Sample records for national engineering lab

  1. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  2. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  3. Qualification Lab Testing on M1 Abrams Engine Oil Filters

    DTIC Science & Technology

    2016-11-01

    UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM

  4. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  5. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  6. MatLab Programming for Engineers Having No Formal Programming Knowledge

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  7. Student Plagiarism and Faculty Responsibility in Undergraduate Engineering Labs

    ERIC Educational Resources Information Center

    Parameswaran, Ashvin; Devi, Poornima

    2006-01-01

    In undergraduate engineering labs, lab reports are routinely copied. By ignoring this form of plagiarism, teaching assistants and lab technicians neglect their role responsibility. By designing courses that facilitate it, however inadvertently, professors neglect their causal responsibility. Using the case of one university, we show via interviews…

  8. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  9. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  10. Frederick National Lab Collaboration Success Stories | FNLCR Staging

    Cancer.gov

    IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to eval

  11. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  12. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  13. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  14. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  15. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  16. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  17. Every Day Is National Lab Day

    ERIC Educational Resources Information Center

    Bull, Glen

    2010-01-01

    President Barack Obama recently issued a call for increased hands-on learning in U.S. schools in an address at the National Academy of Sciences. Obama concluded that the future of the United States depends on one's ability to encourage young people to "create, and build, and invent." In this article, the author discusses National Lab Day (NLD)…

  18. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  19. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  20. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  1. Solar University-National Lab Ultra-Effective Program | Photovoltaic

    Science.gov Websites

    Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the

  2. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program get an inside look at NASA Kennedy Space Center’s iconic Vehicle Assembly Building from the transfer aisle. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  3. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(R) (MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many cou ntries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its re al strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbo x. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using s ymbolic operations. MatLab in its interpreter programming language fo rm (command interface) is similar with well known programming languag es such as C/C++, support data structures and cell arrays to define c lasses in object oriented programming. As such, MatLab is equipped with most ofthe essential constructs of a higher programming language. M atLab is packaged with an editor and debugging functionality useful t o perform analysis of large MatLab programs and find errors. We belie ve there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and ana lysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applicati ons. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientifi c problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabu lar format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed. The presentation will emphasize creating

  4. National Labs Host Classroom Ready Energy Educational Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  5. NREL Describes to U.S. Senate Role National Labs Play in Sustainable

    Science.gov Websites

    Transportation Innovation | News | NREL Describes to U.S. Senate Role National Labs Play in Sustainable Transportation Innovation NREL Describes to U.S. Senate Role National Labs Play in Sustainable industry through public and private partnerships. Gearhart's testimony stressed the role of innovation and

  6. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    PubMed

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  7. ISS As A National Lab

    NASA Image and Video Library

    2017-07-17

    In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  8. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    ERIC Educational Resources Information Center

    Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso

    2015-01-01

    This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…

  9. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  10. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossenbacher, John

    2011-04-14

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  11. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema

    Grossenbacher, John

    2018-02-06

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  12. National Labs and Nuclear Emergency Response

    NASA Astrophysics Data System (ADS)

    Budil, Kimberly

    2015-04-01

    The DOE national laboratories, and in particular the three NNSA national security laboratories, have long supported a broad suite of national nuclear security missions for the U.S. government. The capabilities, infrastructure and base of expertise developed to support the U.S. nuclear weapons stockpile have been applied to such challenges as stemming nuclear proliferation, understanding the nuclear capabilities of adversaries, and assessing and countering nuclear threats including essential support to nuclear emergency response. This talk will discuss the programs that are underway at the laboratories and the essential role that science and technology plays therein. Nuclear scientists provide expertise, fundamental understanding of nuclear materials, processes and signatures, and tools and technologies to aid in the identification and mitigation of nuclear threats as well as consequence management. This talk will also discuss the importance of direct engagement with the response community, which helps to shape research priorities and to enable development of useful tools and techniques for responders working in the field. National Labs and Nuclear Emergency Response.

  13. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  14. Transferring experience labs for production engineering students to universities in newly industrialized countries

    NASA Astrophysics Data System (ADS)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  15. SOUTH WING, MTR661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH WING, MTR-661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA FACING NORTHEAST. NOTE CONCRETE BLOCK WALLS. SAFETY SHOWER AND EYE WASHER AT REAR WALL. INL NEGATIVE NO. HD46-7-2. Mike Crane, Photographer, 2/2005. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Orion FSW V and V and Kedalion Engineering Lab Insight

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.

    2010-01-01

    NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.

  17. DOE EiR at Oakridge National Lab 2008/09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Michael

    2012-11-30

    This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting inmore » five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.« less

  18. Successful Transportation Lab-Industry Collaborations Spotlighted at Summit

    Science.gov Websites

    hosted leaders from the business, government, and research communities at the EERE National Lab Impact prime examples of these win-win partnerships, with major automakers, component manufacturers, and fuel with a keynote address by Ford Motor Company Vice President of Research and Advanced Engineering Ken

  19. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach

  20. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to

  1. TangoLab-2 Card Troubleshooting

    NASA Image and Video Library

    2017-10-17

    iss053e105442 (Oct. 17, 2017) --- Flight Engineer Mark Vande Hei swaps out a payload card from the TangoLab-1 facility and places into the TangoLab-2 facility. TangoLab provides a standardized platform and open architecture for experimental modules called CubeLabs. CubeLab modules may be developed for use in 3-dimensional tissue and cell cultures.

  2. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    NASA Astrophysics Data System (ADS)

    Mejías Borrero, A.; Andújar Márquez, J. M.

    2012-10-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL

  3. A Role-Playing Game for a Software Engineering Lab: Developing a Product Line

    ERIC Educational Resources Information Center

    Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio

    2012-01-01

    Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…

  4. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  5. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  6. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  7. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab

    PubMed Central

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-01-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468

  8. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    PubMed

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  9. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  10. 50 Breakthroughs by America's National Labs

    DOE R&D Accomplishments Database

    2011-01-01

    America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Breakthroughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in winning the future.

  11. Gender Writ Small: Gender Enactments and Gendered Narratives about Lab Organization and Knowledge Transmission in a Biomedical Engineering Research Setting

    NASA Astrophysics Data System (ADS)

    Malone, Kareen Ror; Nersessian, Nancy J.; Newstetter, Wendy

    This article presents qualitative data and offers some innovative theoretical approaches to frame the analysis of gender in science, technology, engineering, and mathematics (STEM) settings. It begins with a theoretical discussion of a discursive approach to gender that captures how gender is lived "on the ground." The authors argue for a less individualistic approach to gender. Data for this research project was gathered from intensive interviews with lab members and ethnographic observations in a biomedical engineering lab. Data analysis relied on a mixed methodology involving qualitative approaches and dialogues with findings from other research traditions. Three themes are highlighted: lab dynamics in relation to issues of critical mass, the division of labor, and knowledge transmission. The data illustrate how gender is created in interactions and is inflected through forms of social organization.

  12. Giant Electromagnet Move at Brookhaven Lab, June 22, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-22

    On Saturday, June 22, 2013, a 50-foot-wide, circular electromagnet began its 3,200-mile land and sea voyage from Brookhaven National Laboratory in New York to a new home at Fermilab in Illinois. There, scientists will use it to study the properties of muons, subatomic particles that live only 2.2 millionths of a second, and the results could open the door to new realms of particle physics. In the first part of the move, Emmert International and a team of Fermilab and Brookhaven Lab scientists and engineers transported the electromagnet across the Brookhaven Lab site to a staging area by its mainmore » gate.« less

  13. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  14. LPT. Shield test facility (TAN645 and 646). Calibration lab shield ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Calibration lab shield door. Ralph M. Parsons 1229-17 ANP/GE-6-645-MS-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645-40-693-107369 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Frederick National Lab Collaborates with Moffitt Cancer Center on HPV and Oral Cancer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections

  16. Frederick National Lab Supports Clinical Trials for Vaccine Against Mosquito-borne Chikungunya | Frederick National Laboratory for Cancer Research

    Cancer.gov

    An experimental vaccine for mosquito-borne chikungunya is being tested at sites in the Caribbean as part of a phase II clinical trial being managed by the Frederick National Lab. No vaccine or treatment currently exists for the viral disease, which c

  17. Hundreds of Area Residents Visit the National Lab Booth at the Annual In The Street Festival | Poster

    Cancer.gov

    Light-up yo-yos, brightly colored portion plates, and a fast spinner game lured hundreds of area residents to the Frederick National Lab booth at this year’s In The Street festival, where they also heard a message from the lab: Stay healthy through healthy habits.

  18. IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds | FNLCR Staging

    Cancer.gov

    The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the immune re

  19. NASA Glenn's Engine Components Research Lab, Cell 2B, Reactivated to Support the U.S. Army Research Laboratory T700 Engine Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Griffin, Thomas A.

    2004-01-01

    The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.

  20. MTR WING A, TRA604, INTERIOR. BASEMENT. DETAIL OF A19 LAB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING A, TRA-604, INTERIOR. BASEMENT. DETAIL OF A-19 LAB AREA ALONG SOUTH WALL. SIGN ON FLOOR DIRECTS WORKERS TO OBTAIN WHOLE BODY FRISK UPON LEAVING AREA. SIGN ON EQUIPMENT IN CENTER OF VIEW REQUESTS WORKERS TO "NOTIFY HEALTH PHYSICS BEFORE WORKING ON THIS SYSTEM." CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-13-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Role of national labs in energy and environmental R & D: An industrial perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, N.

    1995-12-31

    The perceived role of national laboratories in energy and environmental research and development is examined from an industrial perspective. A series of tables are used to summarize issues primarily related to the automotive industry. Impacts of policy on energy, environment, society, and international competition are outlined. Advances and further needs in automotive efficiency and pollution control, and research roles for national labs and industry are also summarized. 6 tabs.

  2. 46 CFR 11.505 - National engineer officer endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false National engineer officer endorsements. 11.505 Section... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.505 National engineer officer endorsements. Figure 11.505(a) illustrates the national engineering...

  3. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    ERIC Educational Resources Information Center

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  4. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  5. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  6. Frederick National Lab Collaborates with Moffitt Cancer Center on HPV and Oral Cancer | FNLCR Staging

    Cancer.gov

    The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections

  7. NREL: News - Technology Review Honors National Renewable Energy Lab

    Science.gov Websites

    Engineer as One of the World's Top Young Innovators Technology Review Honors National Renewable Technology Magazine Golden, Colo., May 20, 2002 The U.S. Department of Energy's National Renewable Energy Systems, has been chosen as one of the world's 100 Top Young Innovators by Technology Review, MIT's

  8. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes

    PubMed Central

    Quero, Giuseppe; Zito, Gianluigi; Cusano, Andrea

    2018-01-01

    In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS) optical fiber sensor devices (optrodes), as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF) pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT) as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate) and inter-sample (i.e., between regions of different substrates) repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5) was found to be the most

  9. JSC engineers visit area schools for National Engineers Week

    NASA Image and Video Library

    1996-02-28

    Johnson Space Center (JSC) engineers visit Houston area schools for National Engineers Week. Students examine a machine that generates static electricity (4296-7). Students examine model rockets (4298).

  10. a Matter of Confidence: Gender Differences in Attitudes Toward Engaging in Lab and Course Work in Undergraduate Engineering

    NASA Astrophysics Data System (ADS)

    Micari, Marina; Pazos, Pilar; Hartmann, Mitra J. Z.

    Although there has been a great deal of research on women's experiences in engineering study, there has been little attempt to connect experiential factors to performance in both course and lab. This two-phase study investigated gender differences in undergraduates' experiences in a fluid mechanics course as well as the relationship between experiential factors and student performance in that course. One hundred forty-seven students at a Midwestern research university completed questionnaires related to course experience and perceived engagement. Data were also collected on final grade for 89 students in the second round of data collection. Relative to men, women reported less confidence that they could avoid mistakes in the lab, less experience with mechanical items, less perceived ability in engineering relative to classmates, and less perceived skill in tasks requiring navigation or maneuvering through space. Feelings of engagement were related to grade, but no gender differences were found in either engagement or grade.

  11. Spaceport Processing System Development Lab

    NASA Technical Reports Server (NTRS)

    Dorsey, Michael

    2013-01-01

    The Spaceport Processing System Development Lab (SPSDL), developed and maintained by the Systems Hardware and Engineering Branch (NE-C4), is a development lab with its own private/restricted networks. A private/restricted network is a network with restricted or no communication with other networks. This allows users from different groups to work on their own projects in their own configured environment without interfering with others utilizing their resources in the lab. The different networks being used in the lab have no way to talk with each other due to the way they are configured, so how a user configures his software, operating system, or the equipment doesn't interfere or carry over on any of the other networks in the lab. The SPSDL is available for any project in KSC that is in need of a lab environment. My job in the SPSDL was to assist in maintaining the lab to make sure it's accessible for users. This includes, but is not limited to, making sure the computers in the lab are properly running and patched with updated hardware/software. In addition to this, I also was to assist users who had issues in utilizing the resources in the lab, which may include helping to configure a restricted network for their own environment. All of this was to ensure workers were able to use the SPSDL to work on their projects without difficulty which would in turn, benefit the work done throughout KSC. When I wasn't working in the SPSDL, I would instead help other coworkers with smaller tasks which included, but wasn't limited to, the proper disposal, moving of, or search for essential equipment. I also, during the free time I had, used NASA's resources to increase my knowledge and skills in a variety of subjects related to my major as a computer engineer, particularly in UNIX, Networking, and Embedded Systems.

  12. National Lab Science Day | News

    Science.gov Websites

    Laboratory news From lab leadership Submit content - login required Provide feedback Subscribe to our officer at Fermilab, guided Secretary Moniz and members of the U.S. Senate and House on virtual tours of virtual tour Particle detector tours Collisions in 3-D DOE facilities Dark matter and dark energy Particle

  13. LLNL: Science in the National Interest

    ScienceCinema

    George Miller

    2017-12-09

    This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

  14. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  15. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    ERIC Educational Resources Information Center

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  16. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine

    PubMed Central

    Gaheen, Sharon; Hinkal, George W.; Morris, Stephanie A.; Lijowski, Michal; Heiskanen, Mervi

    2014-01-01

    The use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab. caNanoLab provides access to experimental and literature curated data from the NCI Nanotechnology Characterization Laboratory, the Alliance and the greater cancer nanotechnology community. PMID:25364375

  17. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    PubMed Central

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270

  18. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    PubMed

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  19. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  20. Chemical Sciences and Engineering - US China Electric Vehicle and Battery

    Science.gov Websites

    Technology Workshop Argonne National Laboratory Chemical Sciences & Engineering DOE Logo Photo Gallery Hotels Maps Bus Schedule Contact Us TCS Building and Conference Center, Argonne National Lab TCS Building and Conference Center United States Flag China flag 2011 U.S.-China Electric Vehicle

  1. In Defense of the National Labs and Big-Budget Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tappedmore » in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron

  2. Engineering Students' Experiences from Physics Group Work in Learning Labs

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm

    2014-01-01

    Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…

  3. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ‘Four Lab Study’, involved participation of scientists and engineers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from water industry and academia. The study evaluated tox...

  4. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2018-04-16

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  5. Innovation - A view from the Lab

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  6. 46 CFR 11.502 - General requirements for national engineer endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false General requirements for national engineer endorsements... AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.502 General requirements for national engineer endorsements. (a) For all...

  7. Berkeley Lab - Lawrence Berkeley National Laboratory

    Science.gov Websites

    nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10

  8. Swanson in the US Lab

    NASA Image and Video Library

    2014-04-18

    ISS039-E-013158 (18 April 2014) --- In the U.S. lab Destiny on the Earth-orbiting International Space Station, Expedition 39 Flight Engineer Steve Swanson of NASA works on WRS condensate pumping, using the high flow water transfer pump.

  9. Using hypermedia to develop an intelligent tutorial/diagnostic system for the Space Shuttle Main Engine Controller Lab

    NASA Technical Reports Server (NTRS)

    Oreilly, Daniel; Williams, Robert; Yarborough, Kevin

    1988-01-01

    This is a tutorial/diagnostic system for training personnel in the use of the Space Shuttle Main Engine Controller (SSMEC) Simulation Lab. It also provides a diagnostic capable of isolating lab failures at least to the major lab component. The system was implemented using Hypercard, which is an program of hypermedia running on Apple Macintosh computers. Hypercard proved to be a viable platform for the development and use of sophisticated tutorial systems and moderately capable diagnostic systems. This tutorial/diagnostic system uses the basic Hypercard tools to provide the tutorial. The diagnostic part of the system uses a simple interpreter written in the Hypercard language (Hypertalk) to implement the backward chaining rule based logic commonly found in diagnostic systems using Prolog. Some of the advantages of Hypercard in developing this type of system include sophisticated graphics, animation, sound and voice capabilities, its ability as a hypermedia tool, and its ability to include digitized pictures. The major disadvantage is the slow execution time for evaluation of rules (due to the interpretive processing of the language). Other disadvantages include the limitation on the size of the cards, that color is not supported, that it does not support grey scale graphics, and its lack of selectable fonts for text fields.

  10. FAQ's | College of Engineering & Applied Science

    Science.gov Websites

    zipped (compressed) format. This will help when the file is very large or created by one of the high end Milwaukee Engineer People Faculty and Staff Biomedical Engineering Civil & Environmental Engineering Computer Labs Technical Questions The labs are generally open 24/7, how will I know when a lab/system

  11. EPICS Channel Access Server for LabVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Alexander P.

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  12. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications

    PubMed Central

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James

    2016-01-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts. PMID:27758134

  13. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    PubMed

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  14. Bethune-Cookman University STEM Research Lab. DOE Renovation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Herbert W.

    DOE funding was used to renovate 4,500 square feet of aging laboratories and classrooms that support science, engineering, and mathematics disciplines (specifically environmental science, and computer engineering). The expansion of the labs was needed to support robotics and environmental science research, and to better accommodate a wide variety of teaching situations. The renovated space includes a robotics laboratory, two multi-use labs, safe spaces for the storage of instrumentation, modern ventilation equipment, and other “smart” learning venues. The renovated areas feature technologies that are environmentally friendly with reduced energy costs. A campus showcase, the laboratories are a reflection of the University’smore » commitment to the environment and research as a tool for teaching. As anticipated, the labs facilitate the exploration of emerging technologies that are compatible with local and regional economic plans.« less

  15. 2012 national state safety engineers and traffic engineers peer-to-peer workshop.

    DOT National Transportation Integrated Search

    2013-11-01

    The Illinois Department of Transportation (IDOT) and the Illinois Center for Transportation (ICT) sponsored and hosted the : 2012 National State Safety Engineers and Traffic Engineers Peer-to-Peer Workshop on November 14 and 15, 2012, at the : Hyatt ...

  16. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  17. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2018-01-16

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  18. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  19. Partnering: An Engine for Innovation - Continuum Magazine | NREL

    Science.gov Websites

    Schroeder, NREL Collaborative research truly is an engine for innovation. While the term "partnership (DOE) National Renewable Energy Laboratory (NREL) engages in research with the public and private agreements as in the case of NREL and HP. NREL set requirements, and then the lab and HP collaborated on the

  20. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  1. Integration of MSFC Usability Lab with Usability Testing

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.

  2. Computer systems and software engineering

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  3. Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.

    PubMed

    Courtemanche, Jean; King, Samson; Bouck, David

    2018-03-01

    The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.

  4. Transforming the advanced lab: Part I - Learning goals

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.

    2012-02-01

    Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).

  5. eComLab: remote laboratory platform

    NASA Astrophysics Data System (ADS)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  6. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  7. Boosting Big National Lab Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin

    into a tissue sample and the gradual effect is observed as more of the substance is injected, providing better insights into the natural processes that are occurring, as well as result driven sampling adjustment to capture particularly interesting features --- as they emerge. The Department of Energy’s Pacific Northwest National Laboratory (PNNL) is recognized for it’s expertise in the development of new measurement techniques and their application to challenges of national importance. So it was obvious to us to address the need for in-situ analysis of large scale experimental data. We have a wide range of experimental instruments on site, in facilities such as DOE’s national scientific user facility, the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). Commonly, scientists would create an individual analysis pipeline for each of those instruments; but even the same type of instrument would not necessarily share the same analysis tools. With the rapid increase of data volumes and rates we were facing two key challenges: how to bring a wider set of capabilities to bear to achieve in-situ analysis, and how to do so across a wide range of heterogeneous instruments at affordable costs and in a reasonable timeframe. We decided to take an unconventional approach to the problem, rather than developing customized, one-off solutions for specific instruments we wanted to explore if a more common solution could be found that would go beyond shared, basic infrastructures such as data movement and workflow engines.« less

  8. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, A., E-mail: a2lombar@ryerson.ca; D'Elia, F.; Ravindran, C.

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy castingmore » retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.« less

  9. Crazy Engineering Starshade and Coronagraph

    NASA Image and Video Library

    2016-04-26

    Episode 7 of Crazy Engineering series. Host Mike Meacham, Mechanical Engineer at JPL, learns about the two technologies NASA is investing in to image exoplanets: the Starshade and the Coronagraph. Mike interviews Nick Siegler, Program Chief Technologist, NASA Exoplanet Program in the Starshade lab and the High Contrast Imaging Testbed lab.

  10. Science Labs: Beyond Isolationism

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2007-01-01

    A national study released in 2005 concluded that most high school students are not exposed to high quality science labs because of these reasons: (a) poor school facilities and organizations; (b) weak teacher preparation; (c) poor design; (d) cluttered state standards; (e) little representation on state tests; and (f) scarce evidence of what…

  11. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2018-01-16

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  12. Berkeley Lab Search - Search engine for Berkeley Lab

    Science.gov Websites

    twitter instagram google plus facebook youtube A U.S. Department of Energy National Laboratory Managed by the University of California Questions & Comments Privacy & Security Notice twitter instagram

  13. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  14. Swanson exercises on the CEVIS in the US Lab

    NASA Image and Video Library

    2014-04-22

    ISS039-E-014696 (22 April 2014) --- Expedition 39 Flight Engineer Steve Swanson of NASA, works out on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the U.S. lab Destiny of the International Space Station.

  15. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab presents on Metabolic engineering of Clostridium thermocellum for biofuel production at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, CA.

  16. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Robert K.

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less

  17. Experiences with Teaching Basic Statistics in an Introduction to Civil Engineering Class.

    ERIC Educational Resources Information Center

    Craddock, James N.

    Following a widespread national trend, in 1996, a new two-credit hour course titled "Introduction to Civil Engineering" was introduced at Southern Illinois University at Carbondale (SIUC). The class has a one-hour lecture per week, and a two-hour lab or small group session. One reason for the introduction of this class was to provide earlier…

  18. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  19. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    NASA Astrophysics Data System (ADS)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  20. National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum

    ERIC Educational Resources Information Center

    Azizur, Rahman M. M.

    2011-01-01

    In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…

  1. Love the Lab, Hate the Lab Report?

    ERIC Educational Resources Information Center

    Bjorn, Genevive

    2018-01-01

    In the author's large, urban high school, enrollment in a laboratory science is mandatory. While the student participation rate for lab activities is over 98%, the turn-in rate for traditional lab reports averages just 35% to 85%. Those students who don't produce a lab report miss a critical opportunity to improve their skills in scientific…

  2. Observation of Flame Stabilized at a Hydrogen-Turbojet-Engine Injector Installed into a Lab-Scale Combustion Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi

    A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.

  3. Heat Exchanger Lab for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  4. Validation study of the in vitro skin irritation test with the LabCyte EPI-MODEL24.

    PubMed

    Kojima, Hajime; Ando, Yoko; Idehara, Kenji; Katoh, Masakazu; Kosaka, Tadashi; Miyaoka, Etsuyoshi; Shinoda, Shinsuke; Suzuki, Tamie; Yamaguchi, Yoshihiro; Yoshimura, Isao; Yuasa, Atsuko; Watanabe, Yukihiko; Omori, Takashi

    2012-03-01

    A validation study on an in vitro skin irritation assay was performed with the reconstructed human epidermis (RhE) LabCyte EPI-MODEL24, developed by Japan Tissue Engineering Co. Ltd (Gamagori, Japan). The protocol that was followed in the current study was an optimised version of the EpiSkin protocol (LabCyte assay). According to the United Nations Globally Harmonised System (UN GHS) of classification for assessing the skin irritation potential of a chemical, 12 irritants and 13 non-irritants were validated by a minimum of six laboratories from the Japanese Society for Alternatives to Animal Experiments (JSAAE) skin irritation assay validation study management team (VMT). The 25 chemicals were listed in the European Centre for the Validation of Alternative Methods (ECVAM) performance standards. The reconstructed tissues were exposed to the chemicals for 15 minutes and incubated for 42 hours in fresh culture medium. Subsequently, the level of interleukin-1 alpha (IL-1 α) present in the conditioned medium was measured, and tissue viability was assessed by using the MTT assay. The results of the MTT assay obtained with the LabCyte EPI-MODEL24 (LabCyte MTT assay) demonstrated high within-laboratory and between-laboratory reproducibility, as well as high accuracy for use as a stand-alone assay to distinguish skin irritants from non-irritants. In addition, the IL-1α release measurements in the LabCyte assay were clearly unnecessary for the success of this model in the classification of chemicals for skin irritation potential. 2012 FRAME.

  5. MissileLab User’s Guide

    DTIC Science & Technology

    2009-02-01

    extension) that contain the airframe geometry specific to a single configuration. Results from a MissileLab run will be stored in a directory...re)created and contain all APE results and associated input files. C. Background In the early stages of missile system design, it is necessary to...Copying the AeroEngine Files After installation, the subdirectories in the “AeroEngine” directory contain contact information on how to obtain valid

  6. Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)

    NASA Astrophysics Data System (ADS)

    Davis, Doyle V.; Cherner, Y.

    2006-12-01

    The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)

  7. CHEMICAL AND TOXICOLOGICAL EVALUATION OF CHLORINATED AND OZONATED-CHLORINATED DRINKING WATER: A COLLABORATION OF THE FOUR NATIONAL LABS OF THE U. S. EPA

    EPA Science Inventory

    CHEMICAL AND TOXICOLOGICAL EVALUATION OF CHLORINATED AND OZONATED-CHLORINATED DRINKING WATER: A COLLABORATION OF THE FOUR NATIONAL LABS OF THE U.S. EPA
    Susan D. Richardson1, Linda K. Teuschler2, Alfred D. Thruston, Jr.,1 Thomas Speth3, Richard J. Miltner3, Glenn Rice2, Kathle...

  8. Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott

    2013-01-01

    WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.

  9. From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs

    NASA Astrophysics Data System (ADS)

    Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan

    2014-07-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.

  10. NREL Director Elected to National Academy of Engineering

    Science.gov Websites

    NREL NREL Director Elected to National Academy of Engineering For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Feb. 18, 2000 - Richard Truly, director of the

  11. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18822 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  12. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18818 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  13. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18811 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  14. NACA Apprentice is Trained on the Lab's Altitude Systems

    NASA Image and Video Library

    1955-02-21

    An apprentice at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory shown training on the altitude supply air systems in the Engine Research Building. An ongoing four-year apprentice program was established at the laboratory in 1949 to facilitate the close interaction of the lab’s engineers, mechanics, technicians, and scientists. The apprentice school covered a variety of trades including aircraft mechanic, electronics instrumentation, machinist, and altitude systems mechanic, seen in this photograph. The apprentices rotated through the various shops and facilities to provide them with a well-rounded understanding of the work at the lab. The specialized skills required meant that NACA apprentices were held to a higher standard than those in industry. They had to pass written civil service exams before entering the program. Previous experience with mechanical model airplanes, radio transmission, six months of work experience, or one year of trade school was required. The Lewis program was certified by both the Department of Labor and the State of Ohio. One hundred fifty of the 2,000 hours of annual training were spent in the classroom. The remainder was devoted to study of models and hands-on work in the facilities. Examinations were coupled with evaluation by supervisors in the shops. The apprentices were promoted through a series of grades until they reached journeyman status. Those who excelled in the Apprentice Program would be considered for a separate five-year engineering draftsman program.

  15. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  16. Strategies for Improving Diversity at Bell Labs, Lucent Technologies

    NASA Astrophysics Data System (ADS)

    Murray, Cherry A.

    2001-03-01

    Over the last quarter century, top management in Bell Labs Research has initiated efforts to train, recruit, and encourage underrepresented minorities into science and engineering positions, and in hiring and retaining underrepresented minority scientists and engineers. I will give some historical background of some of the programs which have worked over the years and some of the new programs in recruiting, mentoring and career planning that we have recently initiated in order to better create a workplace that is accepting and even welcoming of diversity.

  17. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    PubMed

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  18. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    PubMed Central

    Van Oosten, Ellen B.; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants. PMID:29326618

  19. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  20. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  1. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  2. Using National Instruments LabVIEW[TM] Education Edition in Schools

    ERIC Educational Resources Information Center

    Butlin, Chris A.

    2011-01-01

    With the development of LabVIEW[TM] Education Edition schools can now provide experience of using this widely used software. Here, a few of the many applications that students aged around 11 years and over could develop are outlined in the resulting front panel screen displays and block diagrams showing the associated graphical programmes, plus a…

  3. Propulsion Systems Lab

    NASA Image and Video Library

    2015-04-14

    NASA Glenn’s Propulsion Systems Lab (PSL) is conducting research to characterize ice crystal clouds that can create a hazard to aircraft engines in certain conditions. With specialized equipment, scientists can create a simulated ice crystal cloud with the set of bars in the back spraying out a mist. The red area includes lasers, which measure the intensity of the cloud and a series of probes to measure everything from humidity to air pressure. The isokinetic probe (in gold) samples particles and the robotic arm (in orange) has a test tube on the end that catches ice particles for further measuring. NASA Glenn’s PSL is the only place in the world which can create these kind of ice crystal cloud conditions.

  4. Evaluation of the 1997 Joint National Conference, Women in Engineering Program Advocates Network (WEPAN) and National Association of Minority Engineering Program Administrators (NAMEPA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, Suzanne G.

    1997-07-01

    The primary goal of the 1997 Joint National Conference was to unite NAMEPA and WEPAN in a unique collaborative effort to further the cause of increasing the participation of women and minorities in science and engineering. The specific objectives were to: (1) conduct technical and programmatic seminars for institutions desiring to initiate, replicate, or expand women and minorities in engineering program; (2) provide assistance in fundraising and grant writing; (3) profile women in engineering programs of excellence; (4) sponsor inspiring knowledgeable and motivational keynote speakers; and (5) offer a series of workshops focused on a multitude of topics.

  5. 40 CFR 1068.225 - What are the provisions for exempting engines/equipment for national security?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines/equipment for national security? 1068.225 Section 1068.225 Protection of Environment ENVIRONMENTAL... security? (a) An engine/equipment is exempt without a request if it will be used or owned by an agency of...) Manufacturers may request a national security exemption for engines/equipment not meeting the conditions of...

  6. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  7. Engineering and Technology: The Public's Perspective--Part 2: A Qualitative Analysis for the National Academy of Engineering.

    ERIC Educational Resources Information Center

    Doble, John; Komarnicki, Mary

    This report for the National Academy of Engineering's Office of Public Awareness represents the second phase of an examination of public opinion about engineering and technology. This document presents an analysis of six qualitative, focused group discussions or focus groups. Five of these groups were college educated Americans and one was…

  8. A Framework for Lab Work Management in Mass Courses. Application to Low Level Input/Output without Hardware

    ERIC Educational Resources Information Center

    Rodriguez, Santiago; Zamorano, Juan; Rosales, Francisco; Dopico, Antonio Garcia; Pedraza, Jose Luis

    2007-01-01

    This paper describes a complete lab work management framework designed and developed in the authors' department to help teachers to manage the small projects that students are expected to complete as lab assignments during their graduate-level computer engineering studies. The paper focuses on an application example of the framework to a specific…

  9. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  10. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  11. Federal Labs and Research Centers Benefiting California: 2017 Impact Report for State Leaders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koning, Patricia Brady

    Sandia National Laboratories is the largest of the Department of Energy national laboratories with more than 13,000 staff spread across its two main campuses in New Mexico and California. For more than 60 years, the Sandia National Laboratories campus in Livermore, California has delivered cutting-edge science and technology solutions to resolve the nation’s most challenging and complex problems. As a multidisciplinary laboratory, Sandia draws from virtually every science and engineering discipline to address challenges in energy, homeland security, cybersecurity, climate, and biosecurity. Today, collaboration is vital to ensuring that the Lab stays at the forefront of science and technology innovation.more » Partnerships with industry, state, and local governments, and California universities help drive innovation and economic growth in the region. Sandia contributed to California’s regional and statewide economy with more than $145 million in contracts to California companies, $92 million of which goes to California small businesses. In addition, Sandia engages the community directly by running robust STEM education programs for local schools and administering community giving programs. Meanwhile, investments like the Livermore Valley Open Campus (LVOC), an innovation hub supported by LLNL and Sandia, help catalyze the local economy.« less

  12. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  13. Lab Simulates Outdoor Algae Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae can be turned into renewable biofuel, which is why scientists want to discover an inexpensive, fast-growing strain of algae. Scientists at Pacific Northwest National Laboratory have developed a system to speed up this search. The unique climate-simulating system uses temperature controls and multi-colored LED lights to mimic the constantly changing conditions of an outdoor algae pond. By simulating outdoor climates inside the lab, the system saves researchers time and expense.

  14. DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm; Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH…

  15. Cone-beam micro-CT system based on LabVIEW software.

    PubMed

    Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen

    2008-09-01

    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.

  16. Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.

  17. Groundbreaking for the NACA’s Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1941-01-21

    Local politicians and National Advisory Committee for Aeronautics (NACA) officials were on hand for the January 23, 1941 groundbreaking for the NACA’s Aircraft Engine Research Laboratory (AERL). The NACA was established in 1915 to coordinate the nation’s aeronautical research. The committee opened a research laboratory at Langley Field in 1920. By the late 1930s, however, European nations, Germany in particular, were building faster and higher flying aircraft. The NACA decided to expand with a new Ames Aeronautical Laboratory dedicated to high-speed flight and the AERL to handle engine-related research. The NACA examined a number of Midwest locations for its new engine lab before deciding on Cleveland. At the time, Cleveland possessed the nation’s most advanced airport, several key aircraft manufacturing companies, and was home to the National Air Races. Local officials were also able to broker a deal with the power company to discount its electricity rates if the large wind tunnels were operated overnight. The decision was made in October 1940, and the groundbreaking alongside the airport took place on January 23, 1941. From left to right: William Hopkins, John Berry, Ray Sharp, Frederick Crawford, George Brett, Edward Warner, Sydney Kraus, Edward Blythin, and George Lewis

  18. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  19. 2003 Idaho National Engineering and Environmental Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for Idaho National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  20. hwhwap_Ep29_The National Lab in Space

    NASA Image and Video Library

    2018-01-26

    [00:00:00] Gary Jordan (Host): Houston We Have a Podcast. Welcome to the official podcast of the NASA Johnson Space Center, Episode 29, The National Lab in Space. I'm Gary Jordan, and I'll be your host today. So this is the podcast where we bring in the experts, NASA scientists, engineers, astronauts, sometimes some of our partners. We bring them right here on the show to tell you all the cool stuff about what's going on here at NASA. So today we're talking about the section of the International Space Station that's designated as a U.S. national laboratory. We're talking with Patrick O'Neill, the marketing and communications manager at the Center for Advancement of Science in Space, or CASIS. We had a great discussion about what it means to be a U.S. national lab, how CASIS is bringing research from companies, research to institutions, and government agencies to the Space Station, and the things we're learning that benefit human kind. So with no further delay, let's go light speed and jump right ahead to our talk with Mr. Patrick O'Neill. Enjoy. [00:00:53] [ Music ] Host: All right, well, Patrick, thanks so much for taking the time to come on the podcast, especially because you are remote, right? You're not even here in Houston. You're calling in from Florida, right? [00:01:26] Patrick O’Neill: I am over at Kenney Space Center as we speak. [00:01:29] Host: Awesome. And that's where CASIS is sort of housed? Is that where you guys are? Or are you kind of all over the place? [00:01:36] Patrick O’Neill: Well, we actually have a couple of houses across the country. But yes, in theory, this is kind of where our headquarters is based out of in the Kenney Space Center area, as well as Melbourne, Florida. But we also have strong office presence just outside of Johnson Space Center in Houston, and then we have a few more offices that are sporadically placed throughout the country. [00:01:54] Host: Very cool. All right, so you're over at the Kenney Space Center, yeah

  1. The Advanced Lab Course at the University of Houston

    NASA Astrophysics Data System (ADS)

    Forrest, Rebecca

    2009-04-01

    The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.

  2. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  3. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  4. Bell P–63A King Cobra at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    The Army Air Forces lent the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory a Bell P–63A King Cobra in October 1943 to complement the lab's extensive efforts to improve the Allison V–1710 engine. The V–1710-powered P–63A was a single-seat fighter that could reach speeds of 410 miles per hour and an altitude of 43,000 feet. The fighter, first produced in 1942, was an improvement on Bell’s P–39, but persistent performance problems at high altitudes prevented its acceptance by the Air Corps. Instead many of the P–63s were transferred to the Soviet Union. Almost every test facility at the NACA’s engine lab was used to study the Allison V–1710 engine and its supercharger during World War II. Researchers were able to improve the efficiency, capacity and pressure ratio of the supercharger. They found that improved cooling significantly reduced engine knock in the fuel. Once the researchers were satisfied with their improvements, the new supercharger and cooling components were installed on the P–63A. The Flight Research Division first established the aircraft’s normal flight performance parameters such as speed at various altitudes, rate of climb, and peak altitude. Ensuing flights established the performance parameters of the new configuration in order to determine the improved performance. The program increased V–1710’s horsepower from 1650 to 2250.

  5. NASA GeneLab Concept of Operations

    NASA Technical Reports Server (NTRS)

    Thompson, Terri; Gibbs, Kristina; Rask, Jon; Coughlan, Joseph; Smith, Jeffrey

    2014-01-01

    NASA's GeneLab aims to greatly increase the number of scientists that are using data from space biology investigations on board ISS, emphasizing a systems biology approach to the science. When completed, GeneLab will provide the integrated software and hardware infrastructure, analytical tools and reference datasets for an assortment of model organisms. GeneLab will also provide an environment for scientists to collaborate thereby increasing the possibility for data to be reused for future experimentation. To maximize the value of data from life science experiments performed in space and to make the most advantageous use of the remaining ISS research window, GeneLab will apply an open access approach to conducting spaceflight experiments by generating, and sharing the datasets derived from these biological studies in space.Onboard the ISS, a wide variety of model organisms will be studied and returned to Earth for analysis. Laboratories on the ground will analyze these samples and provide genomic, transcriptomic, metabolomic and proteomic data. Upon receipt, NASA will conduct data quality control tasks and format raw data returned from the omics centers into standardized, annotated information sets that can be readily searched and linked to spaceflight metadata. Once prepared, the biological datasets, as well as any analysis completed, will be made public through the GeneLab Space Bioinformatics System webb as edportal. These efforts will support a collaborative research environment for spaceflight studies that will closely resemble environments created by the Department of Energy (DOE), National Center for Biotechnology Information (NCBI), and other institutions in additional areas of study, such as cancer and environmental biology. The results will allow for comparative analyses that will help scientists around the world take a major leap forward in understanding the effect of microgravity, radiation, and other aspects of the space environment on model organisms

  6. 360° Algae Lab Tour at NREL - Narrated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Nick

    Explore the National Renewable Energy Laboratory’s algae lab as researcher Nick Sweeney takes you on a 360-degree tour of the algal biofuels research facility. Discover how NREL is growing algae to learn how it can be used as a renewable source of food, fuels, and other products.

  7. Ames Lab 101: C6: Virtual Engineering

    ScienceCinema

    McCorkle, Doug

    2018-01-01

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  8. FOREWORD: Jefferson Lab: A Long Decade of Physics

    NASA Astrophysics Data System (ADS)

    Montgomery, Hugh

    2011-04-01

    scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature

  9. National Aerospace Plane Engine Seals: High Temperature Seal Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    The key to the successful development of the single stage to orbit National Aerospace Plane (NASP) is the successful development of combined cycle ramjet/scramjet engines that can propel the vehicle to 17,000 mph to reach low Earth orbit. To achieve engine performance over this speed range, movable engine panels are used to tailor engine flow that require low leakage, high temperature seals around their perimeter. NASA-Lewis is developing a family of new high temperature seals to form effective barriers against leakage of extremely hot (greater than 2000 F), high pressure (up to 100 psi) flow path gases containing hydrogen and oxygen. Preventing backside leakage of these explosive gas mixtures is paramount in preventing the potential loss of the engine or the entire vehicle. Seal technology development accomplishments are described in the three main areas of concept development, test, and evaluation and analytical development.

  10. Engineering Curriculum Development: Balancing Employer Needs and National Interest--A Case Study.

    ERIC Educational Resources Information Center

    Buniyamin, Norlida; Mohamad, Zainuddin

    The Faculty of Mechanical Engineering at the University Teknologi MARA, Malaysia, developed an undergraduate-level engineering curriculum that balances national interests with those of employers and academics. The curriculum was based on materials posted at the Internet sites of universities in the United States, United Kingdom, and Malaysia…

  11. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov Websites

    laboratories. Biotechnology-related research in the labs of over 15 faculty members in the Biological 60,000 square feet for biotechnology-related engineering research. This centralization and consolidation wider array of equipment and facilities available in other MIT labs and Centers. Some examples include

  12. Recent developments from the OPEnS Lab

    NASA Astrophysics Data System (ADS)

    Selker, J. S.; Good, S. P.; Higgins, C. W.; Sayde, C.; Buskirk, B.; Lopez, M.; Nelke, M.; Udell, C.

    2016-12-01

    The Openly Published Environmental Sensing (OPEnS) lab is a facility that is open to all from around the world to use (http://agsci.oregonstate.edu/open-sensing). With 3-D CAD, electronics benches, 3-D printers and laser cutters, and a complete precision metal shop, the lab can build just about anything. Electronic platforms such as the Arduino are combined with cutting edge sensors, and packaged in rugged housing to address critical environmental sensing needs. The results are published in GITHub and in the AGU journal Earth and Space Sciences under the special theme of "Environmental Sensing." In this poster we present advancements including: A ultra-precise isotopic sampler for rainfall; an isotopic sampler for soil gas; a data-logging wind vane that can be mounted on the tether of a balloon; a rain-gage calibrator with three rates of constant application; a <$20 dissolved O2 probe for water; a stream-bed permeameter that gives rapid quantification of permeability. You can use the OPEnS lab! Just sketch your idea on a white board and send it in. The conversation is started, and your prototype can be ready in a few weeks. We have a staff of three engineers ready to help, where you are working remotely, or decide to spend some time with the team in Corvallis.

  13. 2014 Abridged Technology and Engineering Literacy Framework for the 2014 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2014

    2014-01-01

    Due to the growing importance of technology and engineering in the educational landscape, and to support America's ability to contribute to and compete in a global economy, the National Assessment Governing Board (NAGB) initiated development of the first NAEP Technology and Engineering Literacy (TEL) Assessment. Relating to national efforts in…

  14. Kinematic Labs with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  15. MethLAB

    PubMed Central

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K

    2012-01-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798

  16. FE Garan servicing the FCF in the US Lab

    NASA Image and Video Library

    2011-05-26

    ISS028-E-005602 (26 May 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, services the Fluids Combustion Facility in the Fluids Integrated Rack on the Destiny lab aboard the International Space Station by changing out the Bio sample on the Bio Base. Garan and two Russian cosmonaut crewmates for Expedition 28 will be joined by three more crew members on the station in about one and a half weeks.

  17. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    PubMed

    DeFraine, William C; Williams, Wendy M; Ceci, Stephen J

    2014-01-01

    The demand for employees trained in science, technology, engineering, and mathematics (STEM) fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49) and desire to participate in (d = 1.33) the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these findings for STEM

  18. ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS

    NASA Image and Video Library

    2009-01-10

    ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  19. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  20. STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.

    NASA Image and Video Library

    2005-05-06

    JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.

  1. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39085 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, astronaut Peggy A. Whitson, Expedition Five flight engineer, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.

  2. Experiments in Creative Engineering at the Department of Mechanical Engineering in Kurume National College of Technology

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi; Hashimura, Shinji; Hiroo, Yasuaki

    We present a program to learn ability to solve problems on engineering. This program is called “Experiments in creative engineering” in the department of mechanical engineering in Kurume National College of Technology advanced engineering school. In the program, students have to determine own theme and manufacture experimental devices or some machines by themselves. The students must also perform experiments to valid the function and performance of their devices by themselves. The restriction of the theme is to manufacture a device which function dose not basically exist in the world with limited cost (up to 20,000Yen) . As the results of questionnaire of students, the program would be very effective to the creative education for the students.

  3. System Integration - A Major Step toward Lab on a Chip

    PubMed Central

    2011-01-01

    Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications. PMID:21612614

  4. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  5. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    ERIC Educational Resources Information Center

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  6. The Earth is our lab: Ten years of geoscience school lab in Potsdam

    NASA Astrophysics Data System (ADS)

    Nikolaus Küppers, Andreas

    2016-04-01

    Starting in 2004, a geoscientific school lab for senior high school students was developed in the historical "Großer Refraktor" premises on the Telegraphenberg in Potsdam. Based on a one-day course architecture, laboratory days were developed covering singular themes: - Magnetic field of the Earth - Geographical Information Systems and geodata - Gravity field of the Earth - Geodynamics: seismology and seismics - Geoscience math - Geodata Brandenburg (Geological mapping with aerophotographs, remote sensing, underground data processing) With a focus on geophysical methodologies, course days generally focused on the field work around the Telegraphenberg site while introducing into the art of handling original professional equipment. Field data were afterwards compiled, analysed and interpreted in the group. Single days could be combined as clusters of up to one week and were bookable for national and international groups of max. 25 students. The courses were taught by active scientists with the assistance of student guides as the larger groups had to be split up. The paper gives an overview over the development history of the school lab and explains the course contents, the teaching methods and several employed escorting measures. Possible impact on the professional career decisions of the students is discussed.

  7. Reviews Equipment: Data logger Book: Imagined Worlds Equipment: Mini data loggers Equipment: PICAXE-18M2 data logger Books: Engineering: A Very Short Introduction and To Engineer Is Human Book: Soap, Science, & Flat-Screen TVs Equipment: uLog and SensorLab Web Watch

    NASA Astrophysics Data System (ADS)

    2012-07-01

    WE RECOMMEND Data logger Fourier NOVA LINK: data logging and analysis To Engineer is Human Engineering: essays and insights Soap, Science, & Flat-Screen TVs People, politics, business and science overlap uLog sensors and sensor adapter A new addition to the LogIT range offers simplicity and ease of use WORTH A LOOK Imagined Worlds Socio-scientific predictions for the future Mini light data logger and mini temperature data logger Small-scale equipment for schools SensorLab Plus LogIT's supporting software, with extra features HANDLE WITH CARE CAXE110P PICAXE-18M2 data logger Data logger 'on view' but disappoints Engineering: A Very Short Introduction A broad-brush treatment fails to satisfy WEB WATCH Two very different websites for students: advanced physics questions answered and a more general BBC science resource

  8. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    ERIC Educational Resources Information Center

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  9. Take a Trip Around a 3D Printing Lab (360)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing has changed the way the world thinks about manufacture and design. Scientists and researchers at Lawrence Livermore National Lab are using a number of 3D printing processes to experiment with unique combinations of plastic, metal, and ceramics.

  10. A Constructivist Cloud Lab.

    ERIC Educational Resources Information Center

    Emery, Dave

    1996-01-01

    Describes a lab involving a cloud formation activity that uses the constructivist learning model to get students more involved in creating the lab. Enables students to develop a greater understanding of the concepts involved and more interest in the lab's outcomes. (JRH)

  11. Consequence-driven cyber-informed engineering (CCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Sarah G.; St Michel, Curtis; Smith, Robert

    The Idaho National Lab (INL) is leading a high-impact, national security-level initiative to reprioritize the way the nation looks at high-consequence risk within the industrial control systems (ICS) environment of the country’s most critical infrastructure and other national assets. The Consequence-driven Cyber-informed Engineering (CCE) effort provides both private and public organizations with the steps required to examine their own environments for high-impact events/risks; identify implementation of key devices and components that facilitate that risk; illuminate specific, plausible cyber attack paths to manipulate these devices; and develop concrete mitigations, protections, and tripwires to address the high-consequence risk. The ultimate goal ofmore » the CCE effort is to help organizations take the steps necessary to thwart cyber attacks from even top-tier, highly resourced adversaries that would result in a catastrophic physical effect. CCE participants are encouraged to work collaboratively with each other and with key U.S. Government (USG) contributors to establish a coalition, maximizing the positive effect of lessons-learned and further contributing to the protection of critical infrastructure and other national assets.« less

  12. LabSkills

    ERIC Educational Resources Information Center

    O'Brien, Nick

    2010-01-01

    This article describes LabSkills, a revolutionary teaching tool to improve practical science in schools. LabSkills offers the chance to help improve the exposure that the average Key Stage 5 (age 16-19) student has to practical work. This is a huge area for development being highlighted by universities who are seeing a worryingly growing trend in…

  13. America's Lab Report: Investigations in High School Science

    ERIC Educational Resources Information Center

    Singer, Susan R., Ed.; Hilton, Margaret L., Ed.; Schweingruber, Heidi A., Ed.

    2005-01-01

    Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation s high schools as a context for learning…

  14. PUB-3000 | BERKELEY LAB HEALTH AND SAFETY MANUAL

    Science.gov Websites

    ES&H MANUAL (PUB-3000) Berkeley Lab Table of Contents Guide to Using the ES&H Manual Responsible Authors Log of ES&H Manual Changes Requesting a Change to the ES&H Manual Search the ES &H Manual Questions & Comments Lawrence Berkeley National Laboratory University of California

  15. Improve Data Mining and Knowledge Discovery Through the Use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its

  16. Improve Data Mining and Knowledge Discovery through the use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and

  17. 46 CFR 11.516 - Service requirements for national endorsement as third assistant engineer of steam, motor, and/or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.516 Section 11.516 Shipping... OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.516 Service requirements for national endorsement as third assistant engineer of steam, motor, and/or gas turbine-propelled...

  18. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  19. Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.

  20. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CODING: ARIZONA LAB DATA (UA-D-13.0)

    EPA Science Inventory

    The purpose of this SOP is to define the coding strategy for Arizona Lab Data. This strategy was developed for use in the Arizona NHEXAS project and the "Border" study. Keywords: data; coding; lab data forms.

    The National Human Exposure Assessment Survey (NHEXAS) is a federal ...

  1. Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.

  2. Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.

    PubMed

    Lang, Stacey

    2012-01-01

    The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.

  3. A Computer Engineering Curriculum for the Air Force Academy: An Implementation Plan

    DTIC Science & Technology

    1985-04-01

    engineerinq is needed as a r ul of the findings? 5. What is the impact of this study’s rocommendat ion to pursue the Electrico I Engineering deqree with onpt...stepper motor 9 S35 LAB 36 Serial 10 S37 GR #3 - 38 8251 10 chip ) 39 LAB serial 10 10 * 40 LAB " 1)41 LAB S 42 Course review - S FINAL EXAM 00 % 80 0

  4. [The research in a foot pressure measuring system based on LabVIEW].

    PubMed

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  5. Attracting STEM Talent: Do STEM Students Prefer Traditional or Work/Life-Interaction Labs?

    PubMed Central

    DeFraine, William C.; Williams, Wendy M.; Ceci, Stephen J.

    2014-01-01

    The demand for employees trained in science, technology, engineering, and mathematics (STEM) fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view – lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49) and desire to participate in (d = 1.33) the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these findings for

  6. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  7. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  8. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

    EPA Pesticide Factsheets

    This page contains the current National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines and additional information regarding rule compliance and implementation.

  9. GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data

    NASA Technical Reports Server (NTRS)

    Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.; hide

    2016-01-01

    The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system

  10. UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model

    NASA Astrophysics Data System (ADS)

    Thorsen, D.

    2017-12-01

    Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.

  11. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  12. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  13. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  14. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    PubMed Central

    Liu, Yuxin

    2011-01-01

    With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU). The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements. PMID:25586697

  15. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less

  16. 360 Video Tour of 3D Printing Labs at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  17. Computer Labs | College of Engineering & Applied Science

    Science.gov Websites

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L PAWS Email My UW-System About UWM UWM Jobs D2L PAWS Email My UW-System University of Wisconsin-Milwaukee College ofEngineering & Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee

  18. Research Labs | College of Engineering & Applied Science

    Science.gov Websites

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L PAWS Email My UW-System About UWM UWM Jobs D2L PAWS Email My UW-System University of Wisconsin-Milwaukee College ofEngineering & Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee

  19. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  20. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  1. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    NASA Astrophysics Data System (ADS)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  2. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  3. Exploratory study of the acceptance of two individual practical classes with remote labs

    NASA Astrophysics Data System (ADS)

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-03-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.

  4. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  5. Lab on a Chip Application Development for Exploration

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2004-01-01

    At Marshall Space Flight Center a new capability has been established to aid the advancement of microfluidics for space flight monitoring systems. Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 & 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD's process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-devices can be created such as the development of a microfluidic system to aid in the search for life, past and present, on Mars. Particular indicators in the Martian soil can contain the direct evidence of life. But to extract the information from the soil and present it to the proper detectors requires multiple fluidic/chemical operations. This is where LOCAD is providing its unique abilities.

  6. Teaching Sustainability Analysis in Electrical Engineering Lab Courses

    ERIC Educational Resources Information Center

    Braun, D.

    2010-01-01

    Laboratory courses represent an incompletely tapped opportunity to teach sustainability concepts. This work introduces and evaluates a simple strategy used to teach sustainability concepts in electrical engineering laboratory courses. The technique would readily adapt to other disciplines. The paper presents assessment data and a wiki containing…

  7. Educating Engineers: Designing for the Future of the Field. Book Highlights

    ERIC Educational Resources Information Center

    Sheppard, Sheri D.; Macatangay, Kelly; Colby, Anne; Sullivan, William M.

    2008-01-01

    This multi-year study of undergraduate engineering education in the United States initiated questions about the alignment of engineering programs with the demands of current professional engineering practice. While describing engineering education from within the classroom and the lab, the report on the study offers new possibilities for teaching…

  8. Using collaborative technologies in remote lab delivery systems for topics in automation

    NASA Astrophysics Data System (ADS)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  9. Lab Report Blues

    ERIC Educational Resources Information Center

    Diaz, Andrew

    2004-01-01

    For middle school students, writing a formal lab report can be challenging. For middle level teachers, reading students lab reports can be overwhelming. After grading report after report with incomplete procedures, incorrect graphs, and missing conclusions, the author's frustration level was at an all-time high. Ready to try anything, he thought,…

  10. Reforming Cookbook Labs

    ERIC Educational Resources Information Center

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  11. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  12. Unique Approach to Hydraulic Characterization at an Underground Lab

    NASA Astrophysics Data System (ADS)

    Jones, T. L.; Wang, J. S.

    2009-12-01

    The Sanford Underground Laboratory is the interim lab for the future federally funded DUSEL (Deep Underground Science and Engineering Lab). The Sanford Lab took over the abandoned Homestake mine in Lead, SD. Over three hundred miles of drift, extending 8,000 feet below the surface, are now being used to house experiments in disciplines including physics, geology, and biology. The lab is situated in Precambrian metamorphic rocks intersected by Tertiary dike swarms. Three relevant geologic units are defined within the Precambrian rock system; all of which are interpreted to be metamorphosed igneous and sedimentary deposits. The Sanford Lab provides a unique environment to study several aspects of hydrogeology and hydrology; including geochemistry, hydraulic systems in fractured aquifers, and fluvial activity within mine workings. Aquifer characteristics housing the mine workings’ is important to define for future and present research at the underground lab. Outlined here is a unique approach to defining the matrix porosity within the fractured aquifer system. The Homestake mine was abandoned and the pump system keeping the mine dry was turned off in 2003. Over the course of the next five years the water level rose 3470 feet. Oxidation of iron from the water left a red staining on the submerged rocks. Hydrological observations are conducted on different levels throughout the Homestake facility as the water levels are lowered. Isolated air pockets and long stretches of unstained areas along the roof of drifts have been observed, together with less frequent occurrences of seepages. These observations are documented to supplement hydrological monitoring and testing with sensors. The sizes and widths of the trapped air pockets are indications of low permeability values and can be used to estimate the degree of heterogeneity along drifts. It is noted that sections of long stretches of trapped air have more delayed drainages, consistent with low effective permeability

  13. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  14. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  15. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    PubMed

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  16. Sandia National Laboratories Institutional Plan FY1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less

  17. About the Frederick National Laboratory for Cancer Research | FNLCR Staging

    Cancer.gov

    The Frederick National Lab is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and operated by Leidos Biomedical Research, Inc. The lab addresses some of the most urgent and intractable probl

  18. Williams works with LOCAD-PTS Experiment Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06773 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, sets up a video camera inside a flame resistant covering to film a chip during Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) Swab Operations in the Destiny laboratory of the International Space Station.

  19. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  20. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  1. Microfluidics and Microfabrication in a Chemical Engineering Lab

    ERIC Educational Resources Information Center

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  2. 360 Video Tour of 3D Printing Labs at LLNL

    ScienceCinema

    None

    2018-01-16

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  3. Engineering good: how engineering metaphors help us to understand the moral life and change society.

    PubMed

    Coeckelbergh, Mark

    2010-06-01

    Engineering can learn from ethics, but ethics can also learn from engineering. In this paper, I discuss what engineering metaphors can teach us about practical philosophy. Using metaphors such as calculation, performance, and open source, I articulate two opposing views of morality and politics: one that relies on images related to engineering as science and one that draws on images of engineering practice. I argue that the latter view and its metaphors provide a more adequate way to understand and guide the moral life. Responding to two problems of alienation and taking into account developments such as Fab Lab I then further explore the implications of this view for engineering and society.

  4. Engineering Good: How Engineering Metaphors Help us to Understand the Moral Life and Change Society

    PubMed Central

    2009-01-01

    Engineering can learn from ethics, but ethics can also learn from engineering. In this paper, I discuss what engineering metaphors can teach us about practical philosophy. Using metaphors such as calculation, performance, and open source, I articulate two opposing views of morality and politics: one that relies on images related to engineering as science and one that draws on images of engineering practice. I argue that the latter view and its metaphors provide a more adequate way to understand and guide the moral life. Responding to two problems of alienation and taking into account developments such as Fab Lab I then further explore the implications of this view for engineering and society. PMID:19722107

  5. 46 CFR 11.522 - Service requirements for national endorsement as assistant engineer (limited) of steam, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer (limited) of steam, motor, and/or gas turbine-propelled vessels. 11.522 Section 11.522... requirements for national endorsement as assistant engineer (limited) of steam, motor, and/or gas turbine... engineer (limited) of steam, motor, and/or gas turbine-propelled vessels is 3 years of service in the...

  6. Measuring Model Rocket Engine Thrust Curves

    ERIC Educational Resources Information Center

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  7. SenseLab

    PubMed Central

    Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.

    2009-01-01

    This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162

  8. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  9. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  10. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  11. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  12. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  13. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  14. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  15. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema

    Gerry Stokes; Jim Misewich; Caradonna, Peggy; Sullivan, John; Olsen, Jim

    2018-04-16

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  16. Integrated Disinfection By-Products Mixtures Research: Results from the Four Lab Study

    EPA Science Inventory

    This study involves collaboration of four national laboratories/centers of the U.S. Environmental Protection Agency (EPA), as well as scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns related to...

  17. Differential workload calculation and its impact on lab science instruction at the community college level

    NASA Astrophysics Data System (ADS)

    Boyd, Beth Nichols

    The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based instruction, many community colleges assign less value to the time spent in science lab than in lecture in workload calculations. This discrepancy is inconsistent with both current state and nation-wide goals of science excellence and the standards set by the American Chemical Society (2009) and the American Association of Physics Teachers (2002). One implication of this differential lab-loading policy is that the science instructors must teach more hours per week to make the same workload as their colleagues in other disciplines which have no formal laboratory activities. Prior to this study, there was no aggregate data regarding the extent of this policy at the community college level nor of its possible impact upon instruction. The input of full-time two-year college members of four different professional science organizations was solicited and from their responses, it is clear that differential loading of lab hours is common and widely variable. A majority of the respondents to this study had their hours in lab assigned less credit than their hours in lecture, with multiple perceived impacts upon lab preparation, assistance, revision, and follow-up activities. In combination with open-ended comments made by study participants, the results suggest that science instructors do perceive impacts upon their ability to teach science labs in a pedagogically current and challenging manner when their hours spent in lab instruction are counted for less than their hours in lecture. It is hoped that the information from this study will be used to implement improvements in the working conditions needed to advance science

  18. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    ERIC Educational Resources Information Center

    Haagen-Schuetzenhoefer, Claudia

    2012-01-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…

  19. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  20. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  1. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  2. Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  3. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  4. A catch-up validation study of an in vitro skin irritation test method using reconstructed human epidermis LabCyte EPI-MODEL24.

    PubMed

    Kojima, Hajime; Katoh, Masakazu; Shinoda, Shinsuke; Hagiwara, Saori; Suzuki, Tamie; Izumi, Runa; Yamaguchi, Yoshihiro; Nakamura, Maki; Kasahawa, Toshihiko; Shibai, Aya

    2014-07-01

    Three validation studies were conducted by the Japanese Society for Alternatives to Animal Experiments in order to assess the performance of a skin irritation assay using reconstructed human epidermis (RhE) LabCyte EPI-MODEL24 (LabCyte EPI-MODEL24 SIT) developed by the Japan Tissue Engineering Co., Ltd. (J-TEC), and the results of these studies were submitted to the Organisation for Economic Co-operation and Development (OECD) for the creation of a Test Guideline (TG). In the summary review report from the OECD, the peer review panel indicated the need to resolve an issue regarding the misclassification of 1-bromohexane. To this end, a rinsing operation intended to remove exposed chemicals was reviewed and the standard operating procedure (SOP) revised by J-TEC. Thereafter, in order to confirm general versatility of the revised SOP, a new validation management team was organized by the Japanese Center for the Validation of Alternative Methods (JaCVAM) to undertake a catch-up validation study that would compare the revised assay with similar in vitro skin irritation assays, per OECD TG No. 439 (2010). The catch-up validation and supplementary studies for LabCyte EPI-MODEL24 SIT using the revised SOPs were conducted at three laboratories. These results showed that the revised SOP of LabCyte EPI-MODEL24 SIT conformed more accurately to the classifications for skin irritation under the United Nations Globally Harmonised System of Classification and Labelling of Chemicals (UN GHS), thereby highlighting the importance of an optimized rinsing operation for the removal of exposed chemicals in obtaining consistent results from in vitro skin irritation assays. Copyright © 2013 John Wiley & Sons, Ltd.

  5. National Programs | FNLCR Staging

    Cancer.gov

    The Frederick National Lab (FNL) is a shared national resource that offers access to a suite of advanced biomedical technologies, provides selected science and technology services, and maintains vast repositories of research materials available to bi

  6. Beyond access to transformations: A cross-national analysis of women in science and engineering education, 1970--2000

    NASA Astrophysics Data System (ADS)

    Wotipka, Christine Min

    2001-12-01

    Over the years, attention to the issue of women in science has tended to focus on individual and organizational efforts to encourage women's greater participation in science and engineering fields of study and occupations. With more intense globalization processes that increasingly shape and are shaped by science, national- and global-level understandings of the situation of women in science and engineering as well as methods to boost their greater and more equal participation in these fields are necessary. This study is a cross-national and longitudinal study of women's participation in science and engineering fields of study at the higher education level. In order to explain the growth in women's participation in these fields of study between 1972--1992, I use a world society theoretical perspective to argue that national linkages to global models regarding women's educational equality and women in science may positively influence their participation in these fields. In multivariate statistical analyses, women's participation in higher education, measured as female enrollment in non-science and non-engineering fields of study, exerted a positive effect on women in science and engineering as did male enrollment in science and engineering higher education. The fact that linkage variables and those measuring women's status and other national-level factors were not found to be influential suggests that world-level factors may be contributing to women's greater participation in these fields. To better understand processes at this level, I use feminist critiques of science to examine the efforts made by the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the United Nations Children's Fund (UNICEF), and the World Bank to address women in science and engineering education over a thirty year time period. My examination of their publications as well as conference declarations and platforms of action from ten international conferences finds a

  7. Contracting with the Frederick National Lab | FNLCR Staging

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  8. Design and performance evaluations of a LO2/methane reaction control engine

    NASA Astrophysics Data System (ADS)

    Johnson, Aaron

    Liquid oxygen (LOX) and liquid methane (LCH4) are a propellant combination viewed as a potential enabling technology for spacecraft propulsion. Reasons why LOX/LCH4 is being used as an alternative propellant source include: it is less toxic than other propellants, it has the possibility to be harvested on extraterrestrial soil, LCH4 has a higher energy density than liquid hydrogen (LH2; commonly used on vehicle main engines), and LOX/LCH4 has comparable performance to other well-known propellant combinations. Through the continued partnership between the National Aeronautics and Space Administration (NASA) and the University of Texas at El Paso (UTEP) a LOX/LCH4 reaction control engine (RCE) was developed and researched. The RCE was developed for the purpose of being integrated into two UTEP LOX/LCH4 vehicles, Janus and Daedalus, and was designed based on previous engines tested both at NASA and the center for space exploration and technology research (cSETR) lab. This report details the design process and manufacturing of the engine, cold flow studies evaluating injector design, and preliminary hot fire tests to give insight into engine performance.

  9. RiskLab - a joint Teaching Lab on Hazard and Risk Management

    NASA Astrophysics Data System (ADS)

    Baruffini, Mi.; Baruffini, Mo.; Thuering, M.

    2009-04-01

    In the future natural disasters are expected to increase due to climatic changes that strongly affect environmental, social and economical systems. For this reason and because of the limited resources, governments require analytical risk analysis for a better mitigation planning. Risk analysis is a process to determine the nature and extent of risk by estimating potential hazards and evaluating existing conditions of vulnerability that could pose a potential threat or harm to people, property, livelihoods and environment. This process has become a generally accepted approach for the assessment of cost-benefit scenarios; originating from technical risks it is being applied to natural hazards for several years now in Switzerland. Starting from these premises "Risk Lab", a joint collaboration between the Institute of Earth Sciences of the University of Applied Sciences of Southern Switzerland and the Institute for Economic Research of the University of Lugano, has been started in 2006, aiming to become a competence centre about Risk Analysis and Evaluation. The main issue studied by the lab concerns the topic "What security at what price?" and the activities follow the philosophy of the integral risk management as proposed by PLANAT, that defines the process as a cycle that contains different and interrelated phases. The final aim is to change the population and technician idea about risk from "defending against danger" to "being aware of risks" through a proper academic course specially addressed to young people. In fact the most important activity of the laboratory consists in a degree course, offered both to Engineering and Architecture students of the University of Applied Sciences of Southern Switzerland and Economy Students of the University of Lugano. The course is structured in two main parts: an introductive, theoretical part, composed by class lessons, where the main aspects of natural hazards, risk perception and evaluation and risk management are presented

  10. Optum Labs: building a novel node in the learning health care system.

    PubMed

    Wallace, Paul J; Shah, Nilay D; Dennen, Taylor; Bleicher, Paul A; Bleicher, Paul D; Crown, William H

    2014-07-01

    Unprecedented change in the US health care system is being driven by the rapid uptake of health information technology and national investments in multi-institution research networks comprising academic centers, health care delivery systems, and other health system components. An example of this changing landscape is Optum Labs, a novel network "node" that is bringing together new partners, data, and analytic techniques to implement research findings in health care practice. Optum Labs was founded in early 2013 by Mayo Clinic and Optum, a commercial data, infrastructure services, and care organization that is part of UnitedHealth Group. Optum Labs now has eleven collaborators and a database of deidentified information on more than 150 million people that is compliant with the Health Insurance Portability and Accountability Act (HIPAA) of 1996. This article describes the early progress of Optum Labs. The combination of the diverse collaborator perspectives with rich data, including deep patient and provider information, is intended to reveal new insights about diseases, treatments, and patients' behavior to guide changes in practice. Practitioners' involvement in agenda setting and translation of findings into practical care innovations accelerates the implementation of research results. Furthermore, feedback loops from the clinic help Optum Labs expand on successes and give quick attention to challenges as they emerge. Project HOPE—The People-to-People Health Foundation, Inc.

  11. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates formore » consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  12. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  13. Results Outbrief from the 2014 CombustionLab Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2015-01-01

    On October 24-25, 2014, NASA Headquarters and the NASA Glenn Research Center sponsored the CombustionLab Workshop in Pasadena, CA as part of the 30th Annual Meeting of the American Society for Gravitational and Space Research. The two-day event brought together scientists and engineers from academia, industry, other government agencies, and international space agencies. The goal of the workshop was to identify key engineering drivers and research priorities, and to provide overall recommendations for the development of the next generation of combustion science experiments for the International Space Station (ISS). The workshop was divided in to 6 topical areas: Droplets, Sprays and Aerosols; Non-Premixed Flames; Premixed Flames; High Pressure and Supercritical Reacting Systems; Fire Safety; Heterogeneous Reaction Processes. Each of these areas produced summary findings which were assembled into a report and were integrated into the NASA budget planning process. The summary results of this process are presented with implementation plans and options for the future.

  14. Trial of Engineer Educating of Manufacturing Field in Kagoshima National College of Technology

    NASA Astrophysics Data System (ADS)

    Nakamura, Itaru; Hombu, Mitsuyuki; Kusuhara, Yoshito; Kashine, Kenji; Sakasegawa, Eiichi; Tashima, Daisuke; Fukidome, Hiromi

    In Kagoshima National College of Technology, based on investigation with “the job boost measure investigation work in a power supply area” undertaken in the 2005 fiscal year, we accepted the trust from Kyushu Bureau of Economy, Trade and Industry, and undertook “the small-and-medium-sized-enterprises personnel educating work which utilized the technical college etc.” for three years from the 2006 fiscal year to the 2008 fiscal year. As the trial of engineer educating according to the electrical engineering concept to the manufacturing field based on a conventional result, we act as a professor of the base technique for applying alternative energy (a fuel cell and a solar cell) in which social needs are powerful these days, and aim at aiming at cultivation of the problem-solving type engineer who can contribute to a low carbon society through manufacturing, we undertook this work according to the manufacturing bearer educating work (personnel educating and secured work of the manufacturing field) in the 2009 fiscal year of National Federation of Small Business Associations.

  15. The Mission Planning Lab: A Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.; Cervantes, Benjamin W.

    2009-01-01

    Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).

  16. Lab-on-a-brane: nanofibrous polymer membranes to recreate organ-capillary interfaces

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim I.; Thomas, Vinoy; Sethu, Palaniappan

    2016-03-01

    Drug discovery is a complex and time consuming process involving significant basic research and preclinical evaluation prior to testing in patients. Preclinical studies rely extensively on animal models which often fail in human trials. Biomimetic microphysiological systems (MPS) using human cells can be a promising alternative to animal models; where critical interactions between different organ systems are recreated to provide physiologically relevant in vitro human models. Central here are blood-vessel networks, the interface controlling transport of cellular and biomolecular components between the circulating fluid and underlying tissue. Here we present a novel lab-on-a-brane (or lab-on-a-membrane) nanofluidics MPS that combines the elegance of lab-on-a-chip with the more realistic morphology of 3D fibrous tissue-engineering constructs. Our blood-vessel lab-on-a-brane effectively simulates in vivo vessel-tissue interface for evaluating transendothelial transport in various pharmacokinetic and nanomedicine applications. Attributes of our platform include (a) nanoporous barrier interface enabling transmembrane molecular transport, (b) transformation of substrate into nanofibrous 3D tissue matrix, (c) invertible-sandwich architecture, and (d) simple co-culture mechanism for endothelial and smooth muscle layers to accurately mimic arterial anatomy. Structural, mechanical, and transport characterization using scanning electron microscopy, stress/strain analysis, infrared spectroscopy, immunofluorescence, and FITC-Dextran hydraulic permeability confirm viability of this in vitro system. Thus, our lab-on-a-brane provides an effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in preclinical testing, costs from false starts, and time-to-market. Furthermore, it can be configured in multiple simultaneous arrays for personalized and precision medicine applications and for

  17. Teaching Process Engineering Principles Using an Ice Cream Maker

    ERIC Educational Resources Information Center

    Kaletunc, Gonul; Duemmel, Kevin; Gecik, Christopher

    2007-01-01

    The ice cream laboratory experiment is designed to illustrate and promote discussion of several engineering and science topics including material and energy balances, heat transfer, freezing, mass transfer, mixing, viscosity, and freezing point depression in a sophomore level engineering class. A pre-lab assignment requires the students to develop…

  18. 46 CFR 11.514 - Service requirements for national endorsement as second assistant engineer of steam, motor, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.514 Section 11.514 Shipping... requirements for national endorsement as second assistant engineer of steam, motor, and/or gas turbine... assistant engineer of steam, motor, and/or gas turbine-propelled vessels is— (1) One year of service as an...

  19. Learning by Viewing - Nobel Labs 360

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2013-01-01

    First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there

  20. Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, J.D.; Scheer, R.

    1994-12-31

    A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less

  1. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39082 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.

  2. Quality Assurance in Engineering Education on a National and European Scale

    ERIC Educational Resources Information Center

    Gola, Muzio M.

    2005-01-01

    Activity 2 of project E4, "Quality Assessment and Transparency for Enhanced Mobility and Trans-European Recognition", included the working group on "Quality Assurance in Engineering on a National and European Scale". Its report can be found in Part 2 of Volume D, final report of the E4 Thematic Network (Firenze University Press 2003). The Report…

  3. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    ERIC Educational Resources Information Center

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  4. GeneLab: Open Science For Exploration

    NASA Technical Reports Server (NTRS)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  5. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  6. Designing a ruggedisation lab to characterise materials for harsh environments.

    PubMed

    Frazzette, Nicholas; Jethva, Janak; Mehta, Khanjan; Stapleton, Joshua J; Randall, Clive

    Designing products for use in developing countries presents a unique set of challenges including harsh operating environments, costly repairs and maintenance, and users with varying degrees of education and device familiarity. For products to be robust, adaptable and durable, they need to be ruggedised for environmental factors such as high temperature and humidity as well as different operational conditions such as shock and chemical exposure. The product characterisation and ruggedisation processes require specific expertise and resources that are seldom available outside of large corporations and elite national research labs. There is no standardised process since product needs strongly depend on the context and user base, making it particularly onerous for underfunded start-ups and academic groups. Standardised protocols that identify essential lab testing regimens for specific contexts and user groups can complement field-testing and accelerate the product development process while reducing costs. This article synthesises current methods and strategies for product testing employed by large corporations as well as defence-related entities. A technological and organisational framework for a service-for-fee product characterisation and ruggedisation lab that reduces costs and shortens the timespan from product invention to commercial launch in harsh settings is presented.

  7. Evaluation of Inter-Mountain Labs infrasound sensors : July 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Darren M.

    2007-10-01

    Sandia National Laboratories has tested and evaluated three Inter Mountain Labs infrasound sensors. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of the Inter Mountain Labs (IML) infrasound sensor model SS. The results of this evaluation were only comparedmore » to relevant noise models; due to a lack of manufactures documentation notes on the sensors under test prior to testing. The tests selected for this system were chosen to demonstrate different performance aspects of the components under test.« less

  8. Engineering Institute

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryEngineering Institute Addressing national needs by fostering specialized recruiting and strategic partnerships Los Alamos National LaboratoryEngineering Institute Menu NSEC Educational Programs Los Alamos Dynamics Summer

  9. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  10. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  11. International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

    NASA Technical Reports Server (NTRS)

    Wieland, Paul; Miller, Lee; Ibarra, Tom

    2003-01-01

    As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.

  12. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  13. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  14. Ohio Senator John Glenn tours the Design Engineering lab at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn are, left to right, Chief Engineer Hugo Delgado and Design Engineer David Kruhm, both of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five- hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  15. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  16. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  17. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  18. National Science Foundation 1989 Engineering Senior Design Projects To Aid the Disabled.

    ERIC Educational Resources Information Center

    Enderle, John D., Ed.

    Through the Bioengineering and Research to Aid the Disabled program of the National Science Foundation, design projects were awarded competitively to 16 universities. Senior engineering students at each of the universities constructed custom devices and software for disabled individuals. This compendium contains a description of each project in…

  19. NOT Another Lab Report

    ERIC Educational Resources Information Center

    Ende, Fred

    2012-01-01

    Ask students to name the aspects of science class they enjoy most, and working on labs will undoubtedly be mentioned. What often won't be included, however, is writing lab reports. For many students, the process of exploration and data collection is paramount, while the explanation and analysis of findings often takes a backseat. After all, if…

  20. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  1. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  2. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  3. Systems Engineering, Quality and Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    AS9100 has little to say about how to apply a Quality Management System (QMS) to aerospace test programs. There is little in the quality engineering Body of Knowledge that applies to testing, unless it is nondestructive examination or some type of lab or bench testing. If one examines how the systems engineering processes are implemented throughout a test program; and how these processes can be mapped to AS9100, a number of areas for involvement of the quality professional are revealed.

  4. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  5. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  6. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  7. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting...

  8. 77 FR 61448 - Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National Science and Technology Council; Public Meetings AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meetings. SUMMARY...

  9. Beyond Classroom, Lab, Studio and Field

    NASA Astrophysics Data System (ADS)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  10. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  11. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  12. NREL Fuels and Engines Research: Maximizing Vehicle Efficiency and

    Science.gov Websites

    Laboratory, we analyze the effects of fuel chemistry on ignition and the potential emissions impacts. Our lab research. It can be used to investigate fuel chemistry effects on current and near-term engine technology , independent control allows for deeper interrogation of fuel effects on future-generation engine strategies

  13. Teaching bioprocess engineering to undergraduates: Multidisciplinary hands-on training in a one-week practical course.

    PubMed

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related disciplines, where students are challenged with a real-life bioprocess-engineering application, the production of recombinant protein in a fed-batch process. The lab course was designed to introduce students to the subject of operating and supervising an experiment in a bioreactor, along with the analysis of collected data and a final critical evaluation of the experiment. To provide visual feedback of the experimental outcome, the organism used during class was Escherichia coli which carried a plasmid to recombinantly produce enhanced green fluorescent protein (eGFP) upon induction. This can easily be visualized in both the bioreactor and samples by using ultraviolet light. The lab course is performed with bioreactors of the simplest design, and is therefore highly flexible, robust and easy to reproduce. As part of this work the implementation and framework, the results, the evaluation and assessment of student learning combined with opinion surveys are presented, which provides a basis for instructors intending to implement a similar lab course at their respective institution. © 2015 by the International Union of Biochemistry and Molecular Biology.

  14. The Golden Age of Radio: Solid State's Debt to the Rad Lab

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2011-03-01

    While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.

  15. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 2

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  17. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 1

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  18. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  19. 46 CFR 11.512 - Service requirements for national endorsement as first assistant engineer of steam, motor, and/or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.512 Section 11.512 Shipping... requirements for national endorsement as first assistant engineer of steam, motor, and/or gas turbine-propelled... engineer of steam, motor, and/or gas turbine-propelled vessels is— (1) One year of service as an assistant...

  20. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  1. Open Labware: 3-D Printing Your Own Lab Equipment

    PubMed Central

    Baden, Tom; Chagas, Andre Maia; Gage, Greg; Marzullo, Timothy; Prieto-Godino, Lucia L.; Euler, Thomas

    2015-01-01

    The introduction of affordable, consumer-oriented 3-D printers is a milestone in the current “maker movement,” which has been heralded as the next industrial revolution. Combined with free and open sharing of detailed design blueprints and accessible development tools, rapid prototypes of complex products can now be assembled in one’s own garage—a game-changer reminiscent of the early days of personal computing. At the same time, 3-D printing has also allowed the scientific and engineering community to build the “little things” that help a lab get up and running much faster and easier than ever before. PMID:25794301

  2. A virtual computer lab for distance biomedical technology education.

    PubMed

    Locatis, Craig; Vega, Anibal; Bhagwat, Medha; Liu, Wei-Li; Conde, Jose

    2008-03-13

    The National Library of Medicine's National Center for Biotechnology Information offers mini-courses which entail applying concepts in biochemistry and genetics to search genomics databases and other information sources. They are highly interactive and involve use of 3D molecular visualization software that can be computationally taxing. Methods were devised to offer the courses at a distance so as to provide as much functionality of a computer lab as possible, the venue where they are normally taught. The methods, which can be employed with varied videoconferencing technology and desktop sharing software, were used to deliver mini-courses at a distance in pilot applications where students could see demonstrations by the instructor and the instructor could observe and interact with students working at their remote desktops. Student ratings of the learning experience and comments to open ended questions were similar to those when the courses are offered face to face. The real time interaction and the instructor's ability to access student desktops from a distance in order to provide individual assistance and feedback were considered invaluable. The technologies and methods mimic much of the functionality of computer labs and may be usefully applied in any context where content changes frequently, training needs to be offered on complex computer applications at a distance in real time, and where it is necessary for the instructor to monitor students as they work.

  3. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  4. Integration, Authenticity, and Relevancy in College Science through Engineering Design

    ERIC Educational Resources Information Center

    Turner, Ken L., Jr.; Hoffman, Adam R.

    2018-01-01

    Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…

  5. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    ERIC Educational Resources Information Center

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  6. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  7. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  8. An ECG Lab Project for Teaching Signal Conditioning Systems in a Master's Degree in Mechatronic Engineering

    ERIC Educational Resources Information Center

    Martín, Francisco Javier Ferrero; Martínez, Alberto López; Llopis, Marta Valledor; Rodriguez, Juan Carlos Campo; Viejo, Cecilio Blanco; Vershinin, Yuri A.

    2015-01-01

    Ongoing technological progress in measurement systems triggered the development of an in­novative, hands-on teaching program to help students toward a fuller understanding of recent changes in the field. This paper presents a lab project that links theoretical principles with the practical issues of signal conditioning systems. This is…

  9. ASC Tri-lab Co-design Level 2 Milestone Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Rich; Jones, Holger; Keasler, Jeff

    2015-09-23

    In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \

  10. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  11. MTR WING, TRA604. FIRST FLOOR PLAN. ENTRY LOBBY, MACHINE SHOP, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING, TRA-604. FIRST FLOOR PLAN. ENTRY LOBBY, MACHINE SHOP, INSTRUMENT SHOP, COUNTING ROOM, HEALTH PHYSICS LAB, LABS AND OFFICES, STORAGE, SHIPPING AND RECEIVING. BLAW-KNOX 3150-4-2, 7/1950. INL INDEX NO. 053-604-00-099-100008, REV. 7. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  13. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  14. Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden

    NASA Astrophysics Data System (ADS)

    Briscoe, William; O'Rielly, Grant; Fissum, Kevin

    2014-03-01

    Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.

  15. Planning a Computer Lab: Considerations To Ensure Success.

    ERIC Educational Resources Information Center

    IALL Journal of Language Learning Technologies, 1994

    1994-01-01

    Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…

  16. 46 CFR 11.524 - Service requirements for national endorsement as designated duty engineer (DDE) of steam, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designated duty engineer (DDE) of steam, motor, and/or gas turbine-propelled vessels. 11.524 Section 11.524... requirements for national endorsement as designated duty engineer (DDE) of steam, motor, and/or gas turbine... steam, motor, and/or gas turbine-propelled vessels of unlimited propulsion power, the applicant must...

  17. Teaching Bioprocess Engineering to Undergraduates: Multidisciplinary Hands-On Training in a One-Week Practical Course

    ERIC Educational Resources Information Center

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related…

  18. TQM in a Computer Lab.

    ERIC Educational Resources Information Center

    Swanson, Dewey A.; Phillips, Julie A.

    At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…

  19. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  20. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    PubMed

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  1. NEEDS (The National Engineering Education Delivery System): If We Build It (According to Standards) They Will Come!

    ERIC Educational Resources Information Center

    Saylor, John M.

    The National Science Foundation (NSF) is providing funds for coalitions of engineering educational institutions to improve the quality of undergraduate engineering education. A hypothesis that is being tested is that people can learn better in environments that allow self-paced and/or collaborative learning. The main tools for providing this…

  2. [Comment on “Federal funding at a time of budget austerity”] Report overlooks National Labs' integral role in research and training

    NASA Astrophysics Data System (ADS)

    Toran, Laura

    Should we emphasize universities over national laboratories in times of limited federal science funding? Frank Press raised this question in his March 26, 1996, Eos article on “Federal Funding at a Time of Budget Austerity,” which summarized a report by the committee of the National Academies of Sciences and Engineering. Although he states that in the report “The unique and complementary roles of universities and federal laboratories are spelled out clearly,” he goes on to say “the committee proposed that universities be given credit for combining research and training.”

  3. Design of inquiry-oriented science labs: impacts on students' attitudes

    NASA Astrophysics Data System (ADS)

    Baseya, J. M.; Francis, C. D.

    2011-11-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students' attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help). Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study. Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey. Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students' attitudes were not significantly different between PB and GI labs, but when dif was high, students' significantly rated GI labs higher than PB labs. Conclusions: Students' attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.

  4. Fifth National Seismic Conference on Bridges & Highways : innovations in earthquake engineering for highway structures

    DOT National Transportation Integrated Search

    2007-02-01

    This document is the conference program of the 5th National Seismic Conference on Bridges and Highways. The conference was held in San Francisco on September 18-20, 2006 and attracted over 300 engineers, academician, and students from around the worl...

  5. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  6. Science Lab: A Peer Approach.

    ERIC Educational Resources Information Center

    Ronca, Courtney C.

    The two goals of this program were to increase the number of classroom teachers using the lab and to increase the amount of time that the science lab was used. The solution strategy chosen was a combination of peer tutoring, orientation presentations, small group discovery experiments and activities, and individual science experiment stations. The…

  7. Virus resistant plums through genetic engineering - from lab to market

    USDA-ARS?s Scientific Manuscript database

    Genetic engineering (GE) has the potential to revolutionize the genetic improvement of fruit trees and other specialty crops, to provide greater flexibility and speed in responding to changes in climate, production systems and market demands, and to maintain the competitiveness of American agricultu...

  8. Innovation Incubator: Whisker Labs Technical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany F.; Frank, Stephen M.; Earle, Lieko

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need tomore » open the panel and install current transducers (CTs) on the circuit wiring.« less

  9. Computer Aided Battery Engineering Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less

  10. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  11. The University of Connecticut Biomedical Engineering Mentoring Program for high school students.

    PubMed

    Enderle, John D; Liebler, Christopher M; Haapala, Stephenic A; Hart, James L; Thonakkaraparayil, Naomi T; Romonosky, Laura L; Rodriguez, Francisco; Trumbower, Randy D

    2004-01-01

    For the past four years, the Biomedical Engineering Program at the University of Connecticut has offered a summer mentoring program for high school students interested in biomedical engineering. To offer this program, we have partnered with the UConn Mentor Connection Program, the School of Engineering 2000 Program and the College of Liberal Arts and Sciences Summer Laboratory Apprentice Program. We typically have approximately 20-25 high school students learning about biomedical engineering each summer. The mentoring aspect of the program exists at many different levels, with the graduate students mentoring the undergraduate students, and these students mentoring the high school students. The program starts with a three-hour lecture on biomedical engineering to properly orient the students. An in-depth paper on an area in biomedical engineering is a required component, as well as a PowerPoint presentation on their research. All of the students build a device to record an EKG on a computer using LabView, including signal processing to remove noise. The students learn some rudimentary concepts on electrocardiography and the physiology and anatomy of the heart. The students also learn basic electronics and breadboarding circuits, PSpice, the building of a printed circuit board, PIC microcontroller, the operation of Multimeters (including the oscilloscope), soldering, assembly of the EKG device and writing LabView code to run their device on a PC. The students keep their EKG device, LabView program and a fully illustrated booklet on EKG to bring home with them, and hopefully bring back to their high school to share their experiences with other students and teachers. The students also work on several other projects during this summer experience as well as visit Hartford Hospital to learn about Clinical Engineering.

  12. Measuring the Immeasurable: An Approach to Assessing the Effectiveness of Engineering Civic Assistance Projects Towards Achieving National Security Objectives

    DTIC Science & Technology

    2015-06-12

    MEASURING THE IMMEASURABLE: AN APPROACH TO ASSESSING THE EFFECTIVENESS OF ENGINEERING CIVIC ASSISTANCE PROJECTS TOWARDS ACHIEVING...SUBTITLE Measuring the Immeasurable: An Approach to Assessing the Effectiveness of Engineering Civic Assistance Projects Towards Achieving National...increasing reliance on Humanitarian and Civic Assistance (HCA), specifically engineering civic assistance projects (ENCAPs), as a way to shape the

  13. LANGUAGE LABS--AN UPDATED REPORT.

    ERIC Educational Resources Information Center

    1963

    REPORTS FROM SEVERAL SCHOOL DISTRICTS ON THE USE OF AND PLANNING OF LANGUAGE LABORATORIES ARE PRESENTED. LABORATORIES SHOULD BE ARRANGED FOR FLEXIBLE USE. THE AVERAGE HIGH SCHOOL STUDENT CAN USE A LAB PROFITABLY FOR 20 TO 25 MINUTES. THERE ARE THREE DIFFERENT TYPES OF LANGUAGE LABORATORIES THAT ARE DESCRIBED. THE SATELLITE LAB IS DIVIDED BY A…

  14. Academic Pipeline and Futures Lab

    DTIC Science & Technology

    2016-02-01

    AFRL-RY-WP-TR-2015-0186 ACADEMIC PIPELINE AND FUTURES LAB Brian D. Rigling Wright State University FEBRUARY 2016...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) February 2016 Final 12 June 2009 – 30 September 2015 4. TITLE AND SUBTITLE ACADEMIC ...6 3 WSU ACADEMIC PIPELINE AND LAYERED SENSING FUTURES LAB (prepared by K

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  16. Towards a Manifesto for Living Lab Co-creation

    NASA Astrophysics Data System (ADS)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  17. LabKey Server: an open source platform for scientific data integration, analysis and collaboration.

    PubMed

    Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark

    2011-03-09

    Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks

  18. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    PubMed Central

    2011-01-01

    Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350

  19. X-33 Simulation Lab and Staff Engineers

    NASA Technical Reports Server (NTRS)

    1997-01-01

    X-33 program engineers at NASA's Dryden Flight Research Center, Edwards, California, monitor a flight simulation of the X-33 Advanced Technology Demonstrator as a 'flight' unfolds. The simulation provided flight trajectory data while flight control laws were being designed and developed. It also provided information which assisted X-33 developer Lockheed Martin in aerodynamic design of the vehicle. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that was to demonstrate in flight the new technologies needed for Lockheed Martin's proposed full-scale VentureStar Reusable Launch Vehicle. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was intended to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was intended to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program

  20. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Berkeley National Laboratory

    2007-07-20

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developingmore » nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the

  1. Molecular Foundry Workshop draws overflow crowd to BerkeleyLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Art

    2002-11-27

    Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).

  2. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  3. Labs: 1987.

    ERIC Educational Resources Information Center

    Igelsrud, Don, Ed.

    1988-01-01

    This article presents a variety of topics discussed in this column and at a biology teachers' workshop concerning the quality and value of lab techniques used for teaching high school biology. Topics included are Drosophila salivary glands, sea urchins, innovations, dyes and networking. (CW)

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    -486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510

  5. Report from the banding lab

    USGS Publications Warehouse

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  6. Outreach to Scientists and Engineers at the Hanford Technical Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Karen A.

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than themore » traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use

  7. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  8. KSC-2012-2760

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. LaNetra C. Tate, center, materials engineer at Kennedy Space Center, is surrounded by students as she welcomes them for their tour of the Space Life Sciences Lab facilities. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  9. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  10. Ohio Senator John Glenn tours the Design Engineering lab at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn is Design Engineer David Kruhm of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  11. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  12. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  13. Teaching Technical Writing in a Lab Course in Chemical Engineering

    ERIC Educational Resources Information Center

    Lombardo, Stephen J.

    2010-01-01

    Techniques are presented for improving the technical writing of chemical engineering students enrolled in an undergraduate laboratory course. The principles of writing covered are adopted from the book, Style: Lessons in Clarity and Grace, by Joseph M. Williams: General examples of writing are taken from this book and then are recast into examples…

  14. Evaluation of oral microbiology lab curriculum reform.

    PubMed

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  15. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  16. Developing Leadership Skills of Undergraduate Engineering Students: Perspectives from Engineering Faculty

    ERIC Educational Resources Information Center

    Cox, Monica F.; Cekic, Osman; Adams, Stephanie G.

    2010-01-01

    The engineering education community (motivated by internal and external factors) has begun to focus on leadership abilities of college students in engineering fields via reports from ABET, the National Academy of Engineering, and the National Research Council. These reports have directed criticism toward higher education institutions for their…

  17. 46 CFR 11.518 - Service requirements for national endorsement as chief engineer (limited) of steam, motor, and/or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... engineer (limited) of steam, motor, and/or gas turbine-propelled vessels. 11.518 Section 11.518 Shipping... requirements for national endorsement as chief engineer (limited) of steam, motor, and/or gas turbine-propelled... (limited) of steam, motor, and/or gas turbine-propelled vessels is 5 years of total service in the...

  18. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  19. LABS Foundational Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jerry

    2012-01-01

    They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.

  20. Engineering with uncertainty: monitoring air bag performance.

    PubMed

    Wetmore, Jameson M

    2008-06-01

    Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.

  1. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  2. Frederick National Lab's Contribution to ATOM | FNLCR Staging

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Labwill contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive modelin

  3. A&M. TAN607 second floor plan for cold assembly area. Metallurgical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607 second floor plan for cold assembly area. Metallurgical lab, chemistry lab, nuclear instrument lab, equipment rooms. Ralph M. Parsons 902-ANP-607-A 102. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-693-106754 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A

  5. Experiential Learning of Digital Communication Using LabVIEW

    ERIC Educational Resources Information Center

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  6. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  7. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-fundedmore » program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  8. Reviews Book: The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book: Quantitative Understanding of Biosystems: An Introduction to Biophysics Book: Edison's Electric Light: The Art of Invention Book: The Edge of Physics: Dispatches from the Frontiers of Cosmology Equipment: Voicebox Equipment: Tracker 4 Books: Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Places to Visit: Discovery Museum Book: Philosophy of Science: A Very Short Introduction Web Watch

    NASA Astrophysics Data System (ADS)

    2011-11-01

    WE RECOMMEND Quantitative Understanding of Biosystems: An Introduction to Biophysics Text applies physics to biology concepts Edison's Electric Light: The Art of Invention Edison's light still shines brightly The Edge of Physics: Dispatches from the Frontiers of Cosmology Anecdotes explore cosmology Voicebox Voicebox kit discovers the physics and evolution of speech Tracker 4 Free software tracks motion analysis Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Books support the LabVIEW software Discovery Museum Newcastle museum offers science enjoyment for all Philosophy of Science: A Very Short Introduction Philosophy opens up science questions WORTH A LOOK The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book researches the universe WEB WATCH Superconductivity websites are popular

  9. Practical Physics Labs: A Resource Manual.

    ERIC Educational Resources Information Center

    Goodwin, Peter

    This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…

  10. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimatesmore » for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  11. Chemical Engineering Students: A Distinct Group among Engineers

    ERIC Educational Resources Information Center

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  12. Meeting in San Francisco: Integrated Disinfection By-Products Mixtures Research: Results from the Four Lab Study

    EPA Science Inventory

    This study involves the collaboration of the four national laboratories of the U.S. Environmental Protection Agency (EPA), as well as other scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns rela...

  13. Baseball Physics: A New Mechanics Lab

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  14. Teaching Chemistry Lab Safety through Comics

    NASA Astrophysics Data System (ADS)

    di Raddo, Pasquale

    2006-04-01

    As a means for raising students' interest in aspects pertaining to chemistry lab safety, this article presents a novel approach to teaching this important subject. Comic book lab scenes that involve fictional characters familiar to many students are presented and discussed as to the safety concerns represented in those images. These are discussed in a safety prelab session. For the sake of comparison, students are then shown images taken from current chemistry journals of safety-conscious contemporary chemists at work in their labs. Finally the need to adhere to copyright regulations for the use of the images is discussed so as to increase students' awareness of academic honesty and copyright issues.

  15. Design of two-channel oscilloscope and basic circuit simulations in LabView

    NASA Astrophysics Data System (ADS)

    Balzhiev, Plamen; Makal, Jaroslaw

    2008-01-01

    The project is realized as a diploma thesis in Bialystok Technical University, Poland). The main aim is to develop a useful educational tool which presents the time and frequency characteristics in basic electrical circuits. It is designed as a helpful instrument for lectures and laboratory classes. The predominant audience will be students of electrical engineering from first semester of the higher education. Therefore the level of knowledge at this stage of education is not high enough and different techniques are necessary to increase the students' interest and the efficiency of teaching process. This educational instrument provides the needed knowledge concerning the basic circuits and its parameters. Graphics and animations of the general processes in the electrical circuits make the problems more interesting, comprehensive and easier to understand. For designing such an instrument the National Instruments' programming environment LabView is used. It is preferred to the other simulation software because of its simplicity flexibility and also availability (the free demo version is sufficient to make a simple virtual instrument). LabView uses graphical programming language and has powerful mathematical functions for analysis and simulations. The useful visualization tools for presenting different diagrams are worth recommending, too. It is also specialized in measurement and control and it supports a wide variety of hardware. Therefore this software is suitable for laboratory classes to present the dependencies between the simulated characteristics in basic electrical circuits and the real one measured with the hardware device. For this purpose a two-channel oscilloscope is designed as part of the described project. The main purpose of this instrument as part of the educational process is to present the desired characteristics of the electrical circuits and to become familiar with the general functions of the oscilloscope. This project combines several important

  16. LIB LAB the Library Laboratory: hands-on multimedia science communication

    NASA Astrophysics Data System (ADS)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  17. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    PubMed

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  18. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  19. Teaching Engineering Students Team Work

    NASA Technical Reports Server (NTRS)

    Levi, Daniel

    1998-01-01

    The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.

  20. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  1. Hydrogel Beads: The New Slime Lab?

    ERIC Educational Resources Information Center

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  2. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  3. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  4. Easy research data handling with an OpenEarth DataLab for geo-monitoring research

    NASA Astrophysics Data System (ADS)

    Vanderfeesten, Maurice; van der Kuil, Annemiek; Prinčič, Alenka; den Heijer, Kees; Rombouts, Jeroen

    2015-04-01

    OpenEarth DataLab is an open source-based collaboration and processing platform to enable streamlined research data management from raw data ingest and transformation to interoperable distribution. It enables geo-scientists to easily synchronise, share, compute and visualise the dynamic and most up-to-date research data, scripts and models in multi-stakeholder geo-monitoring programs. This DataLab is developed by the Research Data Services team of TU Delft Library and 3TU.Datacentrum together with coastal engineers of Delft University of Technology and Deltares. Based on the OpenEarth software stack an environment has been developed to orchestrate numerous geo-related open source software components that can empower researchers and increase the overall research quality by managing research data; enabling automatic and interoperable data workflows between all the components with track & trace, hit & run data transformation processing in cloud infrastructure using MatLab and Python, synchronisation of data and scripts (SVN), and much more. Transformed interoperable data products (KML, NetCDF, PostGIS) can be used by ready-made OpenEarth tools for further analyses and visualisation, and can be distributed via interoperable channels such as THREDDS (OpenDAP) and GeoServer. An example of a successful application of OpenEarth DataLab is the Sand Motor, an innovative method for coastal protection in the Netherlands. The Sand Motor is a huge volume of sand that has been applied along the coast to be spread naturally by wind, waves and currents. Different research disciplines are involved concerned with: weather, waves and currents, sand distribution, water table and water quality, flora and fauna, recreation and management. Researchers share and transform their data in the OpenEarth DataLab, that makes it possible to combine their data and to see influence of different aspects of the coastal protection on their models. During the project the data are available only for the

  5. High-Energy Propellant Rocket Firing at the Rocket Lab

    NASA Image and Video Library

    1955-01-21

    A rocket using high-energy propellant is fired from the Rocket Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Lab was a collection of ten one-story cinderblock test cells located behind earthen barriers at the western edge of the campus. The rocket engines tested there were comparatively small, but the Lewis researchers were able to study different configurations, combustion performance, and injectors and nozzle design. The rockets were generally mounted horizontally and fired, as seen in this photograph of Test Cell No. 22. A group of fuels researchers at Lewis refocused their efforts after World War II in order to explore high energy propellants, combustion, and cooling. Research in these three areas began in 1945 and continued through the 1960s. The group of rocket researches was not elevated to a division branch until 1952. The early NACA Lewis work led to the development of liquid hydrogen as a viable propellant in the late 1950s. Following the 1949 reorganization of the research divisions, the rocket group began working with high-energy propellants such as diborane, pentaborane, and hydrogen. The lightweight fuels offered high levels of energy but were difficult to handle and required large tanks. In late 1954, Lewis researchers studied the combustion characteristics of gaseous hydrogen in a turbojet combustor. Despite poor mixing of the fuel and air, it was found that the hydrogen yielded more than a 90-percent efficiency. Liquid hydrogen became the focus of Lewis researchers for the next 15 years.

  6. Seeing an Old Lab in a New Light: Transforming a Traditional Optics Lab into Full Guided Inquiry

    ERIC Educational Resources Information Center

    Maley, Tim; Stoll, Will; Demir, Kadir

    2013-01-01

    This paper describes the authors' experiences transforming a "cookbook" lab into an inquiry-based investigation and the powerful effect the inquiry-oriented lab had on our students' understanding of lenses. We found the inquiry-oriented approach led to richer interactions between students as well as a deeper conceptual…

  7. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  8. The results of an ecological risk assessment screening at the Idaho National Engineering`s waste area group 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanHorn, R.

    1995-11-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho and occupies approximately 890 square miles on the northwestern portion of the eastern Snake River Plain. INEL has been devoted to nuclear energy research and related activities since its establishment in 1949. In the process of fulfilling this mission, wastes were generated, including radioactive and hazardous materials. Most materials were effectively stored or disposed of, however, some release of contaminants to the environment has occurred. For this reason, the INEL was listed by the US environmental Protection Agency on the National Priorities Listmore » (NPL), in November, 1989. This report describes the results of an ecological risk assessment performed for the Waste Area Groups 2 (WAG 2) at the INEL. It also summarizes the performance of screening level ecological risk assessments (SLERA).« less

  9. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  10. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    NASA Astrophysics Data System (ADS)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  11. Supercharging Lessons with a Virtual Lab

    ERIC Educational Resources Information Center

    Stewart, Jefferson; Vincent, Daniel

    2013-01-01

    The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…

  12. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  13. From Bell Labs to Silicon Valley: A Saga of Technology Transfer, 1954-1961

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    2009-03-01

    Although Bell Telephone Laboratories invented the transistor and developed most of the associated semiconductor technology, the integrated circuit or microchip emerged elsewhere--at Texas Instruments and Fairchild Semiconductor Company. I recount how the silicon technology required to make microchips possible was first developed at Bell Labs in the mid-1950s. Much of it reached the San Francisco Bay Area when transistor pioneer William Shockley left Bell Labs in 1955 to establish the Shockley Semiconductor Laboratory in Mountain View, hiring a team of engineers and scientists to develop and manufacture transistors and related semiconductor devices. But eight of them--including Gordon Moore and Robert Noyce, eventually the co-founders of Intel--resigned en masse in September 1957 to start Fairchild, bringing with them the scientific and technological expertise they had acquired and further developed at Shockley's firm. This event marked the birth of Silicon Valley, both technologically and culturally. By March 1961 the company was marketing its Micrologic integrated circuits, the first commercial silicon microchips, based on the planar processing technique developed at Fairchild by Jean Hoerni.

  14. Efficient Sample Tracking With OpenLabFramework

    PubMed Central

    List, Markus; Schmidt, Steffen; Trojnar, Jakub; Thomas, Jochen; Thomassen, Mads; Kruse, Torben A.; Tan, Qihua; Baumbach, Jan; Mollenhauer, Jan

    2014-01-01

    The advance of new technologies in biomedical research has led to a dramatic growth in experimental throughput. Projects therefore steadily grow in size and involve a larger number of researchers. Spreadsheets traditionally used are thus no longer suitable for keeping track of the vast amounts of samples created and need to be replaced with state-of-the-art laboratory information management systems. Such systems have been developed in large numbers, but they are often limited to specific research domains and types of data. One domain so far neglected is the management of libraries of vector clones and genetically engineered cell lines. OpenLabFramework is a newly developed web-application for sample tracking, particularly laid out to fill this gap, but with an open architecture allowing it to be extended for other biological materials and functional data. Its sample tracking mechanism is fully customizable and aids productivity further through support for mobile devices and barcoded labels. PMID:24589879

  15. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  16. Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio

    Science.gov Websites

    Preservation Research | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News to digitally recover a 128-year-old recording of Alexander Graham Bell's voice, enabling people to

  17. Perspective of Micro Process Engineering for Thermal Food Treatment

    PubMed Central

    Mathys, Alexander

    2018-01-01

    Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature–time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured. PMID:29686990

  18. Beamline Insertions Manager at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael C.

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us tomore » try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.« less

  19. The Extended Core Coax: A novel nanoarchitecture for lab-on-a-chip electrochemical diagnostics

    NASA Astrophysics Data System (ADS)

    Valera, Amy E.; D'Imperio, Luke; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    We report a novel nanoarchitecture, the Extended Core Coax (ECC) that has applicability for the detection of biomarkers in lab-on-a-chip diagnostic devices. ECC is capable of providing accessible, highly sensitive, and specific disease diagnosis at point-of-care. The architecture represents a vertically oriented nanocoax comprised of a gold inner metal core that extends 200nm above a chrome outer metal shield, separated by a dielectric annulus. Each ECC chip contains 7 discrete sensing arrays, 0.49 mm2 in size, containing 35,000 nanoscale coaxes wired in parallel. Previous non-extended nanocoaxial architectures have demonstrated a limit of detection (LOD) of 2 ng/mL of cholera toxin using an off-chip setup. This sensitivity compares favorably to the standard optical ELISA used in clinical settings. The ECC matches this LOD, and additionally offers the benefit of specific and reliable biofunctionalization on the extended gold core. Thus, the ECC is an attractive candidate for development as a full lab-on-a-chip biosensor for detection of infectious disease biomarkers, such as cholera toxin, through tethering of biomarker recognition proteins, such as antibodies, directly on the device. Support from the National Institutes of Health (National Cancer Institute award No. CA137681 and National Institute of Allergy and Infectious Diseases award No. AI100216).

  20. The historical evolution of engineering degrees: competing stakeholders, contestation over ideas, and coherence across national borders

    NASA Astrophysics Data System (ADS)

    Case, Jennifer M.

    2017-11-01

    Recent times have seen significant realignment of engineering degrees globally, most notably in the Washington Accord, a system of mutual recognition of accreditation across much of the Anglophone world and beyond, and the Bologna Process, impacting significantly on the form of engineering degrees in Europe. This article, tracing the historical evolution of engineering degrees, argues that recent events can be seen to be part of an ongoing process of reworking the arrangements for formal engineering education, based on a long-standing contradiction between the different stakeholders that have an interest in curriculum: the state, engineering employers, and academics. This is reflected in a contestation over what was historically termed the 'shop culture' of the employers versus the 'school culture' of the academy. Furthermore, contemporary developments of mutual accreditation beyond national borders can be seen to have an earlier echo in the relative measure of global coherence that was achieved in the 1870s.

  1. Summer Program Introduces High School Students to Engineering.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1989-01-01

    Discusses how, in two three-week sessions, the Terre Haute (Indiana) college offers selected students a hands-on approach to all aspects of engineering from design and lab work to technical writing. Describes a group project requiring students to study and experiment with simple research problems. Lists 20 project ideas. (MVL)

  2. Colloquy and workshops: regional implications of the engineering manpower requirements of the National Energy Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segool, H. D.

    1979-05-01

    The crucial interrelationships of engineering manpower, technological innovation, productivity and capital re-formaton were keynoted. Near-term, a study has indicated a much larger New England energy demand-reduction/economic/market potential, with a probably larger engineering manpower requirement, for energy-conservation measures characterized by technological innovation and cost-effective capital services than for alternative energy-supply measures. Federal, regional, and state energy program responsibilities described a wide-ranging panorama of activities among many possible energy options which conveyed much endeavor without identifiable engineering manpower demand coefficients. Similarly, engineering manpower assessment data was described as uneven and unfocused to the energy program at the national level, disaggregated data asmore » non-existent at the regional/state levels, although some qualitative inferences were drawn. A separate abstract was prepared for each of the 16 individual presentations for the DOE Energy Data Base (EDB); 14 of these were selected for Energy Abstracts for Policy Analysis (EAPA) and 2 for Energy Research Abstracts (ERA).« less

  3. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  4. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  5. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  6. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    ERIC Educational Resources Information Center

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  7. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    ERIC Educational Resources Information Center

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  8. Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes

    ERIC Educational Resources Information Center

    Baseya, J. M.; Francis, C. D.

    2011-01-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…

  9. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  10. The Virtual Employment Test Bed: An Immersive Synthetic Environment Allows Engineers to Test and Evaluate Material Solutions

    DTIC Science & Technology

    2014-04-03

    synthetic environment allows engineers to test and evaluate material solutions Robert DeMarco, MSBME; Gordon Cooke, MEME ; John Riedener, MSSE...ROBERT DEMARCO, MSBME, is a Project Lead Engineer and Certified LabVIEW Associate Developer. GORDON COOKE, MEME , is a Principal Investigator at the

  11. 26. Photocopied from Photo 1217, Olmstead Folder #2, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopied from Photo 1217, Olmstead Folder #2, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. MACHINE SHOP -- LAB. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  12. 27. Photocopied from Photo 1216, Olmstead Folder #2, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopied from Photo 1216, Olmstead Folder #2, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. MACHINE SHOP -- LAB. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  13. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  14. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  15. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  16. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  17. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less

  18. The watershed years of 1958-1962 in the Harvard Pigeon Lab.

    PubMed Central

    Catania, A Charles

    2002-01-01

    During the years 1958-1962, the final years of support by the National Science Foundation for B. F. Skinner's Pigeon Lab in Memorial Hall at Harvard University, 20 or so pigeon experiments (plus some with other organisms) ran concurrently 7 days a week. The research style emphasized experimental analyses, exploratory procedures, and the parametric exploration of variables. This reminiscence describes some features of the laboratory, the context within which it operated, and the activities of some of those who participated in it. PMID:12083685

  19. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  20. Radionuclides in ground water at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.; Mann, Larry J.

    1988-01-01

    Sampling for radionuclides in groundwater was conducted at the Idaho National Engineering Laboratory during September to November 5 1987. Water samples from 80 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a shallow, discontinuous perched-water body at the Radioactive Waste Management Complex were collected and analyzed for tritium, strontium-90, plutonium-238, plutonium-239, -240 (undivided), americium-241, cesium-137, cobalt-60, and potassium-40--a naturally occurring radionuclide. The groundwater samples were analyzed at the Idaho National Engineering Laboratory in Idaho. Tritium and strontium-90 concentrations ranged from below the reporting level to 80.6 +/-0.000005 and 193 +/-5x10 to the minus eight micrograms Ci/ml, respectively. Water from a disposal well at Test Area North--which has not been used to dispose of waste water since September 1972--contained 122 +/-9x10 to the minus eleven micrograms Ci/ml of plutonium-238, 500 +/-20x10 to the minus eleven of plutonium-239, -240 (undivided), 21 +/-4x10 to the minus eleven micrograms Ci/ml of americium-241, and 750 +/-20x10 to the minus eight micrograms Ci/ml cesium-137; the presence of these radionuclides was verified by resampling and reanalysis. The disposal well had 8.9 +/-0.0000009 micrograms Ci/ml of cobalt-60 on October 28, 1987, but cobalt-60 was not detected when the well was resampled on January 11, 1988. Potassium-40 concentrations were less than the reporting level in all wells. (USGS)

  1. Lab-to-Lab Cooperative Threat Reduction

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2017-11-01

    It is difficult to imagine today how dramatically global nuclear risks changed 25 years ago as the Soviet Union disintegrated. Instead of the threat of mutual nuclear annihilation, the world became concerned that Russia and the other 14 former Soviet states would lose control of their huge nuclear assets - tens of thousands of nuclear weapons, more than a million kilograms of fissile materials, hundreds of thousands of nuclear workers, and a huge nuclear complex. I will describe how scientists and engineers at the DOE laboratories, with a focus on Los Alamos, Lawrence Livermore and Sandia national laboratories, joined forces with those at the Russian nuclear weapon institutes for more than 20 years to avoid what looked like the perfect nuclear storm - a story told in the two-volume book Doomed to Cooperate1 published in 2016. Due to an internal processing error, an incorrect version of this article was published on 15 November 2017 that omitted the footnotes. AIP Publishing apologizes for this error. An updated version of this article, including the missing footnotes, was published on 21 November 2017.

  2. DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum

    PubMed Central

    Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH indicators, which offer many ideal teaching characteristics. The simulation requires no specialized equipment, is very inexpensive, is very reliable, and takes very little preparation time. Student and teacher assessment data indicate the simulation is popular with both groups, and students show significant learning gains. We include many resources with this publication, including all prelab introductory materials (e.g., a paper microarray activity), the student handouts, teachers notes, and pre- and postassessment tools. We did not test the simulation on other student populations, but based on teacher feedback, the simulation also may fit well in community college and in introductory and nonmajors' college biology curricula. PMID:17146040

  3. DNA microarray wet lab simulation brings genomics into the high school curriculum.

    PubMed

    Campbell, A Malcolm; Zanta, Carolyn A; Heyer, Laurie J; Kittinger, Ben; Gabric, Kathleen M; Adler, Leslie; Schulz, Barbara

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH indicators, which offer many ideal teaching characteristics. The simulation requires no specialized equipment, is very inexpensive, is very reliable, and takes very little preparation time. Student and teacher assessment data indicate the simulation is popular with both groups, and students show significant learning gains. We include many resources with this publication, including all prelab introductory materials (e.g., a paper microarray activity), the student handouts, teachers notes, and pre- and postassessment tools. We did not test the simulation on other student populations, but based on teacher feedback, the simulation also may fit well in community college and in introductory and nonmajors' college biology curricula.

  4. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  5. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors crowd the NASA exhibits during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  6. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  7. Effectiveness of a Lab Manual Delivered on CD-ROM

    ERIC Educational Resources Information Center

    Brickman, Peggy; Ketter, Catherine A. Teare; Pereira, Monica

    2005-01-01

    Although electronic instructional media are becoming increasingly prevalent in science classrooms, their worth remains unproven. Here, student perceptions and performance using CD-ROM delivery of lab materials are assessed. Numerous learning barriers that produced lower lab grades for students using a CD-ROM lab manual in comparison to a print…

  8. The development of an artificial organic networks toolkit for LabVIEW.

    PubMed

    Ponce, Hiram; Ponce, Pedro; Molina, Arturo

    2015-03-15

    Two of the most challenging problems that scientists and researchers face when they want to experiment with new cutting-edge algorithms are the time-consuming for encoding and the difficulties for linking them with other technologies and devices. In that sense, this article introduces the artificial organic networks toolkit for LabVIEW™ (AON-TL) from the implementation point of view. The toolkit is based on the framework provided by the artificial organic networks technique, giving it the potential to add new algorithms in the future based on this technique. Moreover, the toolkit inherits both the rapid prototyping and the easy-to-use characteristics of the LabVIEW™ software (e.g., graphical programming, transparent usage of other softwares and devices, built-in programming event-driven for user interfaces), to make it simple for the end-user. In fact, the article describes the global architecture of the toolkit, with particular emphasis in the software implementation of the so-called artificial hydrocarbon networks algorithm. Lastly, the article includes two case studies for engineering purposes (i.e., sensor characterization) and chemistry applications (i.e., blood-brain barrier partitioning data model) to show the usage of the toolkit and the potential scalability of the artificial organic networks technique. © 2015 Wiley Periodicals, Inc.

  9. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, John S

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  10. California State University, Northridge: Hybrid Lab Courses

    ERIC Educational Resources Information Center

    EDUCAUSE, 2014

    2014-01-01

    California State University, Northridge's Hybrid Lab course model targets high failure rate, multisection, gateway courses in which prerequisite knowledge is a key to success. The Hybrid Lab course model components incorporate interventions and practices that have proven successful at CSUN and other campuses in supporting students, particularly…

  11. The Portable Usability Testing Lab: A Flexible Research Tool.

    ERIC Educational Resources Information Center

    Hale, Michael E.; And Others

    A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…

  12. Modifying Cookbook Labs.

    ERIC Educational Resources Information Center

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  13. Stand for testing the electrical race car engine

    NASA Astrophysics Data System (ADS)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  14. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  15. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look on at one of the many exhibits, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  16. Proceedings from the U.S. Army Corps of Engineers (USACE) and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop

    DTIC Science & Technology

    2016-03-01

    ERDC-EL Research Biologist/Certified Facilitator Mintz Jennifer NOAA-OAR-OAP Regional Coordinator- Ocean Acidification Program/Facilitator Payne Dr...National Oceanic United States Army United States and Atmospheric Engineer Research Army Corps Administration and Development of Engineers (NOAA...and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop March 1-3, 2016 Charleston, South

  17. Congress split on best way to reshape network of labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, A.

    Reducing the size of the federal bureaucracy was a bread-and -butter issue for the Republicans who took over Congress in January. And the Department of Energy`s (DOE`s) $6 billion network of national laboratories seemed like a tempting morsel. But 9 months later, congressional plates are loaded down with competing plans to reform the DOE labs, and the issue is giving majority members a case of indigestion. Their discomfort seems likely to delay adoption of any reform plans until at least next year. This article discusses the broad alternatives and possibilities for the future.

  18. Thinking Outside the Lab

    NASA Astrophysics Data System (ADS)

    Colter, Tabitha

    2017-01-01

    As an undergraduate physics major who spent 2015 deep in a quantum optics lab at Oak Ridge National Laboratory, I knew my 2016 experience with the House of Representatives Energy and Commerce Committee would be a completely new challenge. I have long had a passion for the bridge of communication between the technical and non-technical worlds but it was only through my AIP Mather internship this summer that I was able to see that passion come to life in the realm of science policy. Suddenly, I went from squeezing political philosophy classes into my packed schedule to witnessing the political process first-hand. I was thrilled to find that the skills of critical thinking and communicating complex issues I have developed throughout my training as a physicist were directly applicable to my work in Congress. Overall, my experience this summer has given me insight into the inner workings of the federal policy process, deepened my appreciation for the work of government employees to keep Congressional members informed on the pressing current issues, and exposed me to a whole range of alternative careers within science. AIP and SPS

  19. ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).

    PubMed

    Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita

    2010-12-03

    The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID

  20. Randomly auditing research labs could be an affordable way to improve research quality: A simulation study

    PubMed Central

    Zardo, Pauline; Graves, Nicholas

    2018-01-01

    The “publish or perish” incentive drives many researchers to increase the quantity of their papers at the cost of quality. Lowering quality increases the number of false positive errors which is a key cause of the reproducibility crisis. We adapted a previously published simulation of the research world where labs that produce many papers are more likely to have “child” labs that inherit their characteristics. This selection creates a competitive spiral that favours quantity over quality. To try to halt the competitive spiral we added random audits that could detect and remove labs with a high proportion of false positives, and also improved the behaviour of “child” and “parent” labs who increased their effort and so lowered their probability of making a false positive error. Without auditing, only 0.2% of simulations did not experience the competitive spiral, defined by a convergence to the highest possible false positive probability. Auditing 1.35% of papers avoided the competitive spiral in 71% of simulations, and auditing 1.94% of papers in 95% of simulations. Audits worked best when they were only applied to established labs with 50 or more papers compared with labs with 25 or more papers. Adding a ±20% random error to the number of false positives to simulate peer reviewer error did not reduce the audits’ efficacy. The main benefit of the audits was via the increase in effort in “child” and “parent” labs. Audits improved the literature by reducing the number of false positives from 30.2 per 100 papers to 12.3 per 100 papers. Auditing 1.94% of papers would cost an estimated $15.9 million per year if applied to papers produced by National Institutes of Health funding. Our simulation greatly simplifies the research world and there are many unanswered questions about if and how audits would work that can only be addressed by a trial of an audit. PMID:29649314

  1. Randomly auditing research labs could be an affordable way to improve research quality: A simulation study.

    PubMed

    Barnett, Adrian G; Zardo, Pauline; Graves, Nicholas

    2018-01-01

    The "publish or perish" incentive drives many researchers to increase the quantity of their papers at the cost of quality. Lowering quality increases the number of false positive errors which is a key cause of the reproducibility crisis. We adapted a previously published simulation of the research world where labs that produce many papers are more likely to have "child" labs that inherit their characteristics. This selection creates a competitive spiral that favours quantity over quality. To try to halt the competitive spiral we added random audits that could detect and remove labs with a high proportion of false positives, and also improved the behaviour of "child" and "parent" labs who increased their effort and so lowered their probability of making a false positive error. Without auditing, only 0.2% of simulations did not experience the competitive spiral, defined by a convergence to the highest possible false positive probability. Auditing 1.35% of papers avoided the competitive spiral in 71% of simulations, and auditing 1.94% of papers in 95% of simulations. Audits worked best when they were only applied to established labs with 50 or more papers compared with labs with 25 or more papers. Adding a ±20% random error to the number of false positives to simulate peer reviewer error did not reduce the audits' efficacy. The main benefit of the audits was via the increase in effort in "child" and "parent" labs. Audits improved the literature by reducing the number of false positives from 30.2 per 100 papers to 12.3 per 100 papers. Auditing 1.94% of papers would cost an estimated $15.9 million per year if applied to papers produced by National Institutes of Health funding. Our simulation greatly simplifies the research world and there are many unanswered questions about if and how audits would work that can only be addressed by a trial of an audit.

  2. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  3. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA, Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  4. Traditional Labs + New Questions = Improved Student Performance.

    ERIC Educational Resources Information Center

    Rezba, Richard J.; And Others

    1992-01-01

    Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…

  5. Natural Hazards and Research Needs in Coastal and Ocean Engineering, Summary and Recommendations to the National Science Foundation and the Office of Naval Research,

    DTIC Science & Technology

    1984-11-01

    1,746 N. RAL HAZARDS AND RESEARCH NEEDS IN COASTAL AND OCEAN I ENEERING SUMMA..W NATIONAL SCIENCE FOUNDATION WA ;NG ON OC 1NAVE F AL NOV 84 FG02 N N...and Research Needs in Coastal and Ocean Engineering Summary and Recommendations to the National Science Foundation and the Office of Naval Research A T...Recommendations to the National Science Foundation and the Office of Naval Research by the Ad Hoc Committee for the Civil and Environmental Engineering

  6. The Advanced Labs Website: resources for upper-level laboratories

    NASA Astrophysics Data System (ADS)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  7. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  8. Development of a Virtual Tool for Learning Basic Organisation and Planning in Rural Engineering Projects

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-01-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…

  9. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute tomore » reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.« less

  10. The All-Asteroids Lab Course: Kepler's Laws, Collisions, And Authentic Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew W.; Rector, T. A.

    2010-01-01

    We have developed a 12-week undergraduate laboratory sequence based entirely on asteroids and the hazards they pose. This curriculum has been designed primarily for use in an introductory Solar System Astronomy course, but it can be broken into smaller segments for a variety of course scenarios and educational goals. The course begins with a four-lab sequence based on our new online Java applet OrbitMaster, (adapted from AstroArts’ OrbitViewer under the GNU General Public License). OrbitMaster allows the user to alter an asteroid's orbital parameters and monitor its position and speed relative to both Sun and Earth. It also detects close approaches and collisions with Earth, and calculates revised speeds due to Earth's gravity. Students are able to confirm Kepler's laws, examine orbital properties that produce impacts, discover the kinetic energy-crater size relationship, understand the regional/global consequences of impacts, and experiment with deflection strategies. A three-lab sequence follows that examines the orbit-refinement and changing impact odds of 2007 WD5, which briefly had a 4% chance of hitting Mars in 2008. These labs introduce software that allows students to make astrometric measurements, fit orbital parameters, and predict future positions and uncertainties. They then use these tools in a four-lab research project to improve their own asteroids’ orbits, using images from the SDSS and WIYN 0.9-meter telescopes. Their work culminates in a presentation to their peers and submission of their astrometric measurements to the Minor Planet Center for publication. This effort is part of our NSF CCLI grant to develop Research Based Science Education (RBSE) curricula for non-majors. We have designed six projects that allow students to learn science by actually doing science. These projects are now being tested at six institutions around the country, and will eventually be distributed to a national audience.

  11. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    NASA Astrophysics Data System (ADS)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  12. Conflicts of interest among committee members in the National Academies’ genetically engineered crop study

    PubMed Central

    2017-01-01

    The National Academies of Sciences, Engineering and Medicine (NASEM) publishes numerous reports each year that are received with high esteem by the scientific community and public policy makers. The NASEM has internal standards for selecting committee members that author its reports, mostly from academia, and vetting conflicts of interest. This study examines whether there were any financial conflicts of interest (COIs) among the twenty invited committee members who wrote the 2016 report on genetically engineered (GE) crops. Our results showed that six panel members had one or more reportable financial COIs, none of which were disclosed in the report. We also report on institutional COIs held by the NASEM related to the report. The difference between our findings and the NASEM reporting standards are discussed. PMID:28245228

  13. Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy

    Science.gov Websites

    -based tool for calculating energy use in residential buildings. About one million people visit the Home Management Software | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News

  14. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    PubMed

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  15. Reducing unnecessary lab testing in the ICU with artificial intelligence

    PubMed Central

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  16. The Engineer of 2020: Visions of Engineering in the New Century

    ERIC Educational Resources Information Center

    National Academies Press, 2004

    2004-01-01

    To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership…

  17. Latest results from FROST at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, Barry G.

    2014-06-01

    The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of a polarized photon beam incident on a polarized target in meson photoproduction experiments. At Jefferson Lab, a program of such measurements has made use of the Jefferson Lab FROzen Spin Target (FROST). An overview of preliminary results are presented.

  18. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    NASA Technical Reports Server (NTRS)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  19. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    PubMed Central

    Richard, R.; Martone, P.; Callahan, L.M.

    2014-01-01

    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  20. STS-133 crew training in VR Lab with replacement crew member Steve Bowen

    NASA Image and Video Library

    2011-01-24

    JSC2011-E-006293 (24 Jan. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  1. DIRECT secure messaging as a common transport layer for reporting structured and unstructured lab results to outpatient providers.

    PubMed

    Sujansky, Walter; Wilson, Tom

    2015-04-01

    This report describes a grant-funded project to explore the use of DIRECT secure messaging for the electronic delivery of laboratory test results to outpatient physicians and electronic health record systems. The project seeks to leverage the inherent attributes of DIRECT secure messaging and electronic provider directories to overcome certain barriers to the delivery of lab test results in the outpatient setting. The described system enables laboratories that generate test results as HL7 messages to deliver these results as structured or unstructured documents attached to DIRECT secure messages. The system automatically analyzes generated HL7 messages and consults an electronic provider directory to determine the appropriate DIRECT address and delivery format for each indicated recipient. The system also enables lab results delivered to providers as structured attachments to be consumed by HL7 interface engines and incorporated into electronic health record systems. Lab results delivered as unstructured attachments may be printed or incorporated into patient records as PDF files. The system receives and logs acknowledgement messages to document the status of each transmitted lab result, and a graphical interface allows searching and review of this logged information. The described system is a fully implemented prototype that has been tested in a laboratory setting. Although this approach is promising, further work is required to pilot test the system in production settings with clinical laboratories and outpatient provider organizations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Beussman, Douglas J.

    2007-01-01

    A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…

  3. Sodium Blood Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... Lab Tests Online [Internet]. American Association for Clinical Chemistry; c2001–2017. Cirrhosis; [updated 2017 Jan 8; cited ... Lab Tests Online [Internet]. American Association for Clinical Chemistry; c2001–2017. Electrolytes: Common Questions [updated 2015 Dec ...

  4. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  5. Proceedings. National Seminar on Educating the Engineer of the Future (Bangalore, India, January 7-10, 1979).

    ERIC Educational Resources Information Center

    Institution of Engineers (India).

    This volume of proceedings contains the keynote addresses, theme papers, and reports of the various technical sessions of the National Seminar on Educating the Engineers of the Future. A total of 10 technical sessions were held. Areas addressed included: (1) social and technological scenarios and technological forecasting; (2) technologies…

  6. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    PubMed

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  7. LIVING LAB: User-Driven Innovation for Sustainability

    ERIC Educational Resources Information Center

    Liedtke, Christa; Welfens, Maria Jolanta; Rohn, Holger; Nordmann, Julia

    2012-01-01

    Purpose: The purpose of this paper is to summarize and discuss the results from the LIVING LAB design study, a project within the 7th Framework Programme of the European Union. The aim of this project was to develop the conceptual design of the LIVING LAB Research Infrastructure that will be used to research human interaction with, and stimulate…

  8. Optically Isolated Control of the MOCHI LabJet High Power Pulsed Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Carroll, Evan; Quinley, Morgan; von der Linden, Jens; You, Setthivoine

    2014-10-01

    The MOCHI LabJet experiment designed to investigate the dynamics of astrophysical jets at the University of Washington, requires high energy pulsed power supplies for plasma generation and sustainment. Two 600 μ F, 10 kV DC, pulse forming, power supplies have been specifically developed for this application. For safe and convenient user operation, the power supplies are controlled remotely with optical isolation. Three input voltage signals are required for relay actuation, adjusting bank charging voltage, and to fire the experiment: long duration DC signals, long duration user adjustable DC signals and fast trigger pulses with < μ s rise times. These voltage signals are generated from National Instruments timing cards via LabVIEW and are converted to optical signals by coupling photodiodes with custom electronic circuits. At the experiment, the optical signals are converted back to usable voltage signals using custom circuits. These custom circuits and experimental set-up are presented. This work is supported by US DOE Grant DE-SC0010340.

  9. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  10. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  11. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  12. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  13. A Case Study of a High School Fab Lab

    NASA Astrophysics Data System (ADS)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  14. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  15. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  16. NREL: Speeches - Nation's Energy Future at Risk

    Science.gov Websites

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303 -275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy

  17. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, Joseph Maurice

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  18. The History of Science and Technology at Bell Labs

    NASA Astrophysics Data System (ADS)

    Bishop, David

    2008-03-01

    Over the last 80 years, Bell Labs has been one of the most scientifically and technologically productive research labs in the world. Inventions such as the transistor, laser, cell phone, solar cell, negative feedback amplifier, communications satellite and many others were made there. Scientific breakthroughs such as discovery of the Big Bang, the wave nature of the electron, electron localization and the fractional quantum hall effect were also made there making Bell Labs almost unique in terms of large impacts in both science and technology. In my talk, I will discuss the history of the lab, talk about the present and give some suggestions for how I see it evolving into the future.

  19. Lab-scale Lidar Sensing of Diesel Engines Exhausts

    NASA Technical Reports Server (NTRS)

    Borghese, A.

    1992-01-01

    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  20. Virtual lab for learning equipment and treatment of experimental measurements of rainfall, runoff and erosion in small rural catchments

    NASA Astrophysics Data System (ADS)

    Ángel Bajo, José; Redel-Macías, María Dolores; Nichols, Mary; Pérez, Rafael; Bellido, Francisco; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    A virtual lab for learning to use devices and to treat experimental measurements of hydrological and erosive processes in small agricultural catchments was created to support the practical content of the subject Restoration of Forest Ecosystems of the Master of Forest Engineer (University of Cordoba). The objective was to build a virtual place representing a real site equipped to make measurements of rainfall, runoff and sediment concentration. The virtual lab included pictures, videos and explanations that facilitate learning. Moreover, some practical cases were proposed to apply the explained terms. The structure of menu consisted of: Experimental measurements in catchments; Gallery of videos; Equipment; Practical case; Glossary and Additional Information. Their contents were carefully carried out by professors and scientists of Hydrology and Electronics. The main advantages of the virtual lab were its compatibility with on-line platforms such as Moodle and the presentation of examples for the direct analysis as a basis for solving the proposed practical cases. It has been successfully used for two years and was well-values by the students due the opportunities offered by self-access learning tools. In addition, constraints associated with field trips such as logistical complexity and economic aspects are removed.