Sample records for national coal quality

  1. National Coal Quality Inventory (NACQI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less

  2. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  3. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  4. The National Coal Resource Assessment Overview

    USGS Publications Warehouse

    Pierce, Brenda S.; Dennen, Kristin O.

    2009-01-01

    The U.S. Geological Survey (USGS) has completed the National Coal Resource Assessment (NCRA), a multiyear project by the USGS Energy Resources Program, in partnership with State geological surveys in the coal producing regions of the United States. The NCRA is the first digital national coal-resource assessment. Coal beds and zones were assessed in five regions that account for more than 90 percent of the Nation's coal production - (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coastal Plain, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The purpose of this Professional Paper, USGS Professional Paper 1625-F, is to present a tabulation and overview of the assessment results, insight into the methods used in the NCRA, and supplemental information on coal quality, economics, and other factors that affect coal production in the United States.

  5. The World Coal Quality Inventory: A status report

    USGS Publications Warehouse

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  6. 78 FR 71592 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy, Office of Fossil Energy..., notice is hereby given that the National Coal Council (NCC) will be renewed for a two-year period. The... matters relating to coal issues. Additionally, the renewal of the National Coal Council has been...

  7. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  8. 78 FR 7424 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory... 2013 meeting of the National Coal Council. Agenda: 1. Opening Remarks by NCC Chairman John Eaves 2...

  9. 78 FR 23242 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meetings. SUMMARY: This notice announces two meetings of the National Coal Council (NCC). The Federal...: Agenda for Thursday, May 16, 2013 1. Call to Order by John Eaves, Chairman, National Coal Council 2...

  10. 77 FR 29321 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory...., Washington, DC 20585-1290; Telephone: 202-586-0429. SUPPLEMENTARY INFORMATION: Purpose of Meeting: The Coal...

  11. 75 FR 20832 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory... Biomass/Coal Blending to Generate Electricity Council Business: [cir] Finance Report by Committee Chairman...

  12. 76 FR 9765 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory... Chairman Joe Hopf. Presentation by Coal Policy Committee Chairman Frank Blake on the findings and...

  13. 76 FR 57981 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal Advisory.... Presentation by Phil Ren on the Northeast Asia Coal Exchange Center. Presentation by Barry Worthington...

  14. 76 FR 74049 - National Coal Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Office of Fossil Energy, Department of Energy..., notice is hereby given that the National Coal Council will be renewed for a two-year period beginning... general policy matters relating to coal issues. Additionally, the renewal of the Council has been...

  15. FINDINGS OF A SYMPOSIUM ON COAL QUALITY.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Garbini, Susan

    1985-01-01

    The U. S. Geological Survey (USGS) has been doing research on coal quality for almost a century. Most of the work of the USGS regarding coal went into efforts to assess the quantity of coal in the United States, not the quality. On April 9-11, 1985, the U. S. Geological Survey, along with cosponsors - the Association of American State Geologists, the U. S. Department of Energy, the Electric Power Research Institute, and the U. S. Environmental Protection Agency - convened a symposium on coal quality at the headquarters of the USGS in Reston, Virginia. The coal-quality symposium provided a forum for the discussion of a wide variety of topics with regard to coal-quality research and related activities. The coal community took advantage of that opportunity to recommend a large agenda of coal-research needs, not only for the USGS but for the entire spectrum of organizations that either actively pursue or fund research on coal quality.

  16. 78 FR 60866 - National Coal Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... DEPARTMENT OF ENERGY National Coal Council Meeting AGENCY: Department of Energy ACTION: Notice of open meeting SUMMARY: This notice announces a meeting of the National Coal Council (NCC). The Federal... Council: The National Coal Council provides advice and recommendations to the Secretary of Energy on...

  17. Navajo coal and air quality in Shiprock, New Mexico

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2006-01-01

    Among the Navajo people, high levels of respiratory disease, such as asthma, exist in a population with low rates of cigarette smoking. Air quality outdoors and indoors affects respiratory health. Many Navajo Nation residents burn locally mined coal in their homes for heat, as coal is the most economical energy source. The U.S. Geological Survey and Dine College, in cooperation with the Navajo Division of Health, are conducting a study in the Shiprock, New Mexico, area to determine if indoor use of this coal might be contributing to some of the respiratory health problems experienced by the residents. Researchers in this study will (1) examine respiratory health data, (2) identify stove type and use, (3) analyze samples of coal that are used locally, and (4) measure and characterize air quality inside selected homes. This Fact Sheet summarizes the interim results of the study in both English and Navajo.

  18. 76 FR 6605 - National Coal Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... DEPARTMENT OF ENERGY National Coal Council; Meeting AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council (NCC) Coal Policy Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public...

  19. The World Coal Quality Inventory: South America

    USGS Publications Warehouse

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  20. National Coal Quality Inventory (NaCQI) and U.S. Geological Survey Coal Quality Databases

    USGS Publications Warehouse

    ,

    1999-01-01

    Coal will remain a very significant part of U.S. energy needs (fig.l), even though there will continue to be concern about environmental impacts associated with its use. Currently, about 88 percent of U.S. coal production is used by electric utilities. The remaining 12 percent is either exported or used domestically for other industrial applications, such as coke for steel production.

  1. The adaption of coal quality to furnace structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Shun, X.

    1996-12-31

    This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less

  2. Coal-Quality Information - Key to the Efficient and Environmentally Sound Use of Coal

    USGS Publications Warehouse

    Finkleman, Robert B.

    1997-01-01

    The rock that we refer to as coal is derived principally from decomposed organic matter (plants) consisting primarily of the element carbon. When coal is burned, it produces energy in the form of heat, which is used to power machines such as steam engines or to drive turbines that produce electricity. Almost 60 percent of the electricity produced in the United States is derived from coal combustion. Coal is an extraordinarily complex material. In addition to organic matter, coal contains water (up to 40 or more percent by weight for some lignitic coals), oils, gases (such as methane), waxes (used to make shoe polish), and perhaps most importantly, inorganic matter (fig. 1). The inorganic matter--minerals and trace elements--cause many of the health, environmental, and technological problems attributed to coal use (fig. 2). 'Coal quality' is the term used to refer to the properties and characteristics of coal that influence its behavior and use. Among the coal-quality characteristics that will be important for future coal use are the concentrations, distribution, and forms of the many elements contained in the coal that we intend to burn. Knowledge of these quality characteristics in U.S. coal deposits may allow us to use this essential energy resource more efficiently and effectively and with less undesirable environmental impact.

  3. Navajo coal and air quality in Shiprock, New Mexico

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2006-01-01

    Among the Navajo people, high levels of respiratory disease, such as asthma, exist in a population with low rates of cigarette smoking. Air quality outdoors and indoors affects respiratory health. Many Navajo Nation residents burn locally mined coal in their homes for heat, as coal is the most economical energy source. The U.S. Geological Survey and Dine College, in cooperation with the Navajo Division of Health, are conducting a study in the Shiprock, New Mexico, area to determine if indoor use of this coal might be contributing to some of the respiratory health problems experienced by the residents. Researchers in this study will (1) examine respiratory health data, (2) identify stove type and use, (3) analyze samples of coal that are used locally, and (4) measure and characterize air quality inside selected homes. This Fact Sheet summarizes the interim results of the study in both English and Navajo. This Fact Sheet is available in three versions: * English [800-KB PDF file ] * Navajo [computer must have Navajo language fonts installed - 304-KB PDF file] * Image of the Navajo language version [19.8-MB PDF file

  4. Chemical analyses in the World Coal Quality Inventory

    USGS Publications Warehouse

    Tewalt, Susan J.; Belkin, Harvey E.; SanFilipo, John R.; Merrill, Matthew D.; Palmer, Curtis A.; Warwick, Peter D.; Karlsen, Alexander W.; Finkelman, Robert B.; Park, Andy J.

    2010-01-01

    'drift' is an acceptable practice within strictly defined limits. During the denoted period, USGS required that the maximum adjustment of instrument values, guided by calibration standards, was not allowed to exceed 10 percent. However, in some cases, the Inorganic Geochemistry Laboratory released data that were adjusted by more than 10 percent and (or) were not constrained by an adequate number of control standards. Original instrument values no longer exist for about 80 percent of the analyses during this period; therefore, the acceptability of drift corrections for most of the samples analyzed cannot be determined. For these reasons, the WoCQI data from the USGS Inorganic Geochemistry Laboratory should be used with care. For more information, individuals may contact laboratory management at EnergyLabs@usgs.gov with specific questions about particular datasets or analytical attributes. Standard USGS sampling methods were provided and recommended to collaborators, but the analyzed samples may or may not be representative of their locale; for some samples, only limited information is available concerning sample provenance. Single samples cannot represent spatial or temporal variability within a coal area. Geochemical datasets of U.S. coals can be found in the COALQUAL database (Bragg and others, 1997) and the National Coal Quality Inventory (Hatch and others, 2006), as only non-U.S. sample data are presented in the WoCQI. Although the WoCQI does not contain worldwide coverage of coal deposits, it is truly a unique and valuable compilation. The information in the WoCQI should prove useful for identifying possible areas for future global coal research.

  5. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    PubMed

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  6. Quality of selected coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.

    2000-07-01

    As part of the activities conducted under the US-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in five geologically-distinct coal areas in Hungary were selected for proximate and ultimate analyses. In addition, the heat value, forms of sulfur, free-swelling index, equilibrium moisture, Hardgrove grindability index, four-point ash fusion temperatures (both oxidizing and reducing), and apparent specific gravity were determined for each sample. Standard procedures established by the American Society for Testing and Materials (ASTM, 1999) were used. The analytical results will be available in the International Coal Quality Data Base of the USGS. Resultsmore » of the program provide data for comparison with coal quality test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  7. The national coal-resources data system of the U.S. geological survey

    USGS Publications Warehouse

    Carter, M.D.

    1976-01-01

    The National Coal Resources Data System (NCRDS) was designed by the U.S. Geological Survey (USGS) to meet the increasing demands for rapid retrieval of information on coal location, quantity, quality, and accessibility. An interactive conversational query system devised by the USGS retrieves information from the data bank through a standard computer terminal. The system is being developed in two phases. Phase I, which currently is available on a limited basis, contains published areal resource and chemical data. The primary objective of this phase is to retrieve, calculate, and tabulate coal-resource data by area on a local, regional, or national scale. Factors available for retrieval include: state, county, quadrangle, township, coal field, coal bed, formation, geologic age, source and reliability of data, and coal-bed rank, thickness, overburden, and tonnage, or any combinations of variables. In addition, the chemical data items include individual values for proximate and ultimate analyses, BTU value, and several other physical and chemical tests. Information will be validated and deleted or updated as needed. Phase II is being developed to store, retrieve, and manipulate basic point source coal data (e.g., field observations, drill-hole logs), including geodetic location; bed thickness; depth of burial; moisture; ash; sulfur; major-, minor-, and trace-element content; heat value; and characteristics of overburden, roof rocks, and floor rocks. The computer system may be used to generate interactively structure-contour or isoline maps of the physical and chemical characteristics of a coal bed or to calculate coal resources. ?? 1976.

  8. Coal blending preparation for non-carbonized coal briquettes

    NASA Astrophysics Data System (ADS)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  9. 75 FR 64719 - National Coal Council; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY National Coal Council; Notice of Open Meeting AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council..., Department of Energy. Presentation by Mr. Ben Yamagata, Executive Director of the Coal Utilization Research...

  10. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    NASA Astrophysics Data System (ADS)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  11. U.S. Geological Survey coal quality (COALQUAL) database; version 2.0

    USGS Publications Warehouse

    Bragg, L.J.; Oman, J.K.; Tewalt, S.J.; Oman, C.L.; Rega, N.H.; Washington, P.M.; Finkelman, R.B.

    1997-01-01

    The USGS Coal Quality database is an interactive, computerized component of the NCRDS. It contains comprehensive analyses of more than 13,000 samples of coal and associated rocks from every major coal-bearing basin and coal bed in the U.S. The data in the coal quality database represent analyses of the coal as it exists in the ground. The data commonly are presented on an as-received whole-coal basis.

  12. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    USGS Publications Warehouse

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  13. Water-quality trends in the nation's rivers

    USGS Publications Warehouse

    Smith, R.A.; Alexander, R.B.; Wolman, M.G.

    1987-01-01

    Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U. S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.

  14. The US Geological Survey's national coal resource assessment: The results

    USGS Publications Warehouse

    Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.

  15. Analysis of hard coal quality for narrow size fraction under 20 mm

    NASA Astrophysics Data System (ADS)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  16. Relationships between sedimentation, depositional environments, and coal quality: upper Potomac coalfield, West Virginia and Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jake, T.R.

    1987-09-01

    Evaluations were made of sedimentation patterns and depositional environments from approximately 450 core logs and 225 surface exposures in the Upper Potomac coalfield. The relationships between the clastic depositional facies and the distribution and quality of the Bakerstown and upper Freeport coals were also investigated. Data from 61 Bakerstown and 35 upper Freeport coal samples from selected cores indicate a change from uniform coal quality to highly variable coal quality when moving from related interchannel and bay-fill facies to channel, channel-fill, levee, and crevasse-splay facies. Areas of uniform coal quality range from 20-26% ash and 55-62% fixed carbon (weight percent,more » dry basis), whereas areas of highly variable coal quality range from 26-54% ash and 33-55% fixed carbon. The channel and related facies represent areas where increased fresh water was introduced into the topogenous swamp system, causing increased microbial degradation and the concentration of authigenic minerals within the peat material. These conditions, combined with the introduction of detrital minerals, resulted in areas of lower quality coal.« less

  17. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in

  18. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    USGS Publications Warehouse

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  19. Quality of economically extractable coal beds in the Gillette coal field as compared with other Tertiary coal beds in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.

    2002-01-01

    The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).

  20. National coal resource investigations of the United States Geological Survey

    USGS Publications Warehouse

    Wood, Gordon H.

    1977-01-01

    The objective of this report is to provide a record of some of the goals and accomplishments of the coal resource investigations of the U. S. Geological Survey for 1977. Successful completion of these goals will aid the Nation in the years ahead because proper usage of coal resource data may lessen economic displacements resulting from the energy shortage.This report is concerned only with one mineral fuel -- coal -- and only with coal resource investigations in the Geologic Division of the U. S. Geological Survey. Other divisions involved with coal or coal-related work are the Conservation, Water Resources, and Topographic Divisions. It is one of a series of reports on the energy resource studies conducted by the Geological Survey that provide a public record of the objectives, activities, and accomplishments of these programs. Similar reports have been prepared on oil and gas, oil shale, uranium, thorium, and energy-related industrial minerals.This report includes descriptions of the program, each sub-element of the program, individual projects, and a selected list of program publications from 1970-76. It also describes how the program is responsive to Presidential pronouncements and Congressional mandates. The program is cooperative with several Federal bureaus, many state agencies, universities, and industry. This coordination assures that the program supplements the work of these interested groups and is not duplicative.A scientific program such as the coal resource investigations is difficult for the non-involved person to understand solely from the existing reports on various studies made in the program. This report provides an explanation that the scientist, decision maker, personnel of other government agencies, and the layman can use to relate various activities and to gain a better understanding of the relation of coal to the Nation's requirements for energy and of the importance of a carefully planned program on this energy resource.

  1. Boiler Briquette Coal versus Raw Coal: Part II-Energy, Greenhouse Gas, and Air Quality Implications.

    PubMed

    Zhang, Junfeng; Ge, Su; Bai, Zhipeng

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO 2 emission, a 17% reduction in CO emission, a 63% reduction in SO 2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM 2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM 10 . These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM 10 mass emission and a 9-16% increase in fuel cost.

  2. Boiler briquette coal versus raw coal: Part II--Energy, greenhouse gas, and air quality implications.

    PubMed

    Zhang, J; Ge, S; Bai, Z

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost.

  3. Air quality as a constraint to the use of coal in California

    NASA Technical Reports Server (NTRS)

    Austin, T. C.

    1978-01-01

    Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.

  4. Economic effects of western Federal land-use restrictions on U.S. coal markets

    USGS Publications Warehouse

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  5. Model documentation, Coal Market Module of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The internationalmore » area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.« less

  6. Calculation of coal resources using ARC/INFO and Earth Vision; methodology for the National Coal Resource Assessment

    USGS Publications Warehouse

    Roberts, L.N.; Biewick, L.R.

    1999-01-01

    This report documents a comparison of two methods of resource calculation that are being used in the National Coal Resource Assessment project of the U.S. Geological Survey (USGS). Tewalt (1998) discusses the history of using computer software packages such as GARNET (Graphic Analysis of Resources using Numerical Evaluation Techniques), GRASS (Geographic Resource Analysis Support System), and the vector-based geographic information system (GIS) ARC/INFO (ESRI, 1998) to calculate coal resources within the USGS. The study discussed here, compares resource calculations using ARC/INFO* (ESRI, 1998) and EarthVision (EV)* (Dynamic Graphics, Inc. 1997) for the coal-bearing John Henry Member of the Straight Cliffs Formation of Late Cretaceous age in the Kaiparowits Plateau of southern Utah. Coal resource estimates in the Kaiparowits Plateau using ARC/INFO are reported in Hettinger, and others, 1996.

  7. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China.

    PubMed

    Lin, Man-Li; Peng, Wei-Hua; Gui, He-Rong

    2016-04-01

    There is little information available about the hydrochemical characteristics of deep groundwater in the Linhuan coal-mining district, Northern Anhui Province, China. In this study, we report information about the physicochemical parameters, major ions, and heavy metals of 17 groundwater samples that were collected from the coal-bearing aquifer. The results show that the concentrations of total dissolved solids, electrical conductivity, and potassium and sodium (K(+) + Na(+)) in most of the groundwater samples exceeded the guidelines of the World Health Organization (WHO) and the Chinese National Standards for Drinking Water Quality (GB 5749-2006). The groundwater from the coal-bearing aquifer was dominated by the HCO3·Cl-K + Na and HCO3·SO4-K + Na types. Analysis with a Gibbs plot suggested that the major ion chemistry of the groundwater was primarily controlled by weathering of rocks and that the coal-bearing aquifer in the Linhuan coal-mining district was a relatively closed system. K(+) and Na(+) originated from halite and silicate weathering reactions, while Ca(2+) and Mg(2+) originated from the dissolution of calcite, dolomite, and gypsum or anhydrite. Ion exchange reactions also had an influence on the formation of major ions in groundwater. The concentrations of selected heavy metals decreased in the order Mn > Zn > Cr > Cu > Ni > Pb. In general, the heavy metal concentrations were low; however, the Cr, Mn, and Ni concentrations in some of the groundwater samples exceeded the standards outlined by the WHO, the GB 5749-2006, and the Chinese National Standards for Groundwater (GB/T 14848-93). Analysis by various indices (% Na, SAR, and EC), a USSL diagram, and a Wilcox diagram showed that both the salinity and alkalinity of the groundwater were high, such that the groundwater could not be used for irrigating agricultural land without treatment. These results will be significant for water resource exploiting and utilization in

  8. Magnetohydrodynamics and the National Coal Science, Technology, and Engineering Development Acts

    NASA Astrophysics Data System (ADS)

    The organization of a national coal science program and the production of electricity from coal using magnetohydrodynamic processes were the topics of a hearing before the subcommittee on energy research and development. The analysis of commercial energy at electric power plants, with an emphasis on the protection of the environment, were the main issues discussed.

  9. Coal resource assessments using coal availability and recoverability methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbacher, T.J.

    1997-12-01

    The U.S. Geological Survey (USGS), in conjunction with state geological surveys and other federal agencies, has initiated a study and developed methodology to reassess the nation`s major coal resources. This study differs from previous coal resource assessments of the USGS, U.S. Bureau of Mines, and the Department of Energy`s Energy Information Administration, because this program: (1) Identifies and characterizes the coal beds and coal zones that will provide the bulk of the nation`s coal-derived energy during the first quarter of the twenty-first century; (2) organizes geologic, chemical, environmental, and geographic information in digital format and makes these data available tomore » the public through the Internet or other digital media, such as CD ROMs; (3) includes coal resource availability and coal recoverability analyses for selected areas; (4) provides economic assessments and coal recoverability analyses for selected areas; (5) provides methodology to perform socio-economic impact analysis related to coal mining in specific geographical areas as small as a county.« less

  10. 30 CFR 74.9 - Quality assurance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE... registration under ISO Q9001-2000, American National Standard, Quality Management Systems-Requirements... ISO Q9001-2000, American National Standard, Quality Management Systems-Requirements. The Director of...

  11. Quality of Selected Hungarian Coals

    USGS Publications Warehouse

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.; Fodor, B.; Gombar, G.

    2007-01-01

    As part of a program conducted jointly by the U.S. Geological Survey and the Hungarian Geological Survey under the auspices of the United States-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for analysis. The mine areas sampled represent most of the coal mined recently in Hungary. Almost all the coal is used to generate electricity. Coals from the five mines (four underground, one surface) reflect differences in age, depositional setting, organic and inorganic components of the original sediments, and deformational history. Classified according to the ranking system of the American Society for Testing and Materials, the coals range in rank from lignite B (Pliocene[?] coals) to high volatile A bituminous (Jurassic coals). With respect to grade classification, based on seam-weighted averages of moisture, ash, and sulfur contents: (1) all contain high moisture (more than 10 percent), (2) all except the Eocene coals are high (more than 15 percent) in ash yield, and (3) two (Jurassic and Eocene coals) are high in sulfur (more than 3 percent) and three (Cretaceous, Miocene, and Pliocene coals) have medium sulfur contents (1 to 3 percent). Average heat values range from 4,000 to 8,650 British thermal units per pound.

  12. [Evaluation of social demographic aspect of life quality of coal extraction workers in Kouzbass enterprises].

    PubMed

    Ivoĭlov, V M; Semenikhin, V A; Odintseva, O V; Shternis, T A

    2014-01-01

    For assessing influence of social factors on life quality of workers in coal extraction enterpirses of Kemerovo region, the authors used questionnaire SF-36. Life quality parameters of workers engaged into coal extraction in Kemerovo region appeared to lower with age from 20 to 64 years. Life quality parameters on scales of pain, physical functioning and general health are invertedly correlated with age and length of service in hazardous work conditions for coal extraction workers. Life quality of the miners is influenced by the following factors: marital status, educational level and income level of the workers.

  13. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    NASA Astrophysics Data System (ADS)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  14. Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2011-04-01

    Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.

  15. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    USGS Publications Warehouse

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  16. Up against Giants: The National Indian Youth Council, the Navajo Nation, and Coal Gasification, 1974-77

    ERIC Educational Resources Information Center

    Shreve, Bradley Glenn

    2006-01-01

    In the spring of 1977, members of the National Indian Youth Council (NIYC), along with the Coalition for Navajo Liberation, barraged the Secretary of the Interior and the chairman of the Navajo Nation with petitions calling for a halt to the proposed construction of several coal gasification plants on the Navajo Reservation in northwestern New…

  17. Coping with coal quality impacts on power plant operation and maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, R.

    1998-12-31

    The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash depositsmore » and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.« less

  18. Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals

    USGS Publications Warehouse

    Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-01-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

  19. Preliminary report on methodology for calculating coal resources of the Wyodak-Anderson coal zone, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Stricker, Gary D.; Ochs, Allan M.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment of the Wyodak-Anderson coal zone includes reports on the geology, stratigraphy, quality, and quantity of coal. The calculation of resources is only one aspect of the assessment. Without thorough documentation of the coal resource study and the methods used, the results of our study could be misinterpreted. The task of calculating coal resources included many steps, the use of several commercial software programs, and the incorporation of custom programs. The methods used for calculating coal resources for the Wyodak-Anderson coal zone vary slightly from the methods used in other study areas, and by other workers in the National Coal Resource Assessment. The Wyodak-Anderson coal zone includes up to 10 coal beds in any given location. The net coal thickness of the zone at each data point location was calculated by summing the thickness of all of the coal beds that were greater than 2.5 ft thick. The amount of interburden is not addressed or reported in this coal resource assessment. The amount of overburden reported is the amount of rock above the stratigraphically highest coal bed in the zone. The resource numbers reported do not include coal within mine or lease areas, in areas containing mapped Wyodak-Anderson clinker, or in areas where the coal is extrapolated to be less than 2.5 ft thick. The resources of the Wyodak-Anderson coal zone are reported in Ellis and others (1998). A general description of how the resources were calculated is included in that report. The purpose of this report is to document in more detail some of the parameters and methods used, define our spatial data, compare resources calculated using different grid options and calculation methods, and explain the application of confidence limits to the resource calculation.

  20. A study of the United States coal resources

    NASA Technical Reports Server (NTRS)

    Ferm, J. C.; Muthig, P. J.

    1982-01-01

    Geologically significant coal resources were identified. Statistically controlled tonnage estimates for each resource type were prepared. Particular emphasis was placed on the identification and description of coals in terms of seam thickness, inclination, depth of cover, discontinuities caused by faulting and igneous intrusion, and occurrence as isolated or multiseam deposits. The national resource was organized into six major coal provinces: the Appalachian Plateau, the Interior Basins, the Gulf Coastal Plain, the Rocky Mountain Basins, the High Plains, and North Alaska. Each basin within a province was blocked into subareas of homogeneous coal thickness. Total coal tonnage for a subarea was estimated from an analysis of the cumulative coal thickness derived from borehole or surface section records and subsequently categorized in terms of seam thickness, dip, overburden, multiseam proportions, coal quality, and tonnage impacted by severe faulting and igneous intrusions. Confidence intervals were calculated for both subarea and basin tonnage estimates.

  1. Ambient air quality and emission characteristics in and around a non-recovery type coke oven using high sulphur coal.

    PubMed

    Saikia, Jyotilima; Saikia, Prasenjit; Boruah, Ratan; Saikia, Binoy K

    2015-10-15

    The objective of this study is to determine the concentrations of gaseous species and aerosols in and around a non-recovery type coke making oven using high sulphur coals. In this paper, physico-chemical properties of the feed coal sample are reported along with the collection and measurement of the emitted gases (SO2, NO2, and NH3) and aerosol particles (PM2.5, PM10) during the coal carbonization in the oven. The coals used are from northeast India and they are high sulphur in nature. The concentrations of the gases e.g., SO2, NO2 and NH3 emitted are observed to be within the limit of National Ambient Air Quality Standard for 24h. The mean PM10 and PM2.5 concentrations are found to be 125.4 μg/m(3) and 48.6 μg/m(3) respectively, as measured during three days of coke oven operations. About 99% of the SO2 in flue gases is captured by using an alkali treatment during the coke oven operation. A Principal Component Analysis (PCA) after Centred Log Ratio (clr) transformation is also performed to know the positive and negative correlation among the coal properties and the emission parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mapping and Prediction of Coal Workers’ Pneumoconiosis with Bioavailable Iron Content in the Bituminous Coals

    PubMed Central

    Huang, Xi; Li, Weihong; Attfield, Michael D.; Nádas, Arthur; Frenkel, Krystyna; Finkelman, Robert B.

    2005-01-01

    Based on the first National Study of Coal Workers’ Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron’s bioavailability. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal’s toxicity, even before large-scale mining. PMID:16079064

  3. Impacts of coal burning on ambient PM2.5 pollution in China

    NASA Astrophysics Data System (ADS)

    Ma, Qiao; Cai, Siyi; Wang, Shuxiao; Zhao, Bin; Martin, Randall V.; Brauer, Michael; Cohen, Aaron; Jiang, Jingkun; Zhou, Wei; Hao, Jiming; Frostad, Joseph; Forouzanfar, Mohammad H.; Burnett, Richard T.

    2017-04-01

    High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China's large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2. 5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and we conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 µg m-3 (40 %) to the total PM2. 5 concentration at national level (averaged in 74 major cities) and up to 37 µg m-3 (50 %) in the Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor, with a national average contribution of 10 µg m-3 (17 %), followed by coal combustion in power plants and the domestic sector. The national average contribution due to coal combustion is estimated to be 18 µg m-3 (46 %) in summer and 28 µg m-3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and the industrial sector remain at relatively constant levels throughout the year.

  4. Quality of life of coal dust workers without pneumoconiosis in mainland China.

    PubMed

    Yu, Hong-Mei; Ren, Xiao-Wei; Chen, Qian; Zhao, Jing-Yi; Zhu, Ting-Juan; Guo, Zhi-Xi

    2008-01-01

    The purpose of this cross-sectional study was to evaluate the quality of life (QOL) of coal dust workers without pneumoconiosis in mainland China. Three hundred five coal dust workers and 200 non-dust workers without pneumoconiosis from five coal mines in Shanxi province were enrolled in this study. The Chinese World Health Organization Quality of Life-brief version (WHOQOL-BREF) questionnaire was used. Socio-demographic, working, and health factors were also collected. Multiple stepwise regression analysis was used to identify significant factors related to the four domain scores of WHOQOL-BREF. All functional domains of the Chinese WHOQOL-BREF were significantly worse in coal dust workers compared to non-dust workers except for psychological health. For the physical domain of QOL, educational level, working hours, and work danger were the significant factors. In the psychological domain, types of job, welfare satisfaction, work danger, hobbies, smoking, one-child family, and marital status were the predictive factors. Working hours, welfare satisfaction, educational level, and birthplace were the predictive factors for the social domain of QOL. Finally, the predictors for the environmental domain of QOL were types of job, working hours, welfare satisfaction, work danger, self-reported social status, smoking, and drinking. Coal dust workers without pneumoconiosis had worse QOL than non-dust workers but their subjective feelings were positive. There were four distinct models for the various domains of QOL. Corresponding health policies could be developed to improve their QOL.

  5. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources bymore » depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.« less

  6. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  7. Domestic coal resource evaluations: Changes in the coal availability and recoverability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Rohrbacher, T.J.

    1996-12-31

    Coal availability and recoverability studies conducted during the past six years show that, in some regions of the US, economically minable coal resources are not as abundant as have been reported in the past. The US Geological Survey (USGS), US Bureau of Mines (USBM), and State geological agencies have completed detailed resource analysis in the first 15 7.5-minute quadrangle areas in the Central and Northern Appalachian regions and the Illinois Basin. Findings indicate that, in these study areas, 50% of the original coal resource is available for mining, one-half of the remaining resource (or approximately 25% of the original resource)more » is recoverable utilizing current mining technology, and a mere 8% of the total resource can be extracted and marketed profitably. Three major events during 1995 and 1996 have added flexibility, versatility, continuity, and useability to the studies: (1) establishment of the USGS`s National Coal Resource Assessment program in 1995, (2) inclusion of the USBM`s Coal Recoverability Studies into the USGS`s Coal Availability Studies (after the abolishment of the USBM in 1996), and, perhaps most significantly, (3) the new ability to study multiple quadrangle areas in single models (thus allowing a more regional approach) in a similar time frame. Together, these events will allow coal resource information--location, quantity, quality, social and environmental considerations, minability, and economics--to be accessed in databases through one entity.« less

  8. Depletion of Appalachian coal reserves - how soon?

    USGS Publications Warehouse

    Milici, R.C.

    2000-01-01

    Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year. A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, 'potential' reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century. Published by Elsevier Science B.V.Much of the coal consumed in the US since the end of the last century has been produced

  9. Selected worldwide coal activities of the U.S. Geological Survey, with emphasis on their environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SanFilipo, J.R.; Warwick, P.D.

    1995-12-31

    Many of the underdeveloped and developing nations of the world face severe shortages of energy fuels, and many of the industrialized nations that are abandoning centrally-planned economies face collapsing energy distribution networks. These energy-poor nations are typically among the most environmentally stressed. This results in part from the direct effects of outmoded energy technologies and the low quality of available fuel, but it is also a result of the poverty and lack of social and technological infrastructure that invariably attends energy deficits. For such nations, the orderly development of underutilized indigenous coal resources and the upgrading of existing coal technologiesmore » can lead to economically viable sources of energy that are relatively benign from an environmental standpoint, and can contribute to long-term political stability as well. The US Geological Survey has participated in coal studies in a variety of such international settings in recent years. Most of these studies have been commodity related, focusing on coal resource assessments in nations with acute energy shortages and coal quality studies in areas where development has had recognizable environmental impacts. Training of counterparts from the host countries and the transfer of technology are an integral part of the international programs, with the primary goal of developing the ability of the host country to integrate geosciences into energy-policy decision-making.« less

  10. Air quality impact assessment of multiple open pit coal mines in northern Colombia.

    PubMed

    Huertas, José I; Huertas, María E; Izquierdo, Sebastián; González, Enrique D

    2012-01-01

    The coal mining region in northern Colombia is one of the largest open pit mining regions of the world. In 2009, there were 8 mining companies in operation with an approximate coal production of ∼70 Mtons/year. Since 2007, the Colombian air quality monitoring network has reported readings that exceed the daily and annual air quality standards for total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter smaller than 10 μm (PM₁₀) in nearby villages. This paper describes work carried out in order to establish an appropriate clean air program for this region, based on the Colombian national environmental authority requirement for modeling of TSP and PM(10) dispersion. A TSP and PM₁₀ emission inventory was initially developed, and topographic and meteorological information for the region was collected and analyzed. Using this information, the dispersion of TSP was modeled in ISC3 and AERMOD using meteorological data collected by 3 local stations during 2008 and 2009. The results obtained were compared to actual values measured by the air quality monitoring network. High correlation coefficients (>0.73) were obtained, indicating that the models accurately described the main factors affecting particle dispersion in the region. The model was then used to forecast concentrations of particulate matter for 2010. Based on results from the model, areas within the modeling region were identified as highly, fairly, moderately and marginally polluted according to local regulations. Additionally, the contribution particulate matter to the pollution at each village was estimated. Using these predicted values, the Colombian environmental authority imposed new decontamination measures on the mining companies operating in the region. These measures included the relocation of three villages financed by the mine companies based on forecasted pollution levels. Copyright © 2011. Published by Elsevier Ltd.

  11. Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons

    USGS Publications Warehouse

    Warwick, Peter D.

    2005-01-01

    Coal is an important and required energy source for today's world. Current rates of world coal consumption are projected to continue at approximately the same (or greater) levels well into the twenty-first century. This paper will provide an introduction to the concept of coal systems analysis and the accompanying volume of papers will provide examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Coal systems analysis incorporates the various disciplines of coal geology to provide a complete characterization of the resource. The coal system is divided into four stages: (1) accumulation, (2) preservation-burial, (3) diagenesis-coalification, and (4) coal and hydrocarbon resources. These stages are briefly discussed and key references and examples of the application of coal systems analysis are provided.

  12. Stream water quality in the coal region of West Virginia and Maryland

    Treesearch

    Kenneth L. Dyer

    1982-01-01

    This report is a compilation of water quality data for 118 small streams sampled in 27 counties of West Virginia and nine streams in two counties of western Maryland. Forty-eight of these streams drain unmined watersheds; 79 drain areas where coal has been surface mined. Most of these streams were sampled at approximate monthly intervals. The water quality data from...

  13. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  14. Geology, coal quality, and resources of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia

    USGS Publications Warehouse

    Pierce, B.S.; Martirosyan, A.; Malkhasian, G.; Harutunian, S.; Harutunian, G.

    2001-01-01

    The Antaramut-Kurta-Dzoragukh (AKD) coal deposit is a previously unrecognized coal field in north-central Armenia. Coal has been known to exist in the general vicinity since the turn of the century, but coal was thought to be restricted to a small (1 km2) area only near the village of Antaramut. However, through detailed field work and exploratory drilling, this coal deposit has been expanded to at least 20 km2, and thus renamed the Antaramut-Kurtan-Dzoragukh coal field, for the three villages that the coal field encompasses. The entire coal-bearing horizon, a series of tuffaceous sandstones, siltstones, and claystones, is approximately 50 m thick. The AKD coal field contains two coal beds, each greater than 1 m thick, and numerous small rider beds, with a total resource of approximately 31,000,000 metric tonnes. The coals are late Eocene in age, high volatile bituminous in rank, relatively high in ash yield (approximately 40%, as-determined basis) and moderate in sulfur content (approximately 3%, as-determined basis). The two coal beds (No. 1 and No. 2), on a moist, mineral-matter-free basis, have high calorific values of 32.6 MJ/kg (7796 cal/g) and 36.0 MJ/kg (8599 cal/g), respectively. Coal is one of the few indigenous fossil fuel resources occurring in Armenia and thus, the AKD coal field could potentially provide fuel for heating and possibly energy generation in the Armenian energy budget. Published by Elsevier Science B.V.

  15. Hydrology of area 25, Eastern Region, Interior Coal Province, Illinois

    USGS Publications Warehouse

    Zuehls, E.E.; Ryan, G.L.; Peart, D.B.; Fitzgerald, K.K.

    1981-01-01

    The eastern region of the Interior Coal Province has been divided into 11 hydrologic study areas. Area 25, located in west-central Illinois, includes the Spoon River and small tributaries to the Illinois River. Pennsylvanian age rocks underlie most of the study area. Illinois, with the largest reserves of bituminous coal, is second only to Montana in total coal reserves. Loess soils cover most of the study area. Agriculture is the dominant land use. Surface water provides 97% of all the water used. Precipitation averages 34 to 35 inches. Water-quality data has been collected at over 31 sites. Analysis for specific conductance, pH, alkalinity, iron, manganese, sulfate and many trace elements and other water-quality constituents have been completed. These data are available from computer storage through the National Water Data Storage and Retrieval System (WATSTORE). (USGS)

  16. Adaptable Inquiry-Based Activities about National Patterns of Coal and Energy Use

    ERIC Educational Resources Information Center

    Bembenic, Meredith Hill; Cratsley, Chira Endress; Hartwell, Bradley; Guertin, Laura; Furman, Tanya

    2012-01-01

    As the United States strives to achieve energy independence, students need to be literate about energy and environmental issues. In this article, the authors present a lesson about the nation's electricity resources that is part 1 of a free, comprehensive unit on coal and energy that is available online (http://tinyurl.com/coalenergyunit). The…

  17. An overall index of environmental quality in coal mining areas and energy facilities.

    PubMed

    Vatalis, Konstantinos I; Kaliampakos, Demetrios C

    2006-12-01

    An approach to measuring environmental quality and trends in coal mining and industrial areas was attempted in this work. For this purpose, the establishment of a reference scale characterizing the status of environmental quality is proposed by developing an Environmental Quality Index (EQI). The methodology involves three main components: social research, the opinion of environmental experts, and the combination of new or existing indices. A survey of public opinion was carried out to identify the main environmental problems in the region of interest. Environmental experts carried out a survey, and the weights of specific environmental problems were obtained through a fuzzy Delphi method and pairwise comparison. The weight attributed to each environmental problem was computed, using new or existing indices (subindices) in the relevant literature. The EQI comprises a combination of the subindices with their own weights. The methodology was applied to a heavily industrialized coal basin in northwestern Macedonia, Greece. The results show that the new index may be used as a reliable tool for evaluating environmental quality in different areas. In addition, the study of EQI trends on an interannual basis can provide useful information on the efficiency of environmental policies already implemented by the responsible authorities.

  18. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  19. Coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  20. Hydrotreating of coal-derived liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V.

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  1. Coal burning issues. [Book - monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.E.S.

    1980-01-01

    The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less

  2. Coal systems analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, P.D.

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coalmore » Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.« less

  3. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    USGS Publications Warehouse

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  4. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  5. Coal industry of Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetincelik, M.

    1979-09-01

    The known occurrences of hard (bituminous) coal in Turkey are very limited. Total resources are estimated to be 1,500,000,000 metric tons of which 205,000,000 tons are considered to be technically and economically recoverable at the present time. Tertiary lignite deposits are found extensively throughout Turkey. Total resources of lignite are estimated to be about 5,140,000,000 metric tons of which 2,740,000,000 tons are considered to be recoverable. In 1978, Turkey completely nationalized its coal industry whereby the government was authorized to take over all private mines. As a result of this, a major increase in coal production is expected based onmore » a new energy policy. Turkish Coal Enterprises (TKI), a state-owned organization, is now in control of the entire coal industry. TKI was established by law in 1957 and has its headquarters in Ankara. The gradually changing structure of Turkey's national economy from agriculture to increased industrialization has been accompanied by a rise in energy requirements. However, the lack of recent industrial expansion and the decline in the national economy has been due to the shortage of energy. A new energy plan developed for the country has established that, in the future, lignite will be used in far greater proportions for electricity generation (burned in captive plants). The nationalization of Turkey's lignite mines is expected to ensure a coordinated and effective means of meeting the demand.« less

  6. Quality of selected coal seams from Indiana: Implications for carbonization

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Padgett, P.

    2001-01-01

    The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  7. Influences of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms

    EPA Science Inventory

    The storage of coal combustion residue (CCR) in surface water impoundments may have an impact on nearby water quality and aquatic ecosystems. CCR contains leachable trace elements that can enter nearby waters through spills and monitored discharge. It is important, therefore, to ...

  8. The World Coal Quality Inventory (WoCQI)

    USGS Publications Warehouse

    Finkelman, Robert B.; Lovern, Vivian S.

    2001-01-01

    The Issue Policymakers around the world require accurate information on coal, particularly information on coal properties and characteristics, to make informed decisions regarding the best use of indigenous resources, international import needs and export opportunities, domestic and foreign policy objectives, technology transfer opportunities, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues.

  9. Coal assessments and coal research in the Appalachian basin: Chapter D.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Tewalt, Susan J.; Ruppert, Leslie F.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    State geological surveys are concentrating on mapping and correlating coal beds and coal zones and studying CBM potential and production. Both State surveys and the USGS are researching the potential for carbon dioxide sequestration in unmined coal beds and other geologic reservoirs. In addition, the State geological surveys continue their long-term collaboration with the USGS and provide coal stratigraphic data to the National Coal Resources Data System (NCRDS).

  10. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    PubMed

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM 2.5 ), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM 2.5 concentration. Both PM 2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM 2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM 2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM 2.5 concentration increased from an adjusted R 2 of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM 2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM 2.5 at 12 EPA ground stations; further research on PM 2.5 emissions from

  11. Coal Transportation Rate Sensitivity Analysis

    EIA Publications

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  12. Health Implications of Increased Coal Use in the Western States

    PubMed Central

    Guidotti, Tee L.

    1979-01-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803

  13. Health implications of increased coal use in the Western States.

    PubMed

    Guidotti, T L

    1979-07-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report.

  14. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  15. Coal: special report number 2

    USGS Publications Warehouse

    Keenlyne, Kent D.

    1977-01-01

    The Fish and Wildlife Service has extensive biological expertise within the Department of Interior and exerts national leadership in the management and protection of the nation's fish and wildlife resources, their habitat, and environment. Specifically, the Office of Biological Services obtains and assimilates biological and environmental data and identifies additional informational needs and means to provide environmental and biological input into major natural resource decisions. Coal Coordinators assist in carrying out Fish and Wildlife Service involvement in the Interior Department Coal Leasing Program through a multi-stage process designed to assemble existing fish and wildlife inventory data and to prioritize fish and wildlife values in areas subject to coal leasing and associated development. This report is designed to identify possible areas of concern for wildlife and its habitat in Wyoming in the development of coal and the associate implication of land use changes. This report summarizes past and present development of the coal resource in Wyoming in anticipation of future identification of data needs for making sound resource decisions in the development of coal.

  16. Using simulated maps to interpret the geochemistry, formation and quality of the Blue Gem Coal Bed, Kentucky, USA

    USGS Publications Warehouse

    Geboy, Nicholas J.; Olea, Ricardo A.; Engle, Mark A.; Martin-Fernandez, Jose Antonio

    2013-01-01

    This study presents geostatistical simulations of coal-quality parameters, major oxides and trace metals for an area covering roughly 812 km2 of the Blue Gem coal bed in southeastern Kentucky, USA. The Blue Gem, characterized by low ash yield and low sulfur content, is an important economic resource. Past studies have characterized the Blue Gem's geochemistry, palynology and petrography and inferred a depositional setting of a planar peat deposit that transitioned to slightly domed later in its development. These studies have focused primarily on vertical geochemical trends within the coal bed. Simulated maps of chemical elements derived from 45 measured sample locations across the study area provide an opportunity to observe changes in the horizontal direction within the coal bed. As the Blue Gem coal bed shows significant vertical chemical trends, care was taken in this study to try to select samples from a single, middle portion of the coal. By revealing spatial distribution patterns of elements across the middle of the bed, associations between different components of the coal can be seen. The maps therefore help to provide a picture of the coal-forming peat bog at an instant in geologic time and allow interpretation of a depositional setting in the horizontal direction. Results from this middle portion of the coal suggest an association of SiO2 with both K2O and TiO2 in different parts of the study area. Further, a pocket in the southeast of the study area shows elevated concentrations of elements attributable to observed carbonate-phase minerals (MgO, CaO, Ba and Sr) as well as elements commonly associated with sulfide-phase minerals (Cu, Mo and Ni). Areas of relatively high ash yield are observed in the north and south of the mapped area, in contrast to the low ash yields seen towards the east. Additionally, we present joint probability maps where multiple coal-quality parameters are plotted simultaneously on one figure. This application allows researchers

  17. Coal and Open-pit surface mining impacts on American Lands (COAL)

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL

  18. Hydrology of coal-lease areas near Durango, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1985-01-01

    The U.S. Bureau of Land Management leases Federal lands and minerals for coal mining near Durango, Colorado. This report addresses the hydrologic suitability of those lands for coal leasing; the report describes the general hydrology of the Durango area and, more specifically, the hydrology of the Stollsteimer Creek study area 32 miles east of the Durango and the Hay Gulch study area, 12 miles southwest of Durango. The most productive aquifers in the Durango study area are Quaternary alluvium and the tertiary Animas Formation. Water wells completed in alluvium typically yield 5 to 20 gallons/min; wells completed is the Animas Formation yield as much as 50 gallons/min. Water quality in these aquifers is variable, but it generally is suitable for domestic use. The coal-bearing Cretaceous Fruitland and Menefee Formations are mined by surface methods at the Chimney Rock Mine in the Stollsteimer Creek study area and by underground methods at the National King Coal Mine in the Hay Gulch study area. Effects of surface mining in the Stollsteimer Creek area are: (1) Dewatering of an alluvial aquifer; and (2) Local degradation of alluvium water quality by spoil-pile effluent. Effects of underground mining in the Hay Gulch area are: (1) Introduction of water with greater dissolved-solids concentrations into the upper Hay Gulch alluvium from mine runoff; (2) Subsidence fracturing which could dewater streams and the alluvial aquifer. (USGS)

  19. National Recommended Water Quality Criteria

    EPA Pesticide Factsheets

    The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health in surface water for approximately 150 pollutants. These criteria provide guidance for states and tribes to use in adopting water quality standards.

  20. Air quality and climate benefits of long-distance electricity transmission in China

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.

    2017-06-01

    China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.

  1. Effects of coal mine drainage on the water quality of small receiving streams in Washington, 1975-77

    USGS Publications Warehouse

    Packard, F.A.; Skinner, E.L.; Fuste, L.A.

    1988-01-01

    Drainage from abandoned coal mines in western and central Washington has minimal environmental impact. Water quality characteristics that have the most significant environmental impact are suspended sediment and turbidity. Water quality data from 51 abandoned coal mines representing 11 major coal bearing areas indicate that less than 1% of the mine drainage has a pH of 4.5 or less. Fifty percent of the drainage is alkaline and has pH 7.0 and greater, and about 95% of the drainage has pH 6.0 and greater. Less than 2% is acidified to a pH of 5.6, a point where water and free (atmospheric) carbon dioxide are in equilibrium. The area where pH 5.6 or less is most likely to occur is in the Centralia/Chehalis mine district. No significant difference in diversity of benthic organisms was found between stations above and below the mine drainage. However, within the 50-ft downstream reach ostracods were more abundant than above the mine drainage and mayflies, stoneflies, and caddisflies were less abundant than at the control site. Correlations to water quality measurements show that these faunal changes are closely associated with iron and sulfate concentrations. (USGS)

  2. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  3. EPA National Quality System Contacts

    EPA Pesticide Factsheets

    Web links and contacts for the individual quality systems developed in support of the EPA Quality System by each EPA Regional Office, National Program Office and ORD National Research Laboratory and Center.

  4. GIS Representation of Coal-Bearing Areas in Africa

    USGS Publications Warehouse

    Merrill, Matthew D.; Tewalt, Susan J.

    2008-01-01

    The African continent contains approximately 5 percent of the world's proven recoverable reserves of coal (World Energy Council, 2007). Energy consumption in Africa is projected to grow at an annual rate of 2.3 percent from 2004 through 2030, while average consumption in first-world nations is expected to rise at 1.4 percent annually (Energy Information Administration, 2007). Coal reserves will undoubtedly continue to be part of Africa's energy portfolio as it grows in the future. A review of academic and industrial literature indicates that 27 nations in Africa contain coal-bearing rock. South Africa accounts for 96 percent of Africa's total proven recoverable coal reserves, ranking it sixth in the world. This report is a digital compilation of information on Africa's coal-bearing geology found in the literature and is intended to be used in small scale spatial investigations in a Geographic Information System (GIS) and as a visual aid for the discussion of Africa's coal resources. Many maps of African coal resources often include points for mine locations or regional scale polygons with generalized borders depicting basin edges. Point locations are detailed but provide no information regarding extent, and generalized polygons do not have sufficient detail. In this dataset, the polygons are representative of the actual coal-bearing lithology both in location and regional extent. Existing U.S. Geological Survey (USGS) digital geology datasets provide the majority of the base geologic polygons. Polygons for the coal-bearing localities were clipped from the base geology that represented the age and extent of the coal deposit as indicated in the literature. Where the 1:5,000,000-scale geology base layer's ages conflicted with those in the publications, polygons were generated directly from the regional African coal maps (1:500,000 scale, approximately) in the published material. In these cases, coal-bearing polygons were clipped to the literature's indicated coal

  5. Improving Competitiveness of U.S. Coal Dialogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkinos, Angelos

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps

  6. National Coal Utilization Assessment. a preliminary assessment of the health and environmental effects of coal utilization in the Midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less

  7. Coal Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  8. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  9. Coal Fields and Federal Lands of the Conterminous United States

    USGS Publications Warehouse

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  10. Opportunities for wind and solar to displace coal and associated health impacts in Texas

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.; Strasert, B.; Slusarewicz, J.

    2017-12-01

    Texas uses more coal for power production than any other state, but also leads the nation in wind power while lagging in solar. Many analysts expect that more than half of coal power plants may close within the next decade, unable to compete with cheaper natural gas and renewable electricity. To what extent could displacing coal with wind and solar yield benefits for air quality, health, and climate? Here, we present modeling of the ozone, particulate matter, and associated health impacts of each of 15 coal power plants in Texas, using the CAMx model for air quality and BenMAP for health effects. We show that health impacts from unscrubbed coal plants near urban areas can be an order of magnitude larger than some other facilities. We then analyze the temporal patterns of generation that could be obtained from solar and wind farms in various regions of Texas that could displace these coal plants. We find that winds along the southern Gulf coast of Texas exhibit strikingly different temporal patterns than in west Texas, peaking on summer afternoons rather than winter nights. Thus, wind farms from the two regions along with solar farms could provide complementary sources of power to displace coal. We quantify several metrics to characterize the extent to which wind and solar farms in different regions provide complementary sources of power that can reliably displace traditional sources of electricity.

  11. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  12. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    PubMed Central

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; Lerch, Harry; Olea, Ricardo A.; Suitt, Stephen E.; Kolker, Allan

    2010-01-01

    Indoor air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM2.5 concentration in 20 homes was 36.0 μg/m3. This is the first time that PM2.5 has been quantified and characterized inside Navajo reservation residents' homes. PMID:20671946

  13. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    DOE PAGES

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; ...

    2010-01-01

    Indoormore » air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM 2.5 concentration in 20 homes was 36.0  μ g/ m 3 . This is the first time that PM 2.5 has been quantified and characterized inside Navajo reservation residents' homes.« less

  14. Composition and quality of coals in the Huaibei Coalfield, Anhui, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Wang, L.; Chou, C.-L.

    2008-01-01

    The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust. ?? 2007 Elsevier B.V. All rights reserved.

  15. Ground-Water Quality in the Vicinity of Coal-Refuse Areas Reclaimed with Biosolids in Fulton County, Illinois

    USGS Publications Warehouse

    Morrow, William S.

    2007-01-01

    The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.

  16. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  17. Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future

  18. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    NASA Astrophysics Data System (ADS)

    Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.

    2016-10-01

    Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.

  19. Dry cleaning of Turkish coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less

  20. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Gong, Yao; Li, Yufang; Wang, Xin; Fan, Juanjuan; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    It is vitally important for a power plant to determine the coal property rapidly to optimize the combustion process. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) based coal quality analyzer comprising a LIBS apparatus, a sampling equipment, and a control module, has been designed for possible application to power plants for offering rapid and precise coal quality analysis results. A closed-loop feedback pulsed laser energy stabilization technology is proposed to stabilize the Nd: YAG laser output energy to a preset interval by using the detected laser energy signal so as to enhance the measurement stability and applied in a month-long monitoring experiment. The results show that the laser energy stability has been greatly reduced from ± 5.2% to ± 1.3%. In order to indicate the complex relationship between the concentrations of the analyte of interest and the corresponding plasma spectra, the support vector regression (SVR) is employed as a non-linear regression method. It is shown that this SVR method combined with principal component analysis (PCA) enables a significant improvement in cross-validation accuracy by using the calibration set of coal samples. The root mean square error for prediction of ash content, volatile matter content, and calorific value decreases from 2.74% to 1.82%, 1.69% to 1.22%, and 1.23 MJ/kg to 0.85 MJ/kg, respectively. Meanwhile, the corresponding average relative error of the predicted samples is reduced from 8.3% to 5.48%, 5.83% to 4.42%, and 5.4% to 3.68%, respectively. The enhanced levels of accuracy obtained with the SVR combined with PCA based calibration models open up avenues for prospective prediction in coal properties.

  1. NATIONAL WATER-QUALITY ASSESSMENT (NAWQA) PROGRAM

    EPA Science Inventory

    The National Water-Quality Assessment (NAWQA) Program is designed to describe the status and trends in the quality of the Nations ground- and surface-water resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources. ...

  2. Clean coal initiatives in Indiana

    USGS Publications Warehouse

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  3. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  4. USGS compilation of geographic information system (GIS) data representing coal mines and coal-bearing areas in China

    USGS Publications Warehouse

    Trippi, Michael H.; Belkin, Harvey E.; Dai, Shifeng; Tewalt, Susan J.; Chou, Chiu-Jung; Trippi, Michael H.; Belkin, Harvey E.; Dai, Shifeng; Tewalt, Susan J.; Chou, Chiu-Jung

    2015-01-01

    Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled geographic information system (GIS) data representing the known coal mine locations and coal-mining areas of China as of 2001. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of China. Province-scale maps were also created to display the point locations of coal mines and the coal-mining areas. In addition, coal-field outlines from a previously published map by Dai and others (2012) were also digitized and are available for download as a separate GIS data file, and shown in a nation-scale map of China. Chemical data for 332 coal samples from a previous USGS study of China and Taiwan (Tewalt and others, 2010) are included in a downloadable GIS point shapefile, and shown on a nation-scale map of China. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.

  5. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to themore » Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.« less

  6. A geostatistical approach to predicting sulfur content in the Pittsburgh coal bed

    USGS Publications Warehouse

    Watson, W.D.; Ruppert, L.F.; Bragg, L.J.; Tewalt, S.J.

    2001-01-01

    The US Geological Survey (USGS) is completing a national assessment of coal resources in the five top coal-producing regions in the US. Point-located data provide measurements on coal thickness and sulfur content. The sample data and their geologic interpretation represent the most regionally complete and up-to-date assessment of what is known about top-producing US coal beds. The sample data are analyzed using a combination of geologic and Geographic Information System (GIS) models to estimate tonnages and qualities of the coal beds. Traditionally, GIS practitioners use contouring to represent geographical patterns of "similar" data values. The tonnage and grade of coal resources are then assessed by using the contour lines as references for interpolation. An assessment taken to this point is only indicative of resource quantity and quality. Data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the sample data. To develop a quantitative approach, geostatistics were applied to the data on coal sulfur content from samples taken in the Pittsburgh coal bed (located in the eastern US, in the southwestern part of the state of Pennsylvania, and in adjoining areas in the states of Ohio and West Virginia). Geostatistical methods that account for regional and local trends were applied to blocks 2.7 mi (4.3 km) on a side. The data and geostatistics support conclusions concerning the average sulfur content and its degree of reliability at regional- and economic-block scale over the large, contiguous part of the Pittsburgh outcrop, but not to a mine scale. To validate the method, a comparison was made with the sulfur contents in sample data taken from 53 coal mines located in the study area. The comparison showed a high degree of similarity between the sulfur content in the mine samples and the sulfur content represented by the geostatistically derived contours. Published by Elsevier Science B.V.

  7. Map showing general chemical quality of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Chemical analyses of water from about 40 widely scattered springs, 20 coal-exploration holes in the Kaiparowits Plateau, and 7 water wells in the vicinity of the communities of Escalante and Glen Canyon were used to compile this map. All the water samples were from depths of less than 1,000 feet (305 m). Water-quality data were also available from a number of petroleum wells and exploration holes more than 5,000 feet (1,524 m) deep; however, those data were used with considerable discretion because water produced by deep petroleum wells and exploration holes usually is more saline than water found at shallower depths at the drilling sites.Most of the chemical analyses used were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), and Goode (1966, 1969), and the Environmental Impact Statement of the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Little or no ground-water-quality data were available for large areas in the Kaiparowits coal basin. In those areas, the indicated ranged of dissolved-solids concentrations in water from springs and wells are inferred largely from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973). This is especially true for those areas where the designated ranges of dissolved-solids concentrations are 100-1,000 and 500-3,000 mg/l (milligrams per liter).El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided ground-water samples and specific water-quality data collected from their exploratory drill holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  8. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    NASA Astrophysics Data System (ADS)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  9. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  10. Statistical summaries of water-quality data for two coal areas of Jackson County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1982-01-01

    Statistical summaries of water-quality data are compiled for eight streams in two separate coal areas of Jackson County, Colo. The quality-of-water data were collected from October 1976 to September 1980. For inorganic constituents, the maximum, minimum, and mean concentrations, as well as other statistics are presented; for minor elements, only the maximum, minimum, and mean values are included. Least-squares equations (regressions) are also given relating specific conductance of the streams to the concentration of the major ions. The observed range of specific conductance was 85 to 1,150 micromhos per centimeter for the eight sites. (USGS)

  11. Coal resources in environmentally-sensitive lands under federal management

    USGS Publications Warehouse

    Watson, William D.; Tully, John K.; Moser, Edward N.; Dee, David P.; Bryant, Karen; Schall, Richard; Allan, Harold A.

    1995-01-01

    This report presents estimates of coal-bearing acreage and coal tonnage in environmentally-sensitive areas. The analysis was conducted to provide data for rulemaking by the Federal Office of Surface Mining (Watson and others, 1995). The rulemaking clarifies conditions under which coal can be mined in environmentally-sensitive areas. The area of the U.S. is about 2.3 billion acres. Contained within that acreage are certain environmentally-sensitive and unique areas (including parks, forests, and various other Federal land preserves). These areas are afforded special protection under Federal and State law. Altogether these protected areas occupy about 400 million acres. This report assesses coal acreage and coal tonnage in these protected Federal land preserves. Results are presented in the form of 8 map-displays prepared using GIS methods at a national scale. Tables and charts that accompany each map provide estimates of the total acreage in Federal land preserve units that overlap or fall within coal fields, coal-bearing acreage in each unit, and coal tonnage in each unit. Summary charts, compiled from the maps, indicate that about 8% of the Nation's coal reserves are located within environmentally-sensitive Federal land preserves.

  12. Thickness and quality of Springfield Coal Member, Gibson County, Indiana, as a function of differential compaction of precursor sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, D.L.

    1983-09-01

    The Springfield Coal Member is a time transgressive coal that formed during the Pennsylvanian on a delta platform within the slowly subsiding Illinois basin. In Gibson County, Indiana, the locations of the major Galatia channel and the minor Leslie Cemetery channel were determined by differential compaction of precursor sediments beneath this platform. The springfield coal is thick proximal to both channels, but proximal to the Galatia channel it is either a low-sulfur or a high-sulfur coal. It is a low-sulfur coal where it is underlain by a thick platform of shale with some sandstone and overlain by nonmarine shale. Itmore » is a high-sulfur coal where it is underlain by a thick platform of fluvial sandstone and overlain by brackish to marine rocks. Distal to both channels the coal is thin and high in sulfur. At distal locations the Springfield is underlain by a platform of either thick bay-fill sandstone or fluvial sandstone and overlain by brackish to marine shale and limestone. Compaction of pre-Springfield delta sediments allowed for accumulation of thicker peat along the axis of more rapid local subsidence. Compaction of muddy parts of the delta platform proximal to the Galatia channel resulted in rapid subsidence and the deposition of nonmarine shale over the peat. In the areas underlain by bay-fill and fluvial sandstone where compaction was less, the peat became a relatively thin and high-sulfur coal. Differences in coal thickness and quality in this 500 mi/sup 2/ (1,300 km/sup 2/) area of Gibson County can be explained largely by differential compaction and deltaic sedimentation.« less

  13. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  14. Assessing U.S. coal resources and reserves

    USGS Publications Warehouse

    Shaffer, Brian N.

    2017-09-27

    The U.S. Coal Resources and Reserves Assessment Project, as part of the U.S. Geological Survey (USGS) Energy Resources Program, conducts systematic, geology-based, regional assessments of significant coal beds in major coal basins in the United States. These assessments detail the quantity, quality, location, and economic potential of the Nation’s remaining coal resources and reserves and provide objective scientific information that assists in the formulation of energy strategies, environmental policies, land-use management practices, and economic projections.

  15. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  16. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  17. LIBS Analysis for Coal

    NASA Astrophysics Data System (ADS)

    E. Romero, Carlos; De Saro, Robert

    Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.

  18. A comparative analysis of health-related quality of life for residents of U.S. counties with and without coal mining.

    PubMed

    Zullig, Keith J; Hendryx, Michael

    2010-01-01

    We compared health-related quality of life (HRQOL) in mining and non-mining counties in and out of Appalachia using the 2006 Behavioral Risk Factor Surveillance System (BRFSS) survey. Dependent variables included self-rated health, the number of poor physical and mental health days, the number of activity limitation days (in the last 30 days), and the Centers for Disease Control and Prevention Healthy Days Index. Independent variables included the presence of coal mining, Appalachian region residence, metropolitan status, primary care physician supply, and BRFSS behavioral (e.g., smoking, body mass index, and alcohol consumption) and demographic (e.g., age, gender, race, and income) variables. We compared dependent variables across a four-category variable: Appalachia (yes/ no) and coal mining (yes/no). We used SUDAAN Multilog and multiple linear regression models with post-hoc least-squares means to test for Appalachian coal-mining effects after adjusting for covariates. Residents of coal-mining counties inside and outside of Appalachia reported significantly fewer healthy days for both physical and mental health, and poorer self-rated health (p < 0.0005) when compared with referent U.S. non-coal-mining counties, but disparities were greatest for people residing in Appalachian coal-mining areas. Furthermore, results remained consistent in separate analyses by gender and age. Coal-mining areas are characterized by greater socioeconomic disadvantage, riskier health behaviors, and environmental degradation that are associated with reduced HRQOL.

  19. Statistical summaries of water-quality data for streams draining coal-mined areas, southeastern Kansas

    USGS Publications Warehouse

    Bevans, Hugh E.; Diaz, Arthur M.

    1980-01-01

    Summaries of descriptive statistics are compiled for 14 data-collection sites located on streams draining areas that have been shaft mined and strip mined for coal in Cherokee and Crawford Counties in southeastern Kansas. These summaries include water-quality data collected from October 1976 through April 1979. Regression equations relating specific conductance and instantaneous streamflow to concentrations of bicarbonate, sulfate, chloride, fluoride, calcium, magnesium, sodium, potassium, silica, and dissolved solids are presented.

  20. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  1. Assessing the coal resources of the United States

    USGS Publications Warehouse

    Gluskoter, Harold J.; Flores, R.M.; Hatch, J.; Kirschbaum, M.A.; Ruppert, L.F.; Warwick, Peter D.

    1996-01-01

    In 1994, coal production in the United States reached the highest level in history (slightly more than 909 million metric tons or one billion short tons), continuing the upward trend of coal production and utilization that began 34 years ago. Previous assessments of the coal resources of the United States, which were completed as early as 1909, clearly indicated that the total coal resources of the Nation are large and that utilization at the current rate will not soon deplete them.

  2. General surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. 10 refs., 11 figs., 10 tabs.

  3. Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Roberts, Lauara N.R.; Biewick, Laura

    2000-01-01

    This CD-ROM set contains a geologic assessment of coal deposits of the Colorado Plateau region and new resource estimates for selected assessment units within the Colorado Plateau. Original resource estimates (in-place resources before production) for the 12 priority assessment units of the Colorado Plateau exceed one half trillion short tons of coal in beds greater than 1 ft thick and under less than 6,000 ft of overburden. The coal is high quality and low sulfur, and a portion of these resources will provide future energy production for the Nation. Disc 1, in Portable Document Format, contains results of the assessment in summary and (or) technical reports for 12 priority coal assessment units in the Colorado Plateau and also contains an ArcView Data Publisher project, which is an interactive geographic information system of digital data collected during the assessment. Disc 2 contains stratigraphic data bases for seven of the priority coal assessment areas within the Colorado Plateau region and an ArcView project identical to the ArcView Data Publisher project on disc 1 except that it retains some of the functionality that is disabled in the ArcView Data Publisher program.

  4. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and

  5. Report of health and environmental effects of increased coal utilization by the Committee on Health and Environmental Effects of Increased Coal Utilization.

    PubMed

    1980-06-01

    The National Energy Plan announced by President Carter on April 29, 1977 proposed a significant increase in the utilization of the vast domestic deposits of coal to replace the dwindling supplies of oil and natural gas, and increasingly expensive oil from foreign sources, to meet national energy needs. At the same time, in recognition of possible adverse health and ecological consequences of increased coal production and use, the President announced that a special committee would be formed to study this aspect of the National Energy Plan. The Committee held a series of public meetings during November and December 1977 to review a number of special papers on particular problems associated with increased coal utilization. These papers, which were prepared by scientists of the US Environmental Protection Agency; the Department of Energy; the HEW National Institute for Occupational Safety and Health, and the National Institute of Environmental Health Sciences; New York University; and Vanderbilt University; provided essential background information for the deliberations of the Committee and were published in EHP Vol. 33, pp. 127-314, 1979. One paper by A. P. Altschuler et al. is published in this volume of EHP. The Committee's basic finding was that it is safe to proceed with plans to increase the utilization of coal if the following environmental and safety policies are adhered to:* Compliance with Federal and State air, water, and solid waste regulations* Universal adoption and successful operation of best available control technology on new facilities* Compliance with reclamation standards* Compliance with mine health and safety standards* Judicious siting of coal-fired facilitiesThe Committee concluded that, even with the best mitigation policies, there will be some adverse health and environmental effects from the dramatic increase in coal use. However, these will not impact all regions and individuals uniformly. The Committee identified six major areas of

  6. The contribution of residential coal combustion to the air quality in Beijing-Tianjin-Hebei (BTH), China: A case study

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, G.; Junji, C.

    2017-12-01

    In the present study, a persistent heavy haze episode from 13 to 20 January 2014 in Beijing-Tianjin-Hebei (BTH) is simulated using the WRF-CHEM model to evaluate the contribution of residential coal combustion to the air quality. The residential coal used in BTH is replaced by the water-quenched semi-coke with much lower emission factors (EFs) in simulations. The EFs of OC for water-quenched semi-coke (0.12 g kg-1) is 2.42 times lower than that for residential coal used in Beijing-Tianjin (0.29 g kg-1) and 9.17 times in Hebei (1.1 g kg-1). The WRF-CHEM model reasonably well reproduces the spatial distributions and temporal variations of PM2.5 mass concentrations in BTH against the observations over monitoring sites and the temporal variations of aerosol species compared to the AMS measurements in Beijing. On average, the PM2.5 concentration is reduced by around 20 µg m-3 due to the residential coal replacement. Organic aerosols constitute about 62.3% of the PM2.5 reduction in BTH, much higher than the contribution from sulfate (7.0%), nitrate (3.1%), and ammonium (3.1%). In addition, the usage of water-quenched semi-coke in BTH also significantly reduces polycyclic aromatic hydrocarbon (PAHs) concentrations by 50-450 ng m-3 on average. Therefore, the usage of water-quenched semi-coke in BTH could considerably reduce the emissions of air pollutants and decrease the PM2.5 level, beneficial to improvement of the air quality in BTH.

  7. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  8. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...

  9. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the

  10. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities

    PubMed Central

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-01-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; b) full-shift area air samples for dust, metals, and crystalline silica; and c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43–0.48% (4,300–4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2–38 mg/m3) and bag house (21 mg/m3) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1–6.6 mg/m3 total; and 0.1–0.4 mg/m3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  11. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities.

    PubMed

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-05-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m 3 ) and bag house (21 mg/m 3 ) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m 3 total; and 0.1-0.4 mg/m 3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  12. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    NASA Astrophysics Data System (ADS)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  13. Coal from the equator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, P.

    1995-10-01

    In the mid-1970s PT Rio Tinto Indonesia, a wholly owned subsidiary of CRA of Australia, entered into an agreement with BP of the United Kingdom to explore jointly for coal in Indonesia on a 50:50 basis. In 1978, the government of Indonesia invited tenders from foreign companies for the exploration and development of coal resources in eastern and southern Kalimantan (Borneo). The CRA-BP joint venture was successful in bidding for an area of 7,900 km{sup 2} in two blocks extending 300 km along the coast of eastern Kalimantan. In April 1982, PT Kaltim Prima Coal (KPC) entered into an agreementmore » with the Indonesian State Coal Company whereby it could explore, produce, and market coal from the agreed blocks for a period of 30 years. From 1982 to 1986, detailed exploration led to the delineation of several propsects of which the most promising was near the small town of Sangatta, 200 km north of Balikpapan and less than one degree north of the equator. After this exploration period KPC relinquished all but 1,962 km{sup 2} of the original agreement area. In its simplest form, the mining operation can be described as: a series of open pits, coal preparation facilities, 13.7 km of overland conveyor to the coast, and a marine terminal capable of handling bulk carriers of up to 200K dwt. The remote location necessities a fully supportive infrastructure, including a power station, housing, schools, hospitals, water supply, and recreational facilities. In 1994 the mine produced 10M mt coal of which 70% was Prima coal, one of the highest quality internationally traded thermal coals.« less

  14. General surface- and ground-water quality in a coal-resource area near Durango, southwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and Carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. (USGS)

  15. Characteristics of an open-cut coal mine fire pollution event

    NASA Astrophysics Data System (ADS)

    Reisen, Fabienne; Gillett, Rob; Choi, Jason; Fisher, Gavin; Torre, Paul

    2017-02-01

    On 9 February 2014, embers from a nearby grass/shrub fire spotted into an unused part of the Hazelwood open-cut brown coal mine located in the Latrobe Valley of Victoria, Australia and started a fire that spread rapidly and extensively throughout the mine under strong south-westerly winds and burned over a period of 45 days. The close proximity of the town to the coal mine and the low buoyancy of the smoke plume led to the accumulation of dense smoke levels in the township of Morwell (population of 14,000) particularly under south-westerly winds. A maximum daily PM2.5 concentration of 731 μg m-3 and 8-h CO concentration of 33 ppm were measured at Morwell South, the closest residential area located approximately 500 m from the mine. These concentrations were significantly higher than national air quality standards. Air quality monitoring undertaken in the Latrobe Valley showed that smoke from the Hazelwood mine fire affected a wide area, with particle air quality standards also exceeded in Traralgon (population of 25,000) located approximately 13 km from the mine. Pollutant levels were significantly elevated in February, decreased in March once the fire abated and then returned to background levels once the fire was declared safe at the end of March. While the smoke extent was of a similar order of magnitude to other major air pollution events worldwide, a closer look at emissions ratios showed that the open combustion of lignite brown coal in the Hazelwood mine was different to open combustion of biomass, including peat. It suggested that the dominant combustion process was char combustion. While particle and carbon monoxide monitoring started approximately 4 days after the fire commenced when smoke levels were very high, targeted monitoring of air toxics only began on 26 February (17 days after the fire) when smoke levels had subsided. Limited research on emission factors from open-cut coal mine fires make it difficult to assess the likely concentrations of air

  16. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  17. EFFECTS OF RESOURCE DEVELOPMENT ON WATER QUALITY IN THE BIG SOUTH FORK NATIONAL RIVER AND RECREATION AREA, TENNESSEE AND KENTUCKY.

    USGS Publications Warehouse

    Carey, William P.; ,

    1984-01-01

    The South Fork Cumberland River begins in Tennessee at the confluence of the New River and Clear Fork. Strip mining for coal in the New River basin has been ongoing for decades with little reclamation prior to 1977. Water-quality data show that suspended-sediment and dissolved-constituent loads from the New River dominate the water quality in the National River and Recreation Area. The suspended sediment can impart a highly turbid and aesthetically displeasing appearance to the water during low-flow periods which are times of maximum recreational use. High suspended-sediment concentrations are also potentially harmful to the aquatic habitat in the Recreation Area. In addition to the suspended-sediment load, a large supply of coarse material is slowly moving through the channels of the New River basin toward the Recreation Area.

  18. Soil quality index for evaluation of reclaimed coal mine spoil.

    PubMed

    Mukhopadhyay, S; Masto, R E; Yadav, A; George, J; Ram, L C; Shukla, S P

    2016-01-15

    Success in the remediation of mine spoil depends largely on the selection of appropriate tree species. The impacts of remediation on mine soil quality cannot be sufficiently assessed by individual soil properties. However, combination of soil properties into an integrated soil quality index provides a more holistic status of reclamation potentials of tree species. Remediation potentials of four tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo, and Leucaena leucocephala) were studied on reclaimed coal mine overburden dumps of Jharia coalfield, Dhanbad, India. Soil samples were collected under the canopies of the tree species. Comparative studies on the properties of soils in the reclaimed and the reference sites showed improvements in soil quality parameters of the reclaimed site: coarse fraction (-20.4%), bulk density (-12.8%), water holding capacity (+0.92%), pH (+25.4%), EC (+2.9%), cation exchange capacity (+46.6%), organic carbon (+91.5%), N (+60.6%), P (+113%), K (+19.9%), Ca (+49.6%), Mg (+12.2%), Na (+19.6%), S (+46.7%), total polycyclic aromatic hydrocarbons (-71.4%), dehydrogenase activity (+197%), and microbial biomass carbon (+115%). Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Selected indicators include: coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity. The indicator values were converted into a unitless score (0-1.00) and integrated into SQI. The calculated SQI was significantly (P<0.001) correlated with tree biomass and canopy cover. Reclaimed site has 52-93% higher SQI compared to the reference site. Higher SQI values were obtained for sites reclaimed with D.sissoo (+93.1%) and C.siamea (+86.4%). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Preliminary report on the coal resources of the National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Martin, G.C.; Callahan, J.E.

    1978-01-01

    NPR-A, located on the Arctic slope of Northern Alaska, is underlain by a thick sequence of sedimentary rocks of Cretaceous age which attain a thickness of as much as 4600 m (15,000 feet). The bulk of the coal resources occurs in rocks of the Nanushuk Group of Early and Late Cretaceous age. The Nanushuk Group is a wedge-shaped unit of marginal marine and nonmarine rocks that is as thick as 3300 m (11,000 feet) just west of NPR-A. Within the reserve, coal occurs primarily in the middle and thicker portions of this clastic wedge and occurs stratigraphically in the upper half of the section. Specific data on individual coal beds or zones are scarce, and estimates of identified coal resources of about 49.5 billion tons represent a sampling of coal resources too small to give a realistic indication of the potential resources for an area so large. Estimates of undiscovered resources suggest hypothetical resources of between 330 billion and 3.3 trillion tons. The wide range in the undiscovered resource estimates reflects the scarcity and ambiguity of the available data but also suggests the presence of a potentially large coal resource.

  20. Cofiring biomass with coal: Opportunities for Malaysia

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  1. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    USGS Publications Warehouse

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  2. Coal Rank and Stratigraphy of Pennsylvanian Coal and Coaly Shale Samples, Young County, North-Central Texas

    USGS Publications Warehouse

    Guevara, Edgar H.; Breton, Caroline; Hackley, Paul C.

    2007-01-01

    Vitrinite reflectance measurements were made to determine the rank of selected subsurface coal and coaly shale samples from Young County, north-central Texas, for the National Coal Resources Database System State Cooperative Program conducted by the Bureau of Economic Geology at The University of Texas at Austin. This research is the continuation of a pilot study that began in adjacent Archer County, and forms part of a larger investigation of the coalbed methane resource potential of Pennsylvanian coals in north-central Texas. A total of 57 samples of coal and coaly shale fragments were hand-picked from drill cuttings from depths of about 2,000 ft in five wells, and Ro determinations were made on an initial 10-sample subset. Electric-log correlation of the sampled wells indicates that the collected samples represent coal and coaly shale layers in the Strawn (Pennsylvanian), Canyon (Pennsylvanian), and Cisco (Pennsylvanian-Permian) Groups. Coal rank in the initial sample subset ranges from lignite (Ro=0.39), in a sample from the Cisco Group at a depth of 310 to 320 ft, to high volatile bituminous A coal (Ro=0.91) in a sample from the lower part of the Canyon Group at a depth of 2,030 to 2,040 ft.

  3. Origin and influence of coal mine drainage on streams of the United States

    USGS Publications Warehouse

    Powell, J.D.

    1988-01-01

    Degradation of water quality related to oxidation of iron disulfide minerals associated with coal is a naturally occurring process that has been observed since the late seventeenth century, many years before commencement of commercial coal mining in the United States. Disturbing coal strata during mining operations accelerates this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Degraded water quality in the temperate eastern half of the United States is readily detected because of the low mineralization of natural water. Maps are presented showing areas in the eastern United States where concentrations of chemical constituents in water affected by coal mining (pH, dissolved sulfate, total iron, total manganese) exceed background values and indicate effects of coal mining. Areas in the East most affected by mine drainage are in western Pennsylvania, southern Ohio, western Maryland, West Virginia, southern Illinois, western Kentucky, northern Missouri, and southern Iowa. Effects of coal mining on water quality in the more arid western half of the United States are more difficult to detect because of the high degree of mineralization of natural water. Normal background concentrations of constituents are not useful in evaluating effects of coal mine drainage on streams in the more arid West. Three approaches to reduce the effects of coal mining on water quality are: (1) exclusion of oxygenated water from reactive minerals, (2) neutralization of the acid produced, (3) retardation of acid-producing bacteria population in spoil material, by application of detergents that do not produce byproducts requiring disposal. These approaches can be used to help prevent further degradation of water quality in streams by future mining. ?? 1988 Springer-Verlag New York Inc.

  4. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand

    USGS Publications Warehouse

    Flores, R.M.; Sykes, R.

    1996-01-01

    The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10-20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods. The upper part of the coal measures consists of sandstone lithofacies of flu vial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic

  5. Report on health and environmental effects of increased coal utilization*

    PubMed Central

    1980-01-01

    The National Energy Plan announced by President Carter on April 29, 1977 proposed a significant increase in the utilization of the vast domestic deposits of coal to replace the dwindling supplies of oil and natural gas, and increasingly expensive oil from foreign sources, to meet national energy needs. At the same time, in recognition of possible adverse health and ecological consequences of increased coal production and use, the President announced that a special committee would be formed to study this aspect of the National Energy Plan. The Committee held a series of public meetings during November and December 1977 to review a number of special papers on particular problems associated with increased coal utilization. These papers, which were prepared by scientists of the US Environmental Protection Agency; the Department of Energy; the HEW National Institute for Occupational Safety and Health, and the National Institute of Environmental Health Sciences; New York University; and Vanderbilt University; provided essential background information for the deliberations of the Committee and were published in EHP Vol. 33, pp. 127–314, 1979. One paper by A. P. Altschuler et al. is published in this volume of EHP. The Committee's basic finding was that it is safe to proceed with plans to increase the utilization of coal if the following environmental and safety policies are adhered to: • Compliance with Federal and State air, water, and solid waste regulations • Universal adoption and successful operation of best available control technology on new facilities • Compliance with reclamation standards • Compliance with mine health and safety standards • Judicious siting of coal-fired facilities The Committee concluded that, even with the best mitigation policies, there will be some adverse health and environmental effects from the dramatic increase in coal use. However, these will not impact all regions and individuals uniformly. The Committee identified six

  6. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil thatmore » is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.« less

  7. Forces Shaping Future U.S. Coal Production and Use

    USGS Publications Warehouse

    Attanasi, E.D.; Pierce, Brenda S.

    2001-01-01

    More than half of the electricity in the United States is generated by coal-fired powerplants. U.S. coal producers sell almost 90 percent of their product for electricity generation, and so, the future of the U.S. coal industry will be determined by the future of coal-fired electricity-generation plants. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment (NCRA) of five major coal-producing regions of the United States (fig. 1): (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coast, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The Powder River and Williston Basins are the principal producing areas of the Northern Rocky Mountains and Great Plains region.

  8. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  9. Consumers' quality perception of national branded, national store branded, and imported store branded beef.

    PubMed

    Banović, Marija; Grunert, Klaus G; Barreira, Maria Madalena; Fontes, Magda Aguiar

    2010-01-01

    This study investigated the differences in the consumers' quality perception of national branded, national store branded, and imported store branded beef. Partial Least Squares analysis is used for modelling the quality perception process. Results show that consumers perceived national branded Carnalentejana beef, as better on all quality cues and quality aspects than the other two store branded beefs. Preference for Carnalentejana beef stayed highly consistent even after the blind test, where consumers differentiated this beef from the other two beef brands on all sensory dimensions: taste, tenderness, and juiciness, and chose it as the preferred one. Consumers utilized more perceived intrinsic cues to infer expected eating quality of store branded beefs.

  10. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.

    PubMed

    Morrow, William R; Griffin, W Michael; Matthews, H Scott

    2008-05-15

    We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.

  11. National Water Quality Standards Database (NWQSD)

    EPA Pesticide Factsheets

    The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data source was last updated in December 2007 and will no longer be updated.

  12. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less

  13. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  14. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    NASA Astrophysics Data System (ADS)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  15. An investigation into the relationship between coal workers' pneumoconiosis and dust exposure in U.S. coal miners.

    PubMed

    Attfield, M D; Morring, K

    1992-08-01

    The National Study of Coal Workers' Pneumoconiosis (NSCWP) is a large, continuing epidemiologic study of the respiratory health of U.S. coal miners. By using information from the study, prevalence of coal workers' pneumoconiosis (CWP) was related to indexes of dust exposure obtained from research and compliance sampling data. Clear relationships between prevalences of both simple CWP and progressive massive fibrosis (PMF) and estimated dust exposure were seen. Additional effects independently associated with coal rank (% carbon) and age were also seen. Logistic model fitting indicated that between 2% and 12% of miners exposed to a 2-mg/m3 dust environment in bituminous coal mines would be expected to have Category 2 or greater CWP after a 40-yr working life; PMF would be expected for between 1.3% and 6.7%. The risks for anthracite miners appeared to be greater. There was a suggestion of a background level of abnormality, not associated with dust exposure, but increasing with age. Although there are certain weaknesses in the data used to derive these exposure estimates, the results are in general agreement with, but somewhat greater than, some recent findings for British coal miners.

  16. Implications of Use of Coal-Tar-Based Pavement Sealcoat on Urban Water Quality

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.

    2015-12-01

    Coal-tar-based (CT) sealcoat is used to protect and improve the appearance of asphalt pavement of driveways and parking lots primarily in the central and eastern U.S. and in Canada. CT sealcoat typically is 20 to 35% crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg polycyclic aromatic hydrocarbons (PAH), about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—median total PAH concentrations in dust from CT-sealcoated pavement are 2,200 mg/kg compared to a median concentration of 11 mg/kg for dust from unsealed pavement. Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, often resulting in sediment concentrations above toxicity thresholds based on effects-based sediment quality guidelines. Acute 2-day laboratory toxicity testing of simulated runoff from CT-sealcoated pavement to a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas) demonstrated that toxicity continues for samples collected for weeks or months following sealcoat application and that toxicity is enhanced by exposure to UV light. Using the fish-liver cell line RTL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.

  17. Statutory complexity disguises agency capture in Citizens Coal Council v. EPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, R.

    2007-07-01

    In Citizens Coal Council v. EPA, an en banc panel for the Sixth Circuit Court of Appeals considered a challenge to EPA regulations promulgated pursuant to the Clean Water Act (CWA). The EPA promulgated the regulations in an attempt to incentivize coal companies to remine once abandoned mine sites. Petitioners, two nonprofit environmental organizations, claimed that the regulations violated the Clean Water Act and Administrative Procedure Act by allowing coal companies to remine without adhering to any enforceable pollution limitations. The EPA countered that more remining would improve water quality at abandoned sites. The Sixth Circuit rejected Petitioners' claims, findingmore » that the EPA's regulations were reasonably consistent with the CWA's goal of restoring the integrity of the nation's waters. In so holding, the court struggled to understand the meaning of the CWA's complex procedural and technical language, and allowed the EPA to justify the rule based on the CWA's broad statement of purpose. Such superficial judicial review sets a dangerous precedent in environmental law, because it exacerbates the risk of agency capture. A captured agency promulgates regulations that benefit-industry, not the environment. Without the judiciary acting as a meaningful check against agency capture, the public loses a valuable tool in the fight against major-industrial polluters like the domestic coal industry. Citizens Coal Council therefore stands as a cautionary tale, a warning sign that the judiciary may be unable to identify agency capture where the regulations at issue are promulgated pursuant to a complex statute like the Clean Water Act.« less

  18. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology;more » and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.« less

  19. Coal resources of the United States, A progress report, November 1, 1950

    USGS Publications Warehouse

    Averitt, Paul; Berryhill, Louise R.

    1950-01-01

    Interest in the quantity and quality of the coal reserves of the United States has increased greatly since the end of World War II, principally because of the growing realization that the ultimate reserves of petroleum and natural gas, although largely undefined, still. have finite limits. With the greatly increased use of petroleum and natural gas, it has become further apparent that the reserves of these two fuels, whatever their ultimate limits may prove to be, are being consumed at a rate far surpassing that anticipated a few years ago. At some time in the future, therefore, the contribution of coal to the total production of energy in this country must inevitably be enlarged to include some of the needs now served by petroleum and natural gas. Although coal-bearing rocks cover 14 percent of the total area of the United States (fig. 1) and contain enormous reserves, it is equally apparent that reserves of coal also have limits. In the extensively mined sections in the East it is already increasingly difficult to locate new areas containing thick beds of high-rank and high-quality coal to replace areas that have been mined out. Furthermore, a considerable part of the total reserves of the United States consists of coal of lignite and subbituminous ranks and coal contained in thin beds that can be mined only with great difficulty and expense. At the present time, therefore, the depletion of reserves of high-rank and high-quality coal, particularly the Eastern coal that is suitable for the manufacture of metallurgical coke, is a more serious problem than the percentage depletion of the total coal reserves. Recognizing the need for more detailed estimates of coal reserves than those that have been available in the past, the U. S. Geological Survey is now preparing a reappraisal of the coal reserves of the United States in which primary emphasis is placed on the amounts of coal in separate categories according to rank,thickness of coal, and thickness of overburden

  20. DOE studies on coal-to-liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-07-01

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  1. Indoor Air Quality in Central Appalachia Homes Impacted by Wood and Coal Use

    PubMed Central

    Paulin, Laura M.; Williams, D’Ann; Oberweiser, Charles; Diette, Gregory B.; Breysse, Patrick N.; McCormack, Meredith M.; Matsui, Elizabeth C.; Peng, Roger; Metts, Tricia A.; Hansel, Nadia N.

    2016-01-01

    Though the high prevalence of biomass fuel use in the developing world is widely known, the use of burning biomass for cooking and heating in the developed world is under-recognized. Combustion materials including coal and wood are also used for heating in some areas of the United States. We conducted a pilot study to assess the feasibility of conducting indoor environmental monitoring in rural Appalachia. We sought to explore the type of biomass being used for home heating and its impact upon indoor air quality in non-heating and heating seasons. Residential indoor air monitoring for particulate matter (PM) and nitrogen dioxide (NO2) was conducted in Lee County, Virginia. Homes had evidence of poor indoor air quality with high concentrations of indoor PM and a large burden of cigarette smoking. Further characterization of indoor combustion material use in this region to determine the health impacts associated with such exposures is warranted. PMID:27738549

  2. Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming

    USGS Publications Warehouse

    Pierce, B.S.

    1996-01-01

    Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.

  3. Quality-control design for surface-water sampling in the National Water-Quality Network

    USGS Publications Warehouse

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  4. One-Step Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1984-01-01

    Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.

  5. Advanced physical fine coal cleaning: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination ofmore » Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.« less

  6. Database for content of mercury in Polish brown coal

    NASA Astrophysics Data System (ADS)

    Jastrząb, Krzysztof

    2018-01-01

    Poland is rated among the countries with largest level of mercury emission in Europe. According to information provided by the National Centre for Balancing and Management of Emissions (KOBiZE) more than 10.5 tons of mercury and its compounds were emitted into the atmosphere in 2015 from the area of Poland. Within the scope of the BazaHg project lasting from 2014 to 2015 and co-financed from the National Centre of Research and Development (NCBiR) a database was set up with specification of mercury content in Polish hard steam coal, coking coal and brown coal (lignite) grades. With regard to domestic brown coal the database comprises information on coal grades from Brown Coal Mines of `Bełchatów', `Adamów', `Turów' and `Sieniawa'. Currently the database contains 130 records with parameters of brown coal, where each record stands for technical analysis (content of moisture, ash and volatile particles), elemental analysis (CHNS), content of chlorine and mercury as well as net calorific value and combustion heat. Content of mercury in samples of brown coal grades under test ranged from 44 to 985 μg of Hg/kg with the average level of 345 μg of Hg/kg. The established database makes up a reliable and trustworthy source of information about content of mercury in Polish fossils. The foregoing details completed with information about consumption of coal by individual electric power stations and multiplied by appropriate emission coefficients may serve as the background to establish loads of mercury emitted into atmosphere from individual stations and by the entire sector of power engineering in total. It will also enable Polish central organizations and individual business entities to implement reasonable policy with respect of mercury emission into atmosphere.

  7. Block coals from Indiana: Inferences on changing depositional environment

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.; Eble, C.F.

    2000-01-01

    Significant differences in coal petrography, palynology and coal quality were found between the Lower Block and Upper Block Coal Members (Brazil Formation, Pennsylvanian) in Daviess County, Indiana. The Lower Block Coal Member ranges in thickness from 51 to 74 cm and the Upper Block Coal Member ranges from 20 to 65 cm. Average sulfur content and ash yield of the Lower Block coal (0.98%, 7.65%) are lower than in the Upper Block coal. Megascopically, the coals show distinct differences. The Lower Block is a banded coal with numerous thin fusain horizons and a thin clay parting in the lower third of the seam. The Upper Block coal has a dulling-upward trend, with a bright clarain found at the base that grades into a clarain and then into a durain in the upper portion of the seam. Vitrinite content of the Lower Block coal ranges from 63% to 78%, with the highest vitrinite content found in the middle portion of the seam. In the Upper Block coal, vitrinite content ranges from 40% to 83%, with the highest values found in the lower part of the seam. Ash yield is higher in the upper part of the Upper Block coal, reaching up to 40%. The Lower Block coal is dominated by lycopod trees and tree ferns. The Upper Block coal shows marked differences in spore assemblages between lower and upper parts of the seam. The lower half is dominated by large lycopod trees and tree ferns, similar to the Lower Block coal. The upper half is dominated by small lycopods, mainly Densosporites and Radiizonates. These differences between the Lower Block and Upper Block Coal Members are significant correlation tools applicable to mining exploration and chronostratigraphy. (C) 2000 Elsevier Science B.V. All rights reserved.Significant differences in coal petrography, palynology and coal quality were found between the Lower Block and Upper Block Coal Members (Brazil Formation, Pennsylvanian) in Daviess County, Indiana. The Lower Block Coal Member ranges in thickness from 51 to 74 cm and the Upper Block

  8. Time to harmonize national ambient air quality standards.

    PubMed

    Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino

    2017-05-01

    The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed. We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM 2.5 , PM 10 , ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards. We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM 2.5 , PM 10 and SO 2 poorly complied with WHO guideline values. The agreement was higher for CO, SO 2 (10-min averaging time) and NO 2 . Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally.

  9. NAWQA, National Water-Quality Assessment Program; Allegheny-Monongahela River Basin

    USGS Publications Warehouse

    McAuley, Steven D.; Brown, Juliane B.; Sams, James I.

    1997-01-01

    Surface-water and ground-water quality and aquatic life can be significantly affected by the following principal issues identified in the Allegheny-Monongahela River Basin:Contaminants common to surface and under-ground coal mine discharge such as acidity, iron, aluminum, manganese, and sulfate.Volatile organic compounds (VOC’s), pesti-cides, and nutrients from increased urbanization.Runoff and loading of nutrients and pesticides to streams from nonpoint and point sources such as agricultural land uses.Radon in ground water.

  10. Potential effects of surface coal mining on the hydrology of the Circle West coal tracts, McCone County, eastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1984-01-01

    The Circle West coal tracts in McCone County, Montana, contain about 460 million tons of recoverable coal reserves. Estimates of coal reserves for the tract are based predominantly on the S coal bed, which averages about 16 ft in thickness. About 175 million tons, or 38%, of the recoverable coal is Federally owned and has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential effects of surface coal mining on local water resources. Geohydrologic data collected from wells and drill holes indicate that shallow aquifers exist in sandstone and coal beds of the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers generally have small values of hydraulic conductivity (0.1 to 380 ft/day) and typically yield from 2 to 20 gal/min to stock and domestic wells. Where coal is extremely fractured or the thickness of saturated sandstone is large, some wells can yield in excess of 70 gal/min. Chemical analyses indicate that most shallow aquifers contain a sodium sulfate bicarbonate type water. Surface water resources of the area consist of intermittent streamflow in parts of the Nelson and Timber Creek basins plus a large network of reservoirs. The reservoirs provide a large part of the water supply for area livestock and irrigation. Water quality data for Nelson and Timber Creeks indicate that the water generally is a sodium sulfate type and has a large concentration (181 to 6,960 mg/L) of dissolved solids. Mining of the S coal bed in the Circle West coal tracts would permanently remove shallow coal and sandstone aquifers, resulting in the loss of shallow stock wells. Mining would destroy livestock reservoirs, alter runoff characteristics of Nelson Creek, and temporarily lower water levels in shallow aquifers near the mine. Leaching of soluble constituents from mine spoils may cause a long-term degradation of the quality of water

  11. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  12. National Water-Quality Assessment Program: Central Arizona Basins

    USGS Publications Warehouse

    Cordy, Gail E.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface-water and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policymakers and managers at the National, State, and local levels. Studies of 60 hydrologic systems that include parts of most major river basins and aquifer systems (study-unit investigations) are the building blocks of the national assessment. The 60 study units range in size from 1,000 to about 60,000 mi2 and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty study-unit investigations were started in 1991, 20 additional studies started in 1994, and 20 more are planned to start in 1997. The Central Arizona Basins study unit began assessment activities in 1994.

  13. Hospitalization patterns associated with Appalachian coal mining.

    PubMed

    Hendryx, Michael; Ahern, Melissa M; Nurkiewicz, Timothy R

    2007-12-01

    The goal of this study was to test whether the volume of coal mining was related to population hospitalization risk for diseases postulated to be sensitive or insensitive to coal mining by-products. The study was a retrospective analysis of 2001 adult hospitalization data (n = 93,952) for West Virginia, Kentucky, and Pennsylvania, merged with county-level coal production figures. Hospitalization data were obtained from the Health Care Utilization Project National Inpatient Sample. Diagnoses postulated to be sensitive to coal mining by-product exposure were contrasted with diagnoses postulated to be insensitive to exposure. Data were analyzed using hierarchical nonlinear models, controlling for patient age, gender, insurance, comorbidities, hospital teaching status, county poverty, and county social capital. Controlling for covariates, the volume of coal mining was significantly related to hospitalization risk for two conditions postulated to be sensitive to exposure: hypertension and chronic obstructive pulmonary disease (COPD). The odds for a COPD hospitalization increased 1% for each 1462 tons of coal, and the odds for a hypertension hospitalization increased 1% for each 1873 tons of coal. Other conditions were not related to mining volume. Exposure to particulates or other pollutants generated by coal mining activities may be linked to increased risk of COPD and hypertension hospitalizations. Limitations in the data likely result in an underestimate of associations.

  14. Quality and Safety in Health Care, Part XVII: The ACS National Surgical Quality Improvement Program.

    PubMed

    Harolds, Jay A

    2016-12-01

    Mainly due to the positive effect on quality and safety from the Veterans Health Administration National Surgical Quality Improvement Program (VASQIP), a National Surgical Quality Improvement Program (NSQIP) for private hospitals was begun, which is now under the auspices of the American College of Surgeons (ACS). More than 600 hospitals now participate in the ACS-NSQIP. The information gained by the institutions is typically utilized to initiate quality improvement activities. The ACS-NSQIP also shares information on how to get better results, has national meetings, and provides other support.

  15. Health impacts of domestic coal use in China

    USGS Publications Warehouse

    Finkelman, R.B.; Belkin, H.E.; Zheng, B.

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  16. Health impacts of domestic coal use in China

    PubMed Central

    Finkelman, Robert B.; Belkin, Harvey E.; Zheng, Baoshan

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion. PMID:10097053

  17. Marketing prospects for Illinois basin coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahan, R.

    1994-12-31

    A perspective is given of markets for Illinois Basin coals within the national context. In recent years, prospects have started to brighten slightly for a series of reasons. First, production trends, transportation issues, marketing and the outlook are discussed. Some of the factors that are going to be important to watch in the future; for instance, the way the acid rain bill actually shakes out in the next couple of years; other environmental restrictions that could end up having a reverse impact on some Illinois Basin coals; and generally, what may happen as a result of the major movements towardmore » deregulation in the utility industry are described. These factors are going to have a significant impact on the coal industry altogether.« less

  18. Coal-oil coprocessing at HTI - development and improvement of the technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stalzer, R.H.; Lee, L.K.; Hu, J.

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less

  19. Organic petrology of Paleocene Marcelina Formation coals, Paso Diablo mine, western Venezuela: Tectonic controls on coal type

    USGS Publications Warehouse

    Hackley, P.C.; Martinez, M.

    2007-01-01

    About 7??Mt of high volatile bituminous coal are produced annually from the four coal zones of the Upper Paleocene Marcelina Formation at the Paso Diablo open-pit mine of western Venezuela. As part of an ongoing coal quality study, we have characterized twenty-two coal channel samples from the mine using organic petrology techniques. Samples also were analyzed for proximate-ultimate parameters, forms of sulfur, free swelling index, ash fusion temperatures, and calorific value. Six of the samples represent incremental benches across the 12-13??m thick No. 4 bed, the stratigraphically lowest mined coal, which is also mined at the 10??km distant Mina Norte open-pit. Organic content of the No. 4 bed indicates an upward increase of woody vegetation and/or greater preservation of organic material throughout the life of the original mire(s). An upward increase in telovitrinite and corresponding decrease in detrovitrinite and inertinite illustrate this trend. In contrast, stratigraphically higher coal groups generally exhibit a 'dulling upward' trend. The generally high inertinite content, and low ash yield and sulfur content, suggest that the Paso Diablo coals were deposited in rain-fed raised mires, protected from clastic input and subjected to frequent oxidation and/or moisture stress. However, the two thinnest coal beds (both 0.7??m thick) are each characterized by lower inertinite and higher telovitrinite content relative to the rest of Paso Diablo coal beds, indicative of less well-established raised mire environments prior to drowning. Foreland basin Paleocene coals of western Venezuela, including the Paso Diablo deposit and time-correlative coal deposits of the Ta??chira and Me??rida Andes, are characterized by high inertinite and consistently lower ash and sulfur relative to Eocene and younger coals of the area. We interpret these age-delimited coal quality characteristics to be due to water availability as a function of the tectonic control of subsidence rate. It

  20. PTBA Coal Briquette Development Project: A status report, March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purba, A.C.; Supriyanto, H.; Djamal, T.S.

    1995-12-31

    Indonesia has a vast coal reserved amounted around 36 Billion Tons (As May 1993), of which more than 98% located in two big islands: Sumatera & Kalimantan. Indonesian Energy Policy, set up in 1976 were shifting the National Energy Mix to encourage the use of other alternative energy for fulfilling the domestic energy demand. Coal, as it was available in enormous reserve become the most suitable alternative fuel. Indonesian coal mining industry was then gaining a big momentum for its resurrection since it was for long had been overlooked. As the result of reconstruction of old mines, expanding the currentmore » mines and the opening of new mines by foreign investor (Contractors) in Kalimantan, since 1986, ten years after the set up of New National Energy Policy or 45 years after peak production level in the past, 2 million tons of coal production was regained. Afterward the coal production of Indonesian coal mine industry are increasing in an exponential rate of growth. With more than 29 million tons of coal produced in 1994, Indonesia will continue to play greater role in the world coal export market in the future. It is projected that by the year of 1998, Indonesia will rank the 3rd as the world coal exporter next to Australia and South African with around 14% of world market share. In this paper, author would only like to report the current status of Indonesian Coal Briquette Industry of which PT Tambang Batubara Bukit Asam (Persero), PTBA, the state owned coal mining company was being appointed to pioneer the establishment of the first coal briquette industry in Indonesia. Process Technology that being compared here in this paper were based on the technical compliance to specification set by government and the techno-economic evaluation. Due to limitations and constrains, all aspects concerning the project will only be discussed in an overview.« less

  1. COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION

    EPA Science Inventory

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...

  2. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bio-coal briquettes using low-grade coal

    NASA Astrophysics Data System (ADS)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  4. July 2011 Memorandum: Improving EPA Review of Appalachian Surface Coal Mining Operations Under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Executive Order

    EPA Pesticide Factsheets

    Memorandum: Improving EPA Review of Appalachian Surface Coal Mining Operations Under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Executive Order, July 21, 2011

  5. Hydrology of area 46, Northern Great Plains and Rocky Mountain coal provinces, North Dakota

    USGS Publications Warehouse

    Croft, M.G.; Crosby, Orlo A.

    1987-01-01

    This report is one of a series that describes the hydrology of coal provinces nationwide. The Northern Great Plains and Rocky Mountain Coal Provinces are divided into 20 separate reporting areas which are numbered 43 to 62. This report provides general hydrologic information for Area 46 using a brief text with accompanying maps, charts, or graphs. This information may be used to describe the hydrology of the general area of any existing or proposed mine. Some of the more obvious hydrologic problems of coal development that will need to be addressed before development are disruption of aquifers and potential contamination of streams, aquifers, and the atmosphere.Area 46 is in northwestern North Dakota and is composed of parts or all of 14 hydrologic units based on surface-water drainage basins. The area is drained by the Missouri and Souris Rivers.Lignite-bearing rocks of late Paleocene age underlie nearly all of Area 46. The thickest and most continuous lignite beds occur in the Sentinel Butte and Tongue River Members of the Fort Union Formation. Alluvial deposits and a veneer of glacial drift of late Pleistocene age overlie the lignite-bearing rocks. The climate of the area is semiarid. Mean annual precipitation ranges from 13.9 to 17.8 inches. Mean annual temperatures range from 37.7°F at Bowbells to 40.9°F at Williston. Mean monthly temperatures at Williston range from 8.3°F to 70°F. The growing season is about 125 days.A fairly comprehensive data base for streamflow and water quality in streams is available for Area 46. Many of the small-stream monitoring sites have been operated during the last few years to provide a data base before coal development. With the exception of the Missouri River, which is controlled by several dams, both the quantity and quality of water varies greatly in all streams. A ground-water observation network for water levels and water quality has been established through county ground-water resource investigations and other ground

  6. State perspectives on clean coal technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  7. 78 FR 14115 - Notice of Invitation To Participate; Coal Exploration License Application WYW181224, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM... structural and quality information of the coal. The BLM regulations at 43 CFR 3410 require the publication of an invitation to participate in the coal exploration in the Federal Register. The Federal coal...

  8. 76 FR 31626 - Notice of Invitation To Participate; Coal Exploration License Application WYW180006, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM... structural and quality information about the coal. The BLM regulations at 43 CFR 3410 require the publication of an invitation to participate in the coal exploration in the Federal Register. The Federal coal...

  9. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    PubMed Central

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601

  10. Hydrology of area 4, Eastern Coal Province, Pennsylvania, Ohio, and West Virginia

    USGS Publications Warehouse

    Roth, Donald K.; Engelke, Morris J.; ,

    1981-01-01

    Area 4 (one of the 24 hydrologic areas defining the Eastern Coal Province) is located at the northern end of the Eastern Coal Province in eastern Ohio, northern West Virginia, and western Pennsylvania. It is part of the upper Ohio River basin, which includes the Beaver, Mahoning, and Shenango Rivers. The area is underlain by rocks of the Pottsville, Allegheny, Conemaugh, Monongahela Groups (or Formations) and Dunkard Group. Area 4 has a temperate climate with an annual average rainfall of 38 to 42 inches, most of its area is covered by forest. The soils have a high erosion potential where the vegetation cover is removed. In response to Public Law 95-87, 132 sites were added to the existing surface-water data-collection network in area 4. At these added sites, collected data includes discharge, water quality, sediment, and biology. The data are available from computer storage through the National Water Data Exchange (NAWDEX) or the published annual Water Resources Data reports for Ohio, Pennsylvania, and West Virginia. Hydrologic problems related to mining are: (1) Erosion and increased sedimentation, and (2) degradation of water quality. Erosion and sedimentation are associated chiefly with surface mining. Sediment yields increase drastically when vegetation is removed from the highly erosive soils. Degradation of water quality can be caused by acid-mine drainage from underground and surface mining. More than half the acid-mine drainage effluent in area 4 comes from underground mines. The rest seeps from abandoned surface mines. Usually in reclaimed surface mines the overburden is replaced in such a short time after the coal is taken out that oxidation of acid-forming minerals, commonly pyrite or marcasite, is not complete or is neutralized by the buffering action of calcareous minerals in the soils. (USGS)

  11. Methodology of Estimation of Methane Emissions from Coal Mines in Poland

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata

    2014-03-01

    Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland's obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.

  12. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.

    PubMed

    Li, Ya-Ru; Gibson, Jacqueline MacDonald

    2014-09-02

    We analyzed sulfur dioxide (SO2) emissions and fine particulate sulfate (PM2.5 sulfate) concentrations in the southeastern United States during 2002-2012, in order to evaluate the health impacts in North Carolina (NC) of the NC Clean Smokestacks Act of 2002. This state law required progressive reductions (beyond those mandated by federal rules) in pollutant emissions from NC's coal-fired power plants. Although coal-fired power plants remain NC's leading SO2 source, a trend analysis shows significant declines in SO2 emissions (-20.3%/year) and PM2.5 sulfate concentrations (-8.7%/year) since passage of the act. Emissions reductions were significantly greater in NC than in neighboring states, and emissions and PM2.5 sulfate concentration reductions were highest in NC's piedmont region, where 9 of the state's 14 major coal-fired power plants are located. Our risk model estimates that these air quality improvements decreased the risk of premature death attributable to PM2.5 sulfate in NC by about 63%, resulting in an estimated 1700 (95% CI: 1500, 1800) deaths prevented in 2012. These findings lend support to recent studies predicting that implementing the proposed federal Cross-State Air Pollution Rule (recently upheld by the U.S. Supreme Court) could substantially decrease U.S. premature deaths attributable to coal-fired power plant emissions.

  13. Soil quality and carbon sequestration in a reclaimed coal mine spoil of Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sangeeta; Masto, Reginald; Ram, Lal

    2016-04-01

    Revegetation of coal mine spoil helps in carbon storage and the success of remediation depend on the selection of appropriate tree species. A study was conducted at the coalmine overburden dumps of Jharia Coalfield, Dhanbad, India to evaluate the impact of revegetation on the overall soil quality and carbon sequestration. Morphological parameters (tree height, diameter at breast height, tree biomass, wood specific gravity) of the dominant tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo and Leucaena leucocephala) growing on the mine spoil was recorded. Mine spoil samples were collected under the canopy cover of different tree species and analyzed for soil physical, chemical, and biological parameters. In general reclaimed sites had better soil quality than the reference site. For instance, D. sissoo and C. siamea improved soil pH (+28.5%, +27.9%), EC (+15.65%, +19%), cation exchange capacity (+58.7%, +52.3%), organic carbon (+67.5%, +79.5%), N (+97.2%, +75.7%), P (+98.2%, +76.9%), K (+31.8%, +37.4%), microbial biomass carbon (+143%, +164%) and dehydrogenase activity (+228%, +262%) as compared to the unreclaimed reference coal mine site. The concentration of polycyclic aromatic hydrocarbons (PAHs) decreased significantly in the reclaimed site than the reference spoil, C. siamea was found to be more promising for PAH degradation. The overall impact of tree species on the quality of reclaimed mine spoil cannot be assessed by individual soil parameters, as most of the parameters are interlinked and difficult to interpret. However, combination of soil properties into an integrated soil quality index provides a more meaningful assessment of reclamation potential of tree species. Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity were the most critical properties controlling growth of tree

  14. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    PubMed

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  15. Coal Tar and Coal-Tar Pitch

    Cancer.gov

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  16. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  17. Creating a national culture of quality: the Tanzania experience.

    PubMed

    Mwidunda, Patrick E; Eliakimu, Eliudi

    2015-07-01

    Although quality improvement has been a priority for Tanzania's health sector since the 1970s, few effective quality improvement initiatives were implemented, due to limited expertise, political commitment and resources. More recently, as the HIV epidemic gained momentum within the country, an influx of funding and of international organizations with quality improvement expertise accelerated the implementation of quality improvement projects, as well as efforts to institutionalize quality improvement at the national level. The support of US President's Emergency Plan for AIDS Relief (PEPFAR) and other donors, and the increasing numbers of HIV-implementing partners focused on quality management, and quality improvement strategies catalysed the development of HIV-specific quality improvement initiatives first, and then of national quality improvement frameworks. The diversity of quality improvement approaches championed by various donors and partners also presented important challenges to harmonization and institutionalization of quality improvement programmes.

  18. Water quality of selected streams in the coal area of southeastern Montana. Water-resources investigations (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapton, J.R.; McKinley, P.W.

    1977-08-01

    This report summarizes and evaluates water-quality data collected at 35 stream sites in the coal region of southeastern Montana. Sarpy Creek, Armells Creek, and Rosebud Creek sometimes have dissolved-solids concentrations that cause water to be marginal for agricultural purposes. At times of rainfall and snowmelt, the runoff water mixes with the base-flow component to improve the overall quality. Water in the Tongue River generally showed a downstream degradation in which some changes were related to the lithology of the aquifers contributing water to streamflow. Water from Pumpkin Creek and Mizpah Creek is used mostly for cattle watering. To some extentmore » water is used for irrigation although the salinity hazard was often high. The chemical quality of the Powder River changed little during flow downstream. High sediment loads of the river acted as transporting agents for many of the plant nutrients and trace-element constituents.« less

  19. Physical environment and hydrologic characteristics of coal-mining areas in Missouri

    USGS Publications Warehouse

    Vaill, J.E.; Barks, James H.

    1980-01-01

    Hydrologic information for the north-central and western coal-mining regions of Missouri is needed to define the hydrologic system in these areas of major historic and planned coal development. This report describes the physical setting, climate, coal-mining practices, general hydrologic system, and the current (1980) hydrologie data base in these two coal-mining regions. Streamflow in both mining regions is poorly sustained. Stream water quality generally varies with location and the magnitude of coal-mining activity in a watershed. Streams in non coal-mining areas generally have dissolved-solids concentrations less than 400 milligrams per liter. Acid-mine drainage has seriously affected some streams by reducing the pH to less than 4.0 and increasing the dissolved-solids concentrations to greater than 1,000 milligrams per liter. This has resulted in fish kills in some instances. Ground-water movement is impeded both laterally and vertically in both mining regions, especially in western Missouri, because of the low hydraulic conductivity of the rocks of Pennsylvanian age. The quality of ground water varies widely depending on location and depth. Ground water commonly contains high concentrations of iron and sulfate, and dissolved-solids concentrations generally are greater than 1,000 milligrams per liter.

  20. 30 CFR 761.13 - Procedures for compatibility findings for surface coal mining operations on Federal lands in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...

  1. 30 CFR 761.13 - Procedures for compatibility findings for surface coal mining operations on Federal lands in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...

  2. 30 CFR 761.13 - Procedures for compatibility findings for surface coal mining operations on Federal lands in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...

  3. 30 CFR 761.13 - Procedures for compatibility findings for surface coal mining operations on Federal lands in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...

  4. 30 CFR 761.13 - Procedures for compatibility findings for surface coal mining operations on Federal lands in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations on Federal lands in national forests. 761.13 Section 761.13 Mineral... surface coal mining operations on Federal lands in national forests. (a) If you intend to rely upon the... national forest, you must request that we obtain the Secretarial findings required by § 761.11(b). (b) You...

  5. Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    USGS Publications Warehouse

    Belkin, Harvey E.; Tewalt, Susan J.

    2007-01-01

    and ash (generally <1 and < 10 wt.%, respectively). Coal mining for both local use and for export has a very strong future in Indonesia although, at present, there are concerns about the strong need for a major revision in mining laws and foreign investment policies (Wahju, 2004; United States Embassy Jakarta, 2004). The World Coal Quality Inventory (WoCQI) program of the U.S. Geological Survey (Tewalt and others, 2005) is a cooperative project with about 50 countries (out of 70 coal-producing countries world-wide). The WoCQI initiative has collected and published extensive coal quality data from the world's largest coal producers and consumers. The important aspects of the WoCQI program are; (1) samples from active mines are collected, (2) the data have a high degree of internal consistency with a broad array of coal quality parameters, and (3) the data are linked to GIS and available through the world-wide-web. The coal quality parameters include proximate and ultimate analysis, sulfur forms, major-, minor-, and trace-element concentrations and various technological tests. This report contains geochemical data from a selected group of Indonesian coal samples from a range of coal types, localities, and ages collected for the WoCQI program.

  6. Process for coal liquefaction employing selective coal feed

    DOEpatents

    Hoover, David S.; Givens, Edwin N.

    1983-01-01

    An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

  7. National Water-Quality Assessment Program - Red River of the North

    USGS Publications Warehouse

    Stoner, J.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources, and to provide a sound scientific understanding of the primary natural and human factors affecting the quality of these resources. The program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels.

  8. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  9. The energy-water quality nexus: insights from the 2008 coal ash spill in Tennessee

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Ruhl, L.; Dwyer, G. S.; Hsu-Kim, H.; Deonarine, A.

    2010-12-01

    Energy production consumes a large volume of water. The USGS estimated that about 52 percent of the total USA fresh surface-water withdrawal in 2000 was for thermoelectric consumption (fresh water use ~188 for thermoelectric out of 563 billion cubic meters a year total water withdrawal in the USA). While water availability and possible changes induced from climate change and increasing demands for other sectors are important limiting factors, this presentation highlights the critical long-term impact on water quality. The Clean Smokestacks Act was enacted to reduce emissions from coal-fired power plants through installation of scrubbers and selective catalytic reduction, aiming to cut emissions of sulfur dioxide, nitrogen oxides and mercury. In addition to the capture of these air pollutants, volatile elements are attached to the residual coal combustion products (CCPs). Consequently, toxic metals concentrations in CCPs are extremely high and become mobile upon interaction of CCPs with aquatic solutions. In particular, several studies have demonstrated the high mobilization of boron, arsenic, selenium, barium and other toxic oxi-anions and metals from CCPs. The 2008 coal ash spill in Kingston, Tennessee, where approximately 4.1 million cubic meters of coal ash was spilled onto the surrounding land surface and into the adjacent Emory and Clinch Rivers, has demonstrated the possible impact of CCPs on the environment. An eighteen-month survey has revealed elevated levels of contaminants in surface water with restricted water exchange and in pore water extracted from the bottom sediments, downstream from the spill. Our research has shown that arsenic concentration in the pore water reached to 2,000 ppb due to the reducing conditions and the high mobility of the non-charged arsenic species. Generation of CCPs however is not restricted to a single accidental release, as over five hundred power plants nationwide generate approximately 130 million tons of CCPs each year

  10. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be

  11. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States

    USGS Publications Warehouse

    Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.

    2011-01-01

    The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.

  12. The Veterans Affairs National Quality Scholars program: a model for interprofessional education in quality and safety.

    PubMed

    Patrician, Patricia A; Dolansky, Mary A; Pair, Vincent; Bates, Mekeshia; Moore, Shirley M; Splaine, Mark; Gilman, Stuart C

    2013-01-01

    The Quality and Safety Education for Nurses (QSEN) project is enhancing the emphasis on quality care and patient safety content in nursing schools. A partnership between QSEN and the Veterans Affairs National Quality Scholars program resulted in a unique experiential, interdisciplinary fellowship for both nurses and physicians. This article introduces the Veterans Affairs National Quality Scholars program and provides examples of learning activities and fellows' accomplishments. Interprofessional quality and safety education at the doctoral and postdoctoral levels is germane to improving the quality of health care.

  13. National Water-Quality Assessment program: The Trinity River Basin

    USGS Publications Warehouse

    Land, Larry F.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels. A major design feature of the NAWQA program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which comprise the principal building blocks of the program on which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Trinity River basin study was among the first 20 NAWQA study units selected for study under the full-scale implementation plan.

  14. National Water-Quality Assessment Program: The Sacramento River Basin

    USGS Publications Warehouse

    Domagalski, Joseph L.; Brown, Larry R.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of those resources. In addressing these goals, the program will provide a wealth of water- quality information that will be useful to policy makers and managers at the national, State, and local levels. A major asset of the NAWQA program is that it will allow for the integration of water-quality information collected at several scales. A major component of the program is the study-unit investigation-the foundation of national- level assessment. The 60 study units of the NAWQA program are hydrologic systems that include parts of most major river basins and aquifer systems of the conterminous United States. These study units cover areas of 1,000 to more than 60,000 square miles and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Investigations of the first 20 study units began in 1991. In 1994, the Sacramento River Basin was among the second set of 20 NAWQA study units selected for investigation.

  15. Impact of nongray multiphase radiation in pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  16. Nonpoint Source: National Water Quality Initiative

    EPA Pesticide Factsheets

    National Water Quality Initiative (NWQI) is a collaborative between EPA and Natural Resource Conservation Service ( NRCS) that began in 2012. NWQI provides a means to accelerate voluntary, private lands conservation practices

  17. Survey of electric utility demand for coal. [1972-1992; by utility and state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asbury, J.G.; Caruso, J.V.; Kouvalis, A.

    1979-08-01

    This report presents the results of a survey of electric utility demand for coal in the United States. The sources of survey information are: (1) Federal Energy Regulatory Commission Form 423 data on utility coal purchases during the period July 1972 through December 1978 and (2) direct telephone survey data on utility coal-purchase intentions for power plants to be constructed by 1992. Price and quantity data for coal used in existing plants are presented to illustrate price and market-share trends in individual coal-consuming states during recent years. Coal source, quality, quantity, and transportation data are reported for existing and plannedmore » generating plants.« less

  18. Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies

    USGS Publications Warehouse

    Hower, J.C.; Eble, C.F.; Quick, J.C.

    2005-01-01

    Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust. Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions. ?? 2005 Elsevier B.V. All rights reserved.

  19. Mapping of coal quality using stochastic simulation and isometric logratio transformation with an application to a Texas lignite

    USGS Publications Warehouse

    Olea, Ricardo A.; Luppens, James A.

    2015-01-01

    Coal is a chemically complex commodity that often contains most of the natural elements in the periodic table. Coal constituents are conventionally grouped into four components (proximate analysis): fixed carbon, ash, inherent moisture, and volatile matter. These four parts, customarily measured as weight losses and expressed as percentages, share all properties and statistical challenges of compositional data. Consequently, adequate modeling should be done in terms of a logratio transformation, a requirement that is commonly overlooked by modelers. The transformation of choice is the isometric logratio transformation because of its geometrical and statistical advantages. The modeling is done through a series of realizations prepared by applying sequential simulation for the purpose of displaying the parts in maps incorporating uncertainty. The approach makes realistic assumptions and the results honor the data and basic considerations, such as percentages between 0 and 100, all four parts adding to 100% at any location in the study area, and a style of spatial fluctuation in the realizations equal to that of the data. The realizations are used to prepare different results, including probability distributions across a deposit, E-type maps displaying average properties, and probability maps summarizing joint fluctuations of several parts. Application of these maps to a lignite bed clearly delineates the deposit boundary, reveals a channel cutting across, and shows that the most favorable coal quality is to the north and deteriorates toward the southeast.

  20. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  1. National water-quality assessment program : the Albemarle- Pamlico drainage

    USGS Publications Warehouse

    Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of

  2. Virginia big-eared bats (Corynorhinus townsendii virginianus) roosting in abandoned coal mines in West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.B.; Edwards, J.W.; Wood, P.B.

    We surveyed bats at 36 abandoned coal mines during summer 2002 and 47 mines during fall 2002 at New River Gorge National River and Gauley River National Recreation Area, WV. During summer, we captured three federally endangered Virginia big-eared bats at two mine entrances, and 25 were captured at 12 mine entrances during fall. These represent the first documented captures of this species at coal mines in West Virginia. Future survey efforts conducted throughout the range of the Virginia big-eared bat should include abandoned coal mines.

  3. The fate of mercury in coal utilization byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Aljoe; Thomas Feeley; James Murphy

    2005-05-01

    The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wetmore » FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.« less

  4. What component of coal causes coal workers' pneumoconiosis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCunney, R.J.; Morfeld, P.; Payne, S.

    2009-04-15

    The objective was to evaluate the component of coal responsible for coal workers' pneumoconiosis (CWP). A literature search of PubMED was conducted to address studies that have evaluated the risk of CWP based on the components of coal. The risk of CWP (CWP) depends on the concentration and duration of exposure to coal dust. Epidemiology studies have shown inverse links between CWP and quartz content. Coal from the USA and Germany has demonstrated links between iron content and CWP; these same studies indicate virtually no role for quartz. In vitro studies indicate strong mechanistic links between iron content in coalmore » and reactive oxygen species, which play a major role in the inflammatory response associated with CWP. The active agent within coal appears to be iron, not quartz. By identifying components of coal-before mining activities, the risk of developing CWP may be reduced.« less

  5. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title Xmore » - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.« less

  6. Coal fracturing and heteroatom removal. Annual report, fiscal year 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapienza, R.; Slegeir, W.; Butcher, T.

    1983-09-01

    Coal-water slurry fuels offer a practical, economical method to use coal, replacing the 3 million barrels of oil used per day to fuel utility boilers, industrial heaters, and furnaces in the US. The mineral matter and in some cases the costs of grinding are major impediments to the direct use of this fuel in existing fluid fuel combustors. A process for the simultaneous cleaning and fracturing of a variety of coals has been explored at Brookhaven National Laboratory. This process entails exposure of coal to a carbon dioxide-water solvent system under pressure. Substantial amounts of mineral matter are leached intomore » the liquid phase, significantly lowering the concentrations of alkaline, and alkaline earth metals, and of silica- and alumina-like minerals in the coal. Grindability studies have been conducted in a laboratory ball mill using processed coal. Grinding times for large-size feed coal (1-3/8 to 3/8 in.) are reduced by a factor up to 10 following exposure to CO/sub 2//water. With smaller-feed coal (4 x 8 mesh), however, improvements in grindability are much smaller. An integrated system has been constructed in which coal is ground while under CO/sub 2/ pressure. Significant improvements in grindability have been observed with this system, even with smaller-feed coal. 20 refs., 8 figs., 24 tabs.« less

  7. Coal Export Financing: methods and trends (from the series Market Guides for Steam-Coal Exports from Appalachia). Report for January 1982-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-05-01

    The new 1984 version of Coal Export Financing is published as a joint effort of the ARC and the U.S. Department of Commerce. It was updated to include information on new trends and developments that have occurred since late 1982 in coal-export financing as a result of the intense price competition from other coal-exporting nations. This includes new information on developments under the Export Trading Company Act of 1982, reverse investments, and barter/countertrade. Information previously provided on political and commercial risk insurance and on governmental assistance has been expanded to reflect the increasing importance of these areas. Any information onmore » banks providing coal-export financing services has been updated, as well as expanded to encompass the entire United States, rather than just the Appalachian region.« less

  8. Leaching behavior of coal combustion products and the environmental implication in road construction.

    DOT National Transportation Integrated Search

    2011-04-01

    Leaching of trace elements may raise environmental concerns when using coal fly ash in road construction. US EPA is in the process : of creating the first national rule on coal ash management, including beneficial use. Meanwhile, driven by the tighte...

  9. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  10. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  11. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  12. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.

    South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.

  13. Possible environmental effects of increased coal use in California

    NASA Technical Reports Server (NTRS)

    Carey, D. L.

    1978-01-01

    If coal is to be utilized in California it must be made compatible with the state's drive toward restoring environmental quality. The impacts resulting from coal's mining and transportation, or from water consumption, water quality degradation and electric transmission line routing can probably be adequately mitigated through strong and early planning efforts, the use of improved control and process technologies, and sincere utility commitment. The socioeconomic impacts may prove somewhat more difficult to satisfactorily mitigate. Of greatest concern is adequate control of generated air pollutants and disposal of solid and liquid wastes since acceptable technologies or handling techniques have yet to be conclusively demonstrated.

  14. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    USGS Publications Warehouse

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury

  15. Accidents in Coal Mining from Perspective of Risk Theory

    NASA Astrophysics Data System (ADS)

    Khamidullina, E. A.; Timofeeva, S. S.; Smirnov, G. I.

    2017-11-01

    Introduction. The indicators of the safety system quality in the technosphere include risk indicators. The purpose of this work is to assess the social risk of coal mining since coal mining is associated with specific working conditions, and any emergency situation immediately jeopardizes thelives of many people at the same time. Methods. The work is based on the analysis of statistical information. Results and discussion. The F/N curve of coal mining for the 70-year period (1943-2012) was constructed, and the normative values of the social risk of Russia and other industrialized countries were discussed. Judging by the F/N diagram, only the frequency of accidents with a large number of deaths can correspond to the normative level indicating an exceptionally high level of coal mining risk.

  16. 13. Coal ejectors mounted on aft bulkhead of coal bunker. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Coal ejectors mounted on aft bulkhead of coal bunker. Ejectors were used to flush overboard live coals and clinkers from firebed (pipe for carrying coals overboard has been removed from ejector in foreground). Coal doors from bunker appear beside ejector in foreground). Coal doors from bunker appear beside ejectors at deck; note firing shovels in background against hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  17. Appalachian coal assessment: Defining the coal systems of the Appalachian basin

    USGS Publications Warehouse

    Milici, R.C.

    2005-01-01

    The coal systems concept may be used to organize the geologic data for a relatively large, complex area, such as the Appalachian basin, in order to facilitate coal assessments in the area. The concept is especially valuable in subjective assessments of future coal production, which would require a detailed understanding of the coal geology and coal chemistry of the region. In addition, subjective assessments of future coal production would be enhanced by a geographical information system that contains the geologic and geochemical data commonly prepared for conventional coal assessments. Coal systems are generally defined as one or more coal beds or groups of coal beds that have had the same or similar genetic history from their inception as peat deposits, through their burial, diagenesis, and epigenesis to their ultimate preservation as lignite, bituminous coal, or anthracite. The central and northern parts of the Appalachian basin contain seven coal systems (Coal Systems A-G). These systems may be defined generally on the following criteria: (1) on the primary characteristics of their paleopeat deposits, (2) on the stratigraphic framework of the Paleozoic coal measures, (3) on the relative abundance of coal beds within the major stratigraphic groupings, (4) on the amount of sulfur related to the geologic and climatic conditions under which paleopeat deposits accumulated, and (5) on the rank of the coal (lignite to anthracite). ??2005 Geological Society of America.

  18. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  19. CAMD studies of coal structure and coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulon, J.L.; Carlson, G.A.

    The macromolecular structure of coal is essential to understand the mechanisms occurring during coal liquefaction. Many attempts to model coal structure can be found in the literature. More specifically for high volatile bituminous coal, the subject of interest the most commonly quoted models are the models of Given, Wiser, Solomon, and Shinn. In past work, the authors`s have used computer-aided molecular design (CAMD) to develop three-dimensional representations for the above coal models. The three-dimensional structures were energy minimized using molecular mechanics and molecular dynamics. True density and micopore volume were evaluated for each model. With the exception of Given`s model,more » the computed density values were found to be in agreement with the corresponding experimental results. The above coal models were constructed by a trial and error technique consisting of a manual fitting of the-analytical data. It is obvious that for each model the amount of data is small compared to the actual complexity of coal, and for all of the models more than one structure can be built. Hence, the process by which one structure is chosen instead of another is not clear. In fact, all the authors agree that the structure they derived was only intended to represent an {open_quotes}average{close_quotes} coal model rather than a unique correct structure. The purpose of this program is further develop CAMD techniques to increase the understanding of coal structure and its relationship to coal liquefaction.« less

  20. Standards for the classification of public coal lands

    USGS Publications Warehouse

    Bass, N. Wood; Smith, Henry L.; Horn, George Henry

    1970-01-01

    In order to provide uniformity in the classification of coal lands in the public domain, certain standards have been prepared from time to time by the U.S. Geological Survey. The controlling factors are the depth, quality, and thickness of the coal beds. The first regulations were issued April 8, 1907; others followed in 1908, 1909, and 1913. Except for minor changes in 1959, the regulations of 1913, which were described in U.S. Geological Survey Bulletin 537, have been the guiding principles for coal-land classification. Changes made herein from the standards previously used are: (1) a maximum depth of 6,000 feet instead of 5,000 feet, (2) a maximum depth of 1,000 feet instead of 500 feet for coals of minimum thickness, (3) use of Btu (British thermal unit) values for as-received foal instead of air-dried, and (4) a minimum Btu value of 4,000 for as-received coal instead of 8,000 for air-dried. An additional modification is that the maximum thickness of 8 feet which was designated in the Classification Chart for Coal Lands in 1959 is changed to 6 feet. The effect of these changes will be the classification of a greater amount of the withdrawn land as coal land than was done under earlier regulations.

  1. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Brunson, Roy J.

    1979-01-01

    An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

  2. Hydrology of area 2, Eastern Coal Province, Pennsylvania and New York

    USGS Publications Warehouse

    Herb, W.J.; Brown, D.E.; Shaw, L.C.; Stoner, J.E.; Felbinger, J.K.

    1983-01-01

    Provisions of the Surface Mining Control and Reclamation Act of 1977 recognized a nationwide need for hydrologic information in mined and potentially mined areas. This report is designed to be useful to mine owners, operators, regulatory authorities, citizens groups, and others by presenting information on existing hydrologic conditions and by identifying additional sources of hydrologic information. General hydrologic information is presented in a brief text accompanied by a map, chart, graph, or other illustration for each of a series of water-resourcesrelated topics. The summation of the topical discussions provides a description of the hydrology of the area. The Eastern Coal Province has been divided into 24 hydrologic study areas which are shown on the cover of this report. The divisions are based on hydrologic factors, location, and size. Hydrologic units (surface drainage basins) or parts of units are combined to form each study area. Study Area 2 covers northwestern Pennsylvania and a small part of southwestern New York. Most exposed bedrock is of Pennsylvanian, Mi;;sissippian, or Devonian ages. Glacial drift covers most of the bedrock in the northwestern part of the area. During 1979, more than 7 million tons of bituminous coal was produced from about 230 mines in Area 2 counties. Over 99 percent of the area's coal production is from surface mining. Streamflow data are available for 18 continuousrecord stations; 1 crest-stage, partial-record station; 1 low-flow, partial-record station; and 65 miscellaneous sites. Water-quality data are available for 78 locations. Streams having the highest median specific conductance, highest median dissolved-solids concentrations, lowest median pH, highest median total-iron concentration, highest median total-manganese concentration, and highest dissolved-sulfate concentrations were found in Clarion County, the leading coal-producing county in the area. Statistics on low flow, mean flow, peak flow, and flow duration for

  3. Quality-of-water data and statistical summary for selected coal-mined strip pits in Crawford and Cherokee counties, southeastern Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Diaz, A.M.

    1982-01-01

    Quality-of-water data, collected October 21-23, 1980, and a statistical summary are presented for 42 coal-mined strip pits in Crawford and Cherokee Counties, Southeastern Kansas. The statistical summary includes minimum and maximum observed values , mean, and standard deviation. Simple linear regression equations relating specific conductance, dissolved solids, and acidity to concentrations of dissolved solids, sulfate, calcium, and magnesium, potassium, aluminum, and iron are also presented. (USGS)

  4. [Extraction of management information from the national quality assurance program].

    PubMed

    Stausberg, Jürgen; Bartels, Claus; Bobrowski, Christoph

    2007-07-15

    Starting with clinically motivated projects, the national quality assurance program has established a legislative obligatory framework. Annual feedback of results is an important means of quality control. The annual reports cover quality-related information with high granularity. A synopsis for corporate management is missing, however. Therefore, the results of the University Clinics in Greifswald, Germany, have been analyzed and aggregated to support hospital management. Strengths were identified by the ranking of results within the state for each quality indicator, weaknesses by the comparison with national reference values. The assessment was aggregated per clinical discipline and per category (indication, process, and outcome). A composition of quality indicators was claimed multiple times. A coherent concept is still missing. The method presented establishes a plausible summary of strengths and weaknesses of a hospital from the point of view of the national quality assurance program. Nevertheless, further adaptation of the program is needed to better assist corporate management.

  5. Flotation and flocculation chemistry of coal and oxidized coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniquesmore » capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.« less

  6. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processingmore » simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to

  7. Hydrology of area 18, Eastern Coal Province, Tennessee

    USGS Publications Warehouse

    May, V.J.

    1981-01-01

    The Eastern Coal Province is divided into 24 hydrologic reporting areas. This report describes the hydrology of area 18 which is located in the Cumberland River basin in central Tennessee near the southern end of the Province. Hydrologic information and sources are presented as text, tables, maps, and other illustrations designed to be useful to mine owners, operators, and consulting engineers in implementing permit applications that comply with the environmental requirements of the ' Surface Mining Control and Reclamation Act of 1977. ' Area 18 encompasses parts of three physiographic regions; from east to west the Cumberland Plateau, Highland Rim, and Central Basin. The Plateau is underlain by sandstones and shales, with thin interbedded coal beds, of Pennsylvanian age. The Highland Rim and Central Basin are underlain by limestone and dolomite of Mississippian age. Field and laboratory analyses of chemical and physical water-quality parameters of streamflow samples show no widespread water quality problems. Some streams, however, in the heavily mined areas have concentrations of sulfate, iron, manganese, and sediment above natural levels, and pH values below natural levels. Mine seepage and direct mine drainage were not sampled. Ground water occurs in and moves through fractures in the sandstones and shales and solution openings in the limestones and dolomites. Depth to water is variable, ranging from about 5 to 70 feet below land-surface in the limestones and dolomites, and 15 to 40 feet in the coal-bearing rocks. The quality of ground water is generally good. Locally, in coal-bearing rocks, acidic water and high concentrations of manganese, chloride, and iron have been detected. (USGS)

  8. Does National Quality Monitoring Make a Difference?

    ERIC Educational Resources Information Center

    Wahlen, Staffan

    2004-01-01

    This article analyses the impact of national quality audit of Swedish higher education institutions between 1995 and 2002. It also looks at the programme and subject reviews that have succeeded the audits, in order to compare results. It is found that the audits have resulted in the development of policy and structure of institutional quality work…

  9. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  10. Coal resources available for development; a methodology and pilot study

    USGS Publications Warehouse

    Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.

    1990-01-01

    Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated

  11. Distribution of a suite of elements including arsenic and mercury in Alabama coal

    USGS Publications Warehouse

    Goldhaber, Martin B.; Bigelow, R.C.; Hatch, J.R.; Pashin, J.C.

    2000-01-01

    Arsenic and other elements are unusually abundant in Alabama coal. This conclusion is based on chemical analyses of coal in the U.S. Geological Survey's National Coal Resources Data System (NCRDS; Bragg and others, 1994). According to NCRDS data, the average concentration of arsenic in Alabama coal (72 ppm) is three times higher than is the average for all U.S. coal (24 ppm). Of the U.S. coal analyses for arsenic that are at least 3 standard deviations above the mean, approximately 90% are from the coal fields of Alabama. Figure 1 contrasts the abundance of arsenic in coal of the Warrior field of Alabama (histogram C) with that of coal of the Powder River Basin, Wyoming (histogram A), and the Eastern Interior Province including the Illinois Basin and nearby areas (histogram B). The Warrior field is by far the largest in Alabama. On the histogram, the large 'tail' of very high values (> 200 ppm) in the Warrior coal contrasts with the other two regions that have very few analyses greater than 200 ppm.

  12. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  13. 77 FR 69795 - Malcolm Baldrige National Quality Award Board of Overseers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Quality Award Board of Overseers AGENCY: National Institute of Standards and Technology, Department of... Quality Award (Board of Overseers) will meet in open session on Wednesday, December 12, 2012. The purpose... Standards and Technology and from the Chair of the Judges' Panel of the Malcolm Baldrige National Quality...

  14. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface

  15. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera

    PubMed Central

    Slaker, Brent A.; Mohamed, Khaled M.

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study. PMID:28663826

  16. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera.

    PubMed

    Slaker, Brent A; Mohamed, Khaled M

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.

  17. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  18. Methodological Quality of National Guidelines for Pediatric Inpatient Conditions

    PubMed Central

    Hester, Gabrielle; Nelson, Katherine; Mahant, Sanjay; Eresuma, Emily; Keren, Ron; Srivastava, Rajendu

    2014-01-01

    Background Guidelines help inform standardization of care for quality improvement (QI). The Pediatric Research in Inpatient Settings (PRIS) network published a prioritization list of inpatient conditions with high prevalence, cost, and variation in resource utilization across children’s hospitals. The methodological quality of guidelines for priority conditions is unknown. Objective To rate the methodological quality of national guidelines for 20 priority pediatric inpatient conditions. Design We searched sources including PubMed for national guidelines published 2002–2012. Guidelines specific to one organism, test or treatment, or institution were excluded. Guidelines were rated by two raters using a validated tool (AGREE II) with an overall rating on a 7-point scale (7–highest). Inter-rater reliability was measured with a weighted kappa coefficient. Results 17 guidelines met inclusion criteria for 13 conditions, 7 conditions yielded no relevant national guidelines. The highest methodological quality guidelines were for asthma, tonsillectomy, and bronchiolitis (mean overall rating 7, 6.5 and 6.5 respectively); the lowest were for sickle cell disease (2 guidelines) and dental caries (mean overall rating 4, 3.5, and 3 respectively). The overall weighted kappa was 0.83 (95% confidence interval 0.78–0.87). Conclusions We identified a group of moderate to high methodological quality national guidelines for priority pediatric inpatient conditions. Hospitals should consider these guidelines to inform QI initiatives. PMID:24677729

  19. The problem with coal-waste dumps inventory in Upper Silesian Coal Basin

    NASA Astrophysics Data System (ADS)

    Abramowicz, Anna; Chybiorz, Ryszard

    2017-04-01

    Coal-waste dumps are the side effect of coal mining, which has lasted in Poland for 250 years. They have negative influence on the landscape and the environment, and pollute soil, vegetation and groundwater. Their number, size and shape is changing over time, as new wastes have been produced and deposited changing their shape and enlarging their size. Moreover deposited wastes, especially overburned, are exploited for example road construction, also causing the shape and size change up to disappearing. Many databases and inventory systems were created in order to control these hazards, but some disadvantages prevent reliable statistics. Three representative databases were analyzed according to their structure and type of waste dumps description, classification and visualization. The main problem is correct classification of dumps in terms of their name and type. An additional difficulty is the accurate quantitative description (area and capacity). A complex database was created as a result of comparison, verification of the information contained in existing databases and its supplementation based on separate documentation. A variability analysis of coal-waste dumps over time is also included. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018.

  20. Quality Management Systems for the National Qualifications Framework. Quality Assurance in Education and Training.

    ERIC Educational Resources Information Center

    New Zealand Qualifications Authority, Wellington.

    This booklet explores the idea of quality and its management as it applies to providers of education in particular, but also as it applies to national standards bodies and workplaces offering on-the-job training. It explores the focus on quality in industry and education and defines quality in terms of the features of quality and their…

  1. Perception, Cultural, and Technical Assessment of Heating Alternatives to Improve Indoor Air Quality on the Navajo Nation

    EPA Science Inventory

    It is estimated that 62 percent of households in the Navajo Nation use wood as their primary heating source, while 25 percent use gaseous fuels, 11 percent use electricity, and the remaining 2 percent use coal, kerosene, other fossil fuels, or solar energy. A 2010 study by the U....

  2. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  3. 77 FR 9651 - National Advisory Committee on Institutional Quality and Integrity (NACIQI) Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... DEPARTMENT OF EDUCATION National Advisory Committee on Institutional Quality and Integrity (NACIQI) Teleconference AGENCY: National Advisory Committee on Institutional Quality and Integrity, Office of... teleconference meeting of the National Advisory Committee on Institutional Quality and Integrity (NACIQI) and...

  4. Potential effects of surface coal mining on the hydrology of the upper Otter Creek-Pasture Creek Area, Moorehead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.; Moreland, J.A.

    1988-01-01

    The combined upper Otter Creek-Pasture Creek area, south of Ashland, Montana, contains large reserves of Federal coal for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and generalized groundwater quality, to assess potential effects of surface mining on local water resources, and to evaluate the potential for reclamation of those water resources. Principal aquifers are coal beds and sandstone in the upper Tongue River Member of the Fort Union Formation (Paleocene age), and sand and gravel in alluvium (Pleistocene and Holocene age). Hydraulic conductivity determined from aquifer tests was about 0.004 to 16 ft/d for coal or sandstone aquifers and 1 to 290 ft/d for alluvial aquifers. Dissolved-solids concentrations in water from bedrock ranged from 1,160 to 4,390 mg/L. In alluvium, the concentrations were 1,770 to 12,600 mg/L. Surface water is available from interrupted flow along downstream reaches of Otter and Pasture Creeks, from stock ponds, and from springs. Most stock ponds are dry by midsummer. Mining of coal in the Anderson, Dietz, and Canyon beds would lower the potentiometric surface within coal and sandstone aquifers. Alluvium along Otter Creek, its main tributaries, and Pasture Creek would be removed at the mines. Planned structuring of the spoils and reconstruction of alluvial aquifers could minimize downstream changes in water quality. Although mining would alter the existing hydrologic systems and destroy several shallow wells and stock ponds, alternative water supplies are available. (USGS)

  5. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    PubMed

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  6. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  7. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  8. Trends in coal use - global, EU and Poland

    NASA Astrophysics Data System (ADS)

    Suwała, Wojciech; Wyrwa, Artur; Olkuski, Tadeusz

    2017-11-01

    That aim of this paper is to compare trends in global, European use of coal with tendencies in Poland, one of heavy coal dependent countries. Polish power generation is unique among OECD countries, the share of both hard coal and lignite in power generation reaches 81% [1]. Climate policy of European Union is to phase out intensive greenhouse gases sectors, thus to transform Polish power generation into less carbon intensive. Although such policy is generally accepted in Poland, the paste and practically proposed regulation that excludes coal generation from capacity mechanisms, is considered as threat to energy security. Coal is the base for generation for one simple reason, abundant in European scale hard coal reserves and significant capacities in lignite. Natural gas reserves allow to supply about 1/3 of consumption, but prices and supplies dependent hitherto on contracts with GAZPROM did not allow to develop significant generation capacities. Renewable resources are limited, there is not much possibilities for hydro, wind and solar. Poland is also one of the countries of poor air quality, traditional coal based space heating systems plus obsolete car fleet generate vast emissions, especially during the winter. Only recently this became top priority of environmental authorities. This situation is subject to transformation, government, managers are aware that the role of coal needs to be decreased, but there are two main questions, the paste of transformation and the future energy mix. The paper attempts to answer the question whether the expected changes in Polish energy mix are comparable or differ from the global and European tendencies.

  9. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  10. Quarterly Coal Distribution

    EIA Publications

    2017-01-01

    The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding Annual Coal Distribution Report.

  11. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of

  12. Coal resources of the Sonda coal field, Sindh Province, Pakistan

    USGS Publications Warehouse

    Thomas, R.E.; Riaz, Khan M.; Ahmed, Khan S.

    1993-01-01

    Approximately 4.7 billion t of original coal resources, ranging from lignite A to subbituminous C in rank, are estimated to be present in the Sonda coal field. These resources occur in 10 coal zones in the Bara Formation of Paleocene age. The Bara Formation does not out crop in the area covered by this report. Thin discontinuous coal beds also occur in the Sonhari Member of the Laki Formation, of Paleocene and Eocene age, but they are unimportant as a resource of the Sonda coal field. The coal resource assessment was based on 56 exploratory drill holes that were completed in the Sonda field between April 1986 and February 1988. The Sonda coal field is split into two, roughly equal, areas by the southwestward flowing Indus River, a major barrier to the logistics of communications between the two halves. As a result the two halves, called the Sonda East and Sonda West areas, were evaluated at different times by slightlydifferent techniques; but, because the geology is consistent between the two areas, the results of both evaluations have been summarized in this report. The resource estimates for the Sonda East area, approximately 1,700 million t, were based on the thickest coal bed in each zone at each drill hole. This method gives a conservative estimate of the total amount of coal in the Sonda East area. The resource estimates for the Sonda West area, approximately 3,000 million t, were based on cumulative coal bed thicknesses within each coal zone, resulting in a more liberal estimate. In both cases, minimum parameters for qualifying coal were a thickness of 30 cm or greater and no more than 50% ash; partings thicker than 1 cm were excluded. The three most important coal zones in the Sonda field are the Inayatabad, the Middle Sonda and the Lower Sonda. Together, these three coal zones contain 50% of the total resources. Isopachs were constructed for the thickest coal beds in these three coal zones and indicate large variations in thickness over relatively small

  13. Federal Coal Directory

    NASA Astrophysics Data System (ADS)

    A new catalog that provides the addresses and the telephone numbers of more than 400 national and local coal-related offices of the U.S. Geological Survey, Office of Surface Mining, and the Bureau of Land Management is available from the USGS.The 41-page publication, a cooperative effort of the three Department of the Interior agencies, contains a statement of each of the bureaus' functions and activities and a listing by state of selected headquarters offices and field offices.

  14. Mercury in Bituminous Coal Used in Polish Power Plants

    NASA Astrophysics Data System (ADS)

    Burmistrz, Piotr; Kogut, Krzysztof

    2016-09-01

    Poland is a country with the highest anthropogenic mercury emission in the European Union. According to the National Centre for Emissions Management (NCEM) estimation yearly emission exceeds 10 Mg. Within that approximately 56% is a result of energetic coal combustion. In 121 studied coal samples from 30 coal mines an average mercury content was 112.9 ppb with variation between 30 and 321 ppb. These coals have relatively large contents of chlorine and bromine. Such chemical composition is benefitial to formation of oxidized mercury Hg2+, which is easier to remove in Air Pollution Control Devices. The Hgr/Qir (mercury content to net calorific value in working state) ratio varied between 1.187 and 13.758 g Hg · TJ-1, and arithmetic mean was 4.713 g Hg · TJ-1. Obtained results are close to the most recent NCEM mercury emission factor of 1.498 g Hg · TJ-1. Value obtained by us is more reliable that emission factor from 2011 (6.4 g Hg · TJ-1), which caused overestimation of mercury emission from energetic coal combustion.

  15. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    NASA Astrophysics Data System (ADS)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous

  16. National Quality Measures for Child Mental Health Care: Background, Progress, and Next Steps

    PubMed Central

    Murphy, J. Michael; Scholle, Sarah Hudson; Hoagwood, Kimberly Eaton; Sachdeva, Ramesh C.; Mangione-Smith, Rita; Woods, Donna; Kamin, Hayley S.; Jellinek, Michael

    2013-01-01

    OBJECTIVE: To review recent health policies related to measuring child health care quality, the selection processes of national child health quality measures, the nationally recommended quality measures for child mental health care and their evidence strength, the progress made toward developing new measures, and early lessons learned from these national efforts. METHODS: Methods used included description of the selection process of child health care quality measures from 2 independent national initiatives, the recommended quality measures for child mental health care, and the strength of scientific evidence supporting them. RESULTS: Of the child health quality measures recommended or endorsed during these national initiatives, only 9 unique measures were related to child mental health. CONCLUSIONS: The development of new child mental health quality measures poses methodologic challenges that will require a paradigm shift to align research with its accelerated pace. PMID:23457148

  17. Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.

    2004-01-01

    The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.

  18. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  19. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  20. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    USGS Publications Warehouse

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible

  2. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  3. Use of overburden rocks from open-pit coal mines and waste coals of Western Siberia for ceramic brick production with a defect-free structure

    NASA Astrophysics Data System (ADS)

    Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.

    2017-09-01

    The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.

  4. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  5. Water-quality monitoring for a pilot piling removal field evaluation, Coal Creek Slough, Washington, 2008-09

    USGS Publications Warehouse

    Nilsen, Elena B.; Alvarez, David A.

    2011-01-01

    Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post

  6. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; ,

    1983-01-01

    , water-quality stations on the Laramie and the Medicine Bow Rivers are farther removed from the mountain sources than the stations in the North Platte drainage. Because of the semiarid climate of the basins, soils are not adequately leached. Consequently, flow in ephemeral streams usually has a larger concentration of dissolved solids than that in perennial streams, averaging 1,000 to 1,600 milligrams per liter. Aquifers containing usable ground water are combined into three groups: (1) consolidated and unconsolidated non-coal-bearing Quaternary and Upper Tertiary deposits, (2) Mesozoic and Paleozoic sedimentary rocks, and (3) Lower Tertiary and Upper Cretaceous sedimentary rocks containing coal. These aquifers are used for municipal, domestic, irrigation, and stock supplies. Well yields range from about 5 to 1,000 gallons per minute, and depend on type of aquifer, saturated thickness, and degree of fracturing. The best quality ground water usually comes from the non-coal-bearing Quaternary and Upper Tertiary rocks or the Mesozoic and Paleozoic rocks; often it is dominated by calcium and bicarbonate ions. The coal-bearing formations have a large variability in water chemistry; dominant ions may be bicarbonate or sulfate and sodium, calcium, or magnesium. Dissolved-solids concentrations are generally larger than in the former two groups. The U.S. Geological Survey operates a network of hydrologic stations to observe the streamflow and groundwater conditions. This network currently includes 31 surface-water stations and 35 observation wells; information is available for many other sites observed in the past. Data available include rate of flow, water levels, and water quality; much of the data are available in published reports or from computer storage through the National Water Data Exchange (NAWDEX) or the National Water Data Storage and Retrieval System (WATSTORE). Five formations of Late Cretaceous and early Tertiary age contain coal. W

  7. 76 FR 53483 - Notice of Invitation To Participate; Coal Exploration License Application NMNM 126245, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ..., as amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM... program is to gain structural and quality information about the coal. The BLM regulations at 43 CFR 3410 require the publication of an invitation to participate in the coal exploration in the Federal Register...

  8. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.

  9. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  10. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  11. Human action quality evaluation based on fuzzy logic with application in underground coal mining.

    PubMed

    Ionica, Andreea; Leba, Monica

    2015-01-01

    The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.

  12. Attitudes toward Women Coal Miners in an Appalachian Coal Community.

    ERIC Educational Resources Information Center

    Trent, Roger B.; Stout-Wiegand, Nancy

    1987-01-01

    In a coal mining community, a survey revealed that the level of negative sentiment toward women coal miners was substantial and varied by gender role. Male coal miners were negative toward female co-workers, but they supported women's right to coal mine jobs, while female homemakers did not. (Author/CH)

  13. Health impacts of coal and coal use: Possible solutions

    USGS Publications Warehouse

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  14. National Water-Quality Assessment Program; the Allegheny-Monongahela River Basin

    USGS Publications Warehouse

    McAuley, Steven D.

    1995-01-01

    In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The three major objectives of the NAWQA program are to provide a consistent description of current water-quality conditions for a large part of the Nation's water resources, define long-term trends in water quality, and identify, describe, and explain the major factors that affect water-quality conditions and trends. The program produces water-quality information that is useful to policy makers and managers at the National, State, and local levels.The program will be implemented through 60 separate investigations of river basins and aquifer systems called study units. These study-unit investigations will be conducted at the State and local level and will form the foundation on which national- and regional-level assessments are based. The 60 study units are hydrologic systems that include parts of most major river basins and aquifer systems. The study-unit areas range from 1,000 to more than 60,000 square miles and include about 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty studyunit investigations were started in 1991, 20 started in 1994, and 20 more are planned to start in 1997. The Allegheny-Monongahela River Basin was selected to begin assessment activities as a NAWQA study unit in 1994. The study team will work from the office of the USGS in Pittsburgh, Pa.

  15. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Gorbaty, Martin L.; Taunton, John W.

    1980-01-01

    A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

  16. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  17. Environmental research program for slagging fixed-bed coal gasification. Status report, November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilzbach, K. E.; Stetter, J. R.; Reilly, Jr., C. A.

    1982-02-01

    A collaborative environmental research program to provide information needed to assess the health and environmental effects associated with large-scale coal gasification technology is being conducted by Argonne National Laboratory (ANL) and the Grand Forks Energy Technology Center (GFETC). The objectives are to: investigate the toxicology and chemical composition of coal gasification by-products as a function of process variables and coal feed; compare the characteristics of isokinetic side-stream samples with those of process stream samples; identify the types of compounds responsible for toxicity; evaluate the chemical and toxicological effectiveness of various wastewater treatment operations; refine methodology for the collection and measurementmore » of organic vapors and particulates in workplace air; and obtain preliminary data on workplace air quality. So far the toxicities of a set of process stream samples (tar, oil, and gas liquor) and side-stream condensates from the GFETC gasifier have been measured in a battery of cellular screening tests for mutagenicity and cytotoxicity. Preliminary data on the effects of acute and chronic exposures of laboratory animals to process tar have been obtained. The process tar has been chemically fractionated and the distribution of mutagenicity and compound types among the fractions has been determined. Organic vapors and particulates collected at various times and locations in the gasifier building have been characterized.« less

  18. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  19. Underground Coal Gasification - Experience of ONGC

    NASA Astrophysics Data System (ADS)

    Jain, P. K.

    2017-07-01

    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy

  20. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  1. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  2. Characterization of humidity-controlling porous ceramics produced from coal fly ash and waste catalyst by co-sintering

    NASA Astrophysics Data System (ADS)

    Lin, Kae-Long; Ma, Chih-Ming; Lo, Kang-Wei; Cheng, Ta-Wui

    2018-04-01

    In this study, the following operating conditions were applied to develop humidity-controlling porous ceramic (HCPC) products: sintering temperatures of 800-1000 °C and percentages of coal fly ash in waste catalyst of 0%-40%. The HCPC samples then underwent a flexural strength test, to determine their quality according to the Chinese National Standards (CNS 3298). Their microstructures, crystal structures, and pore volume were determined in terms of equilibrium moisture content, water vapor adsorption/desorption, and hygroscopic sorption properties over 48 h. Nitrogen adsorption/desorption isotherms showed a hydrophobic behavior (type H3 isotherm). The water vapor adsorption/desorption and hygroscopic sorption properties satisfied the JIS A1470 intensity specification for building materials (>29 g/m2). At sintering temperatures of 950-1000 °C, HCPC samples for coal fly ash containing 20%-30% waste catalyst met the JIS A1470 intensity specifications for building materials (<29 g/m2).

  3. 40 CFR 50.8 - National primary ambient air quality standards for carbon monoxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary ambient air quality standards for carbon monoxide. 50.8 Section 50.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.8 National primary ambient air quality standards for...

  4. 40 CFR 50.8 - National primary ambient air quality standards for carbon monoxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false National primary ambient air quality standards for carbon monoxide. 50.8 Section 50.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.8 National primary ambient air quality standards for...

  5. 40 CFR 50.8 - National primary ambient air quality standards for carbon monoxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false National primary ambient air quality standards for carbon monoxide. 50.8 Section 50.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.8 National primary ambient air quality standards for...

  6. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    NASA Astrophysics Data System (ADS)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  7. Bituminous coal production in the Appalachian Basin; past, present, and future

    USGS Publications Warehouse

    Milici, R.C.

    1999-01-01

    This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.

  8. Preliminary Investigations of the Distribution and Resources of Coal in the Kaiparowits Plateau, Southern Utah

    USGS Publications Warehouse

    Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.

    1996-01-01

    EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits

  9. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  10. National Standards for Quality Online Courses: Version 2

    ERIC Educational Resources Information Center

    International Association for K-12 Online Learning, 2011

    2011-01-01

    The mission of the International Association for K-12 Online Learning (iNACOL) is to ensure all students have access to world-class education and quality online learning opportunities that prepare them for a lifetime of success. "National Standards for Quality Online Courses" is designed to provide states, districts, online programs, and…

  11. Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, 1987-88

    USGS Publications Warehouse

    Sedam, A.C.

    1991-01-01

    This report presents hydrologic data from selected drainage basins in the active coal-mining areas of Ohio from July 1987 through October 1988. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus physiographic province. The 1987-88 work is the second phase of a 7-year study to assess baseline water quality in Ohio's coal region. The data collection network consisted of 41 long-term surface-water sites in 21 basins. The sites were measured and sampled twice yearly at low flow. In addition, six individual basins (three each year) selected for a more detailed representation of surface-water and ground-water quality. In 1987, the Sandy Creek, Middle Tuscarawas River and Sugar Creek, and Lower Tuscarawas River basins were chosen. In 1988, the Short and Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek basins were chosen. Because of their proximity to the glaciated region and outwash drainage, the basins studied intensively in 1987 contain more shallow productive aquifers than do the basins studied in detail for 1988, in which shallow ground-water sources are very localized. Chemical analyses for 202 surface-water and 24 ground-water samples are presented. For field measurements made at surface-water sites, the specific conductance ranged from 295 to 3150 ? S/cm (microsiemens per centimeter at 25 degrees Celsius). For pH, the range was 2.8 to 8.6. Alkalinity ranged from 5 to 305 mg/L (milligrams per liter) as CaCO3.

  12. Apparatus and method for feeding coal into a coal gasifier

    DOEpatents

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  13. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  14. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA

    USGS Publications Warehouse

    Mastalerz, Maria; Gluskoter, Harold J.; Rupp, J.

    2004-01-01

    Samples of coals from several coalbeds in Indiana were analyzed for CO2 and CH4 sorption capacity using a high-pressure adsorption isotherm technique. Coal quality and petrographic composition of the coals were determined to study their relationships to the volume of CO2 and CH4 that could be sorbed into the coal. At the temperature of 17 ??C and 400 psi (??? 2.8 MPa), the coals can sorb (on dry ash-free basis) from 4 to 6.3 m3/ton (128-202 scf/ton) of CH4 and 19.5-24.6 m3/ton4 (624 to 788 scf/ton) of CO2. The ratio of CO2/CH4 at these conditions ranges from 3.5 to 5.3 and decreases with an increasing pressure for all coals. The coals studied are of a very similar coal rank (Ro from 0.48 to 0.62%) but of varying petrographic composition, and CO2 sorption volumes appear to be positively correlated to the content of maceral telocollinite. ?? 2004 Elsevier B.V. All rights reserved.

  15. Underground thermal generation of hydrocarbons from dry, southwestern coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderborgh, N.E.; Elliott, G.R.B.

    1978-01-01

    The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less

  16. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  17. 15. VIEW OF COAL TRESTLE LOOKING NORTHEAST. COAL DUMPED FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF COAL TRESTLE LOOKING NORTHEAST. COAL DUMPED FROM HOPPER CARS COULD BE CRUSHED AND LOADED ON A CONVEYOR THAT PARALLELED THE TRACK TO THE EAST (LEFT) AND CARRIED IT TO A 1000 TON BUNKER LOCATED ON THE NORTH SIDE OF THE EAST BOILER ROOM. COAL COULD ALSO GO THROUGH THE CRUSHER AND BE DIVERTED TO THE CONVEYOR SHOWN IN THE LEFT FOREGROUND. COAL PILES FORMED UNDER THE CONVEYOR WOULD BE MOVED AND SHAPED BY BULLDOZER. A GROUND LEVEL HOPPER WAS LOCATED TO THE RIGHT OF THE SLOPING HOUSING WHICH EXTENDS FROM THE SOUTH SIDE OF THE COAL TRESTLE. THIS HOPPER FED A CONVEYOR LOCATED WITHIN THE SLOPING HOUSING. COAL DROPPED INTO THE HOPPER WOULD BE CONVEYED INTO THE CRUSHER UNDER THE TRESTLE AND THEN DIVERTED TO THE CONVEYOR WHICH LOADED THE 1000 TON BUNKER. THE COAL HANDLING SYSTEM WAS DESIGNED BY GIBBS AND HILL IN 1947. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. Coal-bed methane discoveries in Powder River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matson, R.E.

    1991-06-01

    The Powder River basin of northeastern Wyoming and southeastern Montana contains the nation's largest supply of subbituminous coal. The coal beds have been mapped with surprising continuity, with thickness of individual beds exceeding 200 ft. The Paleocene Tongue River Member of the Fort Union Formation contains the bulk of the reserves. The coal near surface along the eastern part of the basin is subbituminous C, while in the deeper part and in the northwestern part of the basin the rank is subbituminous B or A. Commercial exploitation of methane in the Powder River was initiated by Wyatt Petroleum in themore » Recluse area north of Gillette in 1986. Early production was from sands occurring between major coal beds. Production directly from coal beds along the shallow eastern part of the Powder River basin was achieved by Betop Inc. in the Rawhide field a short distance north of Gillette in early 1989 from five wells. Fifteen additional wells were drilled and completed in the field in late 1990. Other shallow coal-bed methane production has been achieved from the same thick Wyodak coalbed nearby by Martins and Peck Operating, Wasatch Energy, and DCD Inc. Numerous deeper tests have been drilled and tested by various companies including Coastal Oil and Gas, Materi Exploration, Cenex, Gilmore Oil and Gas, and Betop Inc., none of which has attained commercial success. Recent exploration in the northwestern part of the basin has resulted in two apparent discoveries.« less

  19. Hydrologic reconnaissance of the Kolob, Alton, and Kaiparowits Plateau coal fields, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1985-01-01

    The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.

  20. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  1. New method of feeding coal - Continuous extrusion of fully plastic coal

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.; England, C.

    1978-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.

  2. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  3. National Water Quality Inventory, 1975 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  4. Managing coal combustion residues in mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    Burning coal in electric utility plants produces, in addition to power, residues that contain constituents which may be harmful to the environment. The management of large volumes of coal combustion residues (CCRs) is a challenge for utilities, because they must either place the CCRs in landfills, surface impoundments, or mines, or find alternative uses for the material. This study focuses on the placement of CCRs in active and abandoned coal mines. The Committee on Mine Placement of Coal Combustion Wastes of the National Research Council believes that placement of CCRs in mines as part of the reclamation process may bemore » a viable option for the disposal of this material as long as the placement is properly planned and carried out in a manner that avoids significant adverse environmental and health impacts. This report discusses a variety of steps that are involved in planning and managing the use of CCRs as minefills, including an integrated process of CCR characterization and site characterization, management and engineering design of placement activities, and design and implementation of monitoring to reduce the risk of contamination moving from the mine site to the ambient environment. Enforceable federal standards are needed for the disposal of CCRs in minefills to ensure that states have adequate, explicit authority and that they implement minimum safeguards. 267 refs., 6 apps.« less

  5. Looking southeast at coal conveyor leading from the coal unloading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at coal conveyor leading from the coal unloading station to the coal elevator. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  6. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2007-06-15

    Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integratedmore » gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.« less

  7. EVALUATION OF ANALYSIS OF GAS CONTENT AND COAL PROPERTIES OF MAJOR COAL BEARING REGIONS OF THE UNITED STATES

    EPA Science Inventory

    The report is a compilation of quality assured data on gas content and coalbed reservoir properties for 11 major coal bearing regions in the U.S. The primary source of these data is the U.S. Bureau of Mines (BOM) gas content measurements program conducted during the 1970s and 198...

  8. Coal Fires in the United States: A Case Study in Government Inattention

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2006-12-01

    Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.

  9. A summary of the U.S. Geological Survey National Water-Quality Assessment program

    USGS Publications Warehouse

    Hirsch, R.M.; Alley, W.M.; Wilber, W.G.

    1988-01-01

    Beginning in 1986, the Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water Quality Assessment Program. At present, the program is in a pilot phase with field studies occurring in seven areas around the Nation. In 1990, a committee of the National Academy of Sciences will complete an evaluation of the design and potential utility of the program. A decision about moving to full-scale implementation will be made upon completion of this evaluation. The program is intended to address a wide range of national water quality issues that include chemical contamination, acidification, eutrophication, salinity, sedimentation, and sanitary quality. The goals of the program are to: (1) provide nationally consistent descriptions of current water quality conditions for a large part of the Nation 's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify and describe the relations of both current conditions and trends in water quality to natural and human factors. This information will be provided to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water quality management programs and for predicting the likely effects of contemplated changes in land- and water-management practices. (USGS)

  10. How to Improve the Quality of Screening Endoscopy in Korea: National Endoscopy Quality Improvement Program.

    PubMed

    Cho, Yu Kyung

    2016-07-01

    In Korea, gastric cancer screening, either esophagogastroduodenoscopy or upper gastrointestinal series (UGIS), is performed biennially for adults aged 40 years or older. Screening endoscopy has been shown to be associated with localized cancer detection and better than UGIS. However, the diagnostic sensitivity of detecting cancer is not satisfactory. The National Endoscopy Quality Improvement (QI) program was initiated in 2009 to enhance the quality of medical institutions and improve the effectiveness of the National Cancer Screening Program (NCSP). The Korean Society of Gastrointestinal Endoscopy developed quality standards through a broad systematic review of other endoscopic quality guidelines and discussions with experts. The standards comprise five domains: qualifications of endoscopists, endoscopic unit facilities and equipment, endoscopic procedure, endoscopy outcomes, and endoscopic reprocessing. After 5 years of the QI program, feedback surveys showed that the perception of QI and endoscopic practice improved substantially in all domains of quality, but the quality standards need to be revised. How to avoid missing cancer in endoscopic procedures in daily practice was reviewed, which can be applied to the mass screening endoscopy. To improve the quality and effectiveness of NCSP, key performance indicators, acceptable quality standards, regular audit, and appropriate reimbursement are necessary.

  11. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.

    PubMed

    Tang, Shunlin; Feng, Xinbin; Qiu, Jianrong; Yin, Guoxun; Yang, Zaichan

    2007-10-01

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg(p), 813 kg is Hg(2+) and 817 kg is Hg0. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  12. Coal recovery process

    DOEpatents

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  13. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    NASA Astrophysics Data System (ADS)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  14. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  15. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  16. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  17. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties:more » volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.« less

  18. Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Whitman, Matthew S.

    2002-01-01

    The Camp and Costello Creek watersheds are located on the south side of Denali National Park and Preserve. The Dunkle Mine, an abandoned coal mine, is located near the mouth of Camp Creek. Due to concern about runoff from the mine and its possible effects on the water quality and aquatic habitat of Camp Creek and its receiving stream, Costello Creek, these two streams were studied during the summer runoff months (June to September) in 1999 and 2000 as part of a cooperative study with the National Park Service. Since the south side of Denali National Park and Preserve is part of the U.S. Geological Survey?s National Water-Quality Assessment Cook Inlet Basin study unit, an additional part of this study included analysis of existing water-quality data at 23 sites located throughout the south side of Denali National Park and Preserve to compare with the water quality of Camp and Costello Creeks and to obtain a broader understanding of the water quality in this area of the Cook Inlet Basin. Analysis of water column, bed sediment, fish, invertebrate, and algae data indicate no effects on the water quality of Camp Creek from the Dunkle Mine. Although several organic compounds were found in the streambed of Camp Creek, all concentrations were below recommended levels for aquatic life and most of the concentrations were below the minimum reporting level of 50 ?g/kg. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of Camp Creek exceeded threshold effect concentrations (TEC), but concentrations of these trace elements were also exceeded in streambed sediments of Costello Creek above Camp Creek. Since the percent organic carbon in Camp Creek is relatively high, the toxicity quotient of 0.55 is only slightly above the threshold value of 0.5. Costello Creek has a relatively low organic carbon content and has a higher toxicity quotient of 1.19. Analysis of the water-quality data for other streams located in the south side of Denali National Park

  19. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  20. 35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL TOWER No. 2 (NOTE: SKYLIGHT ABOVE; COAL CARS IN FAR BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  1. 34. BOILER HOUSE, COAL CONVEYOR AND TURNAROUND TRACK FOR COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BOILER HOUSE, COAL CONVEYOR AND TURN-AROUND TRACK FOR COAL CARS (NOTE: COAL CAR No. 6 IN FAR BACK GROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  2. Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.

    2016-12-01

    Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.

  3. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  4. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  5. Progress in donor assisted coal liquefaction: Hydroaromatic compound formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kottenstette, R.J.; Stephens, H.P.

    1993-12-31

    The role of hydrogen donor compounds in coal liquefaction has been extensively investigated since the mid 1960`s using model compounds and process derived hydrogen donor solvents. Our recent research and that of other investigators have shown that two model compounds in particular have great efficacy in solvating low rank coals. 1,2,3,10b tetrahydrofluoranthene (H{sub 4}Fl) and 1,2,3,6,7,8 hexahydropyrene (H{sub 6}Py) have been used to dissolve Wyodak coal to > 95% soluble material as measured by tetrahydrofuran (THF). Although these hydrogen donors are very effective, they may not be found in any significant concentrations in actual liquefaction process recycle solvents. Therefore, studiesmore » with process derived recycle materials are necessary to understand donor solvent chemistry. The objective of this paper is to present results of solvent hydrogenation experiments using heavy distillate solvents produced during testing at the Wilsonville Advanced Coal Liquefaction Test Facility. We evaluated the impact of hydrogenation conditions upon hydrogen donor formation in process derived distillates and compared these process derived solvents with the highly effective H{sub 4}Fl and H{sub 6}Py donors in coal liquefaction tests. This paper presents data on reaction conditions used for distillate hydrotreating and subsequent coal liquefaction, with an aim toward understanding the relationship between reaction conditions and donor solvent quality in recycle distillates.« less

  6. Brecciated and mineralized coals in Union County Western Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P.

    2001-01-01

    Coals from the D-2 and D-3 boreholes in the Grove Center 7 1/2 min quadrangle, Union County, KY, have been found to be highly brecciated and mineralized. The mineralization is dominated by a carbonate assemblage with minor sulfides and sulfates. Included among the secondary minerals is the lead selenide, clausthalite. Overall, the emplacement of secondary vein minerals was responsible for raising the rank of the coals from the 0.6-0.7% Rmax range found in the area to as high as 0.95-0.99% Rmax. A 1.3-m-thick coal found in one of the boreholes is unique among known Western Kentucky coals in having less than 50% vitrinite. Semifusinite and fusinite dominate the maceral assemblages. The coal is also low in sulfur coal, which is unusual for the Illinois Basin. It has an ash yield of less than 10%; much of it dominated by pervasive carbonate veining. The age of the thick coal in core D-2 is similar to that of the Elm Lick coal bed, found elsewhere in the Western Kentucky coalfield. The coals in D-3 are younger, having Stephanian palynomorph assemblages. ?? 2001 Elsevier Science B.V. All rights reserved.

  7. Respiratory disease and suicide among US coal miners: is there a relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, R.G.

    A case-control study was performed to test whether or not respiratory disease in coal miners presented a risk for suicide. While coal miners in general do not experience elevated rates of suicide, coal miners with respiratory disease have been found to have high rates of psychiatric disability, especially depressive reactions. Further, depression has been related to suicide. To test the hypothesis, 50 suicide deaths from four National Institute for Occupational Safety and Health cohorts of coal miners were matched by age at death to two series of controls, a noncancer, nonaccident control series, and a cancer control series. Using oddsmore » ratios (tested by chi-square) the risks of obstructive lung disease and coal workers pneumoconiosis were evaluated together with the risks of years of underground mining, cigarette smoking at the time of cohort creation, and ever having smoked cigarettes. Neither respiratory disease was found to pose a statistically elevated risk of suicide in this sample of U.S. white male coal miners.« less

  8. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  9. Distributional benefit analysis of a national air quality rule.

    PubMed

    Post, Ellen S; Belova, Anna; Huang, Jin

    2011-06-01

    Under Executive Order 12898, the U.S. Environmental Protection Agency (EPA) must perform environmental justice (EJ) reviews of its rules and regulations. EJ analyses address the hypothesis that environmental disamenities are experienced disproportionately by poor and/or minority subgroups. Such analyses typically use communities as the unit of analysis. While community-based approaches make sense when considering where polluting sources locate, they are less appropriate for national air quality rules affecting many sources and pollutants that can travel thousands of miles. We compare exposures and health risks of EJ-identified individuals rather than communities to analyze EPA's Heavy Duty Diesel (HDD) rule as an example national air quality rule. Air pollutant exposures are estimated within grid cells by air quality models; all individuals in the same grid cell are assigned the same exposure. Using an inequality index, we find that inequality within racial/ethnic subgroups far outweighs inequality between them. We find, moreover, that the HDD rule leaves between-subgroup inequality essentially unchanged. Changes in health risks depend also on subgroups' baseline incidence rates, which differ across subgroups. Thus, health risk reductions may not follow the same pattern as reductions in exposure. These results are likely representative of other national air quality rules as well.

  10. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    PubMed

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  11. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    PubMed Central

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  12. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  13. DEVELOPING A QUALITY SYSTEM FOR THE NATIONAL CHILDREN'S STUDY

    EPA Science Inventory

    A Quality Management Plan (QMP) is under development for a national, interagency, long-term study known as the National Children's Study (NCS). The NCS is a study to examine the effects of environmental influences on the health and development of more than 100,000 children acros...

  14. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    PubMed

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  15. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  16. 77 FR 30280 - Final National Recommended Ambient Water Quality Criteria for Carbaryl-2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... national recommended water quality criteria for the protection of aquatic life from effects of carbaryl... developed the aquatic life criteria based on EPA's Guidelines for Deriving Numerical National Water Quality... quality standards for protecting aquatic life and human health. These criteria are intended to protect...

  17. Process for changing caking coals to noncaking coals

    DOEpatents

    Beeson, Justin L.

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  18. Statistical analysis of surface-water-quality data in and near the coal-mining region of southwestern Indiana, 1957-80

    USGS Publications Warehouse

    Martin, Jeffrey D.; Crawford, Charles G.

    1987-01-01

    The Surface Mining Control and Reclamation Act of 1977 requires that applications for coal-mining permits contain information about the water quality of streams at and near a proposed mine. To meet this need for information, streamflow, specific conductance, pH, and concentrations of total alkalinity, sulfate, dissolved solids, suspended solids, total iron, and total manganese at 37 stations were analyzed to determine the spatial and seasonal variations in water quality and to develop equations for predicting water quality. The season of lowest median streamflow was related to the size of the drainage area. Median streamflow was least during fall at 15 of 16 stations having drainage areas greater than 1,000 square miles but was least during summer at 17 of 21 stations having drainage areas less than 1,000 square miles. In general, the season of lowest median specific conductance occurred during the season of highest streamflow except at stations on the Wabash River. Median specific conductance was least during summer at 9 of 9 stations on the Wabash River, but was least during winter or spring (the seasons of highest streamflow) at 27 of the remaining 28 stations. Linear, inverse, semilog, log-log, and hyperbolic regression models were used to investigate the functional relations between water-quality characteristics and streamflow. Of 186 relations investigated, 143 were statistically significant. Specific conductance and concentrations of total alkalinity and sulfate were negatively related to streamflow at all stations except for a positive relation between total alkalinity concentration and streamflow at Patoka River near Princeton. Concentrations of total alkalinity and sulfate were positively related to specific conductance at all stations except for a negative relation at Patoka River near Princeton and for a positive and negative relation at Patoka River at Jasper. Most of these relations are good, have small confidence intervals, and will give reliable

  19. Direct energy balance based active disturbance rejection control for coal-fired power plant.

    PubMed

    Sun, Li; Hua, Qingsong; Li, Donghai; Pan, Lei; Xue, Yali; Lee, Kwang Y

    2017-09-01

    The conventional direct energy balance (DEB) based PI control can fulfill the fundamental tracking requirements of the coal-fired power plant. However, it is challenging to deal with the cases when the coal quality variation is present. To this end, this paper introduces the active disturbance rejection control (ADRC) to the DEB structure, where the coal quality variation is deemed as a kind of unknown disturbance that can be estimated and mitigated promptly. Firstly, the nonlinearity of a recent power plant model is analyzed based on the gap metric, which provides guidance on how to set the pressure set-point in line with the power demand. Secondly, the approximate decoupling effect of the DEB structure is analyzed based on the relative gain analysis in frequency domain. Finally, the synthesis of the DEB based ADRC control system is carried out based on multi-objective optimization. The optimized ADRC results show that the integrated absolute error (IAE) indices of the tracking performances in both loops can be simultaneously improved, in comparison with the DEB based PI control and H ∞ control system. The regulation performance in the presence of the coal quality variation is significantly improved under the ADRC control scheme. Moreover, the robustness of the proposed strategy is shown comparable with the H ∞ control. Copyright © 2017. Published by Elsevier Ltd.

  20. Data from selected U.S. Geological Survey National Stream Water-Quality Networks (WQN)

    USGS Publications Warehouse

    Alexander, Richard B.; Slack, J.R.; Ludtke, A.S.; Fitzgerald, K.K.; Schertz, T.L.; Briel, L.I.; Buttleman, K.P.

    1996-01-01

    This CD-ROM set contains data from two USGS national stream water-quality networks, the Hydrologic Benchmark Network (HBN) and the National Stream Quality Accounting Network (NASQAN), operated during the past 30 years. These networks were established to provide national and regional descriptions of stream water-quality conditions and trends, based on uniform monitoring of selected watersheds throughout the United States, and to improve our understanding of the effects of the natural environment and human activities on water quality. The HBN, consisting of 63 relatively small, minimally disturbed watersheds, provides data for investigating naturally induced changes in streamflow and water quality and the effects of airborne substances on water quality. NASQAN, consisting of 618 larger, more culturally influenced watersheds, provides information for tracking water-quality conditions in major U.S. rivers and streams.

  1. Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2011-12-01

    Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.

  2. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  3. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    States is the only nation to have collected such detailed information for mercury in both its coal and its utility emissions.

  4. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  5. Assessing the quality of the nation's water resources

    USGS Publications Warehouse

    Hamilton, Pixie A.

    2002-01-01

    This issue of IMPACT highlights findings from the first decade of studies (1991 to 2001) by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The articles also discuss the Program’s approaches and models designed to help understand and estimate the fate and transport of contaminants in different geographic areas and environmental settings and over different time frames. NAWQA was established by Congress in 1991 with a goal of developing long-term, consistent, and comparable science-based information on nationwide water-quality conditions. This information is used to support sound management and policy decisions by decision makers at all levels – local, state, and national – who, every day, face complex regulations and management issues related to water resources.

  6. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  7. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE PAGES

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; ...

    2016-05-04

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  8. Water quality success stories: Integrated assessments from the IOOS regional associations and national water quality monitoring network

    USGS Publications Warehouse

    Ragsdale, Rob; Vowinkel, Eric; Porter, Dwayne; Hamilton, Pixie; Morrison, Ru; Kohut, Josh; Connell, Bob; Kelsey, Heath; Trowbridge, Phil

    2011-01-01

    The Integrated Ocean Observing System (IOOS®) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  9. Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of ground-water quality trends and comparison to other national programs

    USGS Publications Warehouse

    Rosen, Michael R.; Lapham, W.W.

    2008-01-01

    Assessment of temporal trends in national ground-water quality networks are rarely published in scientific journals. This is partly due to the fact that long-term data from these types of networks are uncommon and because many national monitoring networks are not driven by hypotheses that can be easily incorporated into scientific research. The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) since 1991 has to date (2006) concentrated on occurrence of contaminants because sufficient data for trend analysis is only just becoming available. This paper introduces the first set of trend assessments from NAWQA and provides an assessment of the success of the program. On a national scale, nitrate concentrations in ground water have generally increased from 1988 to 2004, but trends in pesticide concentrations are less apparent. Regionally, the studies showed high nitrate concentrations and frequent pesticide detections are linked to agricultural use of fertilizers and pesticides. Most of these areas showed increases in nitrate concentration within the last decade, and these increases are associated with oxic-geochemical conditions and well-drained soils. The current NAWQA plan for collecting data to define trends needs to be constantly reevaluated to determine if the approach fulfills the expected outcome. To assist this evaluation, a comparison of NAWQA to other national ground-water quality programs was undertaken. The design and spatial extent of each national program depend on many factors, including current and long-term budgets, purpose of the program, size of the country, and diversity of aquifer types. Comparison of NAWQA to nine other national programs shows a great diversity in program designs, but indicates that different approaches can achieve similar and equally important goals. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Economics and coal resource appraisal: strippable coal in the Illinois Basin ( USA).

    USGS Publications Warehouse

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    Because coal is expected to provide an increasing part of U.S. energy supply, it is crucial for long term planning that coal-resource appraisals convey sufficient information regarding the degree of economic resource scarcity as coal consumption increases. Argues that coal-resource estimates, as they are now made, will not give warning of future supply difficulties. A method for incorporating an economic dimension into appraisals of strippable coal resources is presented and applied to a major producing region, the Illinois part of the Illinois basin? In particular, a long-run incremental cost function (that is unit costs vs. cumulative reserves extracted) is estimated for strippable coal in Illinois. -from Authors

  11. Continuous coal processing method

    NASA Technical Reports Server (NTRS)

    Ryason, P. R. (Inventor)

    1980-01-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  12. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  13. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  14. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.16 National primary and secondary ambient air quality standards for lead. (a) The national primary and...

  15. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.12 National primary and secondary ambient air quality standards for lead. (a) National primary and secondary...

  16. CO2 Adsorption in Low-Rank Coals: Progress Toward Assessing the National Capacity to Store CO2 in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stanton, R. W.; Burruss, R. C.; Flores, R. M.; Warwick, P. D.

    2001-05-01

    Subsurface environments for geologic storage of CO2 from combustion of fossil fuel include saline formations, depleted oil and gas reservoirs, and unmineable coalbeds. Of these environments, storage in petroleum reservoirs and coal beds offers a potential economic benefit of enhanced recovery of energy resources. Meaningful assessment of the volume and geographic distribution of storage sites requires quantitative estimates of geologic factors that control storage capacity. The factors that control the storage capacity of unmineable coalbeds are poorly understood. In preparation for a USGS assessment of CO2 storage capacity we have begun new measurements of CO2 and CH4 adsorption isotherms of low-rank coal samples from 4 basins. Initial results for 13 samples of low-rank coal beds from the Powder River Basin (9 subbituminous coals), Greater Green River Basin (1 subbituminous coal), Williston Basin (2 lignites) and the Gulf Coast (1 lignite) indicate that their adsorption capacity is up to 10 times higher than it is for CH4. These values contrast with published measurements of the CO2 adsorption capacity of bituminous coals from the Fruitland Formation, San Juan basin, and Gates Formation, British Columbia, that indicate about twice as much carbon dioxide as methane can be adsorbed on coals. Because CH4 adsorption isotherms are commonly measured on coals, CO2 adsorption capacity can be estimated if thecorrect relationship between the gases is known. However, use a factor to predict CO2 adsorption that is twice that of CH4 adsorption, which is common in the published literature, grossly underestimates the storage capacity of widely distributed, thick low-rank coal beds. Complete petrographic and chemical characterization of these low-rank coal samples is in progress. Significant variations in adsorption measurements among samples are depicted depending on the reporting basis used. Properties were measured on an "as received" (moist) basis but can be converted to a

  17. National Quality Improvement Center on Early Childhood

    ERIC Educational Resources Information Center

    Browne, Charlyn Harper

    2014-01-01

    The national Quality Improvement Center on early Childhood (QIC-eC) funded four research and demonstration projects that tested child maltreatment prevention approaches. The projects were guided by several key perspectives: the importance of increasing protective factors in addition to decreasing risk factors in child maltreatment prevention…

  18. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has < 20 m3/t). The CBM reserves estimations are about: Saransk block, 26.3 Bm3 and Taldykuduk block, 23.5 Bm3. Methane (CH4) can be considered as an environmentally-friendly fuel compared to coal. Actually, the methane extracted during mining is released in the atmosphere, collecting it for recovering energy will reduce CO2 equivalent emissions by 36 Mt, good news regarding climate warming issues. The exploitation method will be based on a EOR technology consisting in injecting CO2 which replaces methane in pores because it has a higher adsorption capacity than CH4; exploiting CBM by CO2 injection provides thus a safe way to sequestrate CO2 in adsorbed form. The 3D geological model was built on Gocad/Skua using the following available data set: 926 wells and large area (7 x 12 km). No seismic data; coal type and chemical components (S, ash, …); unreliable available cross-section & maps due to old acquisition; quality mature coal; complex heterogeneous fractures network reported on geological cross

  19. Water Quality in the Nation's Streams and Aquifers Overview of Selected Findings, 1991-2001

    USGS Publications Warehouse

    Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2004-01-01

    This report accompanies the publication of the last 15 of 51 river basin and aquifer assessments by the USGS National Water-Quality Assessment (NAWQA) Program during 1991?2001. It highlights selected water-quality findings of regional and national interest through examples from river basins and aquifer systems across the Nation. Forthcoming reports in the USGS series ?The Quality of Our Nation?s Waters? will present comprehensive national syntheses of information collected in the 51 study units on pesticides in water, sediment, and fish; volatile organic compounds in major aquifers used for domestic and public supply; nutrients and trace elements in streams and ground water; and aquatic ecology. This report, summaries of the 51 water-quality assessments, and a 1999 national synthesis of information on nutrients and pesticides, are available free of charge as USGS Circulars and on the World Wide Web at http://water.usgs.gov/nawqa/nawqa_sumr.html.

  20. Coal Data Browser

    EIA Publications

    The Coal Data Browser gives users easy access to coal information from EIA's electricity and coal surveys as well as data from the Mine Safety and Health Administration and trade information from the U.S. Census Bureau. Users can also see the shipment data from individual mines that deliver coal to the U.S. electric power fleet, have the ability to track supplies delivered to a given power plant, and to see which mines serve each particular plant.

  1. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    2005-01-01

    The Lower Broas-Stockton coal is a heavily mined coal of the Central Appalachian Basin. Coal thickness, distribution, composition, and stratigraphic position were compared with basement structure, gas and oil field trends, and sequence strat- igraphic and paleoclimate interpretations to better understand the geology of the Stockton coal bed in eastern Kentucky. The thickest coal occurs south of the Warfield structural trend and east of the Paint Creek Uplift, two basement-related structures. Along the Warfield trend, coal beds in the underlying Peach Orchard coal zone locally merge with the Stockton coal to form a seam more than 3 m thick. Other areas of thick coal occur in elongate trends. Two pairs of elongate, conjugate trends in Stockton coal thickness are interpreted as regional paleofractures that influenced paleotopography and groundwater during peat accumulation. Compositional group analyses indicate that the Stockton peat infilled depressions in the paleotopography as a topogenous to soligenous mire codominated by tree ferns and lycopsid trees. Flooding from adjacent paleochannels is indicated by partings and seam splits along the margins of the mineable coal body. One or more increments of low-vitrinite coal, dominated by tree ferns and shrubby, Densosporites-producing lycopsids occur at all sample sites. Similar assemblages have been previously used to identify ombrogenous, domed mire origins for Early and Middle Pennsylvanian coals in which ash yields were less than 10%. It is difficult, however, to reconcile ombrogenous conditions with the partings in the Stockton coal in this area. Low-ash, low-vitrinite increments may have been formed in topogenous to soligenous mires with periodic drying or water-table fluctuations, rather than widespread doming. This is consistent with interpretations of increasingly seasonal paleoclimates in the late Middle and Late Pennsylvanian and fracture-influenced groundwater conditions. ??2005 Geological Society of America.

  2. Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, 1989-91, with a summary of water quality for 1985-91

    USGS Publications Warehouse

    Sedam, A.C.; Francy, D.S.

    1993-01-01

    This report presents streamwater- and ground-water-quality data collected to characterize the baseline water quality for 21 drainage basins in the coal-mining region of eastern Ohio. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus Physiographic Province. The data collected from 1989-91 and presented in this report represent the third and final phase of a 7-year study to assess baseline water quality in Ohio's coal region during 1985-1991. During 1989-91, 246 samples from 41 streamwater sites were collected periodically from a long-term site network. Ranges and medians of measurements made at the long-term streamwater sites were following: specific conductance, 270 to 5,170 and 792 microsiemens per centimeter at 25 degrees Celsius; pH, 2.7 to 9.1 and 7.8; alkalinity, 1 to 391 and 116 mg/L (milligrams per liter). Ranges and medians of laboratory analyses of the same samples were the following: dissolved sulfate, 13 to 2,100 and 200 mg/L; dissolved aluminum, <10 to 17,000 and 300 ? /L (micrograms per liter); dissolved iron, <10 to 53,000 and 60 ? /L; and dissolved manganese, <10 to 17,000 and 295 ? /L. The ranges for concentrations of total recoverable aluminum, iron, and manganese were similar to the ranges of concentrations found for dissolved constituents. Medians of total recoverable aluminum and iron were about 10 times greater than the medians of dissolved aluminum and iron. During 1989-91, once-only sample collections were done at 45 streamwater sites in nine basins chosen for synoptic sampling. At several sites in the Middle Hocking River basin and Leading Creek basin, water had low pH and high concentrations of dissolved aluminum, iron and manganese. These water-quality characteristics are commonly associated with ace mine drainage. Throughout the entire 7-year study (1985-91), medians for most constituents at the long-term streamwater-sampling sites were fairly consistent, despite the

  3. National Wildlife's Eleventh Annual Environmental Quality Index 1980.

    ERIC Educational Resources Information Center

    National Wildlife, 1980

    1980-01-01

    Presented is the Eleventh Annual Environmental Quality Index, a subjective analysis of the state of the nation's natural resources. Resource trends are detailed for wildlife, minerals, air, water, soil living space, and forests. (BT)

  4. Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.

    2013-01-01

    This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.

  5. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    NASA Technical Reports Server (NTRS)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  6. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.

    PubMed

    Lu, Zifeng; Streets, David G; de Foy, Benjamin; Krotkov, Nickolay A

    2013-12-17

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71% during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year(-1) produce statistically significant OMI signals, and a high correlation (R = 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and annual average SO2 concentrations in coal-fired power plant regions increased by >60% during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  7. Evaluation of hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program.

    PubMed

    Sheils, Catherine R; Dahlke, Allison R; Kreutzer, Lindsey; Bilimoria, Karl Y; Yang, Anthony D

    2016-11-01

    The American College of Surgeons National Surgical Quality Improvement Program is well recognized in surgical quality measurement and is used widely in research. Recent calls to make it a platform for national public reporting and pay-for-performance initiatives highlight the importance of understanding which types of hospitals elect to participate in the program. Our objective was to compare characteristics of hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program to characteristics of nonparticipating US hospitals. The 2013 American Hospital Association and Centers for Medicare & Medicaid Services Healthcare Cost Report Information System datasets were used to compare characteristics and operating margins of hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program to those of nonparticipating hospitals. Of 3,872 general medical and surgical hospitals performing inpatient surgery in the United States, 475 (12.3%) participated in the American College of Surgeons National Surgical Quality Improvement Program. Participating hospitals performed 29.0% of all operations in the United States. Compared with nonparticipating hospitals, American College of Surgeons National Surgical Quality Improvement Program hospitals had a higher mean annual inpatient surgical case volume (6,426 vs 1,874; P < .001) and a larger mean number of hospital beds (420 vs 167; P < .001); participating hospitals were more often teaching hospitals (35.2% vs 4.1%; P < .001), had more quality-related accreditations (P < .001), and had higher mean operating margins (P < .05). States with the highest proportions of hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program had established surgical quality improvement collaboratives. The American College of Surgeons National Surgical Quality Improvement Program hospitals are large teaching

  8. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    USGS Publications Warehouse

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  9. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  10. National evaluation of multidisciplinary quality metrics for head and neck cancer.

    PubMed

    Cramer, John D; Speedy, Sedona E; Ferris, Robert L; Rademaker, Alfred W; Patel, Urjeet A; Samant, Sandeep

    2017-11-15

    The National Quality Forum has endorsed quality-improvement measures for multiple cancer types that are being developed into actionable tools to improve cancer care. No nationally endorsed quality metrics currently exist for head and neck cancer. The authors identified patients with surgically treated, invasive, head and neck squamous cell carcinoma in the National Cancer Data Base from 2004 to 2014 and compared the rate of adherence to 5 different quality metrics and whether compliance with these quality metrics impacted overall survival. The metrics examined included negative surgical margins, neck dissection lymph node (LN) yield ≥ 18, appropriate adjuvant radiation, appropriate adjuvant chemoradiation, adjuvant therapy within 6 weeks, as well as overall quality. In total, 76,853 eligible patients were identified. There was substantial variability in patient-level adherence, which was 80% for negative surgical margins, 73.1% for neck dissection LN yield, 69% for adjuvant radiation, 42.6% for adjuvant chemoradiation, and 44.5% for adjuvant therapy within 6 weeks. Risk-adjusted Cox proportional-hazard models indicated that all metrics were associated with a reduced risk of death: negative margins (hazard ratio [HR] 0.73; 95% confidence interval [CI], 0.71-0.76), LN yield ≥ 18 (HR, 0.93; 95% CI, 0.89-0.96), adjuvant radiation (HR, 0.67; 95% CI, 0.64-0.70), adjuvant chemoradiation (HR, 0.84; 95% CI, 0.79-0.88), and adjuvant therapy ≤6 weeks (HR, 0.92; 95% CI, 0.89-0.96). Patients who received high-quality care had a 19% reduced adjusted hazard of mortality (HR, 0.81; 95% CI, 0.79-0.83). Five head and neck cancer quality metrics were identified that have substantial variability in adherence and meaningfully impact overall survival. These metrics are appropriate candidates for national adoption. Cancer 2017;123:4372-81. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. Coal Markets

    EIA Publications

    2017-01-01

    Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States.

  12. Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialecka, Barbara

    One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less

  13. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  14. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  15. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  16. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  17. National quality improvement policies and strategies in European healthcare systems.

    PubMed

    Spencer, E; Walshe, K

    2009-02-01

    This survey provides an overview of the development of policies and strategies for quality improvement in European healthcare systems, by mapping quality improvement policies and strategies, progress in their implementation, and early indications of their impact. A survey of quality improvement policies and strategies in healthcare systems of the European Union was conducted in 2005 for the first phase of the Methods of Assessing Response to Quality Improvement Strategies (MARQuIS) project. The survey, completed by 68 key experts in quality improvement from 24 European Union member states, represents their views and accounts of quality improvement policies and strategies in their healthcare systems. There are substantial international and intra-national variations in the development of healthcare quality improvement. Legal requirements for quality improvement strategies are an important driver of progress, along with the activities of national governments and professional associations and societies. Patient and service user organisations appear to have less influence on quality improvement. Wide variation in voluntary and mandatory coverage of quality improvement policies and strategies across sectors can potentially lead to varying levels of progress in implementation. Many healthcare organisations lack basic infrastructure for quality improvement. Some convergence can be observed in policies on quality improvement in healthcare. Nevertheless, the growth of patient mobility across borders, along with the implications of free market provisions for the organisation and funding of healthcare systems in European Union member states, require policies for cooperation and learning transfer.

  18. Adult tooth loss for residents of US coal mining and Appalachian counties.

    PubMed

    Hendryx, Michael; Ducatman, Alan M; Zullig, Keith J; Ahern, Melissa M; Crout, Richard

    2012-12-01

    The authors compared rates of tooth loss between adult residents of Appalachian coal-mining areas and other areas of the nation before and after control for covariate risks. The authors conducted a cross-sectional secondary data analysis that merged 2006 national Behavioral Risk Factor Surveillance System data (BRFSS) (N = 242 184) with county coal-mining data and other county characteristics. The hypothesis tested was that adult tooth loss would be greater in Appalachian mining areas after control for other risks. Primary independent variables included main effects for coal-mining present (yes/no) residence in Appalachia (yes/no), and their interaction. Data were weighted using the BRFSS final weights and analyzed using SUDAAN Proc Multilog to account for the multilevel complex sampling structure. The odds of two measures of tooth loss were examined controlling for age, race\\ethnicity, drinking, smoking, income, education, supply of dentists, receipt of dental care, fluoridation rate, and other variables. After covariate adjustment, the interaction variable for the residents of Appalachian coal-mining counties showed a significantly elevated odds for any tooth loss [odds ratio (OR) = 1.19, 95% CI = 1.02, 1.38], and greater tooth loss measured by a 4-level edentulism scale (OR = 1.20, 95% CI = 1.05, 1.36). The main effect for Appalachia was also significant for both measures, but the main effect for coal mining was not. Greater risk of tooth loss among adult residents of Appalachian coal-mining areas is present and is not explained by differences in reported receipt of dental care, fluoridation rates, supply of dentists or other behavioral or socioeconomic risks. Possible contributing factors include mining-specific disparities related to access, behavior or environmental exposures. © 2012 John Wiley & Sons A/S.

  19. Microbial solubilization of coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal hadmore » been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.« less

  20. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  1. Preliminary investigation on the effects of primary airflow to coal particle distribution in coal-fired boilers

    NASA Astrophysics Data System (ADS)

    Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.

    2017-04-01

    This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.

  2. 75 FR 71033 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    .... These include damage to the central nervous system, cardiovascular function, kidneys, immune system, and... growth); (5) Meteorology (weather/transport patterns); (6) Geography/topography (mountain ranges or other... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY...

  3. National patterns in wetland water quality from the 2001 NWCA

    EPA Science Inventory

    Water quality (WQ) is central to understanding ecological condition of lakes, streams, and coastal waters but less often assessed in wetlands. The utility of national-scale wetland WQ data was examined in the 2011 National Wetland Condition Assessment, which covered 48 USA state...

  4. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  5. Comment on "Effect of coal-fired power generation on visibility in a nearby National Park (Terhorst and Berkman, 2010)"

    NASA Astrophysics Data System (ADS)

    White, W. H.; Farber, R. J.; Malm, W. C.; Nuttall, M.; Pitchford, M. L.; Schichtel, B. A.

    2012-08-01

    Few electricity generating stations received more environmental scrutiny during the last quarter of the twentieth century than did the Mohave Power Project (MPP), a coal-fired facility near Grand Canyon National Park. Terhorst and Berkman (2010) examine regional aerosol monitoring data collected before and after the plant's 2006 retirement for retrospective evidence of MPP's impact on visibility in the Park. The authors' technical analysis is thoughtfully conceived and executed, but is misleadingly presented as discrediting previous studies and their interpretation by regulators. In reality the Terhorst-Berkman analysis validates a consensus on MPP's visibility impact that was established years before its closure, in a collaborative assessment undertaken jointly by Federal regulators and MPP's owners.

  6. Making of federal coal policy: lessons for public lands management from a failed program, an essay and review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarlock, A.D.

    1985-04-01

    The federal coal leasing program implemented in the 1970s has not achieved its stated objectives and has resulted in a misallocation of resources. As of 1984, federal coal still had not played a major role in meeting either total national energy supply demands or even in meeting total coal supply demands. Federal coal accounted for only 12% of the total US production in 1982. The author notes the program has failed to coordinate coal development with other government objectives such as environmental protection; the program, moreover, has not achieved a satisfactory return to the federal treasury. He feels all threemore » branches of government must share the blame for failure of the program. The Department of the Interior's (USDI) attempts to develop a national coal leasing program failed in part because USDI could not agree on a set of workable and consistent conceptual underpinnings for the program. Administrative attempts also failed because of well-meaning but inept judicial intervention and political and economic events beyond the Department's control. Congress must also bear a good part of the blame. Congress never settled on a consistent coal use policy, and finally, after 1982-83, Congress lost faith in the USDI and attempted to legislate its own federal policy. The failure of the federal government to induce the greater use of federal coal is especially striking because ownership would seem to predict greater control over the use of the resources. 76 references.« less

  7. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  8. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  9. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  10. Regional characterization and resource evaluation of Paleocene and Eocene coal-bearing rocks in Pakistan

    USGS Publications Warehouse

    Durrani, N.A.; Warwick, Peter D.

    1991-01-01

    Field work drilling, and other related studies carried out from 1985 to 1988 to assess the quantity and quality of the coal resources of southern Sindh. Sixty-eight holes drilled in the Lakhra/Jherruck, Thatta, and Indus East coal fields indicate that presently known and mined coal fields in southern Sindh are not isolated coal occurrences. Rather, much of southern Sindh, including the Thar Desert, is underlain by strata that contain coal beds.More than 400 core and mine samples were collected for proximate and ultimate analysis and determination of major, minor and trace elements; also, lithologie logs were prepared from description of rock cuttings and core. Original coal resources of 1,080 million tones have been estimated for 7 out of 9 coal zones in parts of the Lakhra area, where coal-bed thicknesses range from a few centimeters to 5 m. In the Sonda/Jherruk area, 3,700 million tones of coal have been identified, the thickest coal bed intercepted being 6.3 meters. The apparent rank of the coal in these fields ranges from lignite A to sub-bituminous C. Averaged analytical results on an as received basis indicate the coal beds contain 28.4 % moisture, 18,3 % ash, 4.7 % sulfur, 25,2 % fixed carbon, 27.9 % volatile matter, and 33.1% oxygen. Average calorific value for Lakhra coal samples is about 3,660 Kcal/kg, whereas that of Sonda/Jherruk samples is about 3,870 Kcal/kg. Geophysical logs were obtained for the drill holes, and cores and rock cuttings are available from the GSP for further study and reference.The second phase of the project began in 1987 with surface exploration in the Salt Range coal field of Punjab Province, the Sor Range and Khost-Sharig-Harnai coal fields of Baluchistan, and the Makarwal and Cherat coal fields of NWFP. These are briefly discussed here.

  11. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandiamore » National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.« less

  12. National Stream Quality Accounting Network and National Monitoring Network Basin Boundary Geospatial Dataset, 2008–13

    USGS Publications Warehouse

    Baker, Nancy T.

    2011-01-01

    This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.

  13. Productivity, job satisfaction, and health and safety in the coal industry: the participatory alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    This is a conference which presents results and ideas on workplace participation in the coal industry. It discusses the theory of the quality circle groups for developing their own production rates and design goals. It presents the results of different coal company participation in this idea and how to implement this option. Individual topics are entered into the Data Base as separate items.

  14. National Water-Quality Assessment Program--Southern High Plains, Texas and New Mexico

    USGS Publications Warehouse

    Woodward, Dennis G.; Diniz, Cecilia G.

    1994-01-01

    BACKGROUND In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of, and trends in, the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of these resources. In addressing these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the National, State, and local levels. The NAWQA program emphasis is on regional water-quality problems. The program will not diminish the need for smaller studies and monitoring designed and currently being conducted by Federal, State, and local agencies to meet their individual needs. The NAWQA program, however, will provide a large-scale framework for conducting many of these activities and an understanding about National and regional water-quality conditions that cannot be acquired from individual, small-scale programs and studies. Studies of 60 hydrologic systems that include parts of most major river basins and aquifer systems (study-unit investigations) are the building blocks of the National assessment. The 60 study units range in size from 1,000 mi 2 (square miles) to more than 60,000 mi 2 and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty study-unit investigations were started in 1991, 20 additional are starting in 1994, and 20 more are planned to start in 1997. The Southern High Plains study unit was selected as one of 20 study units to begin assessment activities in 1994. This study will be run from the New Mexico District office of the USGS in Albuquerque, New Mexico.

  15. Implementation of Quality Assurance and Quality Control Measures in the National Phenology Database

    NASA Astrophysics Data System (ADS)

    Gerst, K.; Rosemartin, A.; Denny, E. G.; Marsh, L.; Barnett, L.

    2015-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns and environmental change. The National Phenology Database has over 5.5 million observation records for plants and animals for the period 1954-2015. These data have been used in a number of science, conservation and resource management applications, including national assessments of historical and potential future trends in phenology, regional assessments of spatio-temporal variation in organismal activity, and local monitoring for invasive species detection. Customizable data downloads are freely available, and data are accompanied by FGDC-compliant metadata, data-use and data-attribution policies, and vetted documented methodologies and protocols. The USA-NPN has implemented a number of measures to ensure both quality assurance and quality control. Here we describe the resources that have been developed so that incoming data submitted by both citizen and professional scientists are reliable; these include training materials, such as a botanical primer and species profiles. We also describe a number of automated quality control processes applied to incoming data streams to optimize data output quality. Existing and planned quality control measures for output of raw and derived data include: (1) Validation of site locations, including latitude, longitude, and elevation; (2) Flagging of records that conflict for a given date for an individual plant; (3) Flagging where species occur outside known ranges; (4) Flagging of records when phenophases occur outside of the plausible order for a species; (5) Flagging of records when intensity measures do not follow a plausible progression for a phenophase; (6) Flagging of records when a phenophase occurs outside of the plausible season, and (7) Quantification of precision and uncertainty for estimation of phenological metrics

  16. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  17. SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,

    1983-01-01

    An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.

  18. 76 FR 67429 - National Advisory Committee on Institutional Quality and Integrity (NACIQI) Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... DEPARTMENT OF EDUCATION National Advisory Committee on Institutional Quality and Integrity (NACIQI) Meeting AGENCY: National Advisory Committee on Institutional Quality and Integrity, Office of... submissions comply with the requirements of Section 508 of the Rehabilitation Act, or be submitted in an...

  19. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    PubMed

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  20. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    PubMed

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  1. Coal Formation and Geochemistry

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    Coal is one of the most complex and challenging natural materials to analyze and to understand. Unlike most rocks, which consist predominantly of crystalline mineral grains, coal is largely an assemblage of amorphous, degraded plant remains metamorphosed to various degrees and intermixed with a generous sprinkling of minute syngenetic, diagenetic, epigenetic, and detrital mineral grains, and containing within its structure various amounts of water, oils, and gases. Each coal is unique, having been derived from different plant sources over geologic time, having experienty -45ced different thermal histories, and having been exposed to varying geologic processes. This diversity presents a challenge to constructing a coherent picture of coal geochemistry and the processes that influence the chemical composition of coal.Despite the challenge coal presents to geochemists, a thorough understanding of the chemistry and geology of this complex natural substance is essential because of its importance to our society. Coal is, and will remain for sometime, a crucial source of energy for the US and for many other countries (Figure 1). In the USA, more than half of the electricity is generated by coal-fired power plants, and almost 90% of the coal mined in the USA is sold for electricity generation (Pierce et al., 1996). It is also an important source of coke for steel production, chemicals, pharmaceuticals, and even perfumes ( Schobert, 1987). It may also, in some cases, be an economic source of various mineral commodities. The utilization of coal through mining, transport, storage, combustion, and the disposal of the combustion by-products, also presents a challenge to geochemists because of the wide range of environmental and human health problems arising from these activities. The sound and effective use of coal as a natural resource requires a better understanding of the geochemistry of coal, i.e., the chemical and mineralogical characteristics of the coal that control its

  2. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  3. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  4. Microbial conversion of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R.M.

    1989-10-01

    The objectives of this project were to describe in detail the degradation of coals by fungi and microbes, to expand the range of applicability of the process to include new microbes and other coal types, to identify the means by which biosolubilization of coal is accomplished, and to explore means to enhance the rates and extent of coal bioconversion. The project was initiated in a response to the discovery by Dr. Martin Cohen at the University of Hartford, of a fungal strain of Coriolus versicolor that would render a solid coal substance, leonardite, into a liquid product. The project hasmore » identified the principal agent of leonardite solubilization as a powerful metal chelator, most likely a fungal-produced siderophore. Another nonlaccase enzyme has also been identified as a unique biosolubilizing agent produced by C. versicolor. Assays were developed for the quantitative determination of biological coal conversion, and for the determination of potency of biosolubilizing agent. Screening studies uncovered several microbial organisms capable of coal biodegradation, and led to the discovery that prolonged heating in air at the moderate temperature of 150{degree}C allowed the biodegradation of Illinois {number sign}6 coal to material soluble in dilute base. Chemical studies showed that leonardite biosolubilization was accompanied by relatively small change in composition, while solubilization of Illinois {number sign}6 coal involves considerable oxidation of the coal. 24 refs., 32 figs., 27 tabs.« less

  5. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference method...

  6. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference method...

  7. 40 CFR 50.12 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for lead. 50.12 Section 50.12 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) National primary and secondary ambient air quality standards for lead and its compounds, measured as elemental lead by a reference method...

  8. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  9. Valuing U.S. Water Quality at Regional and National Scales

    EPA Science Inventory

    Assessing and monetizing the benefits of water quality at a regional and/or national scale is a challenging problem. One of the biggest problems is a lack of consistency in the monitoring and assessment methods used by states to assess water quality. Despite this inconsistency,...

  10. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah

    2015-04-01

    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in

  11. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  12. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  13. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  14. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  15. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  16. 40 CFR 50.15 - National primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for ozone. 50.15 Section 50.15 Protection of Environment ENVIRONMENTAL....15 National primary and secondary ambient air quality standards for ozone. (a) The level of the national 8-hour primary and secondary ambient air quality standards for ozone (O3) is 0.075 parts per...

  17. 40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for lead. 50.16 Section 50.16 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) The national primary and secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic meter...

  18. 78 FR 47674 - Judges Panel of the Malcolm Baldrige National Quality Award

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Judges Panel of the Malcolm Baldrige National Quality Award AGENCY: National Institute of Standards and Technology, Department of.... ADDRESSES: The meeting will be held at the National Institute of Standards and Technology, 100 Bureau Drive...

  19. Retirement Satisfaction among Coal Miners: A Correlational Study.

    ERIC Educational Resources Information Center

    Clark, Diane J.; And Others

    Because of increases in life expectancy and early retirement, the quality of life during retirement is of concern to many people. Previous research has found that health and adequate income have consistently been related to life satisfaction during retirement. Several satisfaction measures were administered to a group of 55 retired coal miners.…

  20. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    PubMed

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  1. Comparison of Mortality Disparities in Central Appalachian Coal- and Non-Coal-Mining Counties.

    PubMed

    Woolley, Shannon M; Meacham, Susan L; Balmert, Lauren C; Talbott, Evelyn O; Buchanich, Jeanine M

    2015-06-01

    Determine whether select cause of death mortality disparities in four Appalachian regions is associated with coal mining or other factors. We calculated direct age-adjusted mortality rates and associated 95% confidence intervals by sex and study group for each cause of death over 5-year time periods from 1960 to 2009 and compared mean demographic and socioeconomic values between study groups via two-sample t tests. Compared with non-coal-mining areas, we found higher rates of poverty in West Virginia and Virginia (VA) coal counties. All-cause mortality rates for males and females were higher in coal counties across all time periods. Virginia coal counties had statistically significant excesses for many causes of death. We found elevated mortality and poverty rates in coal-mining compared with non-coal-mining areas of West Virginia and VA. Future research should examine these findings in more detail at the individual level.

  2. Coal: the new black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is tomore » convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.« less

  3. Empirical Models of Zones Protecting Against Coal Dust Explosion

    NASA Astrophysics Data System (ADS)

    Prostański, Dariusz

    2017-09-01

    The paper presents predicted use of research' results to specify relations between volume of dust deposition and changes of its concentration in air. These were used to shape zones protecting against coal dust explosion. Methodology of research was presented, including methods of measurement of dust concentration as well as deposition. Measurements were taken in the Brzeszcze Mine within framework of MEZAP, co-financed by The National Centre for Research and Development (NCBR) and performed by the Institute of Mining Technology KOMAG, the Central Mining Institute (GIG) and the Coal Company PLC. The project enables performing of research related to measurements of volume of dust deposition as well as its concentration in air in protective zones in a number of mine workings in the Brzeszcze Mine. Developed model may be supportive tool in form of system located directly in protective zones or as operator tool warning about increasing hazard of coal dust explosion.

  4. The Quest for Strategic Malaysian Quality National Primary School Leaders

    ERIC Educational Resources Information Center

    Ali, Hairuddin Mohd

    2012-01-01

    Purpose: The purpose of this paper is to investigate the nine-point strategic leadership characteristics of Malaysian Quality National Primary School Leaders (QNPSL) and to indicate the implications of these findings for the current educational management and leadership practices in their quest for Malaysian quality education.…

  5. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    NASA Astrophysics Data System (ADS)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  6. Backcountry water quality in Grand Teton National Park

    USGS Publications Warehouse

    Tippets, N.; O'Ney, S.; Farag, A.M.

    2001-01-01

    Over the past several decades, visitor use of the backcountry areas of Grand Teton National Park (Wyoming) has dramatically increased. The water quality of clear, sparkling mountain streams and lakes is being impacted by concentrated recreational use where, because of the potential for future wilderness designation, no restroom facilities are available. Park officials are concerned about the impacts that these activities have on water quality, and that the consumption of untreated water from these areas may pose a hazard to human health.

  7. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient... AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.6 National primary and secondary ambient air quality standards for PM10. (a) The level of the national...

  8. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  9. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less

  10. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridley, David; Khanna, Nina Zheng; Hong, Lixuan

    As China continues its double-digit economic growth, coal remains the principal fuel for the country’s primary energy consumption and electricity generation. China’s dependence on coal in coming years makes its carbon emission intensity reduction targets more difficult to achieve, particularly given rising electricity demand from a growing number of Chinese cities. This paradox has led the government to pursue cleaner and more efficient development of the coal industry on the supply side and “low carbon” development of cities on the demand side. To understand and assess how China may be able to meet its energy and carbon intensity reduction targets,more » this report looks at the recent development of low carbon cities as well as new developments and trends in the coal industry. Specifically, we review low-carbon city and related eco-city development in China before delving into a comparison of eight pilot lowcarbon city plans to highlight their strengths and weaknesses in helping achieve national energy and carbon targets. We then provide insights into the future outlook for China’s coal industry by evaluating new and emerging trends in coal production, consumption, transport, trade and economic performance.« less

  11. The Water-Quality Partnership for National Parks—U.S. Geological Survey and National Park Service, 1998–2016

    USGS Publications Warehouse

    Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.

    2016-07-13

    The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades

  12. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  13. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions.

    PubMed

    Hendryx, Michael; Zullig, Keith J

    2009-11-01

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N=235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR=1.22, 95% CI=1.14-1.30), angina or CHD (OR=1.29, 95% CI=1.19-1.39) and heart attack (OR=1.19, 95% CI=1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  14. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, R.D.; McIlvried, H.G.; Gray, D.

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can bemore » allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.« less

  15. What is the experience of national quality campaigns? Views from the field.

    PubMed

    Bradley, Elizabeth H; Nembhard, Ingrid M; Yuan, Christina T; Stern, Amy F; Curtis, Jeptha P; Nallamothu, Brahmajee K; Brush, John E; Krumholz, Harlan M

    2010-12-01

    To identify key characteristics of a national quality campaign that participants viewed as effective, to understand mechanisms by which the campaign influenced hospital practices, and to elucidate contextual factors that modified the perceived influence of the campaign on hospital improvements. In-depth interviews, hospital surveys, and Health Quality Alliance data. We conducted a qualitative study using in-depth interviews with clinical and administrative staff (N = 99) at hospitals reporting strong influence (n = 6) as well as hospitals reporting limited influence (n = 6) of the Door-to-Balloon (D2B) Alliance, a national quality campaign to improve heart attack care. We analyzed these qualitative data as well as changes in hospital use of recommended strategies reported through a hospital survey and changes in treatment times using Health Quality Alliance data. In-depth, open-ended interviews; hospital survey. Key characteristics of the national quality campaign viewed as enhancing its effectiveness were as follows: credibility of the recommendations, perceived simplicity of the recommendations, alignment with hospitals' strategic goals, practical implementation tools, and breadth of the network of peer hospitals in the D2B Alliance. Perceived mechanisms of the campaign's influence included raising awareness and influencing goals, fostering strategy adoption, and influencing aspects of organizational culture. Modifying contextual factors included perceptions about current performance and internal championship for the recommended changes. The impact of national quality campaigns may depend on both campaign design features and on the internal environment of participating hospitals. © Health Research and Educational Trust.

  16. Petrology, mineralogy and geochemistry of mined coals, western Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; González, Eligio

    2005-01-01

    related to construction of the Andean orogen. Values of maximum reflectance of vitrinite in oil (Ro max) range between 0.42% and 0.85% and generally are consistent with the high-volatile bituminous rank classification obtained through ASTM methods. X-ray diffraction analyses of low-temperature ash residues indicate that kaolinite, quartz, illite and pyrite dominate the inorganic fraction of most samples; plagioclase, potassium feldspar, calcite, siderite, ankerite, marcasite, rutile, anatase and apatite are present in minor or trace concentrations. Semiquantitative values of volume percent pyrite content show a strong correlation with pyritic sulfur and some sulfide-hosted trace element concentrations (As and Hg). This work provides a modern quality dataset for the western Venezuela coal deposits currently being exploited and will serve as the foundation for an ongoing coal quality research program in Venezuela.

  17. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  18. Unionism and Productivity in West Virginia Coal Mining.

    ERIC Educational Resources Information Center

    Boal, William M.

    1990-01-01

    This study presents econometric estimates of the effects of unionism on productivity in 83 West Virginia coal mines in the early 1920s. Results show that unionism significantly reduced productivity at small mines but not at large mines. The author ascribes this effect to systematic differences between small and large operations in the quality of…

  19. Potassium dichromate method of coal gasification the study of the typical organic compounds in water

    NASA Astrophysics Data System (ADS)

    Quan, Jiankang; Qu, Guangfei; Dong, Zhanneng; Lu, Pei; Cai, Yingying; Wang, Shibo

    2017-05-01

    The national standard method is adopted in this paper the water - digestion spectrophotometry for determination of the chemical oxygen demand (COD), after ultrasonic processing of coal gasification water for CODCr measurement. Using the control variable method, measured in different solution pH, ultrasonic frequency, ultrasonic power, reaction conditions of different initial solution concentration, the change of coal gasification water CODCr value under the action of ultrasonic, the experimental results shows that appear when measurement is allowed to fluctuate, data, in order to explain the phenomenon we adopt the combination of the high performance liquid chromatography and mass spectrometry before and after ultrasonic coal gasification qualitative analysis on composition of organic matter in water. To raw water sample chromatography - mass spectrometry (GC/MS) analysis, combined with the spectra analysis of each peak stands for material, select coal gasification typical organic substances in water, with the method of single digestion, the equivalent CODCr values measured after digestion. Order to produce, coal gasification water contained high concentration organic wastewater, such as the national standard method is adopted to eliminate the organic material, therefore to measure the CODCr value is lower than actual CODCr value of the emergence of the phenomenon, the experiment of the effect of ultrasound [9-13] is promote the complex organic chain rupture, also explains the actual measurement data fluctuation phenomenon in the experiment.

  20. History and challenges of national examination as a quality measurement for high school students in Indonesia

    NASA Astrophysics Data System (ADS)

    Rozamuri, Arif Murti; Suradi, Nur Riza Mohd

    2015-02-01

    Education in Indonesia has been established before the Indonesian state. Therefore, the history of Education in Indonesia is quite long. Education that has existed since ancient times, and then forwarded to the days of the Hindu and Buddhist religious influence, then the influence of Islamic religious era, the education in the colonial era until education in independence era. At Indonesia for senior high school students, the quality measured by national exam. The national examination has a long history and full of pros and cons in determining the quality of students. With different level social economic status, and teacher quality in each schools, the student quality would be assessed within a period of three years. The interesting part is whether the national examination, able to measure the quality of students?. Is the quality of students can only be measured through the national exam?. Then various fraud taint the education particularly in the implementation of national examination. This research would explain long history of national examination and various problems that occur in national examination.

  1. Use of Air Quality Observations by the National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Kondragunta, S.; Ruminski, M.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Huang, H. C.; Dickerson, P.; Upadhayay, S.

    2015-12-01

    The National Air Quality Forecast Capability (NAQFC) operational predictions of ozone and wildfire smoke for the United States (U.S.) and predictions of airborne dust for continental U.S. are available at http://airquality.weather.gov/. NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions are combined with the Community Multiscale Air Quality (CMAQ) model to produce the ozone predictions and test fine particulate matter (PM2.5) predictions. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model provides smoke and dust predictions. Air quality observations constrain emissions used by NAQFC predictions. NAQFC NOx emissions from mobile sources were updated using National Emissions Inventory (NEI) projections for year 2012. These updates were evaluated over large U.S. cities by comparing observed changes in OMI NO2 observations and NOx measured by surface monitors. The rate of decrease in NOx emission projections from year 2005 to year 2012 is in good agreement with the observed changes over the same period. Smoke emissions rely on the fire locations detected from satellite observations obtained from NESDIS Hazard Mapping System (HMS). Dust emissions rely on a climatology of areas with a potential for dust emissions based on MODIS Deep Blue aerosol retrievals. Verification of NAQFC predictions uses AIRNow compilation of surface measurements for ozone and PM2.5. Retrievals of smoke from GOES satellites are used for verification of smoke predictions. Retrievals of dust from MODIS are used for verification of dust predictions. In summary, observations are the basis for the emissions inputs for NAQFC, they are critical for evaluation of performance of NAQFC predictions, and furthermore they are used in real-time testing of bias correction of PM2.5 predictions, as we continue to work on improving modeling and emissions important for representation of PM2.5.

  2. Continuous bench-scale slurry catalyst testing direct coal liquefaction of rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  3. Characterization of coal liquids derived from the H-coal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, S.A.; Woodward, P.W.; Sturm, G.P. Jr.

    1976-11-01

    Compositional data of coal liquid products derived from the H-Coal process were obtained. Two overhead products (one from the fuel oil mode of operation and the other from the syncrude mode of operation) were prepared by Hydrocarbon Research, Inc. from Illinois No. 6 coal. The compositional data of these products are tabulated, and characteristics of the materials are discussed. Separation and characterization methods, with slight modification, as developed by the Bureau of Mines-API Research Project 60 for characterizing heavy ends of petroleum, were successfully used in analyzing coal liquid distillates within the boiling range 200/sup 0/ to 540/sup 0/C. Distillatesmore » boiling below 200/sup 0/C were separated and analyzed using chromatographic and spectral techniques.« less

  4. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China.

    PubMed

    Lauer, Nancy; Vengosh, Avner; Dai, Shifeng

    2017-11-21

    Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.

  5. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formedmore » into robust, weather-resistant pellets and briquettes.« less

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Clifford; Andre Boehman; Chunshan Song

    2008-03-31

    designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.« less

  7. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic

  8. Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds

    DOEpatents

    Khan, M. Rashid

    1988-01-01

    A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

  9. National trends in drinking water quality violations.

    PubMed

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  10. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  11. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence

    USGS Publications Warehouse

    Phillips, T.L.; Peppers, R.A.

    1984-01-01

    Improved regional and interregional stratigraphic correlations of Pennsylvanian strata permit comparisons of vegetational changes in Euramerican coal swamps. The coal-swamp vegetation is known directly from in situ coal-ball peat deposits from more than 65 coals in the United States and Europe. Interpretations of coal-swamp floras on the basis of coal-ball peat studies are extended to broader regional and stratigraphic patterns by use of coal palynology. Objectives of the quantitative analyses of the vegetation in relation to coal are to determine the botanical constituents at the peat stage and their environmental implications for plant growth and peat accumulation. Morphological and paleoecological analyses provide a basis for deducing freshwater regimes of coal swamps. Changes in composition of Pennsylvanian coal-swamp vegetation are quire similar from one paralic coal region to another and show synchrony that is attributable to climate. Paleobotany and paleogeography of the Euramerican province indicate a moist tropical paleoclimate. Rainfall, runoff and evapotranspiration were the variable climatic controls in the distribution of coal-swamp vegetation, peat accumulation and coal resources. In relative terms of climatic wetness the Pennsylvanian Period is divisible into five intervals, which include two relatively drier intervals that developed during the Lower-Middle and Middle-Upper Pennsylvanian transitions. The climate during Early Pennsylvanian time was moderately wet and the median in moisture availability. Early Middle Pennsylvanian was drier, probably seasonally dry-wet; late Middle Pennsylvanian was the wettest in the Midcontinent; early Late Pennsylvanian was the driest; and late Late Pennsylvanian was probably the wettest in the Dunkard Basin. The five climatic intervals represent a general means of dividing coal resources within each region into groups with similar botanical constituents and environments of peat accumulation. Regional differences in

  12. Nursing home consumer complaints and quality of care: a national view.

    PubMed

    Stevenson, David G

    2006-06-01

    This study uses 5 years of national data on investigated nursing home complaints (1998-2002) to evaluate whether complaints might be used to assess nursing home quality of care. On-Line Survey Certification and Reporting (OSCAR) data are used to evaluate the association between consumer complaints, facility and resident characteristics, and other nursing home quality measures. The analyses are undertaken in the context of considerable cross-state variation in nursing home complaint processes and rates. Complaints varied across facility characteristics in ways consistent with the nursing home quality literature. Complaints were significantly positively associated with survey deficiencies and the presence of serious survey deficiencies, and significantly negatively associated with nurse and nurse aide staffing. Complaints performance was significantly predictive of survey deficiencies at subsequent inspections. This study presents the first national evidence for using consumer complaints to assess nursing home quality of care. Despite limitations, nursing home complaints appear to offer a real-time signal of quality concerns.

  13. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2009-0443; FRL-9492-3] RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues of Tuesday, November 22, 2011...

  14. Making Quality Health Websites a National Public Health Priority: Toward Quality Standards.

    PubMed

    Devine, Theresa; Broderick, Jordan; Harris, Linda M; Wu, Huijuan; Hilfiker, Sandra Williams

    2016-08-02

    Most US adults have limited health literacy skills. They struggle to understand complex health information and services and to make informed health decisions. The Internet has quickly become one of the most popular places for people to search for information about their health, thereby making access to quality information on the Web a priority. However, there are no standardized criteria for evaluating Web-based health information. Every 10 years, the US Department of Health and Human Services' Office of Disease Prevention and Health Promotion (ODPHP) develops a set of measurable objectives for improving the health of the nation over the coming decade, known as Healthy People. There are two objectives in Healthy People 2020 related to website quality. The first is objective Health Communication and Health Information Technology (HC/HIT) 8.1: increase the proportion of health-related websites that meet 3 or more evaluation criteria for disclosing information that can be used to assess information reliability. The second is objective HC/HIT-8.2: increase the proportion of health-related websites that follow established usability principles. The ODPHP conducted a nationwide assessment of the quality of Web-based health information using the Healthy People 2020 objectives. The ODPHP aimed to establish (1) a standardized approach to defining and measuring the quality of health websites; (2) benchmarks for measurement; (3) baseline data points to capture the current status of website quality; and (4) targets to drive improvement. The ODPHP developed the National Quality Health Website Survey instrument to assess the quality of health-related websites. The ODPHP used this survey to review 100 top-ranked health-related websites in order to set baseline data points for these two objectives. The ODPHP then set targets to drive improvement by 2020. This study reviewed 100 health-related websites. For objective HC/HIT-8.1, a total of 58 out of 100 (58.0%) websites met 3 or

  15. Coal-Sizing Auger

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Aft end of auger, like forward, face-piercing end, equipped with hard cutting bits such as diamonds. As auger breaks face, pulls broken coal lumps into jaws and forces them into hardened throat section. There, cutting bits chew up lumps: Clearance between throat and auger shaft sets maximum size for coal particles that pass through. Auger motion pushes coal particles into mixing chamber, where paddles combine them with water.

  16. The U.S. Geological Survey coal quality (COALQUAL) database version 3.0

    USGS Publications Warehouse

    Palmer, Curtis A.; Oman, Charles L.; Park, Andy J.; Luppens, James A.

    2015-12-21

    Because of database size limits during the development of COALQUAL Version 1.3, many analyses of individual bench samples were merged into whole coal bed averages. The methodology for making these composite intervals was not consistent. Size limits also restricted the amount of georeferencing information and forced removal of qualifier notations such as "less than detection limit" (<) information, which can cause problems when using the data. A review of the original data sheets revealed that COALQUAL Version 2.0 was missing information that was needed for a complete understanding of a coal section. Another important database issue to resolve was the USGS "remnant moisture" problem. Prior to 1998, tests for remnant moisture (as-determined moisture in the sample at the time of analysis) were not performed on any USGS major, minor, or trace element coal analyses. Without the remnant moisture, it is impossible to convert the analyses to a usable basis (as-received, dry, etc.). Based on remnant moisture analyses of hundreds of samples of different ranks (and known residual moisture) reported after 1998, it was possible to develop a method to provide reasonable estimates of remnant moisture for older data to make it more useful in COALQUAL Version 3.0. In addition, COALQUAL Version 3.0 is improved by (1) adding qualifiers, including statistical programming to deal with the qualifiers; (2) clarifying the sample compositing problems; and (3) adding associated samples. Version 3.0 of COALQUAL also represents the first attempt to incorporate data verification by mathematically crosschecking certain analytical parameters. Finally, a new database system was designed and implemented to replace the outdated DOS program used in earlier versions of the database.

  17. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of

  18. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  19. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    PubMed

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.