Web site about the National Assessment of Educational Progress (NAEP), the "Nation's Report Card." This site (http://nces.ed.gov/nationsreportcard) provides easy access to a wealth of assessment information about the condition of education in the United States,…

  18. Climate and reproduction of grizzly bears in Yellowstone National Park

    USGS Publications Warehouse

    Picton, Harold D.

    1978-01-01

    Controversy surrounds the conflicts between the requirements of human safety and the preservation of grizzly bears (Ursus arctos horribilis) in western North America. It has been difficult to separate the effect of factors such as the closure of garbage dumps from that of the climate. It has also proved difficult to relate climatic data to changes in the populations of large mammals. I report here a correlation of climatic change with fluctuations in the sizes of litters of grizzly bears born in Yellowstone National Park, Wyoming, during 1958–1976. The decrease in litter sizes observed since the closure of garbage dumps seems to be largely a consequence of unfavourable weather during the periods of the final fattening of the mother, winter sleep, birth, lactation and early spring foraging. This study represents one of the few times that the effects of climate have been demonstrated for large omnivorous or carnivorous mammals.

  19. Comparative risk assessment of the burden of disease from climate change.

    PubMed

    Campbell-Lendrum, Diarmid; Woodruff, Rosalie

    2006-12-01

    The World Health Organization has developed standardized comparative risk assessment methods for estimating aggregate disease burdens attributable to different risk factors. These have been applied to existing and new models for a range of climate-sensitive diseases in order to estimate the effect of global climate change on current disease burdens and likely proportional changes in the future. The comparative risk assessment approach has been used to assess the health consequences of climate change worldwide, to inform decisions on mitigating greenhouse gas emissions, and in a regional assessment of the Oceania region in the Pacific Ocean to provide more location-specific information relevant to local mitigation and adaptation decisions. The approach places climate change within the same criteria for epidemiologic assessment as other health risks and accounts for the size of the burden of climate-sensitive diseases rather than just proportional change, which highlights the importance of small proportional changes in diseases such as diarrhea and malnutrition that cause a large burden. These exercises help clarify important knowledge gaps such as a relatively poor understanding of the role of nonclimatic factors (socioeconomic and other) that may modify future climatic influences and a lack of empiric evidence and methods for quantifying more complex climate-health relationships, which consequently are often excluded from consideration. These exercises highlight the need for risk assessment frameworks that make the best use of traditional epidemiologic methods and that also fully consider the specific characteristics of climate change. These include the longterm and uncertain nature of the exposure and the effects on multiple physical and biotic systems that have the potential for diverse and widespread effects, including high-impact events.

  20. Climate Assessment For 2001

    NASA Astrophysics Data System (ADS)

    Waple, A. M.; Lawrimore, J. H.; Lyon, B.; Halpert, M. S.; Gleason, K. L.; Menne, M. J.; Schnell, R. C.; Thiaw, W.; Wright, W. J.; Alexander, L.; Salinger, M. J.; Bell, G. D.; Higgins, R. W.; Stone, R. S.

    2002-05-01

    It is the twelfth year that the Climate Assessment has been written to summarize the state of the Earth's climate, and the second year that the National Climatic Data Center has taken the lead in its production. It is a cooperative effort that includes contributions from scientists around the country and the world. The long-running La Nina episode finally came to an end in 2001. The weak La Nina, which began in mid-1998 persisted through the first half of the year but gave way to neutral ENSO conditions for the latter half. Global temperatures in 2001 were 0.51C (0.92F) above the long-term (1880-2000) average, which places 2001 as the second warmest year on record. Land temperatures were 0.75C (1.35F) above average and ocean temperatures were 0.40C (0.72F) above the 1880-2000 mean. This ranks them as 2nd and 3rd warmest on record respectively. The Northern Hemisphere temperature continues to average near record levels in 2001 at 0.60C (1.08F) above the long-term average. The Southern Hemisphere also reflects the globally warmer conditions, with a positive anomaly of 0.43C (0.77F). Annual anomalies in excess of 1.0C (1.8F) were widespread across North America and much of Europe and the Middle East, while significantly cooler than average conditions were confined to Western Australia the Northeast and Northwest Pacific Ocean, and the far southeastern region of the Pacific, near coastal Chile. Although no hurricanes made landfall in the United States for the second consecutive year, it was nonetheless an extremely active Atlantic hurricane season, the fourth most active on record. Tropical Storm Allison became the costliest tropical storm on record when it caused around five billion US dollars worth of damage in southern and southeastern USA. The season was slow to start but quickly escalated in the last three months of the season and it was the first time in recorded history that three hurricanes have formed in the Atlantic in the month of November. Other notable

  1. National Coastal Condition Assessment

    EPA Pesticide Factsheets

    The NCCA is a collaborative, statistical survey of the nation's coastal waters and the Great Lakes. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  2. Integrated economic and climate projections for impact assessment

    EPA Science Inventory

    We designed scenarios for impact assessment that explicitly address policy choices and uncertainty in climate response. Economic projections and the resulting greenhouse gas emissions for the “no climate policy” scenario and two stabilization scenarios: at 4.5 W/m2 and 3.7 W/m2 b...

  3. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    PubMed Central

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  4. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    PubMed

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  5. What is the National Lakes Assessment?

    EPA Pesticide Factsheets

    The National Lakes Assessment is a collaborative, statistical survey of the nation's lakes. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  6. Climate Exposure of US National Parks in a New Era of Change

    PubMed Central

    Monahan, William B.; Fisichelli, Nicholas A.

    2014-01-01

    US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change. PMID:24988483

  7. Climate exposure of US national parks in a new era of change.

    PubMed

    Monahan, William B; Fisichelli, Nicholas A

    2014-01-01

    US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901-2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change.

  8. Climate uncertainty and implications for U.S. state-level risk assessment through 2050.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.

    2009-10-01

    Decisions for climate policy will need to take place in advance of climate science resolving all relevant uncertainties. Further, if the concern of policy is to reduce risk, then the best-estimate of climate change impacts may not be so important as the currently understood uncertainty associated with realizable conditions having high consequence. This study focuses on one of the most uncertain aspects of future climate change - precipitation - to understand the implications of uncertainty on risk and the near-term justification for interventions to mitigate the course of climate change. We show that the mean risk of damage to themore » economy from climate change, at the national level, is on the order of one trillion dollars over the next 40 years, with employment impacts of nearly 7 million labor-years. At a 1% exceedance-probability, the impact is over twice the mean-risk value. Impacts at the level of individual U.S. states are then typically in the multiple tens of billions dollar range with employment losses exceeding hundreds of thousands of labor-years. We used results of the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) climate-model ensemble as the referent for climate uncertainty over the next 40 years, mapped the simulated weather hydrologically to the county level for determining the physical consequence to economic activity at the state level, and then performed a detailed, seventy-industry, analysis of economic impact among the interacting lower-48 states. We determined industry GDP and employment impacts at the state level, as well as interstate population migration, effect on personal income, and the consequences for the U.S. trade balance.« less

  9. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of

  10. A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Sarofim, M. C.; Martinich, J.

    2017-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  11. Stress testing hydrologic models using bottom-up climate change assessment

    NASA Astrophysics Data System (ADS)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  12. Making the Earth to Life Connection Using Climate Change

    NASA Astrophysics Data System (ADS)

    Haine, D. B.; Berbeco, M.

    2016-12-01

    From ocean acidification to changes in air quality to shifts in the range of disease vectors, there are many opportunities for educators to make the earth science to life science connection by incorporating the impacts of climate change on organisms and entire ecosystems and by describing how living organisms impact climate. NCSE's study in Science found that 86% of life science teachers are teaching climate, but few admit they have any formal climate science training. This session will introduce activities we developed that utilize the 2014 National Climate Assessment, data visualizations, technology tools and models to allow students to explore the evidence that climate change is impacting life. Translating the NCA into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Using the NCA and the NGSS we demonstrate strategies for weaving the concept of climate change into an already packed life science curriculum by enhancing rather than displacing content and ultimately promoting integration of science and engineering practices into instruction. Since the fall of 2014 we have engaged approximately 200 K-12 educators at local, state, regional and national teacher professional development events. Here we will summarize what we have learned from science teachers about how they address life science impacts of climate change and we will summarize evaluation data to inform future efforts to engage life science educators in light of the recent USGCRP Climate and Health Assessment and the upcoming 4th National Climate Assessment.

  13. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    NASA Astrophysics Data System (ADS)

    Gutowski, W. J.

    2009-12-01

    NARCCAP is a multi-institutional program that is investigating systematically the uncertainties in regional scale simulations of contemporary climate and projections of future climate. NARCCAP is supported by multiple federal agencies. NARCCAP is producing an ensemble of high-resolution climate-change scenarios by nesting multiple RCMs in reanalyses and multiple atmosphere-ocean GCM simulations of contemporary and future-scenario climates. The RCM domains cover the contiguous U.S., northern Mexico, and most of Canada. The simulation suite also includes time-slice, high resolution GCMs that use sea-surface temperatures from parent atmosphere-ocean GCMs. The baseline resolution of the RCMs and time-slice GCMs is 50 km. Simulations use three sources of boundary conditions: National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) AMIP-II Reanalysis, GCMs simulating contemporary climate and GCMs using the A2 SRES emission scenario for the twenty-first century. Simulations cover 1979-2004 and 2038-2060, with the first 3 years discarded for spin-up. The resulting RCM and time-slice simulations offer opportunity for extensive analysis of RCM simulations as well as a basis for multiple high-resolution climate scenarios for climate change impacts assessments. Geophysical statisticians are developing measures of uncertainty from the ensemble. To enable very high-resolution simulations of specific regions, both RCM and high-resolution time-slice simulations are saving output needed for further downscaling. All output is publically available to the climate analysis and the climate impacts assessment community, through an archiving and data-distribution plan. Some initial results show that the models closely reproduce ENSO-related precipitation variations in coastal California, where the correlation between the simulated and observed monthly time series exceeds 0.94 for all models. The strong El Nino events of 1982-83 and 1997-98 are well reproduced for

  14. Assessing the Vulnerability of Eco-Environmental Health to Climate Change

    PubMed Central

    Tong, Shilu; Mather, Peter; Fitzgerald, Gerry; McRae, David; Verrall, Ken; Walker, Dylan

    2010-01-01

    There is an urgent need to assess the vulnerability of eco-environmental health to climate change. This paper aims to provide an overview of current research, to identify knowledge gaps, and to propose future research needs in this challenging area. Evidence shows that climate change is affecting and will, in the future, have more (mostly adverse) impacts on ecosystems. Ecosystem degradation, particularly the decline of the life support systems, will undoubtedly affect human health and wellbeing. Therefore, it is important to develop a framework to assess the vulnerability of eco-environmental health to climate change, and to identify appropriate adaptation strategies to minimize the impact of climate change. PMID:20616990

  15. A National Climate Change Adaptation Network for Protecting Water Security

    NASA Astrophysics Data System (ADS)

    Weaver, A.; Sauchyn, D.; Byrne, J. M.

    2009-12-01

    Water security and resource-dependent community-survival are being increasingly challenged as a consequence of climate change, and it is urgent that we plan now for the security of our water supplies which support our lives and livelihoods. However, the range of impacts of climate change on water availability, and the consequent environmental and human adaptations that are required, is so complex and serious that it will take the combined work of natural, health and social scientists working with industries and communities to solve them. Networks are needed that will identify crucial water issues under climate change at a range of scales in order to provide regionally-sensitive, solutions-oriented research and adaptation. We suggest national and supra-national water availability and community sustainability issues must be addressed by multidisciplinary research and adaptation networks. The work must be driven by a bottom-up research paradigm — science in the service of community and governance. We suggest that interdisciplinary teams of researchers, in partnership with community decision makers and local industries, are the best means to develop solutions as communities attempt to address future water demands, protect their homes from infrastructure damage, and meet their food, drinking water, and other essential resource requirements. The intention is to cover: the impact of climate change on Canadian natural resources, both marine and terrestrial; issues of long-term sustainability and resilience in human communities and the environments in which they are embedded; the making and moving of knowledge, be that between members of Indigenous and non-Indigenous communities, researchers of different disciplines, communities, industry, policymakers and the academy and the crucial involvement of the various orders of government in the response to water problems, under conditions of heightened uncertainty. Such an adaptation network must include a national

  16. Climate risk index for Italy

    NASA Astrophysics Data System (ADS)

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  17. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  18. Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service

    NASA Astrophysics Data System (ADS)

    Welling, L. A.

    2012-12-01

    Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided

  19. National Lakes Assessment: A Collaborative Survey of the Nation's Lakes

    EPA Science Inventory

    The National Lakes Assessment A Collaborative Survey of the Nation's Lakes presents the results of an unprecedented assessment of the nation’s lakes. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the pub...

  20. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  1. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  2. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    USGS Publications Warehouse

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  3. Climate Change and the Nation's Forests: Challenges and Opportunities

    Treesearch

    Dale Bosworth; Richard Birdsey; Linda Joyce; Constance Millar

    2008-01-01

    Climate change is already affecting America's forests. The fires of 2000 shocked the Nation, the fires of 2006 burned an area greater than in any year since 1954, and the 2007 fires in southern California forced the evacuation of more than a million residents. Some of the largest individual fires ever recorded in the Western United States and Alaska occurred in...

  4. Risky Business and the American Climate Prospectus: Economic Risks of Climate Change in the United States"

    NASA Astrophysics Data System (ADS)

    Gordon, K.; Houser, T.; Kopp, R. E., III; Hsiang, S. M.; Larsen, K.; Jina, A.; Delgado, M.; Muir-Wood, R.; Rasmussen, D.; Rising, J.; Mastrandrea, M.; Wilson, P. S.

    2014-12-01

    The United States faces a range of economic risks from global climate change - from increased flooding and storm damage, to climate-driven changes in crop yields and labor productivity, to heat-related strains on energy and public health systems. The Risky Business Project commissioned a groundbreaking new analysis of these and other climate risks by region of the country and sector of the economy. The American Climate Prospectus (ACP) links state-of-the-art climate models with econometric research of human responses to climate variability and cutting edge private sector risk assessment tools, the ACP offers decision-makers a data driven assessment of the specific risks they face. We describe the challenge, methods, findings, and policy implications of the national risk analysis, with particular focus on methodological innovations and novel insights.

  5. The 2011 National School Climate Survey: The Experiences of Lesbian, Gay, Bisexual and Transgender Youth in Our Nation's Schools

    ERIC Educational Resources Information Center

    Kosciw, Joseph G.; Greytak, Emily A.; Bartkiewicz, Mark J.; Boesen, Madelyn J.; Palmer, Neal A.

    2012-01-01

    In 1999, the Gay, Lesbian and Straight Education Network (GLSEN) identified the need for national data on the experiences of lesbian, gay, bisexual, and transgender (LGBT) students and launched the first National School Climate Survey (NSCS). At the time, the school experiences of LGBT youth were under-documented and nearly absent from national…

  6. Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, M. R.; Swart, R.

    2009-12-01

    Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that

  7. Consideration of climate change on environmental impact assessment in Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org; Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es; Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmentalmore » assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  8. Assessment of future extreme climate events over the Porto wine Region

    NASA Astrophysics Data System (ADS)

    Viceto, Carolina; Cardoso, Susana; Marta-Almeida, Martinho; Gorodetskaya, Irina; Rocha, Alfredo

    2017-04-01

    The Douro Demarcated Region (DDR) is a wine region, in the northern Portugal, recognized for the Porto wine, which is responsible for more than 60% of the total value of national wine exportations. Since the viticulture is highly dependent on weather/climate patterns, the global warming is expected to affect the areas suitable to the growth of a certain variety of grape, its production and quality. This highlights the need of regional studies that assess the future climate changes effects in the vineyard, which might allow an early adjustment. We explore future climate change in the DDR region using a high-resolution regional climate model for Weather Research and Forecasting (WRF) forced by the Max Planck Institute Earth System Model - low resolution (MPI-ESM-LR). Two future periods have been simulated using the emission scenario RCP8.5 - for the mid- (2046-2065) and late 21st century (2081-2100) - and compared to a reference period (1986-2005). The RCP8.5 is a "baseline" scenario without any climate mitigation and corresponds to the pathway with the highest greenhouse gas emissions compared to other scenarios developed by the Intergovernmental Panel for Climate Change. Our regional WRF implementation uses three online-nested domains with increasing resolution at a downscaling ratio of three. The coarser domain of 81-km resolution covers part of the North Atlantic Ocean and most of the Europe. The innermost 9-km horizontal resolution domain includes the Iberian Peninsula, a portion of Northern Africa and the adjacent part of the Atlantic Ocean and Mediterranean Sea. Our study uses this 9-km resolution domain and focuses on a confined area, which comprises the DDR. Such dynamical downscaling approach gives an advantage to assess climate effects on the DDR region, where the high horizontal resolution allows including effects of the oceanic coastline, local riverbeds and complex topography. The climatology of the DDR region determines the more suitable wine variety

  9. Building National Capacity for Climate Change Interpretation: The Role of Leaders, Partnerships, and Networks

    NASA Astrophysics Data System (ADS)

    Spitzer, W.

    2015-12-01

    Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. We provide in-depth training as well as an alumni network for ongoing learning, implementation support, leadership development, and coalition building. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy. Our project represents a cross-disciplinary partnership among climate scientists, social and cognitive scientists, and informal education practitioners. We have built a growing national network of more than 250 alumni, including approximately 15-20 peer leaders who co-lead both in-depth training programs and introductory workshops. We have found that this alumni network has been assuming increasing importance in providing for ongoing learning, support for implementation, leadership development, and coalition building. As we look toward the future, we are exploring potential partnerships with other existing networks, both to sustain our impact and to expand our reach. This presentation will address what we have learned in terms of network impacts, best practices, factors for success, and future directions.

  10. A National Study of the Validity and Utility of the Comprehensive Assessment of School Environment (CASE) Survey

    ERIC Educational Resources Information Center

    McGuffey, Amy R.

    2016-01-01

    A healthy school climate is necessary for improvement. The purpose of this study was to evaluate the construct validity and usability of the Comprehensive Assessment of School Environment (CASE) as it was purportedly realigned to the three dimensions of the Breaking Ranks Framework developed by the National Association of Secondary School…

  11. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    USGS Publications Warehouse

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  12. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  13. Mid­west. Climate change impacts in the United States: The third national climate assessment

    Treesearch

    Sara C. Pryor; Donald Scavia; Charles Downer; Marc Gaden; Louis Iverson; Rolf Nordstrom; Jonathan Patz; G. Phillip Robertson

    2014-01-01

    In the next few decades, longer growing seasons and rising carbon dioxide levels will increase yields of some crops, though those benefits will be progressively offset by extreme weather events. Though adaptation options can reduce some of the detrimental effects, in the long term, the combined stresses associated with climate change are expected to decrease...

  14. Motivational climate, staff and members' behaviors, and members' psychological well-being at a national fitness franchise.

    PubMed

    Brown, Theresa C; Fry, Mary D

    2014-06-01

    The purpose of this study was to examine the association between members' perceptions of staffs behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested. Members (N = 5,541) of a national group-fitness studio franchise completed a survey regarding their class experiences. The survey included questions that measured participants' perceptions of the motivational climate (caring, task-involving, ego-involving), perceptions of staff's behaviors, their own behaviors, commitment to exercise, and life satisfaction. Structural equation modeling was used to assess both the association between variables and the theoretically driven predictive relationships. The participants perceived the environment as highly caring and task-involving and low ego-involving. They reported high exercise commitment and moderately high life satisfaction and perceived that the staffs and their own behaviors reflected caring, task-involving characteristics. Structural equation modeling demonstrated that those who perceived a higher caring, task-involving climate and lower ego-involving climate were more likely to report more task-involving, caring behaviors among the staff and themselves as well as greater commitment to exercise. In addition, a theory-driven mediational model suggested that staff behaviors may be an antecedent to members' exercise experiences by impacting their perceptions of the climate. The results of this study give direction to specific behaviors in which staff of group-fitness programs might engage to positively influence members' exercise experiences.

  15. A scenario neutral approach to assess low flow sensitivity to climate change

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric; Prudhomme, Christel

    2015-04-01

    Most impact studies of climate change on river flow regime are performed following top-down approaches, where changes in hydrological characteristics are obtained from rainfall-runoff models forced by downscaled projections provided by GCMs. However, such approaches are not always considered robust enough to bridge the gap between climate research and stake holders needs to develop relevant adaptation strategy (Wilby et al., 2014). Alternatively, 'bottom-up' approaches can be applied to climate change impact studies on water resources to assess the intrinsic vulnerability of the catchments and ultimately help to prioritize adaptation actions for areas highly sensitive to small deviations from the present-day climate conditions. A general framework combining the scenario-neutral methodology developed by Prudhomme et al. (2010) and climate elasticity analyses (Sankarasubramanian et al., 2001) is presented and applied to measure the vulnerability of low flows and droughts on a large dataset of more than 400 French gauged basins. The different steps involved in the suggested framework are: - Calibration of the GR5J rainfall runoff model (Pushpalatha et al., 2011) against observations, - Identification of the main climate factors influencing low flows, - Definition of the sensitivity domain for precipitation (P), temperature (T) and potential evapotranspiration (PE) scenarios consistent with most recent climate change projections, - Derivation of the response surface describing changes in low flow and drought regime in terms of severity, duration and seasonality (Catalogne, 2012), - Uncertainty assessment. Results are the basis for a classification of river basins according to their sensitivity at national scale and for discussions on adaptation requirements with stakeholders. Catalogne C (2012) Amélioration des méthodes de prédétermination des débits de référence d'étiage en sites peu ou pas jaugés. PHD thesis, Université Joseph Fourier, Grenoble, 285 pp

  16. Incorporating climate change into ecosystem service assessments and decisions: a review.

    PubMed

    Runting, Rebecca K; Bryan, Brett A; Dee, Laura E; Maseyk, Fleur J F; Mandle, Lisa; Hamel, Perrine; Wilson, Kerrie A; Yetka, Kathleen; Possingham, Hugh P; Rhodes, Jonathan R

    2017-01-01

    Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer-reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation. © 2016 John Wiley & Sons Ltd.

  17. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and

  18. Varying geospatial analyses to assess climate risk and adaptive capacity in a hotter, drier Southwestern United States

    NASA Astrophysics Data System (ADS)

    Elias, E.; Reyes, J. J.; Steele, C. M.; Rango, A.

    2017-12-01

    Assessing vulnerability of agricultural systems to climate variability and change is vital in securing food systems and sustaining rural livelihoods. Farmers, ranchers, and forest landowners rely on science-based, decision-relevant, and localized information to maintain production, ecological viability, and economic returns. This contribution synthesizes a collection of research on the future of agricultural production in the American Southwest (SW). Research was based on a variety of geospatial methodologies and datasets to assess the vulnerability of rangelands and livestock, field crops, specialty crops, and forests in the SW to climate-risk and change. This collection emerged from the development of regional vulnerability assessments for agricultural climate-risk by the U.S. Department of Agriculture (USDA) Climate Hub Network, established to deliver science-based information and technologies to enable climate-informed decision-making. Authors defined vulnerability differently based on their agricultural system of interest, although each primarily focuses on biophysical systems. We found that an inconsistent framework for vulnerability and climate risk was necessary to adequately capture the diversity, variability, and heterogeneity of SW landscapes, peoples, and agriculture. Through the diversity of research questions and methodologies, this collection of articles provides valuable information on various aspects of SW vulnerability. All articles relied on geographic information systems technology, with highly variable levels of complexity. Agricultural articles used National Agricultural Statistics Service data, either as tabular county level summaries or through the CropScape cropland raster datasets. Most relied on modeled historic and future climate information, but with differing assumptions regarding spatial resolution and temporal framework. We assert that it is essential to evaluate climate risk using a variety of complementary methodologies and

  19. Full annual cycle climate change vulnerability assessment for migratory birds

    USGS Publications Warehouse

    Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.

    2017-01-01

    Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest

  20. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Treesearch

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  1. A vulnerability tool for adapting water and aquatic resources to climate change and extremes on the Shoshone National Forest, Wyoming

    NASA Astrophysics Data System (ADS)

    Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.

    2011-12-01

    Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results

  2. Protected Area Tourism in a Changing Climate: Will Visitation at US National Parks Warm Up or Overheat?

    PubMed

    Fisichelli, Nicholas A; Schuurman, Gregor W; Monahan, William B; Ziesler, Pamela S

    2015-01-01

    Climate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S. National Park Service systematically collects data regarding its 270+ million annual recreation visits, and therefore provides an opportunity to examine how human visitation may respond to climate change from the tropics to the polar regions. To assess the relationship between climate and park visitation, we evaluated historical monthly mean air temperature and visitation data (1979-2013) at 340 parks and projected potential future visitation (2041-2060) based on two warming-climate scenarios and two visitation-growth scenarios. For the entire park system a third-order polynomial temperature model explained 69% of the variation in historical visitation trends. Visitation generally increased with increasing average monthly temperature, but decreased strongly with temperatures > 25°C. Linear to polynomial monthly temperature models also explained historical visitation at individual parks (R2 0.12-0.99, mean = 0.79, median = 0.87). Future visitation at almost all parks (95%) may change based on historical temperature, historical visitation, and future temperature projections. Warming-mediated increases in potential visitation are projected for most months in most parks (67-77% of months; range across future scenarios), resulting in future increases in total annual visits across the park system (8-23%) and expansion of the visitation season at individual parks (13-31 days). Although very warm months at some parks may see decreases in future visitation, this potential change represents a relatively small proportion of visitation across the national park system. A changing climate is likely to have cascading and complex effects on protected area visitation, management, and local economies. Results suggest that protected areas and neighboring communities that develop adaptation strategies for these changes may be able to both

  3. Protected Area Tourism in a Changing Climate: Will Visitation at US National Parks Warm Up or Overheat?

    PubMed Central

    Fisichelli, Nicholas A.; Schuurman, Gregor W.; Monahan, William B.; Ziesler, Pamela S.

    2015-01-01

    Climate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S. National Park Service systematically collects data regarding its 270+ million annual recreation visits, and therefore provides an opportunity to examine how human visitation may respond to climate change from the tropics to the polar regions. To assess the relationship between climate and park visitation, we evaluated historical monthly mean air temperature and visitation data (1979–2013) at 340 parks and projected potential future visitation (2041–2060) based on two warming-climate scenarios and two visitation-growth scenarios. For the entire park system a third-order polynomial temperature model explained 69% of the variation in historical visitation trends. Visitation generally increased with increasing average monthly temperature, but decreased strongly with temperatures > 25°C. Linear to polynomial monthly temperature models also explained historical visitation at individual parks (R2 0.12-0.99, mean = 0.79, median = 0.87). Future visitation at almost all parks (95%) may change based on historical temperature, historical visitation, and future temperature projections. Warming-mediated increases in potential visitation are projected for most months in most parks (67–77% of months; range across future scenarios), resulting in future increases in total annual visits across the park system (8–23%) and expansion of the visitation season at individual parks (13–31 days). Although very warm months at some parks may see decreases in future visitation, this potential change represents a relatively small proportion of visitation across the national park system. A changing climate is likely to have cascading and complex effects on protected area visitation, management, and local economies. Results suggest that protected areas and neighboring communities that develop adaptation strategies for these changes may be able to

  4. Climate risk index for Italy.

    PubMed

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-13

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.

  5. Climate risk index for Italy

    PubMed Central

    Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-01-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712797

  6. Climate Change Boot Camps: Targeting Policy Makers and Outreach Trainers in Arizona to Improve Climate Literacy

    NASA Astrophysics Data System (ADS)

    Ferguson, D. B.; Guido, Z. S.; Buizer, J.; Roy, M.

    2010-12-01

    Bringing climate change issues into focus for decision makers is a growing challenge. Decision makers are often confronted with unique informational needs, a lack of useable information, and needs for customized climate change training, among other issues. Despite significant progress in improving climate literacy among certain stakeholders such as water managers, recent reports have highlighted the growing demand for climate-change information in regions and sectors across the US. In recent years many ventures have sprung up to address these gaps and have predominantly focused on K-12 education and resource management agencies such as the National Park Service and National Weather Service. However, two groups that are critical for integrating climate information into actions have received less attention: (1) policy makers and (2) outreach experts, such as Cooperative Extension agents. Climate Change Boot Camps (CCBC) is a joint effort between the Climate Assessment for the Southwest (CLIMAS)—a NOAA Regionally Integrated Sciences and Assessments (RISA) program—and researchers at Arizona State University to diagnose climate literacy and training gaps in Arizona and develop a process that converts these deficiencies into actionable knowledge among the two aforementioned groups. This presentation will highlight the initial phases of the CCBC process, which has as its outcomes the identification of effective strategies for reaching legislators, climate literacy and training needs for both policy makers and trainers, and effective metrics to evaluate the success of these efforts. Specific attention is given to evaluating the process from initial needs assessment to the effectiveness of the workshops. Web curriculum and training models made available on the internet will also be developed, drawing on extensive existing Web resources for other training efforts and converted to meet the needs of these two groups. CCBC will also leverage CLIMAS’ long history of

  7. 75 FR 43944 - Defense Science Board; Task Force on Trends and Implications of Climate Change for National and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  8. 75 FR 34438 - Defense Science Board Task Force on Trends and Implications of Climate Change for National and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  9. Assessment of Equal Opportunity Climate: Results of the 1989 Navy-wide Survey

    DTIC Science & Technology

    1992-05-01

    Navy Personnel Research and Development Center San Diego, Califomia 92152-6800 TR-92-14 May 1992 AD-A251 318 Assessment of Equal Opportunity Climate...9 2 6 04 Approved for publc release; distibution is unlimited. NPRDC-TR-92-14 May 1992 Assessment of Equal Opportunity Climate: Results of the 1989...FUNDING NUMBERS Assessment of Equal Opportunity Climate: Reimbursable Results of the 1989 Navy-wide Survey N0002289WREE562 N0002290POEE562 6. AUTHOR(S

  10. Adapting natural resource management to climate change: The South Central Oregon and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2015-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  11. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    USGS Publications Warehouse

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  12. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    PubMed

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  13. Using climate derivatives for assessment of meteorological parameter relationships in RCM and observations

    NASA Astrophysics Data System (ADS)

    Timuhins, Andrejs; Bethers, Uldis; Bethers, Peteris; Klints, Ilze; Sennikovs, Juris; Frishfelds, Vilnis

    2017-04-01

    analysed from different perspectives, for example, we found that forest fire index has qualitative differences depending on the data used in calculation either using observed data or RCM data, which could be caused by the differences in precipitation and temperature cross correlation (Bethers, P., Sennikovs, J. and Timuhins, A. 2011) The present work has been funded by the Latvian National Research Program on the "The value and dynamic of Latvia's ecosystems under changing climate" (EVIDEnT). References Sennikovs, J. and Bethers, U. (2009), Statistical downscaling method of regional climate model results for hydrological modelling. 18th World IMACS / MODSIM Congress, Cairns, Australia Bethers, P., Sennikovs, J. and Timuhins, A. (2011), Skill assessment of regional climate models:T/P correlations impacts on hydrological modeling. Geophysical Research Abstracts Vol. 13, EGU2011-7068, 2011 EGU General Assembly 2011

  14. A Regional Climate Model Evaluation System based on contemporary Satellite and other Observations for Assessing Regional Climate Model Fidelity

    NASA Astrophysics Data System (ADS)

    Waliser, D. E.; Kim, J.; Mattman, C.; Goodale, C.; Hart, A.; Zimdars, P.; Lean, P.

    2011-12-01

    Evaluation of climate models against observations is an essential part of assessing the impact of climate variations and change on regionally important sectors and improving climate models. Regional climate models (RCMs) are of a particular concern. RCMs provide fine-scale climate needed by the assessment community via downscaling global climate model projections such as those contributing to the Coupled Model Intercomparison Project (CMIP) that form one aspect of the quantitative basis of the IPCC Assessment Reports. The lack of reliable fine-resolution observational data and formal tools and metrics has represented a challenge in evaluating RCMs. Recent satellite observations are particularly useful as they provide a wealth of information and constraints on many different processes within the climate system. Due to their large volume and the difficulties associated with accessing and using contemporary observations, however, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL and UCLA have developed the Regional Climate Model Evaluation System (RCMES) to help make satellite observations, in conjunction with in-situ and reanalysis datasets, more readily accessible to the regional modeling community. The system includes a central database (Regional Climate Model Evaluation Database: RCMED) to store multiple datasets in a common format and codes for calculating and plotting statistical metrics to assess model performance (Regional Climate Model Evaluation Tool: RCMET). This allows the time taken to compare model data with satellite observations to be reduced from weeks to days. RCMES is a component of the recent ExArch project, an international effort for facilitating the archive and access of massive amounts data for users using cloud-based infrastructure, in this case as applied to the study of climate and climate change. This presentation will describe RCMES and demonstrate its utility using examples

  15. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  16. Climate change vulnerability assessment of forests in the Southwest USA

    Treesearch

    James H. Thorne; Hyeyeong Choe; Peter A. Stine; Jeanne C. Chambers; Andrew Holguin; Amber C. Kerr; Mark W. Schwartz

    2017-01-01

    Climate change effects are already apparent in some Southwestern US forests and are expected to intensify in the coming decades, via direct (temperature, precipitation) and indirect (fire, pests, pathogens) stressors. We grouped Southwestern forests into ten major types to assess their climate exposure by 2070 using two global climate models (GCMs) and two emission...

  17. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive tomore » alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes

  18. Carbon dioxide and climate: a second assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less

  19. Developing a Pilot Indicator System for U.S. Climate Changes, Impacts, Vulnerabilities, and Responses

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A.; Arndt, D. S.; Pouyat, R. V.; Aicher, R.; Lloyd, A.; Malik, O.; Reyes, J. J.; Anderson, S. M.

    2014-12-01

    The National Climate Indicators System is being developed as part of sustained assessment activities associated with the U.S. National Climate Assessment (NCA). The NCA is conducted under the U.S. Global Change Research Program, which is required to provide a report to Congress every 4 years. The National Climate Indicators System is a set of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information. The Indicators System will address questions important to multiple audiences including (but not limited to) nonscientists (e.g., Congress, U.S. citizens, students), resource managers, and state and municipal planners in a conceptually unified framework. The physical, ecological, and societal indicators will be scalable, to provide information for indicators at national, state, regional, and local scales. The pilot system is a test of the Indicators System for evaluation purposes to assess the readiness of indicators and usability of the system. The National Climate Indicator System has developed a pilot given the recommendations of over 150+ scientists and practitioners and 14 multidisciplinary teams, including, for example, greenhouse gases, forests, grasslands, water, human health, oceans and coasts, and energy. The pilot system of indicators includes approximately 20 indicators that are already developed, scientifically vetted, and implementable immediately. Specifically, the pilot indicators include a small set of global climate context indicators, which provide context for the national or regional indicators, as well as a set of nationally important U.S. natural system and human sector indicators. The purpose of the pilot is to work with stakeholder communities to evaluate the system and the individual indicators using a robust portfolio of evaluation studies, which

  20. Assessment of climate-driven variations in malaria incidence in Swaziland: toward malaria elimination.

    PubMed

    Chuang, Ting-Wu; Soble, Adam; Ntshalintshali, Nyasatu; Mkhonta, Nomcebo; Seyama, Eric; Mthethwa, Steven; Pindolia, Deepa; Kunene, Simon

    2017-06-01

    Swaziland aims to eliminate malaria by 2020. However, imported cases from neighbouring endemic countries continue to sustain local parasite reservoirs and initiate transmission. As certain weather and climatic conditions may trigger or intensify malaria outbreaks, identification of areas prone to these conditions may aid decision-makers in deploying targeted malaria interventions more effectively. Malaria case-surveillance data for Swaziland were provided by Swaziland's National Malaria Control Programme. Climate data were derived from local weather stations and remote sensing images. Climate parameters and malaria cases between 2001 and 2015 were then analysed using seasonal autoregressive integrated moving average models and distributed lag non-linear models (DLNM). The incidence of malaria in Swaziland increased between 2005 and 2010, especially in the Lubombo and Hhohho regions. A time-series analysis indicated that warmer temperatures and higher precipitation in the Lubombo and Hhohho administrative regions are conducive to malaria transmission. DLNM showed that the risk of malaria increased in Lubombo when the maximum temperature was above 30 °C or monthly precipitation was above 5 in. In Hhohho, the minimum temperature remaining above 15 °C or precipitation being greater than 10 in. might be associated with malaria transmission. This study provides a preliminary assessment of the impact of short-term climate variations on malaria transmission in Swaziland. The geographic separation of imported and locally acquired malaria, as well as population behaviour, highlight the varying modes of transmission, part of which may be relevant to climate conditions. Thus, the impact of changing climate conditions should be noted as Swaziland moves toward malaria elimination.

  1. 76 FR 55364 - Request for Information: Technical Inputs and Assessment Capacity Related to Regional, Sectoral...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ..., and Cross-Cutting Assessments for the 2013 U.S. National Climate Assessment (NCA) Report and the... Climate Assessment (NCA) regional, sectoral, and cross-cutting topics proposed for the 2013 NCA report and... report outline, and information about the National Climate Assessment Development and Advisory Committee...

  2. Assessing School Climate

    ERIC Educational Resources Information Center

    Cohen, Jonathan; Pickeral, Terry; McCloskey, Molly

    2009-01-01

    Compelling empirical research shows that a positive and sustained school climate promotes students' academic achievement and healthy development. Not surprisingly, a positive school climate also promotes teacher retention, which itself enhances student success. Yet the knowledge of the effects of school climate on learning has not been translated…

  3. Environmental water demand assessment under climate change conditions.

    PubMed

    Sarzaeim, Parisa; Bozorg-Haddad, Omid; Fallah-Mehdipour, Elahe; Loáiciga, Hugo A

    2017-07-01

    Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010-2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010-2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7-5.2 and 1.9-9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9-7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper's methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.

  4. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data and Services at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Vollmer, Bruce; Teng, Bill; Jasinski, Michael; Mocko, David; Loeser, Carlee; Kempler, Steven

    2016-01-01

    The National Climate Assessment-Land Data Assimilation System (NCA-LDAS) is an Integrated Terrestrial Water Analysis, and is one of NASAs contributions to the NCA of the United States. The NCA-LDAS has undergone extensive development, including multi-variate assimilation of remotely-sensed water states and anomalies as well as evaluation and verification studies, led by the Goddard Space Flight Centers Hydrological Sciences Laboratory (HSL). The resulting NCA-LDAS data have recently been released to the general public and include those from the Noah land-surface model (LSM) version 3.3 (Noah-3.3) and the Catchment LSM version Fortuna-2.5 (CLSM-F2.5). Standard LSM output variables including soil moistures temperatures, surface fluxes, snow cover depth, groundwater, and runoff are provided, as well as streamflow using a river routing system. The NCA-LDAS data are archived at and distributed by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The data can be accessed via HTTP, OPeNDAP, Mirador search and download, and NASA Earth data Search. To further facilitate access and use, the NCA-LDAS data are integrated into the NASA Giovanni, for quick visualization and analysis, and into the Data Rods system, for retrieval of time series of long time periods. The temporal and spatial resolutions of the NCA-LDAS data are, respectively, daily-averages and 0.125x0.125 degree, covering North America (25N 53N; 125W 67W) and the period January 1979 to December 2015. The data files are in self-describing, machine-independent, CF-compliant netCDF-4 format.

  5. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    NASA Technical Reports Server (NTRS)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  6. National Assessment of Writing: Useless and Uninteresting?

    ERIC Educational Resources Information Center

    Maxwell, John C.

    1973-01-01

    Points out flaws in the current National Assessment of Writing model and its results, but concludes that the National Assessment is a step in the right direction. (RB) Aspect of National Assessment (NAEP) dealt with in this document: Procedures (Exercise Development).

  7. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  8. Projected avifaunal responses to climate change across the U.S. National Park System.

    PubMed

    Wu, Joanna X; Wilsey, Chad B; Taylor, Lotem; Schuurman, Gregor W

    2018-01-01

    Birds in U.S. national parks find strong protection from many longstanding and pervasive threats, but remain highly exposed to effects of ongoing climate change. To understand how climate change is likely to alter bird communities in parks, we used species distribution models relating North American Breeding Bird Survey (summer) and Audubon Christmas Bird Count (winter) observations to climate data from the early 2000s and projected to 2041-2070 (hereafter, mid-century) under high and low greenhouse gas concentration trajectories, RCP8.5 and RCP2.6. We analyzed climate suitability projections over time for 513 species across 274 national parks, classifying them as improving, worsening, stable, potential colonization, and potential extirpation. U.S. national parks are projected to become increasingly important for birds in the coming decades as potential colonizations exceed extirpations in 62-100% of parks, with an average ratio of potential colonizations to extirpations of 4.1 in winter and 1.4 in summer under RCP8.5. Average species turnover is 23% in both summer and winter under RCP8.5. Species turnover (Bray-Curtis) and potential colonization and extirpation rates are positively correlated with latitude in the contiguous 48 states. Parks in the Midwest and Northeast are expected to see particularly high rates of change. All patterns are more extreme under RCP8.5 than under RCP2.6. Based on the ratio of potential colonization and extirpation, parks were classified into overall trend groups associated with specific climate-informed conservation strategies. Substantial change to bird and ecological communities is anticipated in coming decades, and current thinking suggests managing towards a forward-looking concept of ecological integrity that accepts change and novel ecological conditions, rather than focusing management goals exclusively on maintaining or restoring a static set of historical conditions.

  9. Projected avifaunal responses to climate change across the U.S. National Park System

    PubMed Central

    Wilsey, Chad B.; Taylor, Lotem; Schuurman, Gregor W.

    2018-01-01

    Birds in U.S. national parks find strong protection from many longstanding and pervasive threats, but remain highly exposed to effects of ongoing climate change. To understand how climate change is likely to alter bird communities in parks, we used species distribution models relating North American Breeding Bird Survey (summer) and Audubon Christmas Bird Count (winter) observations to climate data from the early 2000s and projected to 2041–2070 (hereafter, mid-century) under high and low greenhouse gas concentration trajectories, RCP8.5 and RCP2.6. We analyzed climate suitability projections over time for 513 species across 274 national parks, classifying them as improving, worsening, stable, potential colonization, and potential extirpation. U.S. national parks are projected to become increasingly important for birds in the coming decades as potential colonizations exceed extirpations in 62–100% of parks, with an average ratio of potential colonizations to extirpations of 4.1 in winter and 1.4 in summer under RCP8.5. Average species turnover is 23% in both summer and winter under RCP8.5. Species turnover (Bray-Curtis) and potential colonization and extirpation rates are positively correlated with latitude in the contiguous 48 states. Parks in the Midwest and Northeast are expected to see particularly high rates of change. All patterns are more extreme under RCP8.5 than under RCP2.6. Based on the ratio of potential colonization and extirpation, parks were classified into overall trend groups associated with specific climate-informed conservation strategies. Substantial change to bird and ecological communities is anticipated in coming decades, and current thinking suggests managing towards a forward-looking concept of ecological integrity that accepts change and novel ecological conditions, rather than focusing management goals exclusively on maintaining or restoring a static set of historical conditions. PMID:29561837

  10. Assessing adaptation to the health risks of climate change: what guidance can existing frameworks provide?

    PubMed

    Füssel, Hans-Martin

    2008-02-01

    Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.

  11. Mock climate summit: teaching and assessing learning

    NASA Astrophysics Data System (ADS)

    Schweizer, D.; Gautier, C.; Bazerman, C.

    2003-04-01

    This paper will demonstrate the effectiveness of a Mock Climate Summit as a pedagogical approach for teaching the science and policy aspects of global climate change. The Mock Climate Summit is a student-centered course simulating the Conference of the Parties (COP) where international environmental protocols are negotiated. Compared to traditional lecture-based methods common in the geoscience classroom, the Mock Climate Summit uses negotiations and arguments to teach the interactions between these two “spheres” and demonstrate the depth and breadth of these interactions. Through a detailed assessment of students’ dialogue transcribed from video and audio tapes, we found that the nature of the student dialogue matures rapidly as they are given multiple opportunities to present, negotiate and argue a specific topic. Students’ dialogue progress from hypothetical (what-if) scenarios to action-oriented scenarios and implementation plans. The progression of the students’ dialogue shows increased comfort with the communities’ discourse as they take ownership of the point-of-view associated with their assumed roles.

  12. Mock Climate Summit: Teaching and Assessing Learning

    NASA Astrophysics Data System (ADS)

    Schweizer, D.; Gautier, C.; Bazerman, C.

    2003-04-01

    This paper will demonstrate the effectiveness of a Mock Climate Summit as a pedagogical for teaching the science and policy aspects of global climate change. The Mock Climate Summit is a student-centered course simulating the Conference of the Parties (COP) where international environmental protocols are negotiated. Compared to traditional lecture-based methods common in the geoscience classroom, the Mock Climate Summit uses negotiations and arguments to teach the interactions between these two "spheres" and demonstrate the depth and breadth of these interactions. Through a detailed assessment of students' dialogue transcribed from video and audio tapes, we found that the nature of the student dialogue matures rapidly as they are given multiple opportunities to present, negotiate and argue a specific topic. Students' dialogue progress from hypothetical (what-if) scenarios to action-oriented scenarios and implementation plans. The progression of the students' dialogue shows increased comfort with the communities' discourse as they take ownership of the point-of-view associated with their assumed roles.

  13. Considerations in Starting Climate Change Research

    NASA Astrophysics Data System (ADS)

    Long, J. C. S.; Morgan, G.; Hamburg, S.; Winickoff, D. E.

    2014-12-01

    Many have called for climate engineering research because the growing risks of climate change and the geopolitical and national security risks of climate remediation technologies are real. As the topic of climate engineering remains highly controversial, national funding agencies should evaluate even modest outdoor climate engineering research proposals with respect to societal, legal, and risk considerations in making a decision to fund or not to fund. These concerns will be extremely difficult to coordinate internationally if they are not first considered successfully on a national basis. Assessment of a suite of proposed research projects with respect to these considerations indicates we would learn valuable lessons about how to govern research by initiating a few exemplar projects. The first time an issue arrives it can be very helpful if it there are specific cases, not a broad class of projects. A good first case should be defensible and understandable, fit within the general mandate of existing research programs, have negligible physical risk, small physical scale and short duration. By focusing on a specific case, the discussion can be held with limits and help to establish some track record in dealing with a controversial subject and developing a process for assigning appropriate scrutiny and outreach. Even at an early stage, with low risk, small-scale experiments, obtaining broad-based advice will aid in dealing with the controversies. An independent advisory body can provide guidance about a wide spectrum of physical and social risks of funding the experiment compared to societal benefit of gaining understanding. Clearly identifying the research as climate engineering research avoids sending research down a path that might violate public trust and provide an important opportunity to grow governance and public engagement at an early stage. Climate engineering research should be seen in the context of all approaches to dealing with the climate problem

  14. Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments

    NASA Astrophysics Data System (ADS)

    Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.

    2006-12-01

    Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.

  15. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  16. National Rivers and Streams Assessment

    EPA Pesticide Factsheets

    The NRSA is a collaborative, statistical survey of the nation's rivers and streams. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  17. Climate change impact assessments on the water resources of India under extensive human interventions.

    PubMed

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  18. Remote sensing of ecosystem vulnerability: Assessing climate-vegetation-livestock interactions in Mongolia

    NASA Astrophysics Data System (ADS)

    Kang, S.; Hong, S. Y.

    2015-12-01

    Stock breeding is a major economic sector of Mongolia, supporting unique cultural and social identity. In spite of its long history, contemporary pastoralism increases interventions on climate-vegetation interactions substantially, which results in negative feedbacks to livestock sector. This presentation draws an attention how natural processes of climate and vegetation interact with livestock dynamics. Massive loss of livestock and wildlife animal during winter seasons (dzud) is an endemic climatic disaster in the Central Asia grasslands but the mechanisms are not well understood yet. Recent national-wide sever Dzud occurred during 2009-2010 winter in Mongolia. The dzud mechanisms were investigated by developing a schematic mechanism model on climate-vegetation-livestock interactions and applying it for quantitative statistical analysis. Various remote sensing products were integrated to prepare the status and process variables of the schematic model, including daily temperature, precipitation, evapotranspiration, and primary production and biomass for a period from 2003 to 2010. At a lower level of administration (i.e., 'soum' generally larger than 1000 km2), stepwise multiple regression analysis was conducted to find significant factors of inter-annual livestock change. As results, linear regression models were successfully produced at 70% of soums. Summer and winter variables appeared equally important in controlling livestock dynamics. The primary factor of each soum showed certain regional patterns incident well with climate severity and foraging resource availability (e.g. temperature in north, dryness in south, and NDVI in middle). Regional pattern of herbaceous biodiversity depends on both climate and disturbance (i.e. fire and grazing) gradients but the livestock grazing effect appeared localized normally within 1.5 km from livestock shelter or wells. At a local-scale (i.e. family level smaller than 100 km2), species composition seems to provide useful

  19. Modeling current climate conditions for forest pest risk assessment

    Treesearch

    Frank H. Koch; John W. Coulston

    2010-01-01

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...

  20. Probabilistic Climate Scenario Information for Risk Assessment

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  1. National Wetland Condition Assessment 2011: A ...

    EPA Pesticide Factsheets

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the public and decision makers with nationally consistent and representative information on the condition of all the nation's waters. The National Wetland Condition report provides information on the biological condition of the nation’s wetlands and key stressors that affect them.

  2. Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei

    This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the

  3. Climate Change Impacts and Vulnerability Assessment in Industrial Complexes

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Lee, D. K.

    2016-12-01

    Climate change has recently caused frequent natural disasters, such as floods, droughts, and heat waves. Such disasters have also increased industrial damages. We must establish climate change adaptation policies to reduce the industrial damages. It is important to make accurate vulnerability assessment to establish climate change adaptation policies. Thus, this study aims at establishing a new index to assess vulnerability level in industrial complexes. Most vulnerability indices have been developed with subjective approaches, such as the Delphi survey and the Analytic Hierarchy Process(AHP). The subjective approaches rely on the knowledge of a few experts, which provokes the lack of the reliability of the indices. To alleviate the problem, we have designed a vulnerability index incorporating objective approaches. We have investigated 42 industrial complex sites in Republic of Korea (ROK). To calculate weights of variables, we used entropy method as an objective method integrating the Delphi survey as a subjective method. Finally, we found our method integrating both subjective method and objective method could generate result. The integration of the entropy method enables us to assess the vulnerability objectively. Our method will be useful to establish climate change adaptation policies by reducing the uncertainties of the methods based on the subjective approaches.

  4. Ensemble tropical-extratropical cyclone coastal flood hazard assessment with climate change

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; Lin, N.; Colle, B.

    2016-12-01

    A challenge with quantifying future changes in coastal flooding for the U.S. East Coast is that climate change has varying effects on different types of storms, in addition to raising mean sea levels. Moreover, future flood hazard uncertainties are large and come from many sources. Here, a new coastal flood hazard assessment approach is demonstrated that separately evaluates and then combines probabilities of storm tide generated from tropical cyclones (TCs) and extratropical cyclones (ETCs). The separation enables us to incorporate climate change impacts on both types of storms. The assessment accounts for epistemic storm tide uncertainty using an ensemble of different prior studies and methods of assessment, merged with uncertainty in climate change effects on storm tides and sea levels. The assessment is applied for New York Harbor, under the auspices of the New York City Panel on Climate Change (NPCC). In the New York Bight region and much of the U.S. East Coast, differing flood exceedance curve slopes for TCs and ETCs arise due to their differing physics. It is demonstrated how errors can arise for this region from mixing together storm types in an extreme value statistical analysis, a common practice when using observations. The effects of climate change on TC and ETC flooding have recently been assessed for this region, for TCs using a Global Climate Model (GCM) driven hurricane model with hydrodynamic modeling, and for ETCs using a GCM-driven multilinear regression-based storm surge model. The results of these prior studies are applied to our central estimates of the flood exceedance curve probabilities, transforming them for climate change effects. The results are useful for decision-makers because they highlight the large uncertainty in present-day and future flood risk, and also for scientists because they identify the areas where further research is most needed.

  5. The Second Assessment of the Effects of Climate Change on Federal Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S.

    Hydropower is a key contributor to the US renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power system. Ensuring the sustainable operation of existing hydropower facilities is of great importance to the US renewable energy portfolio and the reliability of electricity grid. As directed by Congress in Section 9505 of the SECURE Water Act (SWA) of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, has prepared a second quinquennial report on examining the potential effectsmore » of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory (ORNL) Technical Memorandum, referred to as the 9505 assessment, describes the technical basis for the report to Congress that was called for in the SWA. To evaluate the potential climate change effects on 132 federal hydropower plants across the entire US, a spatially consistent assessment approach is designed to enable an interregional comparison. This assessment uses a series of models and methods with different spatial resolutions to gradually downscale the global climate change signals into watershed-scale hydrologic projections to support hydropower impact assessment. A variety of historic meteorological and hydrologic observations, hydropower facility characteristics, and geospatial datasets is collected to support model development, calibration, and verification. Among most of the federal hydropower plants throughout the US, the most important climate change effect on hydrology is likely to be the trend toward earlier snowmelt and change of runoff seasonality. Under the projections of increasing winter/spring runoff and decreasing summer/fall runoff, water resource managers may need to consider different water use allocations. With the

  6. Assessing potential changes of chestnut productivity in Europe under future climate conditions

    NASA Astrophysics Data System (ADS)

    Calheiros, T.; Pereira, M. G.; Pinto, J. G.; Caramelo, L.; Gomes-Laranjo, J.; Dacamara, C. C.

    2012-04-01

    distribution of meteorological variables and parameters. In particular, more severe conditions during spring and summer are expected, especially in the Mediterranean area, with less precipitation and higher temperatures. All these changes will have impacts on chestnut fruits and wood in Europe. Dinis, L-T. J., Ferreira-Cardoso, J., Peixoto, F., Costa, R. e Gomes-Laranjo, J., 2011: Study of morphological and chemical diversity in chestnut trees (var. 'Judia') as a function of temperature sum. Cyta- Journal of food, 9(3): 192-199 Gomes-Laranjo et al., 2008: Differences in photosynthetic apparatus of leaves from different sides of chestnut canopy, Photosynthetica, 46, 63-72. Heiniger,U. And Conedera, M., 1992: Chestnut forests and chestnut cultivation in Switzerland. Proceedings of the International Chestnut Conference, West Virginia University, Morgantown, 10-14 July 1992, 175-178. Pereira, M.G., Caramelo, L., Gouveia, C., Gomes-Laranjo, J., Magalhães, M., 2011: Assessment of weather-related risk on chestnut productivity. Nat. Hazards Earth Syst. Sci., 11, 1-12, doi:10.5194/nhess-11-12-011. Wilczynski, S. And Podlaski, R, 2007: The effect of climate on radial growth of horse chestnut (Aesculus hippocastanum L.) in the Swietokrzki National Park in Central Poland, J.For.Res., 12, 24-23.

  7. Linking Physical Climate Research and Economic Assessments of Mitigation Policies

    NASA Astrophysics Data System (ADS)

    Stainforth, David; Calel, Raphael

    2017-04-01

    Evaluating climate change policies requires economic assessments which balance the costs and benefits of climate action. A certain class of Integrated Assessment Models (IAMS) are widely used for this type of analysis; DICE, PAGE and FUND are three of the most influential. In the economics community there has been much discussion and debate about the economic assumptions implemented within these models. Two aspects in particular have gained much attention: i) the costs of damages resulting from climate change - the so-called damage function, and ii) the choice of discount rate applied to future costs and benefits. There has, however, been rather little attention given to the consequences of the choices made in the physical climate models within these IAMS. Here we discuss the practical aspects of the implementation of the physical models in these IAMS, as well as the implications of choices made in these physical science components for economic assessments[1]. We present a simple breakdown of how these IAMS differently represent the climate system as a consequence of differing underlying physical models, different parametric assumptions (for parameters representing, for instance, feedbacks and ocean heat uptake) and different numerical approaches to solving the models. We present the physical and economic consequences of these differences and reflect on how we might better incorporate the latest physical science understanding in economic models of this type. [1] Calel, R. and Stainforth D.A., "On the Physics of Three Integrated Assessment Models", Bulletin of the American Meteorological Society, in press.

  8. Barriers and Opportunities for Local-level Action on Climate ...

    EPA Pesticide Factsheets

    This presentation will highlight findings from a soon-to-be-released report (Climate Change Impacts and Potential Stormwater Responses in the Chesapeake and Great Lakes Regions) that is being developed as a technical input to the National Climate Assessment. The report is the product of a collaborative effort involving the Environmental Protection Agency, the Great Lakes Adaptation Assessment for Cities Project of the Graham Sustainability Institute at the University of Michigan, ICF International, Lake Superior National Estuarine Research Reserve, National Oceanic and Atmospheric Administration Office for Coastal Management, and Old Woman Creek National Estuarine Research Reserve. The report provides key takeaways from eight similar but locally-specific efforts to explore the potential impacts of changing precipitation patterns on stormwater management and consider options (e.g., green infrastructure, low impact development) to address those impacts. The presentation will highlight some of the lessons regarding: incorporating climate change into planning (including dealing with uncertainty); building local capacity; identifying and communicating costs and benefits of green infrastructure; and implementation within the current governance structure. Presentation about workshops held in the Chesapeake Bay and Great Lakes regions to discuss impacts of climate change on stormwater management.

  9. High-resolution climate monitoring on a mountain island: the Saguaro National Park pilot study

    Treesearch

    Michael A. Crimmins

    2005-01-01

    A pilot project to identify climate monitoring needs within Saguaro National Park began in fall 2003. Nine weather stations were deployed across the complex topography of the park to provide insight into the spatial and temporal patterns of climate within the park management unit. This project will provide a valuable baseline for park management and may highlight...

  10. Development of risk matrices for evaluating climatic change responses of forested habitats

    Treesearch

    Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary. Yohe

    2012-01-01

    We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate...

  11. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  12. Experiences with collaborative climate impacts assessments for regional governments in southwestern British Columbia

    NASA Astrophysics Data System (ADS)

    Sobie, S. R.; Murdock, T. Q.

    2016-12-01

    Infrastructure vulnerability assessments and adaptation planning have created demand for detailed information about climate change and extreme events from local and regional governments. Individual communities often have distinct priorities regarding climate change impacts. While projections from climate models are available to investigate these impacts, they are not always applicable or easily interpreted by local agencies. We discuss a series of climate impacts assessments for several regional and local governments in southwestern British Columbia. Each of the assessments was conducted with input from the users on project definition from the start of the process and on interpretation of results throughout each project. To produce sufficient detail for the assessment regions, we produce high-resolution (800m) simulations of precipitation and temperature using downscaled climate model projections. Sets of derived climate parameters tailored to each region are calculated from both standard indices such as CLIMDEX and from an energy-balance snowpack model. Involving user groups from the beginning of the analysis helps to convey the meaning and confidence of each set of climate change parameters to users and also clarifies what projections are feasible or not for impact assessments. We discuss the different levels of involvement and collaboration with each organization, and the resulting decisions implemented following each of the projects.

  13. 75 FR 35458 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... supportive environment in which a utility can take steps to be climate ready. In this meeting, the Working... Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... fourth in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  14. Embedding climate change risk assessment within a governance context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Benjamin L

    Climate change adaptation is increasingly being framed in the context of climate risk management. This has contributed to the proliferation of climate change vulnerability and/or risk assessments as means of supporting institutional decision-making regarding adaptation policies and measures. To date, however, little consideration has been given to how such assessment projects and programs interact with governance systems to facilitate or hinder the implementation of adaptive responses. An examination of recent case studies involving Australian local governments reveals two key linkages between risk assessment and the governance of adaptation. First, governance systems influence how risk assessment processes are conducted, by whommore » they are conducted, and whom they are meant to inform. Australia s governance system emphasizes evidence-based decision-making that reinforces a knowledge deficit model of decision support. Assessments are often carried out by external experts on behalf of local government, with limited participation by relevant stakeholders and/or civil society. Second, governance systems influence the extent to which the outputs from risk assessment activities are translated into adaptive responses and outcomes. Technical information regarding risk is often stranded by institutional barriers to adaptation including poor uptake of information, competition on the policy agenda, and lack of sufficient entitlements. Yet, risk assessments can assist in bringing such barriers to the surface, where they can be debated and resolved. In fact, well-designed risk assessments can contribute to multi-loop learning by institutions, and that reflexive problem orientation may be one of the more valuable benefits of assessment.« less

  15. Multi-model approach to assess the impact of climate change on runoff

    NASA Astrophysics Data System (ADS)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a

  16. Assessment of nurses' work climate at Alexandria Main University Hospital.

    PubMed

    Emam, Sanaa Abdel-aziz; Nabawy, Zeinab Mohamed; Mohamed, Azzaa Hassan; Sbeira, Walaa Hashem

    2005-01-01

    Work climate is indicative of how well the organization is realizing its full potential. An accurate assessment of work climate can identify the unnecessary obstacles to nurses interfering with their best performance. The present study aims to assess nurses' work climate at Alexandria Main University Hospital. The study sample included all nurses (N=400) who were working in inpatient medical and surgical units at the Alexandria Main University Hospital who were available at the time of data collection. A structured questionnaire was developed to assess nurses' perceptions regarding the dimensions of work climate. Data was collected by individual interview using the structured questionnaire. Results indicated that the highest percentages of nurses in medical and surgical units perceived that their work climate is characterized by good way of performance management, feeling of responsibility, warmth and supportive relationships, quality of communication, morale, organizational clarity and feeling of identity and belongness to the hospital. Nurses perceived that they are lacking work climate conducive to conflict resolution, participation in decision making, opportunity for training and development, fair rewards and recognition, calculated risks, sufficient resources, effective leadership and teamwork. There were no significant difference between nurses perceptions in medical and surgical units regarding all dimensions of work climate. The highest percentage of nurses in all units were satisfied only with the feeling of responsibility, way of performance management, and quality of communication. Conflict and identity were perceived as the most important areas that need improvement in the hospital. Based on the results recommendations were given to enhance work climate through designing compensation and recognition systems, and negotiate their requirements and accomplishment based on established standards and outcomes measures. Also, encouragement of and planning for

  17. Integrated Assessment and the Relation Between Land-Use Change and Climate Change

    DOE R&D Accomplishments Database

    Dale, V. H.

    1994-10-07

    Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.

  18. The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense

    DTIC Science & Technology

    2016-03-24

    Climate Change Effects: Issues for International and US National Security (Alexandria, VA: The Institute for Defense Analyses, 2009), 3. 3 in...Security Needs Assessment, (New York: United Nations, 2012), 7. 50 Christine Youngblut, Climate Change Effects: Issues for International and US National...Master’s Thesis 3. DATES COVERED (From - To) 10-01-2015 - 03-19-2016 4. TITLE AND SUBTITLE The Climate Change Strategy Gap: Crafting a Strategic 5a

  19. The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense

    DTIC Science & Technology

    2016-03-23

    Climate Change Effects: Issues for International and US National Security (Alexandria, VA: The Institute for Defense Analyses, 2009), 3. 3 in...Security Needs Assessment, (New York: United Nations, 2012), 7. 50 Christine Youngblut, Climate Change Effects: Issues for International and US National...Master’s Thesis 3. DATES COVERED (From - To) 10-01-2015 - 03-19-2016 4. TITLE AND SUBTITLE The Climate Change Strategy Gap: Crafting a Strategic 5a

  20. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  1. Regional climate change-Science in the Southeast

    USGS Publications Warehouse

    Jones, Sonya A.

    2010-01-01

    Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center (http://nccw.usgs.gov/). The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.

  2. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    NASA Astrophysics Data System (ADS)

    Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James

    2014-12-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.

  3. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    PubMed

    Schwartz, Mark W; Dolanc, Christopher R; Gao, Hui; Strauss, Sharon Y; Schwartz, Ari C; Williams, John N; Tang, Ya

    2013-01-01

    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.

  4. Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China

    PubMed Central

    Schwartz, Mark W.; Dolanc, Christopher R.; Gao, Hui; Strauss, Sharon Y.; Schwartz, Ari C.; Williams, John N.; Tang, Ya

    2013-01-01

    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth. PMID:23951188

  5. Climate Adaptation Training for Natural Resource Professionals

    NASA Astrophysics Data System (ADS)

    Sorensen, H. L.; Meyer, N.

    2016-02-01

    The University of Minnesota Sea Grant Program and University of Minensota Extension are coordinating the development of a cohort-based training for natural resource professionals that prepares them with essential aptitude, resources and tools to lead climate adaptation activities in their organizations and municipalities. This course is geared toward the growing cadre of natural resources, water, municipal infrastructure, and human resources professionals who are called upon to lead climate adaptation initiatives but lack core training in climate change science, vulnerability assessment, and adaptation planning. Modeled on pre-existing UMN certificate programs, the online course encompasses approximately 40 contact hours of training. Content builds from basic climate mechanics to change science, vulnerability assessment, downscaled climate modeling, ecosystem response to climate change and strategies communicating climate change to diverse audiences. Minnesota as well as national case studies and expertise will anchor core climate adaptation concepts in a relevant context.

  6. Assessment of composite index methods for agricultural vulnerability to climate change.

    PubMed

    Wiréhn, Lotten; Danielsson, Åsa; Neset, Tina-Simone S

    2015-06-01

    A common way of quantifying and communicating climate vulnerability is to calculate composite indices from indicators, visualizing these as maps. Inherent methodological uncertainties in vulnerability assessments, however, require greater attention. This study examines Swedish agricultural vulnerability to climate change, the aim being to review various indicator approaches for assessing agricultural vulnerability to climate change and to evaluate differences in climate vulnerability depending on the weighting and summarizing methods. The reviewed methods are evaluated by being tested at the municipal level. Three weighting and summarizing methods, representative of climate vulnerability indices in general, are analysed. The results indicate that 34 of 36 method combinations differ significantly from each other. We argue that representing agricultural vulnerability in a single composite index might be insufficient to guide climate adaptation. We emphasize the need for further research into how to measure and visualize agricultural vulnerability and into how to communicate uncertainties in both data and methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Climate and Global Change: Programs and Services Reaching Public and K-12 Audiences at a National Research Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Eastburn, T.; Munoz, R.; Lu, G.; Ammann, C.

    2004-05-01

    The study of climate and global change is an important on-going focal area for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies, and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year. This is accomplished through the implementation of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to exhibits which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 offers visitors a visually engaging and informative overview of information, graphics, artifacts, and interactives describing the Earth system's dynamic processes that contribute to and mediate climate change, the history of our planet's changing climate, and perspectives on geographic locations and societies around the world that have potential to be impacted by a changing climate. Climate Futures, an addition to this exhibit to open in the summer of 2004, will help visitors to understand why scientists seek to model the global climate system and how information about past and current climate are used to validate models and build scenarios for Earth's future climate, while clarifying the effects of natural and human-induced contributions to these predictions. UCAR-EO further strives to enhance public understanding and to dispel misconceptions about climate change by bringing scientists' explanations to visitors who learn about atmospheric sciences while on staff-guided tours and/or while using an audiotour developed in 2003 with a grant from the National Science Foundation. With advanced reservations, a limited number of visitors may experience demonstrations of climate models in the NCAR Visualization Laboratory. An instructional module for approximately 5,000 visiting school children and a teachers guide

  8. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  9. Ecological Assimilation of Land and Climate Observations - the EALCO model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net

  10. Climate: Policy, Modeling, and Federal Priorities (Invited)

    NASA Astrophysics Data System (ADS)

    Koonin, S.; Department Of Energy Office Of The Under SecretaryScience

    2010-12-01

    The Administration has set ambitious national goals to reduce our dependence on fossil fuels and reduce anthropogenic greenhouse gas (GHG) emissions. The US and other countries involved in the U.N. Framework Convention on Climate Change continue to work toward a goal of establishing a viable treaty that would encompass limits on emissions and codify actions that nations would take to reduce emissions. These negotiations are informed by the science of climate change and by our understanding of how changes in technology and the economy might affect the overall climate in the future. I will describe the present efforts within the U.S. Department of Energy, and the federal government more generally, to address issues related to climate change. These include state-of-the-art climate modeling and uncertainty assessment, economic and climate scenario planning based on best estimates of different technology trajectories, adaption strategies for climate change, and monitoring and reporting for treaty verification.

  11. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    PubMed

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Combining satellite derived phenology with climate data for climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  13. Overview of the National Energy-Water System (NEWS) Assessment Framework Study

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Miara, A.; Rosenzweig, B.; Corsi, F.; Piasecki, M.; Celicourt, P.; Fekete, B. M.; Macknick, J.; Melillo, J. M.; Newmark, R. L.; Tidwell, V. C.; Suh, S.; Prousevitch, A.

    2015-12-01

    In practical terms, strategic planning for the nation's economic, social and environmental future increasingly centers on issues relating to fresh water. U.S. energy security is highly dependent on electricity generated by the nation's fleet of thermoelectric power stations, which today contribute 90% to total electricity production. This presentation summarizes the overall structure and recent progress on a study devoted to climate adaptation and the reliability of power sector infrastructure and operations, when viewed through the lens of strategic water issues. The focus is on electric power infrastructure, i.e., the types, spatial distributions and levels of investment in technologies that deliver or could deliver electricity to the U.S. economy. The work is guided by a central hypothesis, that today's portfolio of electric power sector infrastructure is unsustainable in the context of satisfying its water needs under anticipated climate change and rising electricity demands. Insofar as water-mediated feedbacks reverberate throughout the national economy, we include macro-economic perspectives as well. The work is organized around the technical development of the NEWS framework which is then used to evaluate, in the context of anticipated climate, economic change and regulatory context: the performance of the nation's electricity sector, the feasibility of alternative pathways to improve climate adaptation, and impacts of energy technology. Scenarios are co-designed with a stakeholder community, and investment tradeoffs are considered with respect to the productivity of the economy, water availability and aquatic ecosystem condition.

  14. Climate change in safety assessment of a surface disposal facility

    NASA Astrophysics Data System (ADS)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The

  15. Assessments of regional climate change and its impacts in Northern Europe

    NASA Astrophysics Data System (ADS)

    Omstedt, Anders; von Storch, Hans; Reckermann, Marcus; Quante, Markus

    2015-04-01

    Regional climate change assessments are urgently needed to complement the big picture with regional results and scenarios of higher resolution and with relevance for local decision makers and stakeholders. A new type of assessment report originated in the original BACC report of 2008 (BALTEX Assessment of Climate Change for the Baltic Sea region) which has served as role model for other assessments published or in preparation. It represents an approach to assessing and making available current knowledge on regional climate change and its regional impacts on the physical, biogeochemical and biological environment (ecosystems, socio-economic sphere). Reports of this type which are available or underway are the original BACC book (2008), the second BACC book (2015), the climate report for the greater Hamburg area (2011), and the NOSCCA report (North Sea Climate Change Assessment) which is expected to be published in 2016. The assessments are produced by teams of scientists from the region, led by lead authors who recruit experts from relevant topics to contribute. The process is not externally funded and completely based on published scientific evidence, and not biased by political or economic interest groups. The BACC-type reports aim to bring together consolidated knowledge that has broad consensus in the scientific community, but also acknowledging issues for which contradicting opinions are found in the literature, so that no consensus can be reached ("consensus on dissensus"). An international steering committee is responsible for overlooking the process, and all manuscripts are anonymously peer-reviewed by independent international experts. An outstanding outreach aspect of these reports is the close collaboration with regional stakeholders (for the BACC reports: HELCOM, the intergovernmental Baltic Marine Environment Protection Commission and the major regional science-policy interface in the Baltic Sea region; for the Hamburg climate report: the Hamburg city

  16. It's the Heat AND the Humidity -- Assessment of Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health

    NASA Technical Reports Server (NTRS)

    Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual

  17. Assessing Student Learning About Climate Change With Earth System Place-Based Geospatial Data

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Krumhansl, R. A.; Acker, J. G.; Manitakos, J.; Elston, A.

    2012-12-01

    California and Western New York. The data sets also contain geospatially distributed projected values of temperature, precipitation, and land cover in 2050 and 2099, which were derived from the Intergovernmental Panel on Climate Change-sanctioned and National Center for Atmospheric Research-derived A2 climate change scenario. STORE teachers choose from broad open-ended pre-post questions that assess their students' enduring understandings about weather, climate, and ecosystems. Students get the opportunity to build these enduring understandings and a set of adaptive instructional lessons centered on the data. Teachers can also administer broad map interpretation questions that check student understanding of the types of map-based data displays available in the project's geographic information system interfaces, data sets, and instructional materials. The paper will overview these assessments, with special attention to how the items are designed to differentiate student data literacy needs from scientific understanding needs, so that the teacher can follow up with appropriately targeted interventions. Classroom implementations of the assessments are occurring in the 2012-13 school year, and preliminary results will be reported at AGU.

  18. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the con...

  19. Toward a consistent modeling framework to assess multi-sectoral climate impacts.

    PubMed

    Monier, Erwan; Paltsev, Sergey; Sokolov, Andrei; Chen, Y-H Henry; Gao, Xiang; Ejaz, Qudsia; Couzo, Evan; Schlosser, C Adam; Dutkiewicz, Stephanie; Fant, Charles; Scott, Jeffery; Kicklighter, David; Morris, Jennifer; Jacoby, Henry; Prinn, Ronald; Haigh, Martin

    2018-02-13

    Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.

  20. Recent Trends in National Policy on Education for Sustainable Development and Climate Change Education

    ERIC Educational Resources Information Center

    Laessøe, Jeppe; Mochizuki, Yoko

    2015-01-01

    Climate change education (CCE) is a new phenomenon which is gaining increasing significance in the work of international organizations and international non-governmental organizations. Based primarily on a cross-national desk study of national policy documents relevant to CCE in 17 countries, which was commissioned by UNESCO to gain a robust…

  1. Climate-change signals in national atmospheric deposition program precipitation data

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-01-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  2. THE ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM: NATIONAL COASTAL ASSESSMENT - LESSONS LEARNED

    EPA Science Inventory

    The purpose of the Environmental Monitoring and Assessment Program's National Coastal Assessment is to estimate the current status, extent, changes, and trends in ecological indicators of the condition of the nation's coastal resources on a state, regional and national basis. Bas...

  3. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    NASA Astrophysics Data System (ADS)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the

  4. Assessing the Nation's Coastal Waters....Better

    EPA Science Inventory

    The USEPA has been assessing estuarine and coastal condition in the United States since 1999 via the National Coastal Assessment (NCA) and National Aquatic Resources Surveys (NARS) programs. Approximately 1500 randomly selected coastal sites were surveyed annually during summers ...

  5. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  6. A National Study of LGBT Educators' Perceptions of Their Workplace Climate

    ERIC Educational Resources Information Center

    Smith, Nancy J.; Wright, Tiffany; Reilly, Cole; Esposito, Jennifer

    2008-01-01

    The objective for this study was to investigate lesbian, gay, bisexual and transgender (LGBT) educators' perceptions of their workplace climate, the community in which they teach our nation's youth. The survey was posted on Survey Monkey between April 1 and June 30, 2007, to represent the perceptions of LGBT educators' experiences during the…

  7. Vulnerability Assessment of Natural Disasters for Small and Mid-Sized Streams due to Climate Change and Stream Improvement

    NASA Astrophysics Data System (ADS)

    Choi, D.; Jun, H. D.; Kim, S.

    2012-04-01

    Vulnerability assessment plays an important role in drawing up climate change adaptation plans. Although there are some studies on broad vulnerability assessment in Korea, there have been very few studies to develop and apply locally focused and specific sector-oriented climate change vulnerability indicators. Especially, there has seldom been any study to investigate the effect of an adaptation project on assessing the vulnerability status to climate change for fundamental local governments. In order to relieve adverse effects of climate change, Korean government has performed the project of the Major Four Rivers (Han, Geum, Nakdong and Yeongsan river) Restoration since 2008. It is expected that water level in main stream of 4 rivers will be dropped through this project, but flood effect will be mainly occurred in small and mid-sized streams which flows in main stream. Hence, we examined how much the project of the major four rivers restoration relieves natural disasters. Conceptual framework of vulnerability-resilience index to climate change for the Korean fundamental local governments is defined as a function of climate exposure, sensitivity, and adaptive capacity. Then, statistical data on scores of proxy variables assumed to comprise climate change vulnerability for local governments are collected. Proxy variables and estimated temporary weights of them are selected by surveying a panel of experts using Delphi method, and final weights are determined by modified Entropy method. Developed vulnerability-resilience index was applied to Korean fundamental local governments and it is calculated under each scenario as follows. (1) Before the major four rivers restoration, (2) 100 years after represented climate change condition without the major four rivers restoration, (3) After the major four rivers restoration without representing climate change (this means present climate condition) and (4) After the major four rivers restoration and 100 years after represented

  8. Climate Change in the US: Potential Consequences for Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    The U.S. National Assessment identified five major areas of consequences of climate change in the United States: temperature-related illnesses and deaths, health effects related to extreme weather events, air pollution-related health effects, water- and food-borne diseases, and insect-, tick-, and rodent-borne diseases. The U.S. National Assessment final conclusions about these potential health effects will be described. In addition, a summary of some of the new tools for studying human health aspects of climate change as well as environment-health linkages through remotely sensed data and observations will be provided.

  9. How normative interpretations of climate risk assessment affect local decision-making: an exploratory study at the city scale in Cork, Ireland.

    PubMed

    McDermott, T K J; Surminski, S

    2018-06-13

    Urban areas already suffer substantial losses in both economic and human terms from climate-related disasters. These losses are anticipated to grow substantially, in part as a result of the impacts of climate change. In this paper, we investigate the process of translating climate risk data into action for the city level. We apply a commonly used decision-framework as our backdrop and explore where in this process climate risk assessment and normative political judgements intersect. We use the case of flood risk management in Cork city in Ireland to investigate what is needed for translating risk assessment into action at the local city level. Evidence presented is based on focus group discussions at two stakeholder workshops, and a series of individual meetings and phone-discussions with stakeholders involved in local decision-making related to flood risk management and adaptation to climate change, in Ireland. Respondents were chosen on the basis of their expertise or involvement in the decision-making processes locally and nationally. Representatives of groups affected by flood risk and flood risk management and climate adaptation efforts were also included. The Cork example highlights that, despite ever more accurate data and an increasing range of theoretical approaches available to local decision-makers, it is the normative interpretation of this information that determines what action is taken. The use of risk assessments for decision-making is a process that requires normative decisions, such as setting 'acceptable risk levels' and identifying 'adequate' protection levels, which will not succeed without broader buy-in and stakeholder participation. Identifying and embracing those normative views up-front could strengthen the urban adaptation process-this may, in fact, turn out to be the biggest advantage of climate risk assessment: it offers an opportunity to create a shared understanding of the problem and enables an informed evaluation and discussion of

  10. How normative interpretations of climate risk assessment affect local decision-making: an exploratory study at the city scale in Cork, Ireland

    NASA Astrophysics Data System (ADS)

    McDermott, T. K. J.; Surminski, S.

    2018-06-01

    Urban areas already suffer substantial losses in both economic and human terms from climate-related disasters. These losses are anticipated to grow substantially, in part as a result of the impacts of climate change. In this paper, we investigate the process of translating climate risk data into action for the city level. We apply a commonly used decision-framework as our backdrop and explore where in this process climate risk assessment and normative political judgements intersect. We use the case of flood risk management in Cork city in Ireland to investigate what is needed for translating risk assessment into action at the local city level. Evidence presented is based on focus group discussions at two stakeholder workshops, and a series of individual meetings and phone-discussions with stakeholders involved in local decision-making related to flood risk management and adaptation to climate change, in Ireland. Respondents were chosen on the basis of their expertise or involvement in the decision-making processes locally and nationally. Representatives of groups affected by flood risk and flood risk management and climate adaptation efforts were also included. The Cork example highlights that, despite ever more accurate data and an increasing range of theoretical approaches available to local decision-makers, it is the normative interpretation of this information that determines what action is taken. The use of risk assessments for decision-making is a process that requires normative decisions, such as setting `acceptable risk levels' and identifying `adequate' protection levels, which will not succeed without broader buy-in and stakeholder participation. Identifying and embracing those normative views up-front could strengthen the urban adaptation process-this may, in fact, turn out to be the biggest advantage of climate risk assessment: it offers an opportunity to create a shared understanding of the problem and enables an informed evaluation and discussion of

  11. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  12. Strategies for Integrating Content from the USGCRP Climate and Health Assessment into the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Haine, D. B.

    2016-12-01

    That the physical environment shapes the lives and behaviors of people is certainly not news, but communicating the impact of a changing climate on human health and predicting the trajectory of these changes is an active area of study in public health. From air quality concerns to extreme heat to shifts in the range of disease vectors, there are many opportunities to make connections between Earth's changing climate and human health. While many science teachers understand that addressing human health impacts as a result of a changing climate can provide needed relevance, it can be challenging for teachers to do so given an already packed curriculum. This session will share instructional strategies for integrating content from the USGCRP Climate and Health Assessment (CHA) by enhancing, rather than displacing content related to climate science. This presentation will feature a data interpretation activity developed in collaboration with geoscientists at the University of North Carolina's Gillings School of Public Health to convey the connection between air quality, climate change and human health. This classroom activity invites students to read excerpts from the CHA and interpret data presented in the scientific literature, thus promoting scientific literacy. In summarizing this activity, I will highlight strategies for effectively engaging geoscientists in developing scientifically rigorous, STEM-focused educational activities that are aligned to state and national science standards and also address the realities of the science classroom. Collaborating with geoscientists and translating their research into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Thus, the USGCRP Climate and Health Assessment represents an opportunity to cultivate science literacy among K-12 students while providing relevant learning experiences that promote integration of science and engineering practices as

  13. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of

  14. Assessing the impact of climate variability on cropping patterns in Kenya

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  15. Climate | National Oceanic and Atmospheric Administration

    Science.gov Websites

    to help people understand and prepare for climate variability and change. Climate. NOAA From to help people understand and prepare for climate variability and change. LATEST FEATURES // Ocean Jump to Content Enter Search Terms Weather Climate Oceans & Coasts Fisheries Satellites

  16. In Pursuit of a Multi-lateral Dialogue - the Swiss National Centre for Climate Services (NCCS)

    NASA Astrophysics Data System (ADS)

    Michiko Hama, Angela; Croci-Maspoli, Mischa; Liniger, Mark; Schwierz, Cornelia; Stöckli, Reto; Fischer, Andreas; Gubler, Stefanie; Kotlarski, Sven; Rossa, Andrea; Zubler, Elias; Appenzeller, Christof

    2017-04-01

    Kick-starting, fostering and maintaining a dialogue between primarily public and academic actors involved in the co-design, co-delivery and use of climate services is at the core of Switzerland's National Centre for Climate Services (NCCS), which was founded in late 2015 in recognition of the Global Framework for Climate Services (GFCS). This coordination and innovation mechanism is a concerted national effort comprised of seven Federal Agencies and Institutes and further partners from academia committed to implementing the Framework at national to subnational level and creating synergies the world over. The NCCS is to be regarded as vital alongside the Swiss National Adaptation Strategy, and it also contributes to putting words into action with respect to the UN's Sustainable Development Goals, the UNFCCC and the Sendai Framework for Disaster Risk Reduction. The services of the Centre provide information to support policy-makers from national to local level as well as the private sector and society at large in minimising their risks, maximising opportunities and optimising costs in the context of climate change and variability. They are indispensable for setting effective mitigation and adaptation measures and for instigating societal transformation. Hence, the goals of the NCCS are to bundle the existing climate services of the Swiss Federation, co-create new tailored solutions with users, act as a network agent and knowledge broker - to boost climate literacy and enable climate-sensitive decision-making leading to increased resilience. The services reflect the specificities and requirements of the Alpine region and its particular challenges and vulnerabilities. Pursuing a participatory approach, the NCCS has brought together essential key players, acted as a sounding board for governmental stakeholders and their needs, and accordingly defined and populated six priority themes in line with the priority areas of the GFCS. These themes are: natural hazards, health

  17. National-Level Multi-Hazard Risk Assessments in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Murnane, R. J.; Balog, S.; Fraser, S. A.; Jongman, B.; Van Ledden, M.; Phillips, E.; Simpson, A.

    2017-12-01

    National-level risk assessments can provide important baseline information for decision-making on risk management and risk financing strategies. In this study, multi-hazard risk assessments were undertaken for 9 countries in Sub-Saharan Africa: Cape Verde, Ethiopia, Kenya, Niger, Malawi, Mali, Mozambique, Senegal and Uganda. The assessment was part of the Building Disaster Resilience in Sub-Saharan Africa Program and aimed at supporting the development of multi-risk financing strategies to help African countries make informed decisions to mitigate the socio-economic, fiscal and financial impacts of disasters. The assessments considered hazards and exposures consistent with the years 2010 and 2050. We worked with multiple firms to develop the hazard, exposure and vulnerability data and the risk results. The hazards include: coastal flood, drought, earthquake, landslide, riverine flood, tropical cyclone wind and storm surge, and volcanoes. For hazards expected to vary with climate, the 2050 hazard is based on the IPCC RCP 6.0. Geolocated exposure data for 2010 and 2050 at a 15 arc second ( 0.5 km) resolution includes: structures as a function of seven development patterns; transportation networks including roads, bridges, tunnels and rail; critical facilities such as schools, hospitals, energy facilities and government buildings; crops; population; and, gross domestic product (GDP). The 2050 exposure values for population are based on the IPCC SSP 2. Values for other exposure data are a function of population change. Vulnerability was based on openly available vulnerability functions. Losses were based on replacement values (e.g., cost/m2 or cost/km). Risk results are provided in terms of annual average loss and a variety of return periods at the national and Admin 1 levels. Assessments of recent historical events are used to validate the model results. In the future, it would be useful to use hazard footprints of historical events for validation purposes. The

  18. Climate change health assessment: a novel approach for Alaska Native communities.

    PubMed

    Brubaker, Michael Y; Bell, Jacob N; Berner, James E; Warren, John A

    2011-06-01

    Develop a process for assessing climate change impacts on public health that identifies climate-health vulnerabilities and mechanisms and encourages adaptation. Multi-stakeholder, participatory, qualitative research. A Climate Change Health Assessment (CCHA) was developed that involved 4 steps: (1) scoping to describe local conditions and engage stakeholders; (2) surveying to collect descriptive and quantitative data; (3) analysis to evaluate the data; and (4) planning to communicate findings and explore appropriate actions with community members. The health effects related to extreme weather, thinning ice, erosion, flooding, thawing permafrost and changing conditions of water and food resources were considered. The CCHA process was developed and performed in north-west Arctic villages. Refinement of the process took place in Point Hope, a coastal Inupiat village that practices whaling and a variety of other traditional subsistence harvest practices. Local observers identified climate change impacts that resulted in damaged health infrastructure, compromised food and water security and increased risk of injury. Priority health issues included thawing traditional ice cellars, diminished quality of the community water source and increased safety issues related to sea ice change. The CCHA increased awareness about health vulnerability and encouraged informed planning and decision-making. A community-scale assessment process guided by observation-based data can identify climate health impacts, raise awareness and encourage adaptive actions, thereby improving the response capacity of communities vulnerable to climate change.

  19. A new economic assessment index for the impact of climate change on grain yield

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Chou, Jieming; Feng, Guolin

    2007-03-01

    The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional “yield impact of meteorological factor (YIMF)” or “yield impact of weather factor” to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.

  20. CLIMATE IMPACTS ON NUTRIENT FLUXES IN STREAM FLOW IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    As part of a national assessment process, researchers of the Mid-Atlantic Regional Assessment (MARA) are studying the impacts of climate variation and change on the natural and social systems of the Mid-Atlantic Region. This poster presents research investigating climate impacts ...