Sample records for national flood frequency

  1. The National Flood Frequency Program, version 3 : a computer program for estimating magnitude and frequency of floods for ungaged sites

    USGS Publications Warehouse

    Ries, Kernell G.; Crouse, Michele Y.

    2002-01-01

    For many years, the U.S. Geological Survey (USGS) has been developing regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, these equations have been developed on a Statewide or metropolitan-area basis as part of cooperative study programs with specific State Departments of Transportation. In 1994, the USGS released a computer program titled the National Flood Frequency Program (NFF), which compiled all the USGS available regression equations for estimating the magnitude and frequency of floods in the United States and Puerto Rico. NFF was developed in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency. Since the initial release of NFF, the USGS has produced new equations for many areas of the Nation. A new version of NFF has been developed that incorporates these new equations and provides additional functionality and ease of use. NFF version 3 provides regression-equation estimates of flood-peak discharges for unregulated rural and urban watersheds, flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals. The Program also provides weighting techniques to improve estimates of flood-peak discharges for gaging stations and ungaged sites. The information provided by NFF should be useful to engineers and hydrologists for planning and design applications. This report describes the flood-regionalization techniques used in NFF and provides guidance on the applicability and limitations of the techniques. The NFF software and the documentation for the regression equations included in NFF are available at http://water.usgs.gov/software/nff.html.

  2. A uniform technique for flood frequency analysis.

    USGS Publications Warehouse

    Thomas, W.O.

    1985-01-01

    This uniform technique consisted of fitting the logarithms of annual peak discharges to a Pearson Type III distribution using the method of moments. The objective was to adopt a consistent approach for the estimation of floodflow frequencies that could be used in computing average annual flood losses for project evaluation. In addition, a consistent approach was needed for defining equitable flood-hazard zones as part of the National Flood Insurance Program. -from ASCE Publications Information

  3. A joint probability approach for coincidental flood frequency analysis at ungauged basin confluences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng

    2016-03-12

    A reliable and accurate flood frequency analysis at the confluence of streams is of importance. Given that long-term peak flow observations are often unavailable at tributary confluences, at a practical level, this paper presents a joint probability approach (JPA) to address the coincidental flood frequency analysis at the ungauged confluence of two streams based on the flow rate data from the upstream tributaries. One case study is performed for comparison against several traditional approaches, including the position-plotting formula, the univariate flood frequency analysis, and the National Flood Frequency Program developed by US Geological Survey. It shows that the results generatedmore » by the JPA approach agree well with the floods estimated by the plotting position and univariate flood frequency analysis based on the observation data.« less

  4. Climate, orography and scale controls on flood frequency in Triveneto (Italy)

    NASA Astrophysics Data System (ADS)

    Persiano, Simone; Castellarin, Attilio; Salinas, Jose Luis; Domeneghetti, Alessio; Brath, Armando

    2016-05-01

    The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed reference procedures for design-flood estimation, such as national flood frequency models. Our study focuses on Triveneto, a broad geographical region in North-eastern Italy. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which considered Triveneto as a single homogeneous region and developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 1980s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for 76 catchments located in Triveneto. All 76 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The objective of our study is threefold: (1) to inspect climatic and scale controls on flood frequency regime; (2) to verify the possible presence of changes in flood frequency regime by looking at changes in time of regional L-moments of annual maximum floods; (3) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI). Our study leads to the following conclusions: (1) climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) a single year characterized by extreme floods can have a remarkable influence on regional flood frequency models and analyses for detecting possible changes in flood frequency regime; (3) no significant change was detected in the flood frequency regime, yet an update of the existing reference procedure for design flood estimation is highly recommended and we propose the RoI approach for properly representing climate and scale controls on flood frequency in Triveneto, which cannot be regarded as a single

  5. Documentary evidence of past floods in Europe and their utility in flood frequency estimation

    NASA Astrophysics Data System (ADS)

    Kjeldsen, T. R.; Macdonald, N.; Lang, M.; Mediero, L.; Albuquerque, T.; Bogdanowicz, E.; Brázdil, R.; Castellarin, A.; David, V.; Fleig, A.; Gül, G. O.; Kriauciuniene, J.; Kohnová, S.; Merz, B.; Nicholson, O.; Roald, L. A.; Salinas, J. L.; Sarauskiene, D.; Šraj, M.; Strupczewski, W.; Szolgay, J.; Toumazis, A.; Vanneuville, W.; Veijalainen, N.; Wilson, D.

    2014-09-01

    This review outlines the use of documentary evidence of historical flood events in contemporary flood frequency estimation in European countries. The study shows that despite widespread consensus in the scientific literature on the utility of documentary evidence, the actual migration from academic to practical application has been limited. A detailed review of flood frequency estimation guidelines from different countries showed that the value of historical data is generally recognised, but practical methods for systematic and routine inclusion of this type of data into risk analysis are in most cases not available. Studies of historical events were identified in most countries, and good examples of national databases attempting to collate the available information were identified. The conclusion is that there is considerable potential for improving the reliability of the current flood risk assessments by harvesting the valuable information on past extreme events contained in the historical data sets.

  6. Amplification of flood frequencies with local sea level rise and emerging flood regimes

    NASA Astrophysics Data System (ADS)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.

    2017-06-01

    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  7. Doubling of coastal flooding frequency within decades due to sea-level rise

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  8. The index-flood and the GRADEX methods combination for flood frequency analysis.

    NASA Astrophysics Data System (ADS)

    Fuentes, Diana; Di Baldassarre, Giuliano; Quesada, Beatriz; Xu, Chong-Yu; Halldin, Sven; Beven, Keith

    2017-04-01

    Flood frequency analysis is used in many applications, including flood risk management, design of hydraulic structures, and urban planning. However, such analysis requires of long series of observed discharge data which are often not available in many basins around the world. In this study, we tested the usefulness of combining regional discharge and local precipitation data to estimate the event flood volume frequency curve for 63 catchments in Mexico, Central America and the Caribbean. This was achieved by combining two existing flood frequency analysis methods, the regionalization index-flood approach with the GRADEX method. For up to 10-years return period, similar shape of the scaled flood frequency curve for catchments with similar flood behaviour was assumed from the index-flood approach. For return periods larger than 10-years the probability distribution of rainfall and discharge volumes were assumed to be asymptotically and exponential-type functions with the same scale parameter from the GRADEX method. Results showed that if the mean annual flood (MAF), used as index-flood, is known, the index-flood approach performed well for up to 10 years return periods, resulting in 25% mean relative error in prediction. For larger return periods the prediction capability decreased but could be improved by the use of the GRADEX method. As the MAF is unknown at ungauged and short-period measured basins, we tested predicting the MAF using catchments climate-physical characteristics, and discharge statistics, the latter when observations were available for only 8 years. Only the use of discharge statistics resulted in acceptable predictions.

  9. Flood-frequency characteristics of Wisconsin streams

    USGS Publications Warehouse

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  10. Estimation of flood-frequency characteristics of small urban streams in North Carolina

    USGS Publications Warehouse

    Robbins, J.C.; Pope, B.F.

    1996-01-01

    A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.

  11. Flood Frequency Analysis using different flood descriptors - the Warsaw reach of the river Vistula case study

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Kochanek, Krzysztof; Romanowicz, Renata

    2014-05-01

    Flood frequency analysis (FFA) is customarily performed using annual maximum flows. However, there is a number of different flood descriptors that could be used. Among them are water levels, peaks over the threshold, flood-wave duration, flood volume, etc. In this study we compare different approaches to FFA for their suitability for flood risk assessment. The main goal is to obtain the FFA curve with the smallest possible uncertainty limits, in particular for the distribution tail. The extrapolation of FFA curves is crucial in future flood risk assessment in a changing climate. We compare the FFA curves together with their uncertainty limits obtained using flows, water levels, flood inundation area and volumes for the Warsaw reach of the river Vistula. Moreover, we derive the FFA curves obtained using simulated flows. The results are used to derive the error distribution for the maximum simulated and observed values under different modelling techniques and assess its influence on flood risk predictions for ungauged catchments. MIKE11, HEC-RAS and transfer function model are applied in average and extreme conditions to model flow propagation in the Warsaw Vistula reach. The additional questions we want to answer are what is the range of application of different modelling tools under various flow conditions and how can the uncertainty of flood risk assessment be decreased. This work was partly supported by the projects "Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)" and "Modern statistical models for analysis of flood frequency and features of flood waves", carried by the Institute of Geophysics, Polish Academy of Sciences on the order of the National Science Centre (contracts Nos. 2011/01/B/ST10/06866 and 2012/05/B/ST10/00482, respectively). The water level and flow data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  12. Flooding Frequency Alters Vegetation in Isolated Wetlands

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2006-01-01

    Many isolated wetlands in central Florida occur as small, shallow depressions scattered throughout the karst topography of the region. In these wetlands, the water table approaches land surface seasonally, and water levels and flooding frequency are largely determined by differences between precipitation and evapotranspiration. Because much of the region is flat with little topographic relief, small changes in wetland water levels can cause large changes in wetland surface area. Persistent changes in wetland flooding frequencies, as a result of changes in rainfall or human activity, can cause a substantial change in the vegetation of thousands of acres of land. Understanding the effect that flooding frequency has on wetland vegetation is important to assessing the overall ecological status of wetlands. Wetland bathymetric mapping, when combined with water-level data and vegetation assessments, can enable scientists to determine the frequency of flooding at different elevations in a wetland and describe the effects of flooding frequency on wetland vegetation at those elevations. Five cypress swamps and five marshes were studied by the U.S. Geological Survey (USGS) during 2000-2004, as part of an interdisciplinary study of isolated wetlands in central Florida (Haag and others, 2005). Partial results from two of these marshes are described in this report.

  13. Regional flood frequency analysis in Triveneto (Italy): climate and scale controls

    NASA Astrophysics Data System (ADS)

    Persiano, Simone; Castellarin, Attilio; Domeneghetti, Alessio; Brath, Armando

    2016-04-01

    The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed procedures for design-flood estimation, such as national regionalization approaches. Our study focuses on the Triveneto region, a broad geographical area in North-eastern Italy consisting of the administrative regions of Trentino-Alto Adige, Veneto and Friuli-Venezia Giulia. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 80s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for ~80 catchments located in Triveneto. Our dataset includes the historical data mentioned above, together with more recent data obtained from Regional Services and annual maximum peak streamflows extracted from inflow series to artificial reservoirs and provided by dam managers. All ~80 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The main objectives of our study are: (1) to check whether climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) to verify the possible presence of trends as well as abrupt changes in the intensity and frequency of flood extremes by looking at changes in time of regional L-moments of annual maximum floods; (3) to assess the reliability and representativeness of the reference procedure for design flood estimation relative to flood data that were not included in the VA.PI. dataset (i.e. more recent data collected after the 80s and historical data provided by dam managers); (4) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI).

  14. Changing flood frequencies under opposing late Pleistocene eastern Mediterranean climates.

    PubMed

    Ben Dor, Yoav; Armon, Moshe; Ahlborn, Marieke; Morin, Efrat; Erel, Yigal; Brauer, Achim; Schwab, Markus Julius; Tjallingii, Rik; Enzel, Yehouda

    2018-05-31

    Floods comprise a dominant hydroclimatic phenomenon in aridlands with significant implications for humans, infrastructure, and landscape evolution worldwide. The study of short-term hydroclimatic variability, such as floods, and its forecasting for episodes of changing climate therefore poses a dominant challenge for the scientific community, and predominantly relies on modeling. Testing the capabilities of climate models to properly describe past and forecast future short-term hydroclimatic phenomena such as floods requires verification against suitable geological archives. However, determining flood frequency during changing climate is rarely achieved, because modern and paleoflood records, especially in arid regions, are often too short or discontinuous. Thus, coeval independent climate reconstructions and paleoflood records are required to further understand the impact of climate change on flood generation. Dead Sea lake levels reflect the mean centennial-millennial hydrological budget in the eastern Mediterranean. In contrast, floods in the large watersheds draining directly into the Dead Sea, are linked to short-term synoptic circulation patterns reflecting hydroclimatic variability. These two very different records are combined in this study to resolve flood frequency during opposing mean climates. Two 700-year-long, seasonally-resolved flood time series constructed from late Pleistocene Dead Sea varved sediments, coeval with significant Dead Sea lake level variations are reported. These series demonstrate that episodes of rising lake levels are characterized by higher frequency of floods, shorter intervals between years of multiple floods, and asignificantly larger number of years that experienced multiple floods. In addition, floods cluster into intervals of intense flooding, characterized by 75% and 20% increased frequency above their respective background frequencies during rising and falling lake-levels, respectively. Mean centennial precipitation in

  15. Flood of April 2007 and Flood-Frequency Estimates at Streamflow-Gaging Stations in Western Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2009-01-01

    A spring nor'easter affected the East Coast of the United States from April 15 to 18, 2007. In Connecticut, rainfall varied from 3 inches to more than 7 inches. The combined effects of heavy rainfall over a short duration, high winds, and high tides led to widespread flooding, storm damage, power outages, evacuations, and disruptions to traffic and commerce. The storm caused at least 18 fatalities (none in Connecticut). A Presidential Disaster Declaration was issued on May 11, 2007, for two counties in western Connecticut - Fairfield and Litchfield. This report documents hydrologic and meteorologic aspects of the April 2007 flood and includes estimates of the magnitude of the peak discharges and peak stages during the flood at 28 streamflow-gaging stations in western Connecticut. These data were used to perform flood-frequency analyses. Flood-frequency estimates provided in this report are expressed in terms of exceedance probabilities (the probability of a flood reaching or exceeding a particular magnitude in any year). Flood-frequency estimates for the 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 exceedance probabilities (also expressed as 50-, 20-, 10-, 4-, 2-, 1-, and 0.2- percent exceedance probability, respectively) were computed for 24 of the 28 streamflow-gaging stations. Exceedance probabilities can further be expressed in terms of recurrence intervals (2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval, respectively). Flood-frequency estimates computed in this study were compared to the flood-frequency estimates used to derive the water-surface profiles in previously published Federal Emergency Management Agency (FEMA) Flood Insurance Studies. The estimates in this report update and supersede previously published flood-frequency estimates for streamflowgaging stations in Connecticut by incorporating additional years of annual peak discharges, including the peaks for the April 2007 flood. In the southwest coastal region of Connecticut, the

  16. Recent trends in the frequency and duration of global floods

    NASA Astrophysics Data System (ADS)

    Najibi, Nasser; Devineni, Naresh

    2018-06-01

    Frequency and duration of floods are analyzed using the global flood database of the Dartmouth Flood Observatory (DFO) to explore evidence of trends during 1985-2015 at global and latitudinal scales. Three classes of flood duration (i.e., short: 1-7, moderate: 8-20, and long: 21 days and above) are also considered for this analysis. The nonparametric Mann-Kendall trend analysis is used to evaluate three hypotheses addressing potential monotonic trends in the frequency of flood, moments of duration, and frequency of specific flood duration types. We also evaluated if trends could be related to large-scale atmospheric teleconnections using a generalized linear model framework. Results show that flood frequency and the tails of the flood duration (long duration) have increased at both the global and the latitudinal scales. In the tropics, floods have increased 4-fold since the 2000s. This increase is 2.5-fold in the north midlatitudes. However, much of the trend in frequency and duration of the floods can be placed within the long-term climate variability context since the Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation were the main atmospheric teleconnections explaining this trend. There is no monotonic trend in the frequency of short-duration floods across all the global and latitudinal scales. There is a significant increasing trend in the annual median of flood durations globally and each latitudinal belt, and this trend is not related to these teleconnections. While the DFO data come with a certain level of epistemic uncertainty due to imprecision in the estimation of floods, overall, the analysis provides insights for understanding the frequency and persistence in hydrologic extremes and how they relate to changes in the climate, organization of global and local dynamical systems, and country-scale socioeconomic factors.

  17. Flood Frequency Curves - Use of information on the likelihood of extreme floods

    NASA Astrophysics Data System (ADS)

    Faber, B.

    2011-12-01

    Investment in the infrastructure that reduces flood risk for flood-prone communities must incorporate information on the magnitude and frequency of flooding in that area. Traditionally, that information has been a probability distribution of annual maximum streamflows developed from the historical gaged record at a stream site. Practice in the United States fits a Log-Pearson type3 distribution to the annual maximum flows of an unimpaired streamflow record, using the method of moments to estimate distribution parameters. The procedure makes the assumptions that annual peak streamflow events are (1) independent, (2) identically distributed, and (3) form a representative sample of the overall probability distribution. Each of these assumptions can be challenged. We rarely have enough data to form a representative sample, and therefore must compute and display the uncertainty in the estimated flood distribution. But, is there a wet/dry cycle that makes precipitation less than independent between successive years? Are the peak flows caused by different types of events from different statistical populations? How does the watershed or climate changing over time (non-stationarity) affect the probability distribution floods? Potential approaches to avoid these assumptions vary from estimating trend and shift and removing them from early data (and so forming a homogeneous data set), to methods that estimate statistical parameters that vary with time. A further issue in estimating a probability distribution of flood magnitude (the flood frequency curve) is whether a purely statistical approach can accurately capture the range and frequency of floods that are of interest. A meteorologically-based analysis produces "probable maximum precipitation" (PMP) and subsequently a "probable maximum flood" (PMF) that attempts to describe an upper bound on flood magnitude in a particular watershed. This analysis can help constrain the upper tail of the probability distribution, well

  18. Parsimonious nonstationary flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Serago, Jake M.; Vogel, Richard M.

    2018-02-01

    There is now widespread awareness of the impact of anthropogenic influences on extreme floods (and droughts) and thus an increasing need for methods to account for such influences when estimating a frequency distribution. We introduce a parsimonious approach to nonstationary flood frequency analysis (NFFA) based on a bivariate regression equation which describes the relationship between annual maximum floods, x, and an exogenous variable which may explain the nonstationary behavior of x. The conditional mean, variance and skewness of both x and y = ln (x) are derived, and combined with numerous common probability distributions including the lognormal, generalized extreme value and log Pearson type III models, resulting in a very simple and general approach to NFFA. Our approach offers several advantages over existing approaches including: parsimony, ease of use, graphical display, prediction intervals, and opportunities for uncertainty analysis. We introduce nonstationary probability plots and document how such plots can be used to assess the improved goodness of fit associated with a NFFA.

  19. Flood-frequency analyses, Manual of Hydrology: Part 3

    USGS Publications Warehouse

    Dalrymple, Tate

    1960-01-01

    This report describes the method used by the U.S. Geological Survey to determine the magnitude and frequency of momentary peak discharges at any place on a stream, whether a gaging-station record is available or not. The method is applicable to a region of any size, as a river basin or a State, so long as the region is hydrologically homogeneous. The analysis provides two curves. The first expresses the flood discharge-time relation, showing variation of peak discharge, expressed as a ratio to the mean annual flood, with recurrence interval. The second relates the mean annual flood to the size of drainage area alone, or to the size area and other significant basin characteristics. A frequency curve may be defined for any place in the region by use of these two curves. The procedure is: (a) measure the drainage area and other appropriate basin characteristics from maps; (b) from the second curve, select the mean annual flood corresponding to the proper drainage area factors; (c) from the first curve, select ratios of peak discharge to mean annual flood for selected recurrence intervals, as 2, 10, 25, and 50 years; and (d) multiply these ratios by the mean annual flood and plot the resulting discharges of known frequency to define the frequency curve. Two reports not previously given general circulation are included as sections of this report. These are 'Plotting Positions in Frequency Analysis' by W. B. Langbein, and 'Characteristics of Frequency Curves Based on a Theoretical 1,000-Year Record' by M. A. Benson.

  20. Flood-frequency relations for urban streams in Georgia; 1994 update

    USGS Publications Warehouse

    Inman, Ernest J.

    1995-01-01

    A statewide study of flood magnitude and frequency in urban areas of Georgia was made to develop methods of estimating flood characteristics at ungaged urban sites. A knowledge of the magnitude and frequency of floods is needed for the design of highway drainage structures, establishing flood- insurance rates, and other uses by urban planners and engineers. A U.S. Geological Survey rainfall-runoff model was calibrated for 65 urban drainage basins ranging in size from 0.04 to 19.1 square miles in 10 urban areas of Georgia. Rainfall-runoff data were collected for a period of 5 to 7 years at each station beginning in 1973 in Metropolitan Atlanta and ending in 1993 in Thomasville, Ga. Calibrated models were used to synthesize long-term annual flood peak discharges for these basins from existing Long-term rainfall records. The 2- to 500-year flood-frequency estimates were developed for each basin by fitting a Pearson Type III frequency distribution curve to the logarithms of these annual peak discharges. Multiple-regression analyses were used to define relations between the station flood-frequency data and several physical basin characteristics, of which drainage area and total impervious area were the most statistically significant. Using theseregression equations and basin characteristics, the magnitude and frequency of floods at ungaged urban basins can be estimated throughout Georgia.

  1. Conditional flood frequency and catchment state: a simulation approach

    NASA Astrophysics Data System (ADS)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  2. Techniques for estimating magnitude and frequency of floods in Minnesota

    USGS Publications Warehouse

    Guetzkow, Lowell C.

    1977-01-01

     Estimating relations have been developed to provide engineers and designers with improved techniques for defining flow-frequency characteristics to satisfy hydraulic planning and design requirements. The magnitude and frequency of floods up to the 100-year recurrence interval can be determined for most streams in Minnesota by methods presented. By multiple regression analysis, equations have been developed for estimating flood-frequency relations at ungaged sites on natural flow streams. Eight distinct hydrologic regions are delineated within the State with boundaries defined generally by river basin divides. Regression equations are provided for each region which relate selected frequency floods to significant basin parameters. For main-stem streams, graphs are presented showing floods for selected recurrence intervals plotted against contributing drainage area. Flow-frequency estimates for intervening sites along the Minnesota River, Mississippi River, and the Red River of the North can be derived from these graphs. Flood-frequency characteristics are tabulated for 201 paging stations having 10 or more years of record.

  3. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  4. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and

  5. A Study on Regional Rainfall Frequency Analysis for Flood Simulation Scenarios

    NASA Astrophysics Data System (ADS)

    Jung, Younghun; Ahn, Hyunjun; Joo, Kyungwon; Heo, Jun-Haeng

    2014-05-01

    Recently, climate change has been observed in Korea as well as in the entire world. The rainstorm has been gradually increased and then the damage has been grown. It is very important to manage the flood control facilities because of increasing the frequency and magnitude of severe rain storm. For managing flood control facilities in risky regions, data sets such as elevation, gradient, channel, land use and soil data should be filed up. Using this information, the disaster situations can be simulated to secure evacuation routes for various rainfall scenarios. The aim of this study is to investigate and determine extreme rainfall quantile estimates in Uijeongbu City using index flood method with L-moments parameter estimation. Regional frequency analysis trades space for time by using annual maximum rainfall data from nearby or similar sites to derive estimates for any given site in a homogeneous region. Regional frequency analysis based on pooled data is recommended for estimation of rainfall quantiles at sites with record lengths less than 5T, where T is return period of interest. Many variables relevant to precipitation can be used for grouping a region in regional frequency analysis. For regionalization of Han River basin, the k-means method is applied for grouping regions by variables of meteorology and geomorphology. The results from the k-means method are compared for each region using various probability distributions. In the final step of the regionalization analysis, goodness-of-fit measure is used to evaluate the accuracy of a set of candidate distributions. And rainfall quantiles by index flood method are obtained based on the appropriate distribution. And then, rainfall quantiles based on various scenarios are used as input data for disaster simulations. Keywords: Regional Frequency Analysis; Scenarios of Rainfall Quantile Acknowledgements This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures

  6. Estimating the magnitude and frequency of floods in urban basins in Missouri

    USGS Publications Warehouse

    Southard, Rodney E.

    2010-01-01

    Streamgage flood-frequency analyses were done for 35 streamgages on urban streams in and adjacent to Missouri for estimation of the magnitude and frequency of floods in urban areas of Missouri. A log-Pearson Type-III distribution was fitted to the annual series of peak flow data retrieved from the U.S. Geological Survey National Water Information System. For this report, the flood frequency estimates are expressed in terms of percent annual exceedance probabilities of 50, 20, 10, 4, 2, 1, and 0.2. Of the 35 streamgages, 30 are located in Missouri. The remaining five non-Missouri streamgages were added to the dataset to improve the range and applicability of the regression analyses from the streamgage frequency analyses. Ordinary least-squares was used to determine the best set of independent variables for the regression equations. Basin characteristics selected for independent variables into the ordinary least-squares regression analyses were based on theoretical relation to flood flows, literature review of possible basin characteristics, and the ability to measure the basin characteristics using digital datasets and geographic information system technology. Results of the ordinary least-squares were evaluated on the basis of Mallow's Cp statistic, the adjusted coefficient of determination, and the statistical significance of the independent variables. The independent variables of drainage area and percent impervious area were determined to be statistically significant and readily determined from existing digital datasets. The drainage area variable was computed using the best elevation data available, either from a statewide 10-meter grid or high-resolution elevation data from urban areas. The impervious area variable was computed from the National Land Cover Dataset 2001 impervious area dataset. The National Land Cover Dataset 2001 impervious area data for each basin was compared to historical imagery and 7.5-minute topographic maps to verify the national

  7. Model synthesis in frequency analysis of Missouri floods

    USGS Publications Warehouse

    Hauth, Leland D.

    1974-01-01

    Synthetic flood records for 43 small-stream sites aided in definition of techniques for estimating the magnitude and frequency of floods in Missouri. The long-term synthetic flood records were generated by use of a digital computer model of the rainfall-runoff process. A relatively short period of concurrent rainfall and runoff data observed at each of the 43 sites was used to calibrate the model, and rainfall records covering from 66 to 78 years for four Missouri sites and pan-evaporation data were used to generate the synthetic records. Flood magnitude and frequency characteristics of both the synthetic records and observed long-term flood records available for 109 large-stream sites were used in a multiple-regression analysis to define relations for estimating future flood characteristics at ungaged sites. That analysis indicated that drainage basin size and slope were the most useful estimating variables. It also indicated that a more complex regression model than the commonly used log-linear one was needed for the range of drainage basin sizes available in this study.

  8. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  9. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.

  10. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  11. Effect of Sampling Period on Flood Frequency Distributions in the Susquehanna Basin

    NASA Astrophysics Data System (ADS)

    Kargar, M.; Beighley, R. E.

    2010-12-01

    Flooding is a devastating natural hazard that claims many human lives and significantly impact regional economies each year. Given the magnitude of flooding impacts, significant resources are dedicated to the development of forecasting models for early warning and evacuation planning, construction of flood defenses (levees/dams) to limit flooding, and the design of civil infrastructure (bridges, culverts, storm sewers) to convey flood flows without failing. In all these cases, it is particularly important to understand the potential flooding risk in terms of both recurrence interval (i.e., return period) and magnitude. Flood frequency analysis (FFA) is a form of risk analysis used to extrapolate the return periods of floods beyond the gauged record. The technique involves using observed annual peak flow discharge data to calculate statistical information such as mean values, standard deviations, skewness, and recurrence intervals. Since discharge data for most catchments have been collected for periods of time less than 100 years, the estimation of the design discharge requires a degree of extrapolation. This study focuses on the assessment and modifications of flood frequency based discharges for sites with limited sampling periods. Here, limited sampling period is intended to capture two issues: (1) limited number of observations to adequately capture the flood frequency signal (i.e., minimum number of annual peaks needed) and (2) climate variability (i.e., sampling period contains primarily “wet” or “dry” periods only). Total of 34 gauges (more than 70 years of data) spread throughout the Susquehanna River basin (71,000 sq km) were used to investigate the impact of sampling period on flood frequency distributions. Data subsets ranging from 10 years to the total number of years available were created from the data for each gauging station. To estimate the flood frequency, the Log Pearson Type III distribution was fit to the logarithms of instantaneous

  12. Preliminary flood-frequency relations for small streams in Kansas

    USGS Publications Warehouse

    Irza, T.J.

    1966-01-01

    Preliminary flood-frequency relations have been defined for small streams in Kansas for floods having recurrence intervals not greater than 10 years. The defined relations will be useful for the design of culverts and other hydraulic structures. The relations are expressed in terms of basin characteristics.Peakflow records at 95 sites in Kansas for an 8-year period provided the basic data. The records were analyzed with respect to 20 basin characteristics by multiple-regression techniques. The resulting formulas relate flood magnitude and frequency to size of contributing drainage area, an index of stream-bed slope, and the average number of days per year when rainfall exceeded 1.0 inch. The other 17 factors had no statistical significance.To illustrate a typical application of the flood-frequency relation, a step-bystep method is presented for computing a frequency curve for Rock Creek near Meriden, Kans. The frequency curve shows that a peak discharge of 3,620 cfs (cubic feet per second) can be expected once every 10 years on the average, and that the 67 percent confidence interval ranges from 1,820 cfs to 7,230 cfs. The large range results from the fact that only 8 years of record have been collected and emphasizes the need for collecting records for a longer period.

  13. The Significance of the Record Length in Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2013-12-01

    Of all of the potential natural hazards, flood is the most costly in many regions of the world. For example, floods cause over a third of Europe's average annual catastrophe losses and affect about two thirds of the people impacted by natural catastrophes. Increased attention is being paid to determining flow estimates associated with pre-specified return periods so that flood-prone areas can be adequately protected against floods of particular magnitudes or return periods. Flood frequency analysis, which is conducted by using an appropriate probability density function that fits the observed annual maximum flow data, is frequently used for obtaining these flow estimates. Consequently, flood frequency analysis plays an integral role in determining the flood risk in flood prone watersheds. A long annual maximum flow record is vital for obtaining accurate estimates of discharges associated with high return period flows. However, in many areas of the world, flood frequency analysis is conducted with limited flow data or short annual maximum flow records. These inevitably lead to flow estimates that are subject to error. This is especially the case with high return period flow estimates. In this study, several statistical techniques are used to identify errors caused by short annual maximum flow records. The flow estimates used in the error analysis are obtained by fitting a log-Pearson III distribution to the flood time-series. These errors can then be used to better evaluate the return period flows in data limited streams. The study findings, therefore, have important implications for hydrologists, water resources engineers and floodplain managers.

  14. Real-time updating of the flood frequency distribution through data assimilation

    NASA Astrophysics Data System (ADS)

    Aguilar, Cristina; Montanari, Alberto; Polo, María-José

    2017-07-01

    We explore the memory properties of catchments for predicting the likelihood of floods based on observations of average flows in pre-flood seasons. Our approach assumes that flood formation is driven by the superimposition of short- and long-term perturbations. The former is given by the short-term meteorological forcing leading to infiltration and/or saturation excess, while the latter is originated by higher-than-usual storage in the catchment. To exploit the above sensitivity to long-term perturbations, a meta-Gaussian model and a data assimilation approach are implemented for updating the flood frequency distribution a season in advance. Accordingly, the peak flow in the flood season is predicted in probabilistic terms by exploiting its dependence on the average flow in the antecedent seasons. We focus on the Po River at Pontelagoscuro and the Danube River at Bratislava. We found that the shape of the flood frequency distribution is noticeably impacted by higher-than-usual flows occurring up to several months earlier. The proposed technique may allow one to reduce the uncertainty associated with the estimation of flood frequency.

  15. Nationwide summary of US Geological Survey regional regression equations for estimating magnitude and frequency of floods for ungaged sites, 1993

    USGS Publications Warehouse

    Jennings, M.E.; Thomas, W.O.; Riggs, H.C.

    1994-01-01

    For many years, the U.S. Geological Survey (USGS) has been involved in the development of regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally these equations have been developed on a statewide or metropolitan area basis as part of cooperative study programs with specific State Departments of Transportation or specific cities. The USGS, in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency, has compiled all the current (as of September 1993) statewide and metropolitan area regression equations into a micro-computer program titled the National Flood Frequency Program.This program includes regression equations for estimating flood-peak discharges and techniques for estimating a typical flood hydrograph for a given recurrence interval peak discharge for unregulated rural and urban watersheds. These techniques should be useful to engineers and hydrologists for planning and design applications. This report summarizes the statewide regression equations for rural watersheds in each State, summarizes the applicable metropolitan area or statewide regression equations for urban watersheds, describes the National Flood Frequency Program for making these computations, and provides much of the reference information on the extrapolation variables needed to run the program.

  16. Forest cover, socioeconomics, and reported flood frequency in developing countries

    NASA Astrophysics Data System (ADS)

    Ferreira, Susana; Ghimire, Ramesh

    2012-08-01

    In this paper, we analyze the determinants of the number of large floods reported since 1990. Using the same sample of countries as Bradshaw et al. (2007), and, like them, omitting socioeconomic characteristics from the analysis, we found that a reduction in natural forest cover is associated with an increase in the reported count of large floods. This result does not hold in any of three new analyses we perform. First, we expand the sample to include all the developing countries and all countries for which data were available but were omitted in their study. Second, and more importantly, since forest management is just one possible channel through which humans can influence reported flood frequency, we account for other important human-flood interactions. People are typically responsible for deforestation, but they are also responsible for other land use changes (e.g., urbanization), for floodplain and flood emergency management, and for reporting the floods. Thus, in our analysis we account for population, urban population growth, income, and corruption. Third, we exploit the panel nature of the data to control for unobserved country and time heterogeneity. We conclude that not only is the link between forest cover and reported flood frequency at the country level not robust, it also seems to be driven by sample selection and omitted variable bias. The human impact on the reported frequency of large floods at the country level is not through deforestation.

  17. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false National Flood Insurance Program... Requirements § 570.605 National Flood Insurance Program. Notwithstanding the date of HUD approval of the... accordance with 24 CFR part 91), section 202(a) of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4106...

  18. Frequency assessment of spatially distributed generations of flood scenarios: an application on Italian territory

    NASA Astrophysics Data System (ADS)

    Lomazzi, M.; Roth, G.; Rudari, R.; Taramasso, A. C.; Ghizzoni, T.; Benedetti, R.; Espa, G.; Terpessi, C.

    2009-12-01

    The flooding risk impact on society cannot be understated: it influences land use and territorial planning and development at both physical and regulatory levels. To cope with it, a variety of actions can be put in place, involving multidisciplinary competences. Mitigation measures goes from the improvement of monitoring systems to the development of hydraulic structures, throughout land use restrictions, civil protection and insurance plans. All of those options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - scenarios, i.e. quantitative event descriptions in terms of i) the flood hazard, with its probability of occurrence, extension, intensity, and duration, ii) the exposed values and iii) their vulnerability. At present, initial attention has been devoted to the design of flood scenarios, or ensembles of them, and to the evaluation of their frequency of occurrence. In the present work, a model for spatially distributed flood scenarios generation and frequency assessment is proposed and applied to the Italian territory. The study area has been divided into homogeneous regions according to their hydrologic, orographic and meteoclimatic characteristics. A statistical model for flood scenarios simulation has been implemented throughout a conditional approach based on MCMC simulations by using i) a historical flood events catalogue; ii) a homogeneous regions correlation matrix; and iii) an auxiliary variables data set. In this framework, the role of the information stored in the historical flood events catalogue "Aree Vulnerate Italiane" (AVI, http://avi.gndci.cnr.it/), produced by the Italian National Research Council, is of crucial importance.

  19. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  20. Do regional methods really help reduce uncertainties in flood frequency analyses?

    NASA Astrophysics Data System (ADS)

    Cong Nguyen, Chi; Payrastre, Olivier; Gaume, Eric

    2013-04-01

    Flood frequency analyses are often based on continuous measured series at gauge sites. However, the length of the available data sets is usually too short to provide reliable estimates of extreme design floods. To reduce the estimation uncertainties, the analyzed data sets have to be extended either in time, making use of historical and paleoflood data, or in space, merging data sets considered as statistically homogeneous to build large regional data samples. Nevertheless, the advantage of the regional analyses, the important increase of the size of the studied data sets, may be counterbalanced by the possible heterogeneities of the merged sets. The application and comparison of four different flood frequency analysis methods to two regions affected by flash floods in the south of France (Ardèche and Var) illustrates how this balance between the number of records and possible heterogeneities plays in real-world applications. The four tested methods are: (1) a local statistical analysis based on the existing series of measured discharges, (2) a local analysis valuating the existing information on historical floods, (3) a standard regional flood frequency analysis based on existing measured series at gauged sites and (4) a modified regional analysis including estimated extreme peak discharges at ungauged sites. Monte Carlo simulations are conducted to simulate a large number of discharge series with characteristics similar to the observed ones (type of statistical distributions, number of sites and records) to evaluate to which extent the results obtained on these case studies can be generalized. These two case studies indicate that even small statistical heterogeneities, which are not detected by the standard homogeneity tests implemented in regional flood frequency studies, may drastically limit the usefulness of such approaches. On the other hand, these result show that the valuation of information on extreme events, either historical flood events at gauged

  1. Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation

    NASA Astrophysics Data System (ADS)

    Cunderlik, Juraj M.; Burn, Donald H.

    2002-04-01

    Improving techniques of flood frequency estimation at ungauged sites is one of the foremost goals of contemporary hydrology. River flood regime is a resultant reflection of a composite catchment hydrologic response to flood producing processes. In this sense the process of identifying homogeneous pooling groups can be plausibly based on catchment similarity in flood regime. Unfortunately the application of any pooling approach that is based on flood regime is restricted to gauged sites. Because flood regime can be markedly determined by rainfall regime, catchment similarity in rainfall regime can be an alternative option for identifying flood frequency pooling groups. An advantage of such a pooling approach is that rainfall data are usually spatially and temporary more abundant than flood data and the approach can also be applied at ungauged sites. Therefore in this study we have quantified the linkage between rainfall and flood regime and explored the appropriateness of substituting rainfall regime for flood regime in regional pooling schemes. Two different approaches to describing rainfall regime similarity using tools of directional statistics have been tested and used for evaluation of the potential of rainfall regime for identification of hydrologically homogeneous pooling groups. The outputs were compared to an existing pooling framework adopted in the Flood Estimation Handbook. The results demonstrate that regional pooling based on rainfall regime information leads to a high number of initially homogeneous groups and seems to be a sound pooling alternative for catchments with a close linkage between rain and flood regimes.

  2. Method of estimating flood-frequency parameters for streams in Idaho

    USGS Publications Warehouse

    Kjelstrom, L.C.; Moffatt, R.L.

    1981-01-01

    Skew coefficients for the log-Pearson type III distribution are generalized on the basis of some similarity of floods in the Snake River basin and other parts of Idaho. Generalized skew coefficients aid in shaping flood-frequency curves because skew coefficients computed from gaging stations having relatively short periods of peak flow records can be unreliable. Generalized skew coefficients can be obtained for a gaging station from one of three maps in this report. The map to be used depends on whether (1) snowmelt floods are domiant (generally when more than 20 percent of the drainage area is above 6,000 feet altitude), (2) rainstorm floods are dominant (generally when the mean altitude is less than 3,000 feet), or (3) either snowmelt or rainstorm floods can be the annual miximum discharge. For the latter case, frequency curves constructed using separate arrays of each type of runoff can be combined into one curve, which, for some stations, is significantly different than the frequency curve constructed using only annual maximum discharges. For 269 gaging stations, flood-frequency curves that include the generalized skew coefficients in the computation of the log-Pearson type III equation tend to fit the data better than previous analyses. Frequency curves for ungaged sites can be derived by estimating three statistics of the log-Pearson type III distribution. The mean and standard deviation of logarithms of annual maximum discharges are estimated by regression equations that use basin characteristics as independent variables. Skew coefficient estimates are the generalized skews. The log-Pearson type III equation is then applied with the three estimated statistics to compute the discharge at selected exceedance probabilities. Standard errors at the 2-percent exceedance probability range from 41 to 90 percent. (USGS)

  3. Magnitude and frequency of floods in the United States. Part 13. Snake River basin

    USGS Publications Warehouse

    Thomas, C.A.; Broom, H.C.; Cummans, J.E.

    1963-01-01

    The magnitude of a flood of any selected frequency up to 50 years for any site on any stream in the Snake River basin can be determined by methods outlined in this report, with some limitations. The methods are not applicable for regulated streams, for drainage basins smaller than 10 or larger than 5,000 square miles, for streams fed by large springs, or for streams that have flow characteristics materially different from the regional pattern. The magnitude of a flood for a selected frequency at a given site is determined by using the appropriate composite frequency curve and the mean annual flood for the given site. The mean annual flood is computed from either a formula or a nomograph in which drainage area, mean annual precipitation, and a geographic factor are used as independent variables. The standard error of estimate for the computation of mean annual floods is plus 17 percent and minus 15 percent.Nine flood-frequency regions (A-I) are defined. In all except regions B and I, frequency relations vary with the mean altitude of the basin as well as with the geographic location; therefore, families of curves are required for 7 of the 9 flood-frequency regions.The report includes a brief description of the physiography and climate of the Snake River basin to explain the reason for the large variation in mean annual floods, which range from zero to about 27 cubic feet per second per square mile.Composite frequency curves and formulas for computing mean annual floods are based on all suitable flood data collected in the Snake River basin. Tables show the data used to derive the formula. Following the analysis of data are station descriptions and lists of peak stages and discharges for 295 gaging stations at which 5 or more years of annual flood records were collected pr'or to Sept. 30, 1957. Many flood peak data are not usable in defining the frequency curves and deriving the formula because of large diversions and regulation upstream from the gaging stations.

  4. Floods on small streams in North Carolina, probable magnitude and frequency

    USGS Publications Warehouse

    Hinson, Herbert G.

    1965-01-01

    The magnitude and frequency of floods are defined regionally for small streams (drainage area, 1 to 150 sq mi) in North Carolina. Composite frequency curves for each of two regions relate the magnitude of the annual flood, in ratio to the mean annual flood, to recurrence intervals of 1.1 to 50 years. In North Carolina, the mean annual flood (Q2.33) is related to drainage area (A) by the following equation: Q2. 33 = GA0.66, where G, the geographic factor, is the product of a statewide coefficient (US) times a correction which reflects differences in basin characteristics. Isograms of the G factor covering the State are presented.

  5. Magnitude and frequency of summer floods in western New Mexico and eastern Arizona

    USGS Publications Warehouse

    Kennon, F.W.

    1955-01-01

    Numerous small reservoirs and occasional water-spreading structures are being built on the ephemeral streams draining the public and Indian lands of the Southwest as part of the Soil and Moisture Conservation Program of the Bureau of Land Management and Bureau of Indian Affairs.  Economic design of these structures requires some knowledge of the flood rates and volumes.  Information concerning flood frequencies on areas less than 100 square miles is deficient throughout the country, particularly on intermittent streams of the Southwest.  Design engineers require a knowledge of the frequency and magnitude of flood volumes for the planning of adequate reservoir capacities and a knowledge of frequency and magnitude of flood peaks for spillway design.  Hence, this study deals with both flood volumes and peaks, the same statistical methods being used to develop frequency curves for each.

  6. Frequency analyses for recent regional floods in the United States

    USGS Publications Warehouse

    Melcher, Nick B.; Martinez, Patsy G.; ,

    1996-01-01

    During 1993-95, significant floods that resulted in record-high river stages, loss of life, and significant property damage occurred in the United States. The floods were caused by unique global weather patterns that produced large amounts of rain over large areas. Standard methods for flood-frequency analyses may not adequately consider the probability of recurrence of these global weather patterns.

  7. Flood Frequency Analysis With Historical and Paleoflood Information

    NASA Astrophysics Data System (ADS)

    Stedinger, Jery R.; Cohn, Timothy A.

    1986-05-01

    An investigation is made of flood quantile estimators which can employ "historical" and paleoflood information in flood frequency analyses. Two categories of historical information are considered: "censored" data, where the magnitudes of historical flood peaks are known; and "binomial" data, where only threshold exceedance information is available. A Monte Carlo study employing the two-parameter lognormal distribution shows that maximum likelihood estimators (MLEs) can extract the equivalent of an additional 10-30 years of gage record from a 50-year period of historical observation. The MLE routines are shown to be substantially better than an adjusted-moment estimator similar to the one recommended in Bulletin 17B of the United States Water Resources Council Hydrology Committee (1982). The MLE methods performed well even when floods were drawn from other than the assumed lognormal distribution.

  8. Accounting for Atmospheric Rivers in the Flood Frequency Estimation in the Western United States

    NASA Astrophysics Data System (ADS)

    Barth, N. A.; Villarini, G.; White, K. D.

    2016-12-01

    The Bulletin 17B framework assumes that the observed annual peak flow data included in a flood frequency analysis are a "representative time sample of random homogeneous events." However, flood frequency analysis over the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood generating mechanisms, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. It is relatively common for the annual peaks fitted to the log-Pearson Type III distribution in these regions to show sharp breaks in the slope or a curve that reverses direction, pointing to the presence of different flood generating mechanisms. Following the recommendation by B17B to develop separate frequency curves when different flood agents can be identified, we will perform flood frequency analyses accounting for the role played by ARs. We will compare and contrast the results obtained by treating all annual maximum discharge values as generated from a single population against those from a mixed population analyses.

  9. The complexities of urban flood response: Flood frequency analyses for the Charlotte metropolitan region

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengzheng; Smith, James A.; Yang, Long; Baeck, Mary Lynn; Chaney, Molly; Ten Veldhuis, Marie-Claire; Deng, Huiping; Liu, Shuguang

    2017-08-01

    We examine urban flood response through data-driven analyses for a diverse sample of "small" watersheds (basin scale ranging from 7.0 to 111.1 km2) in the Charlotte Metropolitan region. These watersheds have experienced extensive urbanization and suburban development since the 1960s. The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood hydrology. Our analyses are based on peaks-over-threshold flood data developed from USGS streamflow observations and are motivated by problems of flood hazard characterization for urban regions. We examine flood-producing rainfall using high-resolution (1 km2 spatial resolution and 15 min time resolution), bias-corrected radar rainfall fields that are developed through the Hydro-NEXRAD system. The analyses focus on the 2001-2015 period. The results highlight the complexities of urban flood response. There are striking spatial heterogeneities in flood peak magnitudes, response times, and runoff ratios across the study region. These spatial heterogeneities are mainly linked to watershed scale, the distribution of impervious cover, and storm water management. Contrasting land surface properties also determine the mixture of flood-generating mechanisms for a particular watershed. Warm-season thunderstorm systems and tropical cyclones are main flood agents in Charlotte, with winter/spring storms playing a role in less-urbanized watersheds. The mixture of flood agents exerts a strong impact on the upper tail of flood frequency distributions. Antecedent watershed wetness plays a minor role in urban flood response, compared with less-urbanized watersheds. Implications for flood hazard characterization in urban watersheds and for advances in flood science are discussed.

  10. Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peak-flow data through water year 2010

    USGS Publications Warehouse

    Paretti, Nicholas V.; Kennedy, Jeffrey R.; Turney, Lovina A.; Veilleux, Andrea G.

    2014-01-01

    The regional regression equations were integrated into the U.S. Geological Survey’s StreamStats program. The StreamStats program is a national map-based web application that allows the public to easily access published flood frequency and basin characteristic statistics. The interactive web application allows a user to select a point within a watershed (gaged or ungaged) and retrieve flood-frequency estimates derived from the current regional regression equations and geographic information system data within the selected basin. StreamStats provides users with an efficient and accurate means for retrieving the most up to date flood frequency and basin characteristic data. StreamStats is intended to provide consistent statistics, minimize user error, and reduce the need for large datasets and costly geographic information system software.

  11. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed

  12. Regional flood-frequency relations for streams with many years of no flow

    USGS Publications Warehouse

    Hjalmarson, Hjalmar W.; Thomas, Blakemore E.; ,

    1990-01-01

    In the southwestern United States, flood-frequency relations for streams that drain small arid basins are difficult to estimate, largely because of the extreme temporal and spatial variability of floods and the many years of no flow. A method is proposed that is based on the station-year method. The new method produces regional flood-frequency relations using all available annual peak-discharge data. The prediction errors for the relations are directly assessed using randomly selected subsamples of the annual peak discharges.

  13. Techniques for estimating magnitude and frequency of floods on streams in Indiana

    USGS Publications Warehouse

    Glatfelter, D.R.

    1984-01-01

    A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.

  14. Quantification of Uncertainty in the Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Kasiapillai Sudalaimuthu, K.; He, J.; Swami, D.

    2017-12-01

    Flood frequency analysis (FFA) is usually carried out for planning and designing of water resources and hydraulic structures. Owing to the existence of variability in sample representation, selection of distribution and estimation of distribution parameters, the estimation of flood quantile has been always uncertain. Hence, suitable approaches must be developed to quantify the uncertainty in the form of prediction interval as an alternate to deterministic approach. The developed framework in the present study to include uncertainty in the FFA discusses a multi-objective optimization approach to construct the prediction interval using ensemble of flood quantile. Through this approach, an optimal variability of distribution parameters is identified to carry out FFA. To demonstrate the proposed approach, annual maximum flow data from two gauge stations (Bow river at Calgary and Banff, Canada) are used. The major focus of the present study was to evaluate the changes in magnitude of flood quantiles due to the recent extreme flood event occurred during the year 2013. In addition, the efficacy of the proposed method was further verified using standard bootstrap based sampling approaches and found that the proposed method is reliable in modeling extreme floods as compared to the bootstrap methods.

  15. Flood frequencies and durations and their response to El Niño Southern Oscillation: Global analysis

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Kummu, M.; Lall, U.

    2016-08-01

    Floods are one of the most serious forms of natural hazards in terms of the damages they cause. In 2012 alone, flood damages exceeded 19 billion. A large proportion of the damages from several recent major flood disasters, such as those in South India and South Carolina (2015), England and Wales (2014), the Mississippi (2012), Thailand (2011), Queensland (Australia) (2010-2011), and Pakistan (2010), were related to the long duration of those flood events. However, most flood risk studies to date do not account for flood duration. In this paper, we provide the first global modelling exercise to assess the link between interannual climate variability and flood duration and frequency. Specifically, we examine relationships between simulated flood events and El Niño Southern Oscillation (ENSO). Our results show that the duration of flooding appears to be more sensitive to ENSO than is the case for flood frequency. At the globally aggregated scale, we found floods to be significantly longer during both El Niño and La Niña years, compared to neutral years. At the scale of individual river basins, we found strong correlations between ENSO and both flood frequency and duration for a large number of basins, with generally stronger correlations for flood duration than for flood frequency. Future research on flood impacts should attempt to incorporate more information on flood durations.

  16. Magnitude and Frequency of Floods on Nontidal Streams in Delaware

    USGS Publications Warehouse

    Ries, Kernell G.; Dillow, Jonathan J.A.

    2006-01-01

    Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious

  17. Methods for estimating magnitude and frequency of floods in Montana based on data through 1983

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1986-01-01

    Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)

  18. A physically based analytical model of flood frequency curves

    NASA Astrophysics Data System (ADS)

    Basso, S.; Schirmer, M.; Botter, G.

    2016-09-01

    Predicting magnitude and frequency of floods is a key issue in hydrology, with implications in many fields ranging from river science and geomorphology to the insurance industry. In this paper, a novel physically based approach is proposed to estimate the recurrence intervals of seasonal flow maxima. The method links the extremal distribution of streamflows to the stochastic dynamics of daily discharge, providing an analytical expression of the seasonal flood frequency curve. The parameters involved in the formulation embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is linked to the antecedent wetness condition in the watershed, needs to be calibrated on the observed maxima. The performance of the method is discussed through a set of applications in four rivers featuring heterogeneous daily flow regimes. The model provides reliable estimates of seasonal maximum flows in different climatic settings and is able to capture diverse shapes of flood frequency curves emerging in erratic and persistent flow regimes. The proposed method exploits experimental information on the full range of discharges experienced by rivers. As a consequence, model performances do not deteriorate when the magnitude of events with return times longer than the available sample size is estimated. The approach provides a framework for the prediction of floods based on short data series of rainfall and daily streamflows that may be especially valuable in data scarce regions of the world.

  19. Flood characteristics for the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Cunningham, M.K.

    1994-01-01

    The frequency and magnitude of flooding of the New River in the New River Gorge National River was studied. A steady-state, one-dimensional flow model was applied to the study reach. Rating curves, cross sections, and Manning's roughness coefficients that were used are presented in this report. Manning's roughness coefficients were evaluated by comparing computed elevations (from application of the steady-state, one-dimensional flow model) to rated elevations at U.S. Geological Survey (USGS) streamflow-gaging stations and miscellaneous-rating sites. Manning's roughness coefficients ranged from 0.030 to 0.075 and varied with hydraulic depth. The 2-, 25-, and 100-year flood discharges were esti- mated on the basis of information from flood- insurance studies of Summers County, Fayette County, and the city of Hinton, and flood-frequency analysis of discharge records for the USGS streamflow-gaging stations at Hinton and Thurmond. The 100-year discharge ranged from 107,000 cubic feet per second at Hinton to 150,000 cubic feet per second at Fayette.

  20. Identification of flood-rich and flood-poor periods in flood series

    NASA Astrophysics Data System (ADS)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  1. Paleoflood Data, Extreme Floods and Frequency: Data and Models for Dam Safety Risk Scenarios

    NASA Astrophysics Data System (ADS)

    England, J. F.; Godaire, J.; Klinger, R.

    2007-12-01

    Extreme floods and probability estimates are crucial components in dam safety risk analysis and scenarios for water-resources decision making. The field-based collection of paleoflood data provides needed information on the magnitude and probability of extreme floods at locations of interest in a watershed or region. The stratigraphic record present along streams in the form of terrace and floodplain deposits represent direct indicators of the magnitude of large floods on a river, and may provide 10 to 100 times longer records than conventional stream gaging records of large floods. Paleoflood data is combined with gage and historical streamflow estimates to gain insights to flood frequency scaling, model extrapolations and uncertainty, and provide input scenarios to risk analysis event trees. We illustrate current data collection and flood frequency modeling approaches via case studies in the western United States, including the American River in California and the Arkansas River in Colorado. These studies demonstrate the integration of applied field geology, hydraulics, and surface-water hydrology. Results from these studies illustrate the gains in information content on extreme floods, provide data- based means to separate flood generation processes, guide flood frequency model extrapolations, and reduce uncertainties. These data and scenarios strongly influence water resources management decisions.

  2. Magnitude and frequency of Iowa floods, Part two

    USGS Publications Warehouse

    Schwob, Harlan H.

    1966-01-01

    Floqd records fo.r regular and partial-record gaging stations are contained in the following pages. Each listing contains the station number .and name, descriptive paragraphs pertaining to the station, qnd a listing of the flood peaks available through the 1965 water year. Peaks above a base as well as annual peaks are listed. These provide the data for a partial-duration flood-frequency curve. Most of the material is self-explan~tory and needs no discussion. However, a few items may be made clearer by the brief explanation which follows. 

  3. Magnitude and frequency of floods in western Oregon

    USGS Publications Warehouse

    Harris, David Dell; Hubbard, Larry L.; Hubbard, Lawrence E.

    1979-01-01

    A method for estimating the magnitude and frequency of floods is presented for unregulated streams in western Oregon. Equations relating flood magnitude to basin characteristics were developed for exceedance probabilities of 0.5 to 0.01 (2- to 100-year recurrence intervals). Separate equations are presented for four regions: Coast, Willamette, Rogue-Umpqua, and High Cascades. Also presented are values of flood discharges for selected exceedance probabilities and of basin characteristics for all gaging stations used in the analysis. Included are data for 230 stations in Oregon, 6 stations in southwestern Washington, and 3 stations in northwestern California. Drainage areas used in the analysis range from 0.21 to 7,280 square miles. Also included are maximum discharges for all western Oregon stations used in the analysis. (Woodard-USGS)

  4. A holistic approach for large-scale derived flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno

    2017-04-01

    Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.

  5. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  6. Analysis of Non-Tropical Cyclone Induced Flood Events over South East Asia: Investigating Flood Frequency and Extremes in the Philippines

    NASA Astrophysics Data System (ADS)

    Marcella, M. P.; CHEN, C.; Senarath, S. U.

    2013-12-01

    Much work has been completed in analyzing Southeast Asia's tropical cyclone climatology and the associated flooding throughout the region. Although, an active and strong monsoon season also brings major flooding across the Philippines resulting in the loss of lives and significant economic impacts, only a limited amount of research work has been conducted to investigate the frequency and flood loss estimates of these non-tropical cyclone (TC) storms. In this study, using the TRMM 3-hourly rainfall product, tropical cyclone rainfall is removed to construct a non-TC rainfall climatology across the region. Given this data, stochastically generated rainfall that is both spatially and temporally correlated across the country is created to generate a longer historically-based record of non-TC precipitation. After defining the rainfall criteria that constitutes a flood event based on observed floods and TRMM data, this event definition is applied to the stochastic catalog of rainfall to determine flood events. Subsequently, a thorough analysis of non-TC flood extremes, frequency, and distribution is completed for the country of the Philippines. As a result, the above methodology and datasets provide a unique opportunity to further study flood occurrences and their extremes across most of South East Asia.

  7. Estimating magnitude and frequency of floods using the PeakFQ 7.0 program

    USGS Publications Warehouse

    Veilleux, Andrea G.; Cohn, Timothy A.; Flynn, Kathleen M.; Mason, Jr., Robert R.; Hummel, Paul R.

    2014-01-01

    Flood-frequency analysis provides information about the magnitude and frequency of flood discharges based on records of annual maximum instantaneous peak discharges collected at streamgages. The information is essential for defining flood-hazard areas, for managing floodplains, and for designing bridges, culverts, dams, levees, and other flood-control structures. Bulletin 17B (B17B) of the Interagency Advisory Committee on Water Data (IACWD; 1982) codifies the standard methodology for conducting flood-frequency studies in the United States. B17B specifies that annual peak-flow data are to be fit to a log-Pearson Type III distribution. Specific methods are also prescribed for improving skew estimates using regional skew information, tests for high and low outliers, adjustments for low outliers and zero flows, and procedures for incorporating historical flood information. The authors of B17B identified various needs for methodological improvement and recommended additional study. In response to these needs, the Advisory Committee on Water Information (ACWI, successor to IACWD; http://acwi.gov/, Subcommittee on Hydrology (SOH), Hydrologic Frequency Analysis Work Group (HFAWG), has recommended modest changes to B17B. These changes include adoption of a generalized method-of-moments estimator denoted the Expected Moments Algorithm (EMA) (Cohn and others, 1997) and a generalized version of the Grubbs-Beck test for low outliers (Cohn and others, 2013). The SOH requested that the USGS implement these changes in a user-friendly, publicly accessible program.

  8. Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information

    NASA Astrophysics Data System (ADS)

    Lam, Daryl; Thompson, Chris; Croke, Jacky; Sharma, Ashneel; Macklin, Mark

    2017-03-01

    Using a combination of stream gauge, historical, and paleoflood records to extend extreme flood records has proven to be useful in improving flood frequency analysis (FFA). The approach has typically been applied in localities with long historical records and/or suitable river settings for paleoflood reconstruction from slack-water deposits (SWDs). However, many regions around the world have neither extensive historical information nor bedrock gorges suitable for SWDs preservation and paleoflood reconstruction. This study from subtropical Australia demonstrates that confined, semialluvial channels such as macrochannels provide relatively stable boundaries over the 1000-2000 year time period and the preserved SWDs enabled paleoflood reconstruction and their incorporation into FFA. FFA for three sites in subtropical Australia with the integration of historical and paleoflood data using Bayesian Inference methods showed a significant reduction in uncertainty associated with the estimated discharge of a flood quantile. Uncertainty associated with estimated discharge for the 1% Annual Exceedance Probability (AEP) flood is reduced by more than 50%. In addition, sensitivity analysis of possible within-channel boundary changes shows that FFA is not significantly affected by any associated changes in channel capacity. Therefore, a greater range of channel types may be used for reliable paleoflood reconstruction by evaluating the stability of inset alluvial units, thereby increasing the quantity of temporal data available for FFA. The reduction in uncertainty, particularly in the prediction of the ≤1% AEP design flood, will improve flood risk planning and management in regions with limited temporal flood data.

  9. Effects of Climate Change on Flood Frequency in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Stumbaugh, M. R.; Lee, S. Y.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    A key concern about climate change as related to water resources is the potential for changes in hydrologic extremes, including flooding. We explore changes in flood frequency in the Pacific Northwest using downscaled output from ten Global Climate Models (GCMs) from the Coupled Model Inter-Comparison Project 5 (CMIP5) for historical forcings (1950-2005) and future Representative Concentration Pathways (RCPs) 4.5 and 8.5 (2006-2100). We use archived output from the Integrated Scenarios Project (ISP) (http://maca.northwestknowledge.net/), which uses the Multivariate Adaptive Constructed Analogs (MACA) method for statistical downscaling. The MACA-downscaled GCM output was then used to force the Variable Infiltration Capacity (VIC) hydrology model with a 1/16th degree spatial resolution and a daily time step. For each of the 238 HUC-08 areas within the Pacific Northwest (USGS Hydrologic Region 15), we computed, from the ISP archive, the series of maximum daily runoff values (surrogate for the annual maximum flood), and then the mean annual flood. Finally, we computed the ratios of the RCP4.5 and RCP8.5 mean annual floods to their corresponding values for the historical period. We evaluate spatial patterns in the results. For snow-dominated watersheds, the changes are dominated by reductions in flood frequency in basins that currently have spring-dominant floods, and increases in snow affected basins with fall-dominant floods. In low elevation basins west of the Cascades, changes in flooding are more directly related to changes in precipitation extremes. We further explore the nature of these effects by evaluating the mean Julian day of the annual maximum flood for each HUC-08 and how this changes between the historical and RCP4.5 and RCP8.5 scenarios.

  10. Flood characteristics of Oklahoma streams techniques for calculating magnitude and frequency of floods in Oklahoma, with compilations of flood data through 1971

    USGS Publications Warehouse

    Sauer, Vernon B.

    1974-01-01

    The 2-, 5-, 10-, 25-, 50-, and 100-year recurrence interval floods are related to basin and climatic parameters for natural streams in Oklahoma by multiple regression techniques through the mathematical model, Qx=aAbScPd,where Qx is peak discharge for recurrence interval x, A is contributing drainage area, S is main channel slope, P is mean annual precipitation, and a, b, c, and d are regression constants and coefficients. One equation for each recurrence interval applies statewide for all natural streams of less than 2,500 mil (6,500 km2), except where manmade works, such as dams, flood-detention structures, levees, channelization, and urban development, appreciably affect flood runoff. The equations can be used to estimate flood frequency of a stream at an ungaged site if drainage area size, main channel slope, and mean annual precipitation are known. At or near gaged sites, a weighted average of the regression results and the gaging station data is recommended.Individual relations of flood magnitude to contributing drainage area are given for all or parts of the main stems of the Arkansas, Salt Fork Arkansas, Cimarron, North Canadian, Canadian, Washita, North Fork Red, and Red Rivers. Parts of some of these streams, and all of the Neosho and Verdigris Rivers are not included because the effects of. major regulation from large reservoirs cannot be evaluated within the scope of the report. Graphical relations of maximum floods of record for eastern and western Oklahoma provide a guide to maximum probable floods. A random sampling of the seasonal occurrence of floods indicated about two-thirds of all annual floods in Oklahoma occur during. April through July. Less than one-half of one percent of annual floods occur in December. A compilation of flood records at all gaging sites in Oklahoma and some selected sites in adjacent States is given in an appendix. Basin and climatic parameters and log-Pearson Type III frequency data and statistics are given for most

  11. Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045.

    PubMed

    Dahl, Kristina A; Fitzpatrick, Melanie F; Spanger-Siegfried, Erika

    2017-01-01

    Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001-2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years.

  12. The Effects of the Saluda Dam on the Surface-Water and Ground-Water Hydrology of the Congaree National Park Flood Plain, South Carolina

    USGS Publications Warehouse

    Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.

    2008-01-01

    The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1

  13. Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the

  14. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    PubMed

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  15. Effect of catchment properties and flood generation regime on copula selection for bivariate flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Filipova, Valeriya; Lawrence, Deborah; Klempe, Harald

    2018-02-01

    Applying copula-based bivariate flood frequency analysis is advantageous because the results provide information on both the flood peak and volume. More data are, however, required for such an analysis, and it is often the case that only data series with a limited record length are available. To overcome this issue of limited record length, data regarding climatic and geomorphological properties can be used to complement statistical methods. In this paper, we present a study of 27 catchments located throughout Norway, in which we assess whether catchment properties, flood generation processes and flood regime have an effect on the correlation between flood peak and volume and, in turn, on the selection of copulas. To achieve this, the annual maximum flood events were first classified into events generated primarily by rainfall, snowmelt or a combination of these. The catchments were then classified into flood regime, depending on the predominant flood generation process producing the annual maximum flood events. A contingency table and Fisher's exact test were used to determine the factors that affect the selection of copulas in the study area. The results show that the two-parameter copulas BB1 and BB7 are more commonly selected in catchments with high steepness, high mean annual runoff and rainfall flood regime. These findings suggest that in these types of catchments, the dependence structure between flood peak and volume is more complex and cannot be modeled effectively using a one-parameter copula. The results illustrate that by relating copula types to flood regime and catchment properties, additional information can be supplied for selecting copulas in catchments with limited data.

  16. Flood frequency analysis - the challenge of using historical data

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn

    2015-04-01

    Estimates of high flood quantiles are needed for many applications, .e.g. dam safety assessments are based on the 1000 years flood, whereas the dimensioning of important infrastructure requires estimates of the 200 year flood. The flood quantiles are estimated by fitting a parametric distribution to a dataset of high flows comprising either annual maximum values or peaks over a selected threshold. Since the record length of data is limited compared to the desired flood quantile, the estimated flood magnitudes are based on a high degree of extrapolation. E.g. the longest time series available in Norway are around 120 years, and as a result any estimation of a 1000 years flood will require extrapolation. One solution is to extend the temporal dimension of a data series by including information about historical floods before the stream flow was systematically gaugeded. Such information could be flood marks or written documentation about flood events. The aim of this study was to evaluate the added value of using historical flood data for at-site flood frequency estimation. The historical floods were included in two ways by assuming: (1) the size of (all) floods above a high threshold within a time interval is known; and (2) the number of floods above a high threshold for a time interval is known. We used a Bayesian model formulation, with MCMC used for model estimation. This estimation procedure allowed us to estimate the predictive uncertainty of flood quantiles (i.e. both sampling and parameter uncertainty is accounted for). We tested the methods using 123 years of systematic data from Bulken in western Norway. In 2014 the largest flood in the systematic record was observed. From written documentation and flood marks we had information from three severe floods in the 18th century and they were likely to exceed the 2014 flood. We evaluated the added value in two ways. First we used the 123 year long streamflow time series and investigated the effect of having several

  17. Topography- and nightlight-based national flood risk assessment in Canada

    NASA Astrophysics Data System (ADS)

    Elshorbagy, Amin; Bharath, Raja; Lakhanpal, Anchit; Ceola, Serena; Montanari, Alberto; Lindenschmidt, Karl-Erich

    2017-04-01

    In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available with various resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models, namely, elevation above nearest drainage (EAND) and distance from nearest drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the city using hydraulic modelling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the

  18. Historical floods in flood frequency analysis: Is this game worth the candle?

    NASA Astrophysics Data System (ADS)

    Strupczewski, Witold G.; Kochanek, Krzysztof; Bogdanowicz, Ewa

    2017-11-01

    In flood frequency analysis (FFA) the profit from inclusion of historical information on the largest historical pre-instrumental floods depends primarily on reliability of the information, i.e. the accuracy of magnitude and return period of floods. This study is focused on possible theoretical maximum gain in accuracy of estimates of upper quantiles, that can be obtained by incorporating the largest historical floods of known return periods into the FFA. We assumed a simple case: N years of systematic records of annual maximum flows and either one largest (XM1) or two largest (XM1 and XM2) flood peak flows in a historical M-year long period. The problem is explored by Monte Carlo simulations with the maximum likelihood (ML) method. Both correct and false distributional assumptions are considered. In the first case the two-parameter extreme value models (Gumbel, log-Gumbel, Weibull) with various coefficients of variation serve as parent distributions. In the case of unknown parent distribution, the Weibull distribution was assumed as estimating model and the truncated Gumbel as parent distribution. The return periods of XM1 and XM2 are determined from the parent distribution. The results are then compared with the case, when return periods of XM1 and XM2 are defined by their plotting positions. The results are presented in terms of bias, root mean square error and the probability of overestimation of the quantile with 100-year return period. The results of the research indicate that the maximal profit of inclusion of pre-instrumental foods in the FFA may prove smaller than the cost of reconstruction of historical hydrological information.

  19. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  20. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system

  1. Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.

    This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography andmore » vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.« less

  2. Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045

    PubMed Central

    Fitzpatrick, Melanie F.; Spanger-Siegfried, Erika

    2017-01-01

    Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001–2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years. PMID:28158209

  3. Flood Frequency Analysis For Partial Duration Series In Ganjiang River Basin

    NASA Astrophysics Data System (ADS)

    zhangli, Sun; xiufang, Zhu; yaozhong, Pan

    2016-04-01

    Accurate estimation of flood frequency is key to effective, nationwide flood damage abatement programs. The partial duration series (PDS) method is widely used in hydrologic studies because it considers all events above a certain threshold level as compared to the annual maximum series (AMS) method, which considers only the annual maximum value. However, the PDS has a drawback in that it is difficult to define the thresholds and maintain an independent and identical distribution of the partial duration time series; this drawback is discussed in this paper. The Ganjiang River is the seventh largest tributary of the Yangtze River, the longest river in China. The Ganjiang River covers a drainage area of 81,258 km2 at the Wanzhou hydrologic station as the basin outlet. In this work, 56 years of daily flow data (1954-2009) from the Wanzhou station were used to analyze flood frequency, and the Pearson-III model was employed as the hydrologic probability distribution. Generally, three tasks were accomplished: (1) the threshold of PDS by percentile rank of daily runoff was obtained; (2) trend analysis of the flow series was conducted using PDS; and (3) flood frequency analysis was conducted for partial duration flow series. The results showed a slight upward trend of the annual runoff in the Ganjiang River basin. The maximum flow with a 0.01 exceedance probability (corresponding to a 100-year flood peak under stationary conditions) was 20,000 m3/s, while that with a 0.1 exceedance probability was 15,000 m3/s. These results will serve as a guide to hydrological engineering planning, design, and management for policymakers and decision makers associated with hydrology.

  4. Extent and frequency of floods on the Schuylkill River near Phoenixville and Pottstown, Pennsylvania

    USGS Publications Warehouse

    Busch, William F.; Shaw, Lewis C.

    1973-01-01

    Knowledge of the frequency and extent of flooding is an important requirement for the design of all works of man bordering or encroaching on flood plains. The proper design of bridges, culverts, dams, highways, levees, reservoirs, sewage-disposal systems, waterworks and all structures on the flood plains of streams requires careful consideration of flood hazards. -1- By use of relations presented in this report, the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Schuylkill River from Oaks to Pottstown. These flood data are presented so that regulatory agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U. S. Geological Survey regard this program of flood-plain-inundation studies as a positive step toward flood-damage prevention. Flood-plaininundation studies are a prerequisite to flood-plain management which may include a mixture of flood-control structures and/or land-use regulations. Both physical works and flood-plain regulations are included in the Comprehensive Plan for development of the Delaware River basin, of which the Schuylkill River is a part. Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rests with State, and local interests.

  5. On Flood Frequency in Urban Areas under Changing Conditions and Implications on Stormwater Infrastructure Planning and Design

    NASA Astrophysics Data System (ADS)

    Norouzi, A.; Habibi, H.; Nazari, B.; Noh, S.; Seo, D. J.; Zhang, Y.

    2016-12-01

    With urbanization and climate change, many areas in the US and abroad face increasing threats of flash flooding. Due to nonstationarities arising from changes in land cover and climate, however, it is not readily possible to project how such changes may modify flood frequency. In this work, we describe a simple spatial stochastic model for rainfall-to-areal runoff in urban areas, evaluate climatological mean and variance of mean areal runoff (MAR) over a range of catchment scale, translate them into runoff frequency, which is used as a proxy for flood frequency, and assess its sensitivity to precipitation, imperviousness and soil, and their changes as a function of catchment scale and magnitude of precipitation. The findings indicate that, due to large sensitivity of frequency of MAR to multiple hydrometeorological and physiographic factors, estimation of flood frequency for urban catchments is inherently more uncertain. The approach used in this work is useful in developing bounds for flood frequencies in urban areas under nonstationary conditions arising from urbanization and climate change.

  6. Estimation of frequency based flood peak for an ungauged watershed using field calibration : technical summary.

    DOT National Transportation Integrated Search

    1997-06-01

    This report presents: (1) calculation of flood frequency for the Ward Creek watershed using eight flood prediction models, (2) establishment of the rating curve (stage-discharge relation) for the Ward Creek watershed, (3) evaluation of these flood pr...

  7. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  8. Mapping Coastal Flood Zones for the National Flood Insurance Program

    NASA Astrophysics Data System (ADS)

    Carlton, D.; Cook, C. L.; Weber, J.

    2004-12-01

    The National Flood Insurance Program (NFIP) was created by Congress in 1968, and significantly amended in 1973 to reduce loss of life and property caused by flooding, reduce disaster relief costs caused by flooding and make Federally backed flood insurance available to property owners. These goals were to be achieved by requiring building to be built to resist flood damages, guide construction away from flood hazards, and transferring the cost of flood losses from taxpayers to policyholders. Areas subject to flood hazards were defined as those areas that have a probability greater than 1 percent of being inundated in any given year. Currently over 19,000 communities participate in the NFIP, many of them coastal communities subject to flooding from tides, storm surge, waves, or tsunamis. The mapping of coastal hazard areas began in the early 1970's and has been evolving ever since. At first only high tides and storm surge were considered in determining the hazardous areas. Then, after significant wave caused storm damage to structures outside of the mapped hazard areas wave hazards were also considered. For many years FEMA has had Guidelines and Specifications for mapping coastal hazards for the East Coast and the Gulf Coast. In September of 2003 a study was begun to develop similar Guidelines and Specifications for the Pacific Coast. Draft Guidelines and Specifications will be delivered to FEMA by September 30, 2004. During the study tsunamis were identified as a potential source of a 1 percent flood event on the West Coast. To better understand the analytical results, and develop adequate techniques to estimate the magnitude of a tsunami with a 1 percent probability of being equaled or exceeded in any year, a pilot study has begun at Seaside Oregon. Both the onshore velocity and the resulting wave runup are critical functions for FEMA to understand and potentially map. The pilot study is a cooperative venture between NOAA and USGS that is partially funded by both

  9. Slovak Flood Forecasting Service at the National and International Level

    NASA Astrophysics Data System (ADS)

    Leskova, Danica; Mikuličková, Michaela

    2017-04-01

    National Flood Forecasting Service is based on national legislation /Slovak legislation/ so that it could deal with the flood situation at the local level. Information about international rivers, e.g.: Danube, March (Morava), Uh, and Latorica are received on the basis of bilateral agreements. An important supplementary information is the European Flood Awareness System (EFAS). In this presentation a forecasting system POVAPSYS, which has been in Slovakia in use since 2016, is also shown. The Slovak Hydrometeorological Institute (SHMI) is a partner of EFAS, but simultaneously is a part of consortium of the EFAS Dissemination Centre, and its role is to analyze results of models, to analyze hydrometeorological situation, to disseminate information, and to send flood notifications to the EFAS partners. Both systems will be presented.

  10. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    USGS Publications Warehouse

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  11. Bayesian Non-Stationary Flood Frequency Estimation at Ungauged Basins Using Climate Information and a Scaling Model

    NASA Astrophysics Data System (ADS)

    Lima, C. H.; Lall, U.

    2010-12-01

    Flood frequency statistical analysis most often relies on stationary assumptions, where distribution moments (e.g. mean, standard deviation) and associated flood quantiles do not change over time. In this sense, one expects that flood magnitudes and their frequency of occurrence will remain constant as observed in the historical information. However, evidence of inter-annual and decadal climate variability and anthropogenic change as well as an apparent increase in the number and magnitude of flood events across the globe have made the stationary assumption questionable. Here, we show how to estimate flood quantiles (e.g. 100-year flood) at ungauged basins without needing to consider stationarity. A statistical model based on the well known flow-area scaling law is proposed to estimate flood flows at ungauged basins. The slope and intercept scaling law coefficients are assumed time varying and a hierarchical Bayesian model is used to include climate information and reduce parameter uncertainties. Cross-validated results from 34 streamflow gauges located in a nested Basin in Brazil show that the proposed model is able to estimate flood quantiles at ungauged basins with remarkable skills compared with data based estimates using the full record. The model as developed in this work is also able to simulate sequences of flood flows considering global climate changes provided an appropriate climate index developed from the General Circulation Model is used as a predictor. The time varying flood frequency estimates can be used for pricing insurance models, and in a forecast mode for preparations for flooding, and finally, for timing infrastructure investments and location. Non-stationary 95% interval estimation for the 100-year Flood (shaded gray region) and 95% interval for the 100-year flood estimated from data (horizontal dashed and solid lines). The average distribution of the 100-year flood is shown in green in the right side.

  12. Flood frequency approach in a Mediterranean Flash Flood basin. A case study in the Besòs catchment

    NASA Astrophysics Data System (ADS)

    Velasco, D.; Zanon, F.; Corral, C.; Sempere-Torres, D.; Borga, M.

    2009-04-01

    Flash floods are one of the most devastating natural disasters in the Mediterranean areas. In particular, the region of Catalonia (North-East Spain) is one of the most affected by flash floods in the Iberian Peninsula. The high rainfall intensities generating these events, the specific terrain characteristics giving rise to very fast hydrological responses and the high variability in space and time of both rain and land surface, are the main features of FF and also the main cause of their extreme complexity. Distributed hydrological models have been developed to increase the flow forecast resolution in order to implement effective operational warning systems. Some studies have shown how the distributed-models accuracy is highly sensitive to reduced computational grid scale, so, hydrological model uncertainties must be studied. In these conditions, an estimation of the modeling uncertainty (whatever the accuracy is) becomes highly valuable information to enhance our ability to predict the occurrence of flash flooding. The statistical-distributed modeling approach (Reed, 2004) is proposed in the present study to simulate floods on a small basin and account for hydrologic modeling uncertainty. The Besòs catchment (1020 km2), near Barcelona, has been selected in this study to apply the proposed flood frequency methodology. Hydrometeorological data is available for 11 rain-gauges and 6 streamflow gauges in the last 12 years, and a total of 9 flood events have been identified and analyzed in this study. The DiCHiTop hydrological model (Corral, 2004) was developed to fit operational requirements in the Besòs catchment: distributed, robust and easy to implement. It is a grid-based model that works at a given resolution (here at 1 × 1 km2, the hydrological cell), defining a simplified drainage system at this scale. A loss function is applied at the hydrological cell resolution, provided by a coupled storage model between the SCS model (Mockus, 1957) in urban areas and

  13. Estimation of magnitude and frequency of floods for streams in Puerto Rico : new empirical models

    USGS Publications Warehouse

    Ramos-Gines, Orlando

    1999-01-01

    Flood-peak discharges and frequencies are presented for 57 gaged sites in Puerto Rico for recurrence intervals ranging from 2 to 500 years. The log-Pearson Type III distribution, the methodology recommended by the United States Interagency Committee on Water Data, was used to determine the magnitude and frequency of floods at the gaged sites having 10 to 43 years of record. A technique is presented for estimating flood-peak discharges at recurrence intervals ranging from 2 to 500 years for unregulated streams in Puerto Rico with contributing drainage areas ranging from 0.83 to 208 square miles. Loglinear multiple regression analyses, using climatic and basin characteristics and peak-discharge data from the 57 gaged sites, were used to construct regression equations to transfer the magnitude and frequency information from gaged to ungaged sites. The equations have contributing drainage area, depth-to-rock, and mean annual rainfall as the basin and climatic characteristics in estimating flood peak discharges. Examples are given to show a step-by-step procedure in calculating a 100-year flood at a gaged site, an ungaged site, a site near a gaged location, and a site between two gaged sites.

  14. Framework for National Flood Risk Assessment for Canada

    NASA Astrophysics Data System (ADS)

    Elshorbagy, A. A.; Raja, B.; Lakhanpal, A.; Razavi, S.; Ceola, S.; Montanari, A.

    2016-12-01

    Worldwide, floods have been identified as a standout amongst the most widely recognized catastrophic events, resulting in the loss of life and property. These natural hazards cannot be avoided, but their consequences can certainly be reduced by having prior knowledge of their occurrence and impact. In the context of floods, the terms occurrence and impact are substituted by flood hazard and flood vulnerability, respectively, which collectively define the flood risk. There is a high need for identifying the flood-prone areas and to quantify the risk associated with them. The present study aims at delivering flood risk maps, which prioritize the potential flood risk areas in Canada. The methodology adopted in this study involves integrating various available spatial datasets such as nightlights satellite imagery, land use, population and the digital elevation model, to build a flexible framework for national flood risk assessment for Canada. The flood risk framework assists in identifying the flood-prone areas and evaluating the associated risk. All these spatial datasets were brought to a common GIS platform for flood risk analysis. The spatial datasets deliver the socioeconomic and topographical information that is required for evaluating the flood vulnerability and flood hazard, respectively. Nightlights have been investigated as a tool to be used as a proxy for the human activities to identify areas with regard to economic investment. However, other datasets, including existing flood protection measures, we added to identify a realistic flood assessment framework. Furthermore, the city of Calgary was used as an example to investigate the effect of using Digital Elevation Models (DEMs) of varying resolutions on risk maps. Along with this, the risk map for the city was further enhanced by including the population data to give a social dimension to the risk map. Flood protection measures play a major role by significantly reducing the flood risk of events with a

  15. Cahokia's emergence and decline coincided with shifts of flood frequency on the Mississippi River

    NASA Astrophysics Data System (ADS)

    Munoz, Samuel E.; Gruley, Kristine E.; Massie, Ashtin; Fike, David A.; Schroeder, Sissel; Williams, John W.

    2015-05-01

    Here we establish the timing of major flood events of the central Mississippi River over the last 1,800 y, using floodwater sediments deposited in two floodplain lakes. Shifts in the frequency of high-magnitude floods are mediated by moisture availability over midcontinental North America and correspond to the emergence and decline of Cahokia-a major late prehistoric settlement in the Mississippi River floodplain. The absence of large floods from A.D. 600 to A.D. 1200 facilitated agricultural intensification, population growth, and settlement expansion across the floodplain that are associated with the emergence of Cahokia as a regional center around A.D. 1050. The return of large floods after A.D. 1200, driven by waning midcontinental aridity, marks the onset of sociopolitical reorganization and depopulation that culminate in the abandonment of Cahokia and the surrounding region by A.D. 1350. Shifts in the frequency and magnitude of flooding may be an underappreciated but critical factor in the formation and dissolution of social complexity in early agricultural societies.

  16. Solar modulation of flood frequency in Central Europe during spring and summer on inter-annual to millennial time-scales

    NASA Astrophysics Data System (ADS)

    Czymzik, M.; Muscheler, R.; Brauer, A.

    2015-10-01

    Solar influences on climate variability are one of the most controversially discussed topics in climate research. We analyze solar forcing of flood frequency in Central Europe on inter-annual to millennial time-scales using daily discharge data of River Ammer (southern Germany) back to AD 1926 and revisiting the 5500 year flood layer time-series from varved sediments of the downstream Lake Ammersee. Flood frequency in the discharge record is significantly correlated to changes in solar activity during solar cycles 16-23 (r = -0.47, p < 0.0001, n = 73). Flood layer frequency (n = 1501) in the sediment record depicts distinct multi-decadal variability and significant correlations to 10Be fluxes from a Greenland ice core (r = 0.45, p < 0.0001) and 14C production rates (r =0.36, p < 0.0001), proxy records of solar activity. Flood frequency is higher when solar activity is reduced. These correlations between flood frequency and solar activity might provide empirical support for the solar top-down mechanism expected to modify the mid-latitude storm tracks over Europe by model studies. A lag of flood frequency responses in the Ammer discharge record to changes in solar activity of about one to three years could be explained by a modelled ocean-atmosphere feedback delaying the atmospheric reaction to solar activity variations up to a few years.

  17. Nonstationary frequency analysis for the trivariate flood series of the Weihe River

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Xiong, Lihua

    2016-04-01

    Some intensive human activities such as water-soil conservation can significantly alter the natural hydrological processes of rivers. In this study, the effect of the water-soil conservation on the trivariate flood series from the Weihe River located in the Northwest China is investigated. The annual maxima daily discharge, annual maxima 3-day flood volume and annual maxima 5-day flood volume are chosen as the study data and used to compose the trivariate flood series. The nonstationarities in both the individual univariate flood series and the corresponding antecedent precipitation series generating the flood events are examined by the Mann-Kendall trend test. It is found that all individual univariate flood series present significant decreasing trend, while the antecedent precipitation series can be treated as stationary. It indicates that the increase of the water-soil conservation land area has altered the rainfall-runoff relationship of the Weihe basin, and induced the nonstationarities in the three individual univariate flood series. The time-varying moments model based on the Pearson type III distribution is applied to capture the nonstationarities in the flood frequency distribution with the water-soil conservation land area introduced as the explanatory variable of the flood distribution parameters. Based on the analysis for each individual univariate flood series, the dependence structure among the three univariate flood series are investigated by the time-varying copula model also with the water-soil conservation land area as the explanatory variable of copula parameters. The results indicate that the dependence among the trivariate flood series is enhanced by the increase of water-soil conservation land area.

  18. Decadal changes in the frequency of major floods in near-natural catchments across North America and Europe

    NASA Astrophysics Data System (ADS)

    Hodgkins, Glenn A.; Hannaford, Jamie; Whitfield, Paul H.; Burn, Donald H.; Fleig, Anne; Stahl, Kerstin; Renard, Benjamin; Korhonen, Johanna; Murphy, Conor; Crochet, Philippe; Wilson, Donna; Madsen, Henrik

    2013-04-01

    Recent major floods in North America and Europe have received much press, with some concluding that these floods are more frequent in recent years as a result of anthropogenic warming. There has therefore been considerable scientific effort invested in establishing whether observed flood records show evidence of trends or variability in flood frequency, and to determine whether these patterns can be linked to climatic changes. However, the river catchments used in many published studies are influenced by direct human alteration such as reservoir regulation and urbanisation, which can confound the interpretation of climate-driven variability. Furthermore, a majority of previous studies have analysed changes in low magnitude floods, such as the annual peak flow, at a national scale. Few studies are known that have analysed changes in large floods (greater than 25-year floods) on a continental scale. To fill this research gap, the current study is analysing flood flows from reference hydrologic networks (RHNs) or RHN-like gauges across a large study domain embracing North America and much of Europe. RHNs comprise gauging stations with minimally disturbed catchment conditions, which have a near-natural flow regime and provide good quality data; RHN analyses thus allow hydro-climatic variability to be distinguished from direct artificial disturbances or data inhomogeneities. One of the key innovations in this study is the definition of an RHN-like network on a continental scale. The network incorporates existing, well-established RHNs in Canada, the US, the UK, Ireland and Norway, alongside RHN-like catchments from Europe (France, Switzerland, Iceland, Denmark, Sweden, Finland), which have been incorporated in the network following a major effort to ensure RHN-like status of candidate gauges through consultation with local experts. As the aim of the study is to examine long-term variability in the number of major floods, annual exceedances of 25-, 50-, and 100-year

  19. Improving flash flood frequency analyses by using non-systematic dendrogeomorphic data

    NASA Astrophysics Data System (ADS)

    Mediero, Luis; María Bodoque, Jose; Garrote, Julio; Ballesteros-Cánovas, Juan Antonio; Aroca-Jimenez, Estefania

    2017-04-01

    Flash floods have a rapid hydrological response in catchments with short lag times, characterized by ''peaky'' hydrographs. The peak flows are reached within a few hours, thus giving little or no advance warning to prevent and mitigate flood damage. As a result, flash floods may result in a high social risk, as shown for instance by the 1997 Biescas disaster in Spain. The analysis and management of flood risk are clearly conditioned by data availability, especially in mountain areas where usually flash-floods occur. Nevertheless, in mountain basins there is often short data series available that are not accurate in terms of statistical significance. In addition, when flow data is ready for use maximum annual values are generally not as reliable as average flow values, since conventional stream gauge stations may not record the extreme floods, leading to gaps in the time series. Dendrogeomorphology has been shown to be especially useful for improving flood frequency analyses in catchments where short flood series limit the use of conventional hydrological methods. This study presents pros and cons of using a given probability distribution function, such as the Generalized Extreme Value (GEV), and Bayesian Markov Chain Monte Carlo (MCMC) methods to account for non-systematic data provided by dendrogeomorphic techniques, in order to asses flood quantile estimates accuracy. To this end, we have considered a set of locations in Central Spain, where systematic flow available at a gauging site can be extended with non-systematic data obtained from implementation of dendrogeomorphic techniques.

  20. Flood frequency estimation by national-scale continuous hydrological simulations: an application in Great Britain

    NASA Astrophysics Data System (ADS)

    Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria; Reynard, Nick

    2017-04-01

    Estimation of peak discharge for an assigned return period is a crucial issue in engineering hydrology. It is required for designing and managing hydraulic infrastructure such as dams, reservoirs and bridges. In the UK, the Flood Estimation Handbook (FEH) recommends the use of the index flood method to estimate the design flood as the product of a local scale factor (the index flood, IF) and a dimensionless regional growth factor (GF). For gauged catchments the IF is usually estimated as the median annual maximum flood (QMED), while for ungauged catchments it is computed through multiple linear regression models based on a set of morpho-climatic indices of the basin. The GF is estimated by fitting the annual maxima with the generalised logistic distribution (GL) using two methods depending on the record length and the target return period: single-site or pooled analysis. The single site-analysis estimates the GF from the annual maxima of the subject site alone; the pooled analysis uses data from a set of catchments hydrologically similar to the subject site. In this work estimates of floods up to 100-year return period obtained from the FEH approach are compared to those obtained using Grid-to-Grid, a continuous physically-based hydrological model. The model converts rainfall and potential evapotranspiration into river flows by modelling surface/sub-surface runoff, lateral water movements, and snow-pack. It is configured on a 1km2 grid resolution and it uses spatial datasets of topography, soil, and land cover. It was set up in Great Britain and has been evaluated for the period 1960-2014 in forward-mode (i.e. without parameter calibration) using daily meteorological forcing data. The modelled floods with a given return period (5,10, 30, 50, and 100 years) were computed from the modelled discharge annual maxima and compared to the FEH estimates for 100 catchments in Great Britain. Preliminary results suggest that there is a good agreement between modelled and

  1. Methods for Estimating Magnitude and Frequency of Floods in Rural Basins in the Southeastern United States: South Carolina

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2009-01-01

    For more than 50 years, the U.S. Geological Survey (USGS) has been developing regional regression equations that can be used to estimate flood magnitude and frequency at ungaged sites. Flood magnitude relates to the volume of flow that occurs over some period of time and usually is presented in cubic feet per second. Flood frequency relates to the probability of occurrence of a flood; that is, on average, what is the likelihood that a flood with a specified magnitude will occur in any given year (1 percent chance, 10 percent chance, 50 percent chance, and so on). Such flood estimates are needed for the efficient design of bridges, highway embankments, levees, and other structures near streams. In addition, these estimates are needed for the effective planning and management of land and water resources, to protect lives and property in flood-prone areas, and to determine flood-insurance rates.

  2. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model

    NASA Astrophysics Data System (ADS)

    Samanta, Sailesh; Pal, Dilip Kumar; Palsamanta, Babita

    2018-05-01

    Papua New Guinea (PNG) is saddled with frequent natural disasters like earthquake, volcanic eruption, landslide, drought, flood etc. Flood, as a hydrological disaster to humankind's niche brings about a powerful and often sudden, pernicious change in the surface distribution of water on land, while the benevolence of flood manifests in restoring the health of the thalweg from excessive siltation by redistributing the fertile sediments on the riverine floodplains. In respect to social, economic and environmental perspective, flood is one of the most devastating disasters in PNG. This research was conducted to investigate the usefulness of remote sensing, geographic information system and the frequency ratio (FR) for flood susceptibility mapping. FR model was used to handle different independent variables via weighted-based bivariate probability values to generate a plausible flood susceptibility map. This study was conducted in the Markham riverine precinct under Morobe province in PNG. A historical flood inventory database of PNG resource information system (PNGRIS) was used to generate 143 flood locations based on "create fishnet" analysis. 100 (70%) flood sample locations were selected randomly for model building. Ten independent variables, namely land use/land cover, elevation, slope, topographic wetness index, surface runoff, landform, lithology, distance from the main river, soil texture and soil drainage were used into the FR model for flood vulnerability analysis. Finally, the database was developed for areas vulnerable to flood. The result demonstrated a span of FR values ranging from 2.66 (least flood prone) to 19.02 (most flood prone) for the study area. The developed database was reclassified into five (5) flood vulnerability zones segmenting on the FR values, namely very low (less that 5.0), low (5.0-7.5), moderate (7.5-10.0), high (10.0-12.5) and very high susceptibility (more than 12.5). The result indicated that about 19.4% land area as `very high

  3. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood

  4. Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012

    USGS Publications Warehouse

    Curran, Janet H.; Barth, Nancy A.; Veilleux, Andrea G.; Ourso, Robert T.

    2016-03-16

    for all estimates. Final station flood frequency estimates for all study streamgages are presented for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities.Regional multiple-regression analysis was used to produce equations for estimating flood frequency statistics from explanatory basin characteristics. Basin characteristics, including physical and climatic variables, were updated for all study streamgages using a geographical information system and geospatial source data. Screening for similar-sized nested basins eliminated hydrologically redundant sites, and screening for eligibility for analysis of explanatory variables eliminated regulated peaks, outburst peaks, and sites with indeterminate basin characteristics. An ordinary least‑squares regression used flood-frequency statistics and basin characteristics for 341 streamgages (284 in Alaska and 57 in Canada) to determine the most suitable combination of basin characteristics for a flood-frequency regression model and to explore regional grouping of streamgages for explaining variability in flood-frequency statistics across the study area. The most suitable model for explaining flood frequency used drainage area and mean annual precipitation as explanatory variables for the entire study area as a region. Final regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability discharge in Alaska and conterminous basins in Canada were developed using a generalized least-squares regression. The average standard error of prediction for the regression equations for the various annual exceedance probabilities ranged from 69 to 82 percent, and the pseudo-coefficient of determination (pseudo-R2) ranged from 85 to 91 percent.The regional regression equations from this study were incorporated into the U.S. Geological Survey StreamStats program for a limited area of the State—the Cook Inlet Basin. StreamStats is a national web

  5. Catchment scale afforestation for mitigating flooding

    NASA Astrophysics Data System (ADS)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  6. Cahokia’s emergence and decline coincided with shifts of flood frequency on the Mississippi River

    PubMed Central

    Munoz, Samuel E.; Gruley, Kristine E.; Massie, Ashtin; Fike, David A.; Schroeder, Sissel; Williams, John W.

    2015-01-01

    Here we establish the timing of major flood events of the central Mississippi River over the last 1,800 y, using floodwater sediments deposited in two floodplain lakes. Shifts in the frequency of high-magnitude floods are mediated by moisture availability over midcontinental North America and correspond to the emergence and decline of Cahokia—a major late prehistoric settlement in the Mississippi River floodplain. The absence of large floods from A.D. 600 to A.D. 1200 facilitated agricultural intensification, population growth, and settlement expansion across the floodplain that are associated with the emergence of Cahokia as a regional center around A.D. 1050. The return of large floods after A.D. 1200, driven by waning midcontinental aridity, marks the onset of sociopolitical reorganization and depopulation that culminate in the abandonment of Cahokia and the surrounding region by A.D. 1350. Shifts in the frequency and magnitude of flooding may be an underappreciated but critical factor in the formation and dissolution of social complexity in early agricultural societies. PMID:25941363

  7. Analyses of flood-flow frequency for selected gaging stations in South Dakota

    USGS Publications Warehouse

    Benson, R.D.; Hoffman, E.B.; Wipf, V.J.

    1985-01-01

    Analyses of flood flow frequency were made for 111 continuous-record gaging stations in South Dakota with 10 or more years of record. The analyses were developed using the log-Pearson Type III procedure recommended by the U.S. Water Resources Council. The procedure characterizes flood occurrence at a single site as a sequence of annual peak flows. The magnitudes of the annual peak flows are assumed to be independent random variables following a log-Pearson Type III probability distribution, which defines the probability that any single annual peak flow will exceed a specified discharge. By considering only annual peak flows, the flood-frequency analysis becomes the estimation of the log-Pearson annual-probability curve using the record of annual peak flows at the site. The recorded data are divided into two classes: systematic and historic. The systematic record includes all annual peak flows determined in the process of conducting a systematic gaging program at a site. In this program, the annual peak flow is determined for each and every year of the program. The systematic record is intended to constitute an unbiased and representative sample of the population of all possible annual peak flows at the site. In contrast to the systematic record, the historic record consists of annual peak flows that would not have been determined except for evidence indicating their unusual magnitude. Flood information acquired from historical sources almost invariably refers to floods of noteworthy, and hence extraordinary, size. Although historic records form a biased and unrepresentative sample, they can be used to supplement the systematic record. (Author 's abstract)

  8. How extreme was the October 2015 flood in the Carolinas? An assessment of flood frequency analysis and distribution tails

    NASA Astrophysics Data System (ADS)

    Phillips, R. C.; Samadi, S. Z.; Meadows, M. E.

    2018-07-01

    This paper examines the frequency, distribution tails, and peak-over-threshold (POT) of extreme floods through analysis that centers on the October 2015 flooding in North Carolina (NC) and South Carolina (SC), United States (US). The most striking features of the October 2015 flooding were a short time to peak (Tp) and a multi-hour continuous flood peak which caused intensive and widespread damages to human lives, properties, and infrastructure. The 2015 flooding was produced by a sequence of intense rainfall events which originated from category 4 hurricane Joaquin over a period of four days. Here, the probability distribution and distribution parameters (i.e., location, scale, and shape) of floods were investigated by comparing the upper part of empirical distributions of the annual maximum flood (AMF) and POT with light- to heavy- theoretical tails: Fréchet, Pareto, Gumbel, Weibull, Beta, and Exponential. Specifically, four sets of U.S. Geological Survey (USGS) gauging data from the central Carolinas with record lengths from approximately 65-125 years were used. Analysis suggests that heavier-tailed distributions are in better agreement with the POT and somewhat AMF data than more often used exponential (light) tailed probability distributions. Further, the threshold selection and record length affect the heaviness of the tail and fluctuations of the parent distributions. The shape parameter and its evolution in the period of record play a critical and poorly understood role in determining the scaling of flood response to intense rainfall.

  9. Estimating flood magnitude and frequency for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood insurance studies, and flood-plain management. Flood-frequency estimates are particularly important in densely populated urban areas. The U.S. Geological Survey (USGS) used a multistate approach to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina (Feaster and others, 2014). The multistate approach has the advantage over a single state approach of increasing the number of streamflow-gaging station (streamgages) available for analysis, expanding the geographical coverage that would allow for application of regional regression equations across state boundaries, and building on a previous flood-frequency investigation of rural streamgages in the Southeastern United States. This investigation was funded as part of a cooperative program of water-resources investigations between the USGS, the South Carolina Department of Transportation, and the North Carolina Department of Transportation. In addition, much of the data and information for the Georgia streamgages was funded through a similar cooperative program with the Georgia Department of Transportation.

  10. Estimation of Flood-Frequency Discharges for Rural, Unregulated Streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Atkins, John T.

    2010-01-01

    Flood-frequency discharges were determined for 290 streamgage stations having a minimum of 9 years of record in West Virginia and surrounding states through the 2006 or 2007 water year. No trend was determined in the annual peaks used to calculate the flood-frequency discharges. Multiple and simple least-squares regression equations for the 100-year (1-percent annual-occurrence probability) flood discharge with independent variables that describe the basin characteristics were developed for 290 streamgage stations in West Virginia and adjacent states. The regression residuals for the models were evaluated and used to define three regions of the State, designated as Eastern Panhandle, Central Mountains, and Western Plateaus. Exploratory data analysis procedures identified 44 streamgage stations that were excluded from the development of regression equations representative of rural, unregulated streams in West Virginia. Regional equations for the 1.1-, 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood discharges were determined by generalized least-squares regression using data from the remaining 246 streamgage stations. Drainage area was the only significant independent variable determined for all equations in all regions. Procedures developed to estimate flood-frequency discharges on ungaged streams were based on (1) regional equations and (2) drainage-area ratios between gaged and ungaged locations on the same stream. The procedures are applicable only to rural, unregulated streams within the boundaries of West Virginia that have drainage areas within the limits of the stations used to develop the regional equations (from 0.21 to 1,461 square miles in the Eastern Panhandle, from 0.10 to 1,619 square miles in the Central Mountains, and from 0.13 to 1,516 square miles in the Western Plateaus). The accuracy of the equations is quantified by measuring the average prediction error (from 21.7 to 56.3 percent) and equivalent years of record (from 2.0 to 70

  11. Towards a systematic approach to comparing distributions used in flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Bobée, B.; Cavadias, G.; Ashkar, F.; Bernier, J.; Rasmussen, P.

    1993-02-01

    The estimation of flood quantiles from available streamflow records has been a topic of extensive research in this century. However, the large number of distributions and estimation methods proposed in the scientific literature has led to a state of confusion, and a gap prevails between theory and practice. This concerns both at-site and regional flood frequency estimation. To facilitate the work of "hydrologists, designers of hydraulic structures, irrigation engineers and planners of water resources", the World Meteorological Organization recently published a report which surveys and compares current methodologies, and recommends a number of statistical distributions and estimation procedures. This report is an important step towards the clarification of this difficult topic, but we think that it does not effectively satisfy the needs of practitioners as intended, because it contains some statements which are not statistically justified and which require further discussion. In the present paper we review commonly used procedures for flood frequency estimation, point out some of the reasons for the present state of confusion concerning the advantages and disadvantages of the various methods, and propose the broad lines of a possible comparison strategy. We recommend that the results of such comparisons be discussed in an international forum of experts, with the purpose of attaining a more coherent and broadly accepted strategy for estimating floods.

  12. A National Assessment of Changes in Flood Exposure in the United States

    NASA Astrophysics Data System (ADS)

    Lam, N.; Qiang, Y.; Cai, H.; Zou, L.

    2017-12-01

    Analyzing flood exposure and its temporal trend is the first step toward understanding flood risk, flood hazard, and flood vulnerability. This presentation is based on a national, county-based study assessing the changes in population and urban areas in high-risk flood zones from 2001-2011 in the contiguous United States. Satellite land use land cover data, Federal Emergency Management Agency (FEMA)'s 100-year flood maps, and census data were used to extract the proportion of developed (urban) land in flood zones by county in the two time points, and indices of difference were calculated. Local Moran's I statistic was applied to identify hotspots of increase in urban area in flood zones, and geographically weighted regression was used to estimate the population in flood zones from the land cover data. Results show that in 2011, an estimate of about 25.3 million people (8.3% of the total population) lived in the high-risk flood zones. Nationally, the ratio of urban development in flood zones is less than the ratio of land in flood zones, implying that Americans were responsive to flood hazards by avoiding development in flood zones. However, this trend varied from place to place, with coastal counties having less urban development in flood zones than the inland counties. Furthermore, the contrast between coastal and inland counties increased during 2001-2011. Finally, several exceptions from the trend (hotspots) were detected, most notably New York City and Miami where significant increases in urban development in flood zones were found. This assessment provides important baseline information on the spatial patterns of flood exposure and their changes from 2001-2011. The study pinpoints regions that may need further investigations and better policy to reduce the overall flood risks. Methodologically, the study demonstrates that pixelated land cover data can be integrated with other natural and human data to investigate important societal problems. The same

  13. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2018-05-01

    Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.

  14. Coastal flood implications of 1.5°C, 2°C and 2.5°C global mean temperature stabilization targets for small island nations

    NASA Astrophysics Data System (ADS)

    Rasmussen, D.; Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.

    2017-12-01

    Sea-level rise (SLR) is magnifying the frequency and severity of flooding in coastal regions. The rate and amount of global-mean SLR is a function of the trajectory of the global mean surface temperature (GMST). Therefore, temperature stabilization targets (e.g., 1.5°C or 2°C, as from the Paris Agreement) have important implications for regulating coastal flood risk. Quantifying the differences in the impact from SLR between these and other GMST stabilization targets is necessary for assessing the benefits and harms of mitigation goals. Low-lying small island nations are particularly vulnerable to inundation and coastal flooding from SLR because building protective and resilient infrastructure may not be physically or economically feasible. For small island nations, keeping GMST below a specified threshold may be the only option for maintaining habitability. Here, we assess differences in the return levels of coastal floods for small island nations between 1.5°C, 2.0°C, and 2.5°C GMST stabilization. We employ probabilistic, localized SLR projections and long-term hourly tide gauge records to construct estimates of local flood risk. We then estimate the number of small island nations' inhabitants at risk for permanent inundation under different GMST stabilization targets.

  15. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  16. A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information

    PubMed Central

    Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter

    2016-01-01

    Abstract This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non‐fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation. PMID:27840456

  17. A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information

    NASA Astrophysics Data System (ADS)

    Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter

    2016-09-01

    This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.

  18. A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information.

    PubMed

    Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter

    2016-09-01

    This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.

  19. Preliminary evaluation of flood frequency relations in the urban areas of Memphis, Tennessee

    USGS Publications Warehouse

    Boning, Charles W.

    1977-01-01

    A storm-runoff relation for streams in the urban areas of Memphis was determined by a statistical evaluation of 59 flood discharges from 19 gaging stations. These flood discharges were related to drainage area, percent imperviousness of the drainage basin, and rainfall occuring over 120-minute periods. The defined relation is Q=m3A*777A - .02 tI,,,,P + 1j-227 (1120).539(t120).40 where Q is flood discharge in cfs, A is drainage area in square miles, IMP is percent imperviousness in the basin, and I120 is rainfall in inches, over 120 minute time period. The defined relation was used to synthesize sets of annual flood peaks for drainage basins ranging from .05 square miles to 10 square miles and imperviousness ranging from 0 to 80 percent for the period of rainfall record at Memphis. From these series of flood peaks, frequency relations were defined and presented for 2, 5, 10, 25, 50 and 100 year recurrent intervals.

  20. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    NASA Technical Reports Server (NTRS)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The

  1. A Methodology for Forecasting Damage & Economic Consequences to Floods: Building on the National Flood Interoperability Experiment (NFIE)

    NASA Astrophysics Data System (ADS)

    Tootle, G. A.; Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Zhang, X.

    2015-12-01

    The National Flood Interoperability Experiment (NFIE) held June 3-July 17, 2015 at the National Water Center (NWC) in Tuscaloosa, Alabama sought to demonstrate an increase in flood predictive capacity for the coterminous United States (CONUS). Accordingly, NFIE-derived technologies and workflows offer the ability to forecast flood damage and economic consequence estimates that coincide with the hydrologic and hydraulic estimations these physics-based models generate. A model providing an accurate prediction of damage and economic consequences is a valuable asset when allocating funding for disaster response, recovery, and relief. Damage prediction and economic consequence assessment also offer an adaptation planning mechanism for defending particularly valuable or vulnerable structures. The NFIE, held at the NWC on The University of Alabama (UA) campus led to the development of this large scale flow and inundation forecasting framework. Currently, the system can produce 15-hour lead-time forecasts for the entire coterminous United States (CONUS). A concept which is anticipated to become operational as of May 2016 within the NWC. The processing of such a large-scale, fine resolution model is accomplished in a parallel computing environment using large supercomputing clusters. Traditionally, flood damage and economic consequence assessment is calculated in a desktop computing environment with a ménage of meteorology, hydrology, hydraulic, and damage assessment tools. In the United States, there are a range of these flood damage/ economic consequence assessment software's available to local, state, and federal emergency management agencies. Among the more commonly used and freely accessible models are the Hydrologic Engineering Center's Flood Damage Reduction Analysis (HEC-FDA), Flood Impact Assessment (HEC-FIA), and Federal Emergency Management Agency's (FEMA's) United States Multi-Hazard (Hazus-MH). All of which exist only in a desktop environment. With this

  2. Implementing the national AIGA flash flood warning system in France

    NASA Astrophysics Data System (ADS)

    Organde, Didier; Javelle, Pierre; Demargne, Julie; Arnaud, Patrick; Caseri, Angelica; Fine, Jean-Alain; de Saint Aubin, Céline

    2015-04-01

    The French national hydro-meteorological and flood forecasting centre (SCHAPI) aims to implement a national flash flood warning system to improve flood alerts for small-to-medium (up to 1000 km2) ungauged basins. This system is based on the AIGA method, co-developed by IRSTEA these last 10 years. The method, initially set up for the Mediterranean area, is based on a simple event-based hourly hydrologic distributed model run every 15 minutes (Javelle et al. 2014). The hydrologic model ingests operational radar-gauge rainfall grids from Météo-France at a 1-km² resolution to produce discharges for successive outlets along the river network. Discharges are then compared to regionalized flood quantiles of given return periods and warnings (expressed as the range of the return period estimated in real-time) are provided on a river network map. The main interest of the method is to provide forecasters and emergency services with a synthetic view in real time of the ongoing flood situation, information that is especially critical in ungauged flood prone areas. In its enhanced national version, the hourly event-based distributed model is coupled to a continuous daily rainfall-runoff model which provides baseflow and a soil moisture index (for each 1-km² pixel) at the beginning of the hourly simulation. The rainfall-runoff models were calibrated on a selection of 700 French hydrometric stations with Météo-France radar-gauge reanalysis dataset for the 2002-2006 period. To estimate model parameters for ungauged basins, the 2 hydrologic models were regionalised by testing both regressions (using different catchment attributes, such as catchment area, soil type, and climate characteristic) and spatial proximity techniques (transposing parameters from neighbouring donor catchments), as well as different homogeneous hydrological areas. The most valuable regionalisation method was determined for each model through jack-knife cross-validation. The system performance was then

  3. Flood-frequency analyses from paleoflood investigations for Spring, Rapid, Boxelder, and Elk Creeks, Black Hills, western South Dakota

    USGS Publications Warehouse

    Harden, Tessa M.; O'Connor, Jim E.; Driscoll, Daniel G.; Stamm, John F.

    2011-01-01

    Flood-frequency analyses for the Black Hills area are important because of severe flooding of June 9-10, 1972, that was caused by a large mesoscale convective system and caused at least 238 deaths. Many 1972 peak flows are high outliers (by factors of 10 or more) in observed records that date to the early 1900s. An efficient means of reducing uncertainties for flood recurrence is to augment gaged records by using paleohydrologic techniques to determine ages and magnitudes of prior large floods (paleofloods). This report summarizes results of paleoflood investigations for Spring Creek, Rapid Creek (two reaches), Boxelder Creek (two subreaches), and Elk Creek. Stratigraphic records and resulting long-term flood chronologies, locally extending more than 2,000 years, were combined with observed and adjusted peak-flow values (gaged records) and historical flood information to derive flood-frequency estimates for the six study reaches. Results indicate that (1) floods as large as and even substantially larger than 1972 have affected most of the study reaches, and (2) incorporation of the paleohydrologic information substantially reduced uncertainties in estimating flood recurrence. Canyons within outcrops of Paleozoic rocks along the eastern flanks of the Black Hills provided excellent environments for (1) deposition and preservation of stratigraphic sequences of late-Holocene flood deposits, primarily in protected slack-water settings flanking the streams; and (2) hydraulic analyses for determination of associated flow magnitudes. The bedrock canyons ensure long-term stability of channel and valley geometry, thereby increasing confidence in hydraulic computations of ancient floods from modern channel geometry. Stratigraphic records of flood sequences, in combination with deposit dating by radiocarbon, optically stimulated luminescence, and cesium-137, provided paleoflood chronologies for 29 individual study sites. Flow magnitudes were estimated from elevations of flood

  4. Magnitude and frequency of floods in Nebraska

    USGS Publications Warehouse

    Beckman, Emil W.

    1976-01-01

    Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.

  5. Magnitude and frequency of floods in the United States, Part 3-A, Ohio River Basin except Cumberland and Tennessee River Basins

    USGS Publications Warehouse

    Speer, Paul R.; Gamble, Charles R.

    1965-01-01

    This report presents a means of determining the probable magnitude and frequency of floods of any recurrence interval from 1.1 to 50 years at most points on streams in the Ohio River basin except Cumberland and Tennessee River basins. Curves are defined that show the relation between the drainage area and the mean annual flood in eight hydrologic areas, and composite frequency curves define the relation of a flood of any recurrence interval from 1.1 to 50 years to the mean annual flood. These two relations are based upon gaging-station records having 10 or more years of record not materially affected by storage or diversion, and the results obtainable from them will represent the magnitude and frequency of natural floods within the range and recurrence intervals defined by the base data. The report also contains a compilation of flood records at all sites in the area at which records have been collected for 5 or more consecutive years. As far as was possible at each location for which discharge has been determined, the tabulations include all floods above a selected base. Where only gage heights have been obtained or where the data did not warrant computation of peach discharges above a selected base, only annual peaks are shown. The maximum known flood discharges for the streamflow stations and miscellaneous points except Ohio River main stem stations, together with areal floods of 10- and 50-year recurrence intervals, are plotted against the size of drainage area for each flood region and hydrologic area to provide a convenient means of judging the frequency of the maximum known floods that have been recorded for these points.

  6. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  7. Policy tenure under the U.S. National Flood Insurance Program (NFIP).

    PubMed

    Michel-Kerjan, Erwann; Lemoyne de Forges, Sabine; Kunreuther, Howard

    2012-04-01

    In the United States, insurance against flood hazard (inland flooding or storm surge from hurricanes) has been provided mainly through the National Flood Insurance Program (NFIP) since 1968. The NFIP covers $1.23 trillion of assets today. This article provides the first analysis of flood insurance tenure ever undertaken: that is, the number of years that people keep their flood insurance policy before letting it lapse. Our analysis of the entire portfolio of the NFIP over the period 2001-2009 reveals that the median tenure of new policies during that time is between two and four years; it is also relatively stable over time and levels of flood hazard. Prior flood experience can affect tenure: people who have experienced small flood claims tend to hold onto their insurance longer; people who have experienced large flood claims tend to let their insurance lapse sooner. To overcome the policy and governance challenges posed by homeowners' inadequate insurance coverage, we discuss policy recommendations that include for banks and government-sponsored enterprises (GSEs) strengthening their requirements and the introduction of multiyear flood insurance contracts attached to the property, both of which are likely to provide more coverage stability and encourage investments in risk-reduction measures. © 2011 Society for Risk Analysis.

  8. NEW STUDIES OF URBAN FLOOD FREQUENCY IN THE SOUTHEASTERN UNITED STATES.

    USGS Publications Warehouse

    Sauer, Vernon B.

    1986-01-01

    Five reports dealing with flood magnitude and frequency in urban areas in the southeastern United States have been published during the past 2 years by the U. S. Geological Survey (USGS). These reports are based on data collected in Tampa and Tallahassee, Florida; Atlanta, Georgia; and several cities in Alabama and Tennessee. Each report contains regression equations useful for estimating flood peaks for selected recurrence intervals at ungauged urban sites. A nationwide study of urban flood characteristics by the USGS published in 1983 contains equations for estimating urban peak discharges for ungauged sites. At the time that the nationwide study was conducted, data from only 35 sites in the southeastern United States were available. The five new reports contain data for 88 additional sites. These new data show that the seven-parameter estimating equations developed in the nationwide study are unbiased and have prediction errors less than those described in the nationwide report.

  9. Flood-rich and flood-poor periods in Spain in 1942-2009

    NASA Astrophysics Data System (ADS)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2016-04-01

    Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Mediero et al. (2015) studied flood trends by using the longest streamflow records available in Europe. They found a decreasing trend in the Atlantic, Continental and Scandinavian regions. More specifically, Mediero et al. (2014) found a general decreasing trend in flood series in Spain in the period 1959-2009. Trends in flood series are usually detected by the Mann-Kendall test applied to a given period. However, the result of the Mann-Kendall test can change in terms of the starting and ending year of the series. Flood oscillations can occur and flood-rich and flood-poor periods could condition the results, especially when they are located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to the longest series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. A flood-rich period in 1950-1970 and a flood-poor period in 1970-1990 are identified in most of the selected sites. The generalised decreasing trend in flood series found by Mediero et al. (2014) could be explained by a flood-rich period placed at the beginning of the series and a flood-poor period located at the end of the series. References: Mediero, L., Kjeldsen, T.R., Macdonald, N., Kohnova, S., Merz, B., Vorogushyn, S., Wilson, D., Alburquerque, T., Blöschl, G., Bogdanowicz, E., Castellarin, A., Hall, J., Kobold, M., Kriauciuniene, J., Lang, M., Madsen, H., Onuşluel Gül, G., Perdigão, R.A.P., Roald, L.A., Salinas, J.L., Toumazis, A.D., Veijalainen, N., Óðinn Þórarinsson. Identification of coherent flood

  10. Flood Hazards - A National Threat

    USGS Publications Warehouse

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  11. Extending the flood record on the Middle Gila River with Holocene stratigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckleberry, G.

    1993-04-01

    Historical changes in flood frequency and magnitude are correlated to changes in channel geometry for the Middle Gila River (MGR) in south-central Arizona. The author has attempted to reconstruct the frequency of large floods on the MGR for the last 1,000 years by looking at the stratigraphic record with the purpose of modeling channel changes during a period of significant local cultural change, i.e., the Hohokam-Pima cultural transition. After distinguishing and mapping geological surfaces in the eastern part of the Gila River Indian Community. The author placed a series of backhoe trenches on late Holocene MGR terraces. He interprets lithologicalmore » discontinuities within overbank deposits as boundaries separating temporally discrete floods. Detrital charcoal from within the stratigraphy was submitted to the National Science Foundation-University of Arizona AMS facility for radiocarbon analysis. The stratigraphic record indicates that a minimum of four large floods have occurred on the MGR since A.D. 1300. Three of these floods may correspond to large historical floods in 1833, 1868, and 1905. If so, then it appears that MGR flood frequency increased after A.D. 1800. There is no evidence for increased flood frequency and channel transformations during the cultural decline of the Hohokam in the 15th century.« less

  12. Magnitude and frequency of floods in the United States, Part 1-B, North Atlantic slope basins, New York to York River

    USGS Publications Warehouse

    Tice, Richard H.

    1968-01-01

    Flood magnitude-frequency relation applicable to streams in the North Atlantic slope basins, New York to York River, Va., are presented in this report.  The relations are based on flood data collected at 487 gaging stations having 5 or more years of record not materially affected by regulation. For sites on most streams, the magnitude of a flood of any given frequency between 1.1 and 50 years can be determined from two curves - one expressing the relation between the mean annual flood and size of draining basin and the other expressing the ratio to the mean annual flood of floods of other recurrence intervals. For New Jersey streams, an adjustment to the mean annual flood is based on the percentage of surface area covered by lakes and swamps in the basin.

  13. Experiences from coordinated national-level landslide and flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé

    2015-04-01

    While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.

  14. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  15. Revisiting regional flood frequency analysis in Slovakia: the region-of-influence method vs. traditional regional approaches

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Kohnová, Silvia; Szolgay, Ján.

    2010-05-01

    During the last 10-15 years, the Slovak hydrologists and water resources managers have been devoting considerable efforts to develop statistical tools for modelling probabilities of flood occurrence in a regional context. Initially, these models followed concepts to regional flood frequency analysis that were based on fixed regions, later the Hosking and Wallis's (HW; 1997) theory was adopted and modified. Nevertheless, it turned out to be that delineating homogeneous regions using these approaches is not a straightforward task, mostly due to the complex orography of the country. In this poster we aim at revisiting flood frequency analyses so far accomplished for Slovakia by adopting one of the pooling approaches, i.e. the region-of-influence (ROI) approach (Burn, 1990). In the ROI approach, unique pooling groups of similar sites are defined for each site under study. The similarity of sites is defined through Euclidean distance in the space of site attributes that had also proved applicability in former cluster analyses: catchment area, afforested area, hydrogeological catchment index and the mean annual precipitation. The homogeneity of the proposed pooling groups is evaluated by the built-in homogeneity test by Lu and Stedinger (1992). Two alternatives of the ROI approach are examined: in the first one the target size of the pooling groups is adjusted to the target return period T of the estimated flood quantiles, while in the other one, the target size is fixed, regardless of the target T. The statistical models of the ROI approach are inter-compared by the conventional regionalization approach based on the HW methodology where the parameters of flood frequency distributions were derived by means of L-moment statistics and a regional formula for the estimation of the index flood was derived by multiple regression methods using physiographic and climatic catchment characteristics. The inter-comparison of different frequency models is evaluated by means of the

  16. Magnitude and frequency of floods in small drainage basins in Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.

    1973-01-01

    A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas

  17. Detection of dominant runoff generation processes in flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Iacobellis, Vito; Fiorentino, Mauro; Gioia, Andrea; Manfreda, Salvatore

    2010-05-01

    the field of statistical hydrology, the role of procedures for parameters estimation and techniques for model selection in the case of nested distributions. References Gioia, A., V. Iacobellis, S. Manfreda, M. Fiorentino, Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295-1307, 2008. Iacobellis, V., and M. Fiorentino (2000), Derived distribution of floods based on the concept of partial area coverage with a climatic appeal, Water Resour. Res., 36(2), 469-482. Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S. and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences, Hydrol. Sci. J., 48(6), 857-880, 2003.

  18. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  19. Evaluation of design flood frequency methods for Iowa streams : final report, June 2009.

    DOT National Transportation Integrated Search

    2009-06-01

    The objective of this project was to assess the predictive accuracy of flood frequency estimation for small Iowa streams based : on the Rational Method, the NRCS curve number approach, and the Iowa Runoff Chart. The evaluation was based on : comparis...

  20. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland

    NASA Astrophysics Data System (ADS)

    Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.

    2017-02-01

    The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.

  1. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only

  2. Sea-level Rise Increases the Frequency of Nuisance Flooding in Coastal Regions

    NASA Astrophysics Data System (ADS)

    Moftakhari Rostamkhani, H.; Aghakouchak, A.; Sanders, B. F.; Feldman, D.; Sweet, W.; Matthew, R.; Luke, A.

    2015-12-01

    The global warming-drivensea-level rise (SLR) posesa serious threat for population and assets in flood-prone coastal zones over the next century. The rate of SLR is accelerated in recent decades and is expected to increase based on current trajectories of anthropogenic activities and greenhouse gas emissions. Over the 20th century, an increase in the frequency of nuisance (minor) flooding has been reported due to the reduced gap between tidal datum and flood stage. Nuisance flooding (NF), however non-destructive, causes public inconvenience, business interruption, and substantial economic losses due to impacts such as road closures and degradation of infrastructure. It also portends an increased risk in severe floods. Here we report substantial increases in NF along the coasts of United States due to SLR over the past decades. We then take the projected SLR under the least and the most extreme representative concentration pathways (e.gRCP2.6 and RCP 8.5) to estimate the increase in NF in the near- (2030) and mid-term (2050) future. The results suggest that projected SLR will cause up to two-fold more frequent NF by 2050, compared with the 20th century. The projected increase in NF will have significant socio-economic impacts and pose public health risks especially in rapidly urbanized coastal regions.

  3. Reinforcing flood-risk estimation.

    PubMed

    Reed, Duncan W

    2002-07-15

    Flood-frequency estimation is inherently uncertain. The practitioner applies a combination of gauged data, scientific method and hydrological judgement to derive a flood-frequency curve for a particular site. The resulting estimate can be thought fully satisfactory only if it is broadly consistent with all that is reliably known about the flood-frequency behaviour of the river. The paper takes as its main theme the search for information to strengthen a flood-risk estimate made from peak flows alone. Extra information comes in many forms, including documentary and monumental records of historical floods, and palaeological markers. Meteorological information is also useful, although rainfall rarity is difficult to assess objectively and can be a notoriously unreliable indicator of flood rarity. On highly permeable catchments, groundwater levels present additional data. Other types of information are relevant to judging hydrological similarity when the flood-frequency estimate derives from data pooled across several catchments. After highlighting information sources, the paper explores a second theme: that of consistency in flood-risk estimates. Following publication of the Flood estimation handbook, studies of flood risk are now using digital catchment data. Automated calculation methods allow estimates by standard methods to be mapped basin-wide, revealing anomalies at special sites such as river confluences. Such mapping presents collateral information of a new character. Can this be used to achieve flood-risk estimates that are coherent throughout a river basin?

  4. Bivariate at-site frequency analysis of simulated flood peak-volume data using copulas

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Viglione, Alberto; Szolgay, Ján.; Blöschl, Günter; Bacigál, Tomáå.¡

    2010-05-01

    In frequency analysis of joint hydro-climatological extremes (flood peaks and volumes, low flows and durations, etc.), usually, bivariate distribution functions are fitted to the observed data in order to estimate the probability of their occurrence. Bivariate models, however, have a number of limitations; therefore, in the recent past, dependence models based on copulas have gained increased attention to represent the joint probabilities of hydrological characteristics. Regardless of whether standard or copula based bivariate frequency analysis is carried out, one is generally interested in the extremes corresponding to low probabilities of the fitted joint cumulative distribution functions (CDFs). However, usually there is not enough flood data in the right tail of the empirical CDFs to derive reliable statistical inferences on the behaviour of the extremes. Therefore, different techniques are used to extend the amount of information for the statistical inference, i.e., temporal extension methods that allow for making use of historical data or spatial extension methods such as regional approaches. In this study, a different approach was adopted which uses simulated flood data by rainfall-runoff modelling, to increase the amount of data in the right tail of the CDFs. In order to generate artificial runoff data (i.e. to simulate flood records of lengths of approximately 106 years), a two-step procedure was used. (i) First, the stochastic rainfall generator proposed by Sivapalan et al. (2005) was modified for our purpose. This model is based on the assumption of discrete rainfall events whose arrival times, durations, mean rainfall intensity and the within-storm intensity patterns are all random, and can be described by specified distributions. The mean storm rainfall intensity is disaggregated further to hourly intensity patterns. (ii) Secondly, the simulated rainfall data entered a semi-distributed conceptual rainfall-runoff model that consisted of a snow routine

  5. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the

  6. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006

    USGS Publications Warehouse

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles

    2012-01-01

    Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates

  7. Near Real Time Flood Warning System for National Capital Territory of Delhi

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.

    2017-12-01

    Extreme floods are common phenomena during Indian Monsoons. The National Capital Territory area of India, Delhi, frequently experiences fluvial as well as pluvial inundation due to its proximity to river Yamuna and poor functioning of its stormwater drainage system. The urban floods result in severe waterlogging and heavy traffic snarls, bringing life in this megapolis to a halt. The city has witnessed six major floods since 1900 and thus its residents are well conscious of potential flood risks but the city still lacks a flood warning system. The flood related risks can be considerably reduced, if not eliminated, by issuing timely warnings and implementing adaptive measures. Therefore, the present study attempts to develop a web based platform that integrates Web-GIS technology and mathematical simulation modelling to provide an effective and reliable early flood warning service for Delhi. The study makes use of India Metorological Department's Doppler radar-derived near real time rainfall estimates of 15 minutes time step. The developed SWMM model has been validated using information from gauges, monitoring sensors and crowd sourcing techniques and utilises capabilities of cloud computing on server side for fast processing. This study also recommends safe evacuation policy and remedial measures for flooding hotspots as part of flood risk management plan. With heightened risk of floods in fast urbanizing areas, this work becomes highly pertinent as flood warning system with adequate lead time can not only save precious lives but can also substantially reduce flood damages.

  8. Magnitude and Frequency of Floods for Urban and Small Rural Streams in Georgia, 2008

    USGS Publications Warehouse

    Gotvald, Anthony J.; Knaak, Andrew E.

    2011-01-01

    A study was conducted that updated methods for estimating the magnitude and frequency of floods in ungaged urban basins in Georgia that are not substantially affected by regulation or tidal fluctuations. Annual peak-flow data for urban streams from September 2008 were analyzed for 50 streamgaging stations (streamgages) in Georgia and 6 streamgages on adjacent urban streams in Florida and South Carolina having 10 or more years of data. Flood-frequency estimates were computed for the 56 urban streamgages by fitting logarithms of annual peak flows for each streamgage to a Pearson Type III distribution. Additionally, basin characteristics for the streamgages were computed by using a geographical information system and computer algorithms. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged urban basins in Georgia. In addition to the 56 urban streamgages, 171 rural streamgages were included in the regression analysis to maintain continuity between flood estimates for urban and rural basins as the basin characteristics pertaining to urbanization approach zero. Because 21 of the rural streamgages have drainage areas less than 1 square mile, the set of equations developed for this study can also be used for estimating small ungaged rural streams in Georgia. Flood-frequency estimates and basin characteristics for 227 streamgages were combined to form the final database used in the regional regression analysis. Four hydrologic regions were developed for Georgia. The final equations are functions of drainage area and percentage of impervious area for three of the regions and drainage area, percentage of developed land, and mean basin slope for the fourth region. Average standard errors of prediction for these regression equations range from 20.0 to 74.5 percent.

  9. National Economic Development Procedures Manual - Agricultural Flood Damage,

    DTIC Science & Technology

    1987-10-01

    based on the conceptual framework of the Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation...the planning process and the NED evaluacion ’- ". procedures for agriculture, as described in the P&G, are thei presented. Also identified are some...ood Ioss compu t at ion approach de ’(’ op4 t hie f I ond damage for hypothetical frequency flood events and weights the result to I V- II1. + . IV-11

  10. 77 FR 23270 - Agency Information Collection Activities: Proposed Collection; Comment Request, National Flood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... information collection that allows the National Flood Insurance Program (NFIP) to facilitate the availability of flood insurance to those who have a need to purchase such. The NFIP will collect information from... available by the NFIP would be adversely affected. DATES: Comments must be submitted on or before June 18...

  11. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).

  12. Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.; Veilleux, Andrea G.

    2014-01-01

    Regression equations, which allow predictions of n-day flood-duration flows for selected annual exceedance probabilities at ungaged sites, were developed using generalized least-squares regression and flood-duration flow frequency estimates at 56 streamgaging stations within a single, relatively uniform physiographic region in the central part of Arizona, between the Colorado Plateau and Basin and Range Province, called the Transition Zone. Drainage area explained most of the variation in the n-day flood-duration annual exceedance probabilities, but mean annual precipitation and mean elevation were also significant variables in the regression models. Standard error of prediction for the regression equations varies from 28 to 53 percent and generally decreases with increasing n-day duration. Outside the Transition Zone there are insufficient streamgaging stations to develop regression equations, but flood-duration flow frequency estimates are presented at select streamgaging stations.

  13. Comparison of the 2-, 25-, and 100-year recurrence interval floods computed from observed data with the 1995 urban flood-frequency estimating equations for Georgia

    USGS Publications Warehouse

    Inman, Ernest J.

    1997-01-01

    Flood-frequency relations were computed for 28 urban stations, for 2-, 25-, and 100-year recurrence interval floods and the computations were compared to corresponding recurrence interval floods computed from the estimating equations from a 1995 investigation. Two stations were excluded from further comparisons or analyses because neither station had a significant flood during the period of observed record. The comparisons, based on the student's t-test statistics at the 0.05 level of significance, indicate that the mean residuals of the 25- and 100-year floods were negatively biased by 26.2 percent and 31.6 percent, respectively, at the 26 stations. However, the mean residuals of the 2-year floods were 2.5 percent lower than the mean of the 2-year floods computed from the equations, and were not significantly biased. The reason for this negative bias is that the period of observed record at the 26 stations was a relatively dry period. At 25 of the 26 stations, the two highest simulated peaks used to develop the estimating equations occurred many years before the observed record began. However, no attempt was made to adjust the estimating equations because higher peaks could occur after the period of observed record and an adjustment to the equations would cause an underestimation of design floods.

  14. National water summary 1988-89: Hydrologic events and floods and droughts

    USGS Publications Warehouse

    Paulson, Richard W.; Chase, Edith B.; Roberts, Robert S.; Moody, David W.

    1991-01-01

    National Water Summary 1988-89 - Hydrologic Events and Floods and Droughts documents the occurrence in the United States, Puerto Rico, and the U.S. Virgin Islands of two types of extreme hydrologic events floods and droughts on the basis of analysis of stream-discharge data. This report details, for the first time, the areal extent of the most notable floods and droughts in each State, portrays their severity in terms of annual peak discharge for floods and annual departure from long-term discharge for droughts for selected stream-gaging stations, and estimates how frequently floods and droughts of such severity can be expected to recur. These two types of extreme hydrologic events are very different in their duration, cause, areal extent, and effect on human activities. Floods are short-term phenomena that typically last only a few hours to a few days and are associated with weather systems that produce unusually large amounts of rain or that cause snow to melt quickly. The large amount of runoff produced causes rivers to overflow their banks and, thus, is highly dangerous to human life and property. In contrast, droughts are long-term phenomena that typically persist for months to a decade or more and are associated with the absence of precipitation producing weather. They affect large geographic areas that can be statewide, regional, or even nationwide in extent. Droughts can cause great economic hardship and even loss of life in developing countries, although the loss of life results almost wholly from diminished water supplies and catastrophic crop failures rather than from the direct and obvious peril to human life that is common to floods. The following discussion is an overview of the three parts of this 1988-89 National Water Summary "Hydrologic Conditions and Water-Related Events, Water Years 1988-89," "Hydrologic Perspectives on Water Issues," and "State Summaries of Floods and Droughts." Background information on sources of atmospheric moisture to the

  15. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  16. Understanding high magnitude flood risk: evidence from the past

    NASA Astrophysics Data System (ADS)

    MacDonald, N.

    2009-04-01

    The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.

  17. The influence of flood frequency, riparian vegetation and threshold on long-term river transport capacity

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2016-04-01

    Climate fluctuations at geological timescales control the capacity of rivers to transport sediment with consequences on geochemical cycles, sedimentary basins dynamics and sedimentation/tectonics interactions. While the impact of differential friction generated by riparian vegetation has been studied for individual flood events, its impact on the long-term sediment transport capacity of rivers, modulated by the frequency of floods remains unknown. Here, we investigate this effect on a simplified river-floodplain configuration obeying observed hydraulic scaling laws. We numerically integrate the full-frequency magnitude distribution of discharge events and its impact on the transport capacity of bedload and suspended material for various level of vegetation-linked differential friction. We demonstrate that riparian vegetation by acting as a virtual confinement of the flow i) increases significantly the instantaneous transport capacity of the river independently of the transport mode and ii) increases the long term bedload transport rates as a function of discharge variability. Our results expose the dominance of flood frequency rather than riparian vegetation on the long term sediment transport capacity. Therefore, flood frequency has to be considered when evaluating long-term bedload transport capacity while floodplain vegetation is important only in high discharge variability regimes. By comparing the transport capacity of unconfined alluvial rivers and confined bedrock gorges, we demonstrate that the latter always presents the highest long term transport capacity at equivalent width and slope. The loss of confinement at the transition between bedrock and alluvial river must be compensated by a widening or a steepening of the alluvial channel to avoid infinite storage. Because steepening is never observed in natural system, we compute the alluvial widening factor value that varies between 3 to 11 times the width of the bedrock channel depending on riparian

  18. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    NASA Astrophysics Data System (ADS)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  19. Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment, case of Ourika watershed (western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    El Alaoui El Fels, Abdelhafid; Alaa, Noureddine; Bachnou, Ali; Rachidi, Said

    2018-05-01

    The development of the statistical models and flood risk modeling approaches have seen remarkable improvements in their productivities. Their application in arid and semi-arid regions, particularly in developing countries, can be extremely useful for better assessment and planning of flood risk in order to reduce the catastrophic impacts of this phenomenon. This study focuses on the Setti Fadma region (Ourika basin, Morocco) which is potentially threatened by floods and is subject to climatic and anthropogenic forcing. The study is based on two main axes: (i) the extreme flow frequency analysis, using 12 probability laws adjusted by Maximum Likelihood method and (ii) the generation of the flood risk indicator maps are based on the solution proposed by the Nays2DFlood solver of the Hydrodynamic model of two-dimensional Saint-Venant equations. The study is used as a spatial high-resolution digital model (Lidar) in order to get the nearest hydrological simulation of the reality. The results showed that the GEV is the most appropriate law of the extreme flows estimation for different return periods. Taking into consideration the mapping of 100-year flood area, the study revealed that the fluvial overflows extent towards the banks of Ourika and consequently, affects some living areas, cultivated fields and the roads that connects the valley to the city of Marrakech. The aim of this study is to propose new technics of the flood risk management allowing a better planning of the flooded areas.

  20. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Candela, A.

    2007-12-01

    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  1. 6-kyr record of flood frequency and intensity in the western Mediterranean Alps - Interplay of solar and temperature forcing

    NASA Astrophysics Data System (ADS)

    Sabatier, Pierre; Wilhelm, Bruno; Ficetola, Gentile Francesco; Moiroux, Fanny; Poulenard, Jérôme; Develle, Anne-Lise; Bichet, Adeline; Chen, Wentao; Pignol, Cécile; Reyss, Jean-Louis; Gielly, Ludovic; Bajard, Manon; Perrette, Yves; Malet, Emmanuel; Taberlet, Pierre; Arnaud, Fabien

    2017-08-01

    The high-resolution sedimentological and geochemical analysis of a sediment sequence from Lake Savine (Western Mediterranean Alps, France) led to the identification of 220 event layers for the last 6000 years. 200 were triggered by flood events and 20 by underwater mass movements possibly related to earthquakes that occurred in 5 clusters of increase seismicity. Because human activity could influence the flood chronicle, the presence of pastures was reconstructed through ancient DNA, which suggested that the flood chronicle was mainly driven by hydroclimate variability. Weather reanalysis of historical floods allow to identify that mesoscale precipitation events called "East Return" events were the main triggers of floods recorded in Lake Savine. The first part of this palaeoflood record (6-4 kyr BP) was characterized by increases in flood frequency and intensity in phase with Northern Alpine palaeoflood records. By contrast, the second part of the record (i.e., since 4 kyr BP) was phased with Southern Alpine palaeoflood records. These results suggest a palaeohydrological transition at approximately 4 kyr BP, as has been previously described for the Mediterranean region. This may have resulted in a change of flood-prone hydro-meteorological processes, i.e., in the balance between occurrence and intensity of local convective climatic phenomena and their influence on Mediterranean mesoscale precipitation events in this part of the Alps. At a centennial timescale, increases in flood frequency and intensity corresponded to periods of solar minima, affecting climate through atmospheric changes in the Euro-Atlantic sector.

  2. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  3. Flood Frequency Analysis Under Non-stationarity Conditions: the Case of Southern Brazilian Hydroelectric Power Plants

    NASA Astrophysics Data System (ADS)

    Bartiko, Daniel; Chaffe, Pedro; Bonumá, Nadia

    2017-04-01

    Floods may be strongly affected by climate, land-use, land-cover and water infrastructure changes. However, it is common to model this process as stationary. This approach has been questioned, especially when it involves estimate of the frequency and magnitude of extreme events for designing and maintaining hydraulic structures, as those responsible for flood control and dams safety. Brazil is the third largest producer of hydroelectricity in the world and many of the country's dams are located in the Southern Region. So, it seems appropriate to investigate the presence of non-stationarity in the affluence in these plants. In our study, we used historical flood data from the Brazilian National Grid Operator (ONS) to explore trends in annual maxima in river flow of the 38 main rivers flowing to Southern Brazilian reservoirs (records range from 43 to 84 years). In the analysis, we assumed a two-parameter log-normal distribution a linear regression model was applied in order to allow for the mean to vary with time. We computed recurrence reduction factors to characterize changes in the return period of an initially estimated 100 year-flood by a log-normal stationary model. To evaluate whether or not a particular site exhibits positive trend, we only considered data series with linear regression slope coefficients that exhibit significance levels (p<0,05). The significance level was calculated using the one-sided Student's test. The trend model residuals were analyzed using the Anderson-Darling normality test, the Durbin-Watson test for the independence and the Breusch-Pagan test for heteroscedasticity. Our results showed that 22 of the 38 data series analyzed have a significant positive trend. The trends were mainly in three large basins: Iguazu, Uruguay and Paranapanema, which suffered changes in land use and flow regularization in the last years. The calculated return period for the series that presented positive trend varied from 50 to 77 years for a 100 year-flood

  4. Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006: Volume 2, North Carolina

    USGS Publications Warehouse

    Weaver, J. Curtis; Feaster, Toby D.; Gotvald, Anthony J.

    2009-01-01

    Reliable estimates of the magnitude and frequency of floods are required for the economical and safe design of transportation and water-conveyance structures. A multistate approach was used to update methods for estimating the magnitude and frequency of floods in rural, ungaged basins in North Carolina, South Carolina, and Georgia that are not substantially affected by regulation, tidal fluctuations, or urban development. In North Carolina, annual peak-flow data available through September 2006 were available for 584 sites; 402 of these sites had a total of 10 or more years of systematic record that is required for at-site, flood-frequency analysis. Following data reviews and the computation of 20 physical and climatic basin characteristics for each station as well as at-site flood-frequency statistics, annual peak-flow data were identified for 363 sites in North Carolina suitable for use in this analysis. Among these 363 sites, 19 sites had records that could be divided into unregulated and regulated/ channelized annual peak discharges, which means peak-flow records were identified for a total of 382 cases in North Carolina. Considering the 382 cases, at-site flood-frequency statistics are provided for 333 unregulated cases (also used for the regression database) and 49 regulated/channelized cases. The flood-frequency statistics for the 333 unregulated sites were combined with data for sites from South Carolina, Georgia, and adjacent parts of Alabama, Florida, Tennessee, and Virginia to create a database of 943 sites considered for use in the regional regression analysis. Flood-frequency statistics were computed by fitting logarithms (base 10) of the annual peak flows to a log-Pearson Type III distribution. As part of the computation process, a new generalized skew coefficient was developed by using a Bayesian generalized least-squares regression model. Exploratory regression analyses using ordinary least-squares regression completed on the initial database of 943

  5. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds

    NASA Astrophysics Data System (ADS)

    England, John F.; Julien, Pierre Y.; Velleux, Mark L.

    2014-03-01

    Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilities (⩽10-4) (return periods >10,000 years). An integrated data-modeling hydrologic hazard framework for physically-based extreme flood hazard estimation is presented. Key elements include: (1) a physically-based runoff model (TREX) coupled with a stochastic storm transposition technique; (2) hydrometeorological information from radar and an extreme storm catalog; and (3) streamflow and paleoflood data for independently testing and refining runoff model predictions at internal locations. This new approach requires full integration of collaborative work in hydrometeorology, flood hydrology and paleoflood hydrology. An application on the 12,000 km2 Arkansas River watershed in Colorado demonstrates that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. Runoff model results are substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations.

  6. On the stationarity of Floods in west African rivers

    NASA Astrophysics Data System (ADS)

    NKA, B. N.; Oudin, L.; Karambiri, H.; Ribstein, P.; Paturel, J. E.

    2014-12-01

    West Africa undergoes a big change since the years 1970-1990, characterized by very low precipitation amounts, leading to low stream flows in river basins, except in the Sahelian region where the impact of human activities where pointed out to justify the substantial increase of floods in some catchments. More recently, studies showed an increase in the frequency of intense rainfall events, and according to observations made over the region, increase of flood events is also noticeable during the rainy season. Therefore, the assumption of stationarity on flood events is questionable and the reliability of flood evolution and climatic patterns is justified. In this work, we analyzed the trends of floods events for several catchments in the Sahelian and Sudanian regions of Burkina Faso. We used thirteen tributaries of large river basins (Niger, Nakambe, Mouhoun, Comoé) for which daily rainfall and flow data were collected from national hydrological and meteorological services of the country. We used Mann-Kendall and Pettitt tests to detect trends and break points in the annual time series of 8 rainfall indices and the annual maximum discharge records. We compare the trends of precipitation indices and flood size records to analyze the possible causality link between floods size and rainfall pattern. We also analyze the stationary of the frequency of flood exceeding the ten year return period level. The samples were extracted by a Peak over threshold method and the quantification of change in flood frequency was assessed by using a test developed by Lang M. (1995). The results exhibit two principal behaviors. Generally speaking, no trend is detected on catchments annual maximum discharge, but positive break points are pointed out in a group of three right bank tributaries of the Niger river that are located in the sahelian region between 300mm to 650mm. These same catchments show as well an increase of the yearly number of flood greater than the ten year flood since

  7. Estimating the magnitude and frequency of floods for streams in west-central Florida, 2001

    USGS Publications Warehouse

    Hammett, Kathleen M.; DelCharco, Michael J.

    2005-01-01

    Flood discharges were estimated for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for 94 streamflow stations in west-central Florida. Most of the stations are located within the 10,000 square-mile, 16-county area that forms the Southwest Florida Water Management District. All stations had at least 10 years of homogeneous record, and none have flood discharges that are significantly affected by regulation or urbanization. Guidelines established by the U.S. Water Resources Council in Bulletin 17B were used to estimate flood discharges from gaging station records. Multiple linear regression analysis was then used to mathematically relate estimates of flood discharge for selected recurrence intervals to explanatory basin characteristics. Contributing drainage area, channel slope, and the percent of total drainage area covered by lakes (percent lake area) were the basin characteristics that provided the best regression estimates. The study area was subdivided into four geographic regions to further refine the regression equations. Region 1 at the northern end of the study area includes large rivers that are characteristic of the rolling karst terrain of northern Florida. Only a small part of Region 1 lies within the boundaries of the Southwest Florida Water Management District. Contributing drainage area and percent lake area were the most statistically significant basin characteristics in Region 1; the prediction error of the regression equations varied with the recurrence interval and ranged from 57 to 69 percent. In the three other regions of the study area, contributing drainage area, channel slope, and percent lake area were the most statistically significant basin characteristics, and are the three characteristics that can be used to best estimate the magnitude and frequency of floods on most streams within the Southwest Florida Water Management District. The Withlacoochee River Basin dominates Region 2; the prediction error of the regression

  8. A comparison of three approaches to non-stationary flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Debele, S. E.; Strupczewski, W. G.; Bogdanowicz, E.

    2017-08-01

    Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled "Around and about an application of the GAMLSS package in non-stationary flood frequency analysis".

  9. Regional interdisciplinary paleoflood approach to assess extreme flood potential

    USGS Publications Warehouse

    Jarrett, Robert D.; Tomlinson, Edward M.

    2000-01-01

    In the past decade, there has been a growing interest of dam safety officials to incorporate a risk‐based analysis for design‐flood hydrology. Extreme or rare floods, with probabilities in the range of about 10−3 to 10−7 chance of occurrence per year, are of continuing interest to the hydrologic and engineering communities for purposes of planning and design of structures such as dams [National Research Council, 1988]. The National Research Council stresses that as much information as possible about floods needs to be used for evaluation of the risk and consequences of any decision. A regional interdisciplinary paleoflood approach was developed to assist dam safety officials and floodplain managers in their assessments of the risk of large floods. The interdisciplinary components included documenting maximum paleofloods and a regional analyses of contemporary extreme rainfall and flood data to complement a site‐specific probable maximum precipitation study [Tomlinson and Solak, 1997]. The cost‐effective approach, which can be used in many other hydrometeorologic settings, was applied to Elkhead Reservoir in Elkhead Creek (531 km2) in northwestern Colorado; the regional study area was 10,900 km2. Paleoflood data using bouldery flood deposits and noninundation surfaces for 88 streams were used to document maximum flood discharges that have occurred during the Holocene. Several relative dating methods were used to determine the age of paleoflood deposits and noninundation surfaces. No evidence of substantial flooding was found in the study area. The maximum paleoflood of 135 m3 s−1 for Elkhead Creek is about 13% of the site‐specific probable maximum flood of 1020 m3 s−1. Flood‐frequency relations using the expected moments algorithm, which better incorporates paleoflood data, were developed to assess the risk of extreme floods. Envelope curves encompassing maximum rainfall (181 sites) and floods (218 sites) were developed for northwestern

  10. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the

  11. Flooding in Illinois, April-June 2002

    USGS Publications Warehouse

    Avery, Charles; Smith, D.F.

    2002-01-01

    Widespread flooding occurred throughout most of Illinois in spring 2002 as a result of multiple intense rainstorms that moved through the State during an extended 2-month period from the third week in April through the month of May in central and southern Illinois, the first week in June in northern Illinois, and the second week in June in west-central Illinois. The scale of flooding was highly variable in time and intensity throughout the State. A Federal disaster was declared for central and southern Illinois to deal with the extensive damage incurred during the severe weather, and to provide emergency aid relief. Discharge and stage records for the flood periods described above are presented for 193 streamflow-gaging stations throughout Illinois and in drainages just upstream of the State. New maximum instantaneous discharge was recorded at 12 stations during this flood period, and new maximum stage was recorded at 15 stations. Flood stage was exceeded for at least 1 day during this 2-month period at 67 of the 82 stations with established flood-stage elevations given by the National Weather Service. Of the 162 streamflowgaging stations with an established flood-frequency distribution, a 5-year or greater flood discharge was recorded at 87 stations, and a 100-year or greater flood discharge occurred at six stations.

  12. Extent and frequency of inundation of Schuylkill River flood plain from Conshohocken to Philadelphia, Pennsylvania

    USGS Publications Warehouse

    Alter, A.T.

    1966-01-01

    Information on flood conditions plays an important part in the development and use of river valleys. This report presents maps, profiles, and flood-frequency relations developed from past flood experience on the Schuylkill River from Conshohocken to Philadelphia, Pa. The maps and profiles are used to define the areal extent and depth of flooding of the August 24, 1933, and August 19, 1955, floods. The flood of October 4, 1869, which is the greatest flood known on the lower Schuylkill River, is presented on the flood profile and on the ten cross sections. The area inundated by the 1869 flood is not defined because insufficient data are available and because hydrologic and hydraulic conditions have undoubtedly changed to such an extent that such a definition would have little present significance. The basic flood data were prepared to aid individuals, organizations, and governmental agencies in making sound decisions for the safe and economical development of the lower Schuylkill River valley. Recommendations for land use, or suggestions for limitations of land use, are not made in this report.The responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain regulations to achieve such optimum use rests with the State and local interests. The preparation of this report was undertaken after consultation with representatives of the Philadelphia City Planning Commission and the Montgomery County Planning Commission who expressed the need for flood-plain information and their willingness to consider floodplain regulations.The area covered by this report extends downstream along the Schuylkill River from Plymouth Dam in Conshohocken to the mouth of Wissahickon Creek in Philadelphia. Flooding along Wissahickon Creek is not included in the report. The reach studied extends from 13.0 miles to 21.0 miles upstream from the river mouth. All river distances used in the report are river miles upstream from the mouth of the

  13. Floods in the United States: Magnitude and frequency

    USGS Publications Warehouse

    Jarvis, Clarence S.; ,

    1936-01-01

    From time immemorial floods have transformed beneficent river waters into a menace to humanity. Man's progress toward economic stability has been repeatedly halted or even thrown backward by the interruption of his efforts to make effective use of rivers and of valley lands. This handicap is not imposed by the destructiveness of large rivers alone, or of rivers in widely separated areas, for there are few if any streams, brooks, or rivulets that are not subject to flows beyond their channel capacities. Yet, though man for ages has suffered seriously from recurring floods, he has not been deterred from continuing to extend his activities in areas that are virtually foredoomed to flood damage.Today in the United States serious floods may occur in any section in any year, and even, in some regions, several times a year. Many of these floods leave behind them the tragedy of death and disease and of property irreparably damaged. The aggregate direct property damage caused by floods in this country has been estimated roughly to average $35,000,000 a year. In addition there are serious indirect and intangible losses of great but not precisely calculable magnitude.

  14. Mortality from flash floods: a review of national weather service reports, 1969-81.

    PubMed Central

    French, J; Ing, R; Von Allmen, S; Wood, R

    1983-01-01

    Of all weather-related disasters that occur in the United States, floods are the main cause of death, and most flood-related deaths are attributed to flash floods. Whenever a weather-related disaster involves 30 or more deaths or more than $100 million in property damage, the National Weather Service (NWS) forms a survey team to investigate the disaster and write a report of findings. All NWS survey reports on flash floods issued during 1969-81 were reviewed to determine the mortality resulting from such floods, the effect of warnings on mortality, and the circumstances contributing to death. A total of 1,185 deaths were associated with 32 flash floods, an average of 37 deaths per flash flood. The highest average number of deaths per event was associated with the four flash floods in which dams broke after heavy rains. Although there were 18 flash floods in 1977-81 and only 14 in 1969-76, the number of deaths was 2 1/2 times greater during the earlier period. More than twice as many deaths were associated with flash floods for which the survey team considered the warnings inadequate than with those with warnings considered adequate. Ninety-three percent of the deaths were due to drowning and 42 percent of these drownings were car related. The other drownings occurred in homes, at campsites, or when persons were crossing bridges and streams. The need for monitoring dams during periods of heavy rainfall is highlighted. PMID:6419273

  15. Peak Discharge, Flood Frequency, and Peak Stage of Floods on Big Cottonwood Creek at U.S. Highway 50 Near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    DOT National Transportation Integrated Search

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at ...

  16. Peak-flow frequency and extreme flood potential for streams in the vicinity of the Highland Lakes, central Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.; Lanning-Rush, Jennifer

    1996-01-01

    The Highland Lakes on the Colorado River are in an area periodically threatened by large storms and floods. Many storms exceeding 10 inches (in.) in depth have been documented in the area, including some with depths approaching 40 in. These storms typically produce large peak discharges that often threaten lives and property. The storms sometimes occur with little warning. Steep stream slopes and thin soils characteristic of the area often cause large peak discharges and rapid movement of floods through watersheds. A procedure to predict the discharge associated with large floods is needed for the area so that appropriate peak discharges can be used in the design of flood plains, bridges, and other structures.The U.S. Geological Survey (USGS), in cooperation with the Lower Colorado River Authority (LCRA), studied flood peaks for streams in the vicinity of the Highland Lakes of central Texas. The Highland Lakes are a series of reservoirs constructed on the Colorado River. The chain of lakes (and year each was completed) comprises Lake Buchanan (1937), Inks Lake (1938), Lake Lyndon B. Johnson (1950), Lake Marble Falls (1951), Lake Travis (1942), and lake Austin (1890). The study area (fig. 1), which includes all or parts of 21 counties in the vicinity of the Highland Lakes, was selected because most streams in the area have flood characteristics similar to streams entering the Highland Lakes. The entire study area is in a region subject to large storms.The purpose of this report is to present (1) peak-flow frequency data for stations and equations to estimate peak-flow frequency for large streams with natural drainage basins in the vicinity of the Highland Lakes, and (2) a technique to estimate the extreme flood peak discharges for the large streams in the vicinity of the Highland Lakes. Peak-flow frequency in this report refers to the peak discharges for recurrence intervals of 2,5, 10,25,50, and 100 years. A large stream is defined as having a contributing drainage

  17. Future Changes in Autumn Flood Type and Frequency in Pacific Northwest North America

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Cannon, A. J.; Radic, V.; Moore, R. D.; Dery, S. J.; Jackson, P. L.; Anslow, F. S.

    2013-12-01

    During the 20th and early 21st century, autumn storms in the Pacific Northwest of North America - PNWNA (coastal British Columbia and Washington) caused widespread flooding and landslides. Understanding how these intense storms are likely to change in the future is important given their potential to harm people and cause widespread damage, but assessing these changes using climate models is difficult. Parameterization of precipitation in general circulation and regional climate models (GCM, RCM) is prone to error, especially in the mountainous terrain of the PNWNA. High computational demands of RCMs also limits their use in assessing changes in flood type and frequency for a suite of GCM and emission scenarios. We instead focus our efforts on understanding atmospheric circulation patterns responsible for historical autumn flooding (15 August - 31 December) and examine how these synoptic conditions are likely to change under future emission scenarios. Our analysis includes identification of extreme events (runoff and precipitation) in streamflow and precipitation records from coastal Washington and British Columbia for the period 1948-2010. Our methods to link the instrumental record of extreme autumn events to atmospheric conditions (500 and 850 hPa geopotential height and integrated vapor transport obtained from NCEP and CFSR reanalysis) include: (1) compositing of streamflow and precipitation events (environment-to-circulation); (2) self organizing map synoptic classification (circulation-to-environment); and (3) regression tree synoptic classification (hybrid of environment-to-circulation and circulation-to-environment). We then evaluate changes in flood-generating synoptic types in the CMIP5 ensemble over the period 2010-2100. Our analysis indicates that, as expected, most floods are associated with atmospheric river events that are commonly associated with upper level, quasi stationary low- and high-pressure systems respectively located in the Gulf of Alaska

  18. Prehistoric floods on the Tennessee River—Assessing the use of stratigraphic records of past floods for improved flood-frequency analysis

    USGS Publications Warehouse

    Harden, Tessa M.; O'Connor, Jim E.

    2017-06-14

    Stratigraphic analysis, coupled with geochronologic techniques, indicates that a rich history of large Tennessee River floods is preserved in the Tennessee River Gorge area. Deposits of flood sediment from the 1867 peak discharge of record (460,000 cubic feet per second at Chattanooga, Tennessee) are preserved at many locations throughout the study area at sites with flood-sediment accumulation. Small exposures at two boulder overhangs reveal evidence of three to four other floods similar in size, or larger, than the 1867 flood in the last 3,000 years—one possibly as much or more than 50 percent larger. Records of floods also are preserved in stratigraphic sections at the mouth of the gorge at Williams Island and near Eaves Ferry, about 70 river miles upstream of the gorge. These stratigraphic records may extend as far back as about 9,000 years ago, giving a long history of Tennessee River floods. Although more evidence is needed to confirm these findings, a more in-depth comprehensive paleoflood study is feasible for the Tennessee River.

  19. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    PubMed Central

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  20. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    PubMed

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  1. 44 CFR Appendix B to Part 62 - National Flood Insurance Program

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false National Flood Insurance Program B Appendix B to Part 62 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... Emergency Management Agency (FEMA)) may enter into an arrangement with individual private sector insurance...

  2. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region

    NASA Astrophysics Data System (ADS)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.

    2015-12-01

    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  3. Comparison between changes in flood hazard and risk in Spain using historical information

    NASA Astrophysics Data System (ADS)

    Llasat, Maria-Carmen; Mediero, Luis; Garrote, Luis; Gilabert, Joan

    2015-04-01

    Recently, the COST Action ES0901 "European procedures for flood frequency estimation (FloodFreq)" had as objective "the comparison and evaluation of methods for flood frequency estimation under the various climatologic and geographic conditions found in Europe". It was highlighted the improvement of regional analyses on at-site estimates, in terms of the uncertainty of quantile estimates. In the case of Spain, a regional analysis was carried out at a national scale, which allows identifying the flow threshold corresponding to a given return period from the observed flow series recorded at a gauging station. In addition, Mediero et al. (2014) studied the possible influence of non-stationarity on flood series for the period 1942-2009. In parallel, Barnolas and Llasat (2007), among others, collected documentary information of catastrophic flood events in Spain for the last centuries. Traditionally, the first approach ("top-down") usually identifies a flood as catastrophic, when its exceeds the 500-year return period flood. However, the second one ("bottom-up approach") accounts for flood damages (Llasat et al, 2005). This study presents a comparison between both approaches, discussing the potential factors that can lead to discrepancies between them, as well as accounting for information about major changes experienced in the catchment that could lead to changes in flood hazard and risk.

  4. Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida

    USGS Publications Warehouse

    Lopez, M.A.; Woodham, W.M.

    1983-01-01

    Hydrologic data collected on nine small urban watersheds in the Tampa Bay area of west-central Florida and a method for estimating peak discharges in the study area are described. The watersheds have mixed land use and range in size from 0.34 to 3.45 square miles. Watershed soils, land use, and storm-drainage system data are described. Urban development ranged from a sparsely populated area with open-ditch storm sewers and 19% impervious area to a completely sewered watershed with 61% impervious cover. The U.S. Geological Survey natural-basin and urban-watershed models were calibrated for the nine watersheds using 5-minute interval rainfall data from the Tampa, Florida, National Weather Service rain gage to simulate annual peak discharge for the period 1906-52. A log-Pearson Type III frequency analysis of the simulated annual maximum discharge was used to determine the 2-, 5-, 10-, 25-, 50-, and 100-year flood discharges for each watershed. Flood discharges were related in a multiple-linear regression to drainage area, channel slope, detention storage area, and an urban-development factor determined by the extent of curb and gutter street drainage and storm-sewer system. The average standard error for the regional relations ranged from + or - 32 to + or - 42%. (USGS)

  5. Duration and Frequency Analysis of Lowland Flooding in Western Murfreesboro, Rutherford County, Tennessee, 1998-2000

    USGS Publications Warehouse

    Law, George S.

    2002-01-01

    Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.

  6. 44 CFR Appendix B to Part 62 - National Flood Insurance Program

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false National Flood Insurance Program B Appendix B to Part 62 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... Plan to Maintain Financial Control for Business Written Under the Write Your Own Program. (a) In...

  7. On the significance of future trends in flood frequencies

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Schulz, K.; Wieder, O.

    2015-12-01

    Floods are a significant threat for alpine headwater catchments and for the forelands. The formation of significant flood events is thereby often coupled on processes occurring in the alpine zone. Rain on snow events are just one example. The prediction of flood risks or trends of flood risks is of major interest to people under direct threat, policy and decision makers as well as for insurance companies. A lot of research was and is currently done in view of detecting future trends in flood extremes or return periods. From a pure physically based point of view, there is strong evidence that those trends exist. But, the central point question is if trends in flood events or other extreme events could be detected from a statistical point of view and on the basis of the available data. This study will investigate this question on the basis of different target parameters and by using long term measurements.

  8. Techniques for estimating the magnitude and frequency of floods in rural basins of South Carolina, 1999

    USGS Publications Warehouse

    Feaster, Toby D.; Tasker, Gary D.

    2002-01-01

    Data from 167 streamflow-gaging stations in or near South Carolina with 10 or more years of record through September 30, 1999, were used to develop two methods for estimating the magnitude and frequency of floods in South Carolina for rural ungaged basins that are not significantly affected by regulation. Flood frequency estimates for 54 gaged sites in South Carolina were computed by fitting the water-year peak flows for each site to a log-Pearson Type III distribution. As part of the computation of flood-frequency estimates for gaged sites, new values for generalized skew coefficients were developed. Flood-frequency analyses also were made for gaging stations that drain basins from more than one physiographic province. The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, updated these data from previous flood-frequency reports to aid officials who are active in floodplain management as well as those who design bridges, culverts, and levees, or other structures near streams where flooding is likely to occur. Regional regression analysis, using generalized least squares regression, was used to develop a set of predictive equations that can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for rural ungaged basins in the Blue Ridge, Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The predictive equations are all functions of drainage area. Average errors of prediction for these regression equations ranged from -16 to 19 percent for the 2-year recurrence-interval flow in the upper Coastal Plain to -34 to 52 percent for the 500-year recurrence interval flow in the lower Coastal Plain. A region-of-influence method also was developed that interactively estimates recurrence- interval flows for rural ungaged basins in the Blue Ridge of South Carolina. The region-of-influence method uses regression techniques to develop a unique

  9. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  10. The Sensetivity of Flood Frequency Analysis on Record Length in Continuous United States

    NASA Astrophysics Data System (ADS)

    Hu, L.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    In flood frequency analysis (FFA), sufficiently long data series are important to get more reliable results. Compared to return periods of interest, at-site FFA usually needs large data sets. Generally, the precision of at site estimators and time-sampling errors are associated with the length of a gauged record. In this work, we quantify the difference with various record lengths. we use generalized extreme value (GEV) and Log Pearson type III (LP3), two traditional methods on annual maximum stream flows to undertake FFA, and propose quantitative ways, relative difference in median and interquartile range (IQR) to compare the flood frequency performances on different record length from selected 350 USGS gauges, which have more than 70 years record length in Continuous United States. Also, we group those gauges into different regions separately based on hydrological unit map and discuss the geometry impacts. The results indicate that long record length can avoid imposing an upper limit on the degree of sophistication. Working with relatively longer record length may lead accurate results than working with shorter record length. Furthermore, the influence of hydrologic unites for the watershed boundary dataset on those gauges also be presented. The California region is the most sensitive to record length, while gauges in the east perform steady.

  11. Flooding and Atmospheric Rivers across the Western United States

    NASA Astrophysics Data System (ADS)

    Villarini, G.; Barth, N. A.; White, K. D.

    2017-12-01

    Flood frequency analysis across the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood agents, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. Bulletin17B and its proposed update (Draft Bulletin 17C) continue to recognize difficulties in determining flood frequency estimates among streamflow records that contain flood peaks coming from different flood-generating mechanisms, as is the case in the western United States. They recommend developing separate frequency curves when the hydrometeorologic mechanisms that generated the annual peak flows can be separated into distinct subpopulations. Yet challenges arise when trying to consistently quantify the physical (hydrometeorologic) processes that generated the observed flows, and even more when trying to account for them in flood frequency estimation. This study provides a general statistical framework to perform a process-driven flood frequency analysis using a weighted mixed population approach, highlighting the role that ARs play on the flood peak distribution.

  12. Estimating the magnitude of peak discharges for selected flood frequencies on small streams in South Carolina (1975)

    USGS Publications Warehouse

    Whetstone, B.H.

    1982-01-01

    A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)

  13. Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2006-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same

  14. Lake Sediments show the Frequency of 21st Century Extreme Flooding in the UK is Unprecedented

    NASA Astrophysics Data System (ADS)

    Chiverrell, R. C.; Sear, D. A.; Warburton, J.; Macdonald, N.; Schillereff, D. N.; Dearing, J.; Croudace, I. W. C.

    2016-12-01

    Flooding in northwest England has been reconstructed from the coarse grained units preserved in lake sediment sequences at Bassenthwaite Lake, a record that includes the floods of December 2015 (Storm Desmond) and November 2009 and shows they were the most extreme in over 600 years. The inception and propagation of a lake sediment flood event horizon in the aftermath of the December 2015 storms in the UK has been explored as part of NERC Urgency Grant that focuses on Bassenthwaite Lake, Brotherswater, Buttermere and Ullswater. Our approach involves repeat coring of locations over 6-12 months, sediment trapping, and testing how this recent extreme event has settled into the sediment record. For Bassenthwaite Lake linking our new sediment palaeoflood series to river discharges, provides the first assessment of flood frequency and magnitude based on lake sediments for the UK. We show that recent devastating flooding in NW England in 2009 was the largest event in 415 years, had a recurrence interval far larger (1:9000 year) than conventional analysis based on short term records suggest (1:700 year), and occurred during a cluster of floods that is unprecedented in 600 years. Particle size characteristics of flood laminations, after correction for variations in the stability of catchment sediment sources, were correlated on a hydrodynamic basis with recorded river flows. The particle size flood record is underpinned by a robust chronology to CE 1420 derived from radionuclide (Pb210, Am241, and Cs137) dating and correlations to the rich history of metal (Pb, Zn, Ba and Cu) mining in the catchment accurately recorded in the sediment geochemistry. The sediment palaeoflood series reveals five flood rich periods (CE 1460-1500, 1580-1680, 1780-1820, 1850-1925, 1970-present), and these correspond with positive phases of reconstructed winter NAOI and other Atlantic circulation patterns. The hydro-climatology of the extreme events (top 1% of floods) in our series, show that 67

  15. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling

    NASA Astrophysics Data System (ADS)

    Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2017-11-01

    Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with

  16. Precipitation-runoff, suspended-sediment, and flood-frequency characteristics for urbanized areas of Elmendorf Air Force Base, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1999-01-01

    The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff

  17. 76 FR 70745 - Agency Information Collection Activities: Proposed Collection; Comment Request; National Flood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID: FEMA-2011-0034...; National Flood Insurance Program--Mortgage Portfolio Protection Program AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: The Federal Emergency Management Agency, as part of its...

  18. Magnitude and frequency of flooding on the Myakka River, Southwest Florida

    USGS Publications Warehouse

    Hammett, K.M.; Turner, J.F.; Murphy, W.R.

    1978-01-01

    Increasing numbers of urban and agricultural developments are being located on waterfront property in the Myakka River flood plain in southwest Florida. Under natural conditions, a large depression, Tatum Sawgrass, was available as a flood storage area in the upper Myakka River basin. Construction of dikes across the lower part of Tatum Sawgrass has restricted use of the depression for temporary storage of Myakka River flood water overflow, and has resulted in increased flood-peak discharges and flood heights in downstream reaches of the Myakka River. The difference between natural and diked condition flood-peak discharges and flood heights is presented to illustrate the effects of the dikes. Flood-peak discharges, water-surface elevations and flood profiles also are provided for diked conditions. Analytical procedures used to evaluate diking effects are described in detail. The study reach includes Myakka River main stem upstream from U.S. Highway 41, near Myakka Shores in Sarasota County, to State Road 70 near Myakka City in Manatee County (including Tatum Sawgrass and Clay Gully), and Blackburn Canal from Venice By-Way to Myakka River. (Woodard-USGS)

  19. 76 FR 64361 - Agency Information Collection Activities: Proposed Collection; Comment Request; National Flood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID: FEMA-2011-0029...; National Flood Insurance Program Claims Appeals Process AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: The Federal Emergency Management Agency, as part of its continuing effort to...

  20. Comparison of flood frequency estimates from synthetic and observed data on small drainage areas in Mississippi

    USGS Publications Warehouse

    Colson, B.E.

    1986-01-01

    In 1964 the U.S. Geological Survey in Mississippi expanded the small stream gaging network for collection of rainfall and runoff data to 92 stations. To expedite availability of flood frequency information a rainfall-runoff model using available long-term rainfall data was calibrated to synthesize flood peaks. Results obtained from observed annual peak flow data for 51 sites having 16 yr to 30 yr of annual peaks are compared with the synthetic results. Graphical comparison of the 2, 5, 10, 25, 50, and 100-year flood discharges indicate good agreement. The root mean square error ranges from 27% to 38% and the synthetic record bias from -9% to -18% in comparison with the observed record. The reduced variance in the synthetic results is attributed to use of only four long-term rainfall records and model limitations. The root mean square error and bias is within the accuracy considered to be satisfactory. (Author 's abstract)

  1. Looking at flood trends with different eyes: the value of a fuzzy flood classification scheme

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Viviroli, D.; Brunner, M. I.; Seibert, J.

    2016-12-01

    Natural floods can be governed by several processes such as heavy rainfall or intense snow- or glacier-melt. These processes result in different flood characteristics in terms of flood shape and magnitude. Pooling floods of different types might therefore impair the analyses of flood frequencies and trends. Thus, the categorization of flood events into different flood type classes and the determination of their respective frequencies is essential for a better understanding and for the prediction of floods. In reality however most flood events are caused by a mix of processes and a unique determination of a flood type per event often becomes difficult. This study proposes an innovative method for a more reliable categorization of floods according to similarities in flood drivers. The categorization of floods into subgroups relies on a fuzzy decision tree. While the classical (crisp) decision tree allows for the identification of only one flood type per event, the fuzzy approach enables the detection of mixed types. Hence, events are represented as a spectrum of six possible flood types, while a degree of acceptance attributed to each of them specifies the importance of each type during the event formation. Considered types are flash, short rainfall, long rainfall, snow-melt, rainfall-on-snow, and, in high altitude watersheds, also glacier-melt floods. The fuzzy concept also enables uncertainty present in the identification of flood processes and in the method to be incorporated into the flood categorization process. We demonstrate, for a set of nine Swiss watersheds and 30 years of observations, that this new concept provides more reliable flood estimates than the classical approach as it allows for a more dedicated flood prevention technique adapted to a specific flood type.

  2. Interaction between Floods Occurrence and Gender and Age Structure of Population in Belarus

    NASA Astrophysics Data System (ADS)

    Partasenok, Irina; Kvach, Alena

    2017-04-01

    The high spring snow-melting or rainfall flooding is the most important and actual event in hydrological cycle for the territory of Belarus. It caused an inundation that means exceeding of water level in the river above safe line and water floods to the adjacent territories. Inundations led to significant destruction of adjoining territories, huge financial damage and threat for human being. The frequencies of spring flooding in Belarus is defined by intensity of river network, its morphometric characteristics and hydrometeorological conditions during the season before floods. The aim of the present study is to estimate the spatial distribution of flood inundation frequency and gender and age structure of national population which might be suffer under extreme phenomena on the rivers. We analysed dangerous thresholds in the river water levels and the frequency of floods of various severity within different river basins, quantity of men and women and their ratio, the quantity of people in the age upper 70 years old as a most sensitive to the flood risk group of population and ratio of rural houses to the entire housing resources as a most vulnerable infrastructure in the different regions of the country. During floods the dangerous levels which cause the inundation have been recorded in the 4 largest river basins passes the territory of Belarus. The most frequent inundations (every two years) occur in the south of the country in the Prypyat` river basin, and in the Dnepr river basin (every 4-5 years) on the majority of the rivers. The hypothesis of our study is that quantity of women population is higher in the flood risk regions (we defined 30 regions with highly frequent inundations) and their ratio high with the age. The majority of them live in potential flood dangerous regions. The strong connections between size of the river basin, its potential flood risk and quantity of population in the region was established. The ratio of men and women over country varied

  3. Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne)

    NASA Astrophysics Data System (ADS)

    Giguet-Covex, Charline; Arnaud, Fabien; Enters, Dirk; Poulenard, Jérôme; Millet, Laurent; Francus, Pierre; David, Fernand; Rey, Pierre-Jérôme; Wilhelm, Bruno; Delannoy, Jean-Jacques

    2012-01-01

    In central Western Europe, several studies have shown that colder Holocene periods, such as the Little Ice Age, also correspond to wet periods. However, in mountain areas which are highly sensitive to erosion processes and where precipitation events can be localized, past evolution of hydrological activity might be more complicated. To assess these past hydrological changes, a paleolimnological approach was applied on a 13.4-m-long sediment core taken in alpine Lake Anterne (2063 m asl) and representing the last 3.5 ka. Lake sedimentation is mainly composed of flood deposits triggered by precipitation events. Sedimentological and geochemical analyses show that floods were more frequent during cold periods while high-intensity flood events occurred preferentially during warmer periods. In mild temperature conditions, both flood patterns are present. This underlines the complex relationship between flood hazards and climatic change in mountain areas. During the warmer and/or dryer times of the end of Iron Age and the Roman Period, both the frequency and intensity of floods increased. This is interpreted as an effect of human-induced clearing for grazing activities and reveals that anthropogenic interferences must be taken into account when reconstructing climatic signals from natural archives.

  4. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is

  5. Fragmented patterns of flood change across the United States

    USGS Publications Warehouse

    Archfield, Stacey A.; Hirsch, Robert M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large-scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States.

  6. Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Deweese, M. M.

    2017-12-01

    Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.

  7. A Bayesian Surrogate for Regional Skew in Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Kuczera, George

    1983-06-01

    The problem of how to best utilize site and regional flood data to infer the shape parameter of a flood distribution is considered. One approach to this problem is given in Bulletin 17B of the U.S. Water Resources Council (1981) for the log-Pearson distribution. Here a lesser known distribution is considered, namely, the power normal which fits flood data as well as the log-Pearson and has a shape parameter denoted by λ derived from a Box-Cox power transformation. The problem of regionalizing λ is considered from an empirical Bayes perspective where site and regional flood data are used to infer λ. The distortive effects of spatial correlation and heterogeneity of site sampling variance of λ are explicitly studied with spatial correlation being found to be of secondary importance. The end product of this analysis is the posterior distribution of the power normal parameters expressing, in probabilistic terms, what is known about the parameters given site flood data and regional information on λ. This distribution can be used to provide the designer with several types of information. The posterior distribution of the T-year flood is derived. The effect of nonlinearity in λ on inference is illustrated. Because uncertainty in λ is explicitly allowed for, the understatement in confidence limits due to fixing λ (analogous to fixing log skew) is avoided. Finally, it is shown how to obtain the marginal flood distribution which can be used to select a design flood with specified exceedance probability.

  8. Somerset County Flood Information System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in

  9. Flash floods in the Tatra Mountain streams: frequency and triggers.

    PubMed

    Ballesteros-Cánovas, J A; Czajka, B; Janecka, K; Lempa, M; Kaczka, R J; Stoffel, M

    2015-04-01

    Flash floods represent a frequently recurring natural phenomenon in the Tatra Mountains. On the northern slopes of the mountain chain, located in Poland, ongoing and expected future changes in climate are thought to further increase the adverse impacts of flash floods. Despite the repeat occurrence of major floods in the densely populated foothills of the Polish Tatras, the headwaters have been characterized by a surprising lack of data, such that any analysis of process variability or hydrometeorological triggers has been largely hampered so far. In this study, dendrogeomorphic techniques have been employed in four poorly-gauged torrential streams of the northern slope of the Tatra Mountains to reconstruct temporal and spatial patterns of past events. Using more than 1100 increment cores of trees injured by past flash floods, we reconstruct 47 events covering the last 148 years and discuss synoptic situations leading to the triggering of flash floods with the existing meteorological and flow gauge data. Tree-ring analyses have allowed highlighting the seasonality of events, providing new insights about potential hydrometeorological triggers as well as a differentiating flash flood activity between catchments. Results of this study could be useful to design future strategies to deal with flash flood risks at the foothills of the Polish Tatras and in the Vistula River catchment. Copyright © 2014. Published by Elsevier B.V.

  10. Floods in a changing climate

    Treesearch

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  11. Fragmented patterns of flood change across the United States

    PubMed Central

    Hirsch, R. M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Abstract Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large‐scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States. PMID:27917010

  12. Paleohydrology of flash floods in small desert watersheds in western Arizona

    NASA Astrophysics Data System (ADS)

    House, P. Kyle; Baker, Victor R.

    2001-06-01

    In this study, geological, historical, and meteorological data were combined to produce a regional chronology of flood magnitude and frequency in nine small basins (7-70 km2). The chronology spans more than 1000 years and demonstrates that detailed records of flood magnitude and frequency can be compiled in arid regions with little to no conventional hydrologic information. The recent (i.e., post-1950) flood history was evaluated by comparing a 50-year series of aerial photographs with precipitation data, ages of flood-transported beer cans, anthropogenic horizons in flood sediments, postbomb 14C dates on flotsam, and anecdotal accounts. Stratigraphic analysis of paleoflood deposits extended the regional flood record in time, and associated flood magnitudes were determined by incorporating relict high-water evidence into a hydraulic model. The results reveal a general consistency among the magnitudes of the largest floods in the historical and the paleoflood records and indicate that the magnitudes and relative frequencies of actual large floods are at variance with "100-year" flood magnitudes predicted by regional flood frequency models. This suggests that the predictive equations may not be appropriate for regulatory, management, or design purposes in the absence of additional, real data on flooding. Augmenting conventional approaches to regional flood magnitude and frequency analysis with real information derived from the alternative methods described here is a viable approach to improving assessments of regional flood characteristics in sparsely gaged desert areas.

  13. 75 FR 42766 - National Flood Insurance Program (NFIP); Assistance to Private Sector Property Insurers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Financial Assistance/ Subsidy Arrangement (Arrangement) to notify private insurance companies (Companies... private insurance companies participating under the current FY2010 Arrangement. Any private insurance...] National Flood Insurance Program (NFIP); Assistance to Private Sector Property Insurers, Availability of...

  14. Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Wong, Michael F.

    1994-01-01

    This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.

  15. Increasing stress on disaster risk finance due to large floods

    NASA Astrophysics Data System (ADS)

    Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen; Mechler, Reinhard; Botzen, Wouter; Bouwer, Laurens; Pflug, Georg; Rojas, Rodrigo; Ward, Philip

    2014-05-01

    Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. To date, little is known about such flood hazard interdependencies across regions, and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins and that these correlations can, or should, be used in national to continental scale risk assessment. We present probabilistic trends in continental flood risk, and demonstrate that currently observed extreme flood losses could more than double in frequency by 2050 under future climate change and socioeconomic development. The results demonstrate that accounting for tail dependencies leads to higher estimates of extreme losses than estimates based on the traditional assumption of independence between basins. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

  16. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    USGS Publications Warehouse

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  17. A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches.

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P

    2017-12-01

    The present work introduces a national scale flood hazard assessment methodology, using multi-criteria analysis and artificial neural networks (ANNs) techniques in a GIS environment. The proposed methodology was applied in Greece, where flash floods are a relatively frequent phenomenon and it has become more intense over the last decades, causing significant damages in rural and urban sectors. In order the most prone flooding areas to be identified, seven factor-maps (that are directly related to flood generation) were combined in a GIS environment. These factor-maps are: a) the Flow accumulation (F), b) the Land use (L), c) the Altitude (A), b) the Slope (S), e) the soil Erodibility (E), f) the Rainfall intensity (R), and g) the available water Capacity (C). The name to the proposed method is "FLASERC". The flood hazard for each one of these factors is classified into five categories: Very low, low, moderate, high, and very high. The above factors are combined and processed using the appropriate ANN algorithm tool. For the ANN training process spatial distribution of historical flooded points in Greece within the five different flood hazard categories of the aforementioned seven factor-maps were combined. In this way, the overall flood hazard map for Greece was determined. The final results are verified using additional historical flood events that have occurred in Greece over the last 100years. In addition, an overview of flood protection measures and adaptation policy approaches were proposed for agricultural and urban areas located at very high flood hazard areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hydraulic and hydrologic aspects of flood-plain planning

    USGS Publications Warehouse

    Wiitala, S.W.; Jetter, K.R.; Sommerville, Alan J.

    1961-01-01

    The valid incentives compelling occupation of the flood plain, up to and eve n into the stream channel, undoubtedly have contributed greatly to the development of the country. But the result has been a heritage of flood disaster, suffering, and enormous costs. Flood destruction awakened a consciousness toward reduction and elimination of flood hazards, originally manifested in the protection of existing developments. More recently, increased knowledge of the problem has shown the impracticability of permitting development that requires costly flood protect/on. The idea of flood zoning, or flood-plain planning, has received greater impetus as a result of this realization. This study shows how hydraulic and hydrologic data concerning the flood regimen of a stream can be used in appraising its flood potential and the risk inherent in occupation of its flood plain. The approach involves the study of flood magnitudes as recorded or computed; flood frequencies based1 on experience shown by many years of gaging-station record; use of existing or computed stagedischarge relations and flood profiles; and, where required, the preparation of flood-zone maps to show the areas inundated by floods of several magnitudes and frequencies. The planner can delineate areas subject to inundation by floods o* specific recurrence intervals for three conditions: (a) for the immediate vicinity of a gaging station; (b) for a gaged stream at a considerable distance from a gaging station; and (c) for an ungaged stream. The average depth for a flood of specific frequency can be estimated on the basis of simple measurements of area of drainage basin, width of channel, and slope of streambed. This simplified approach should be useful in the initial stages of flood-plain planning. Brief discussions are included on various types of flood hazards, the effects of urbanization on flood runoff, and zoning considerations.

  19. River flood plains: Some observations on their formation

    USGS Publications Warehouse

    Wolman, M. Gordon; Leopold, Luna Bergere

    1957-01-01

    On many small rivers and most great rivers, the flood plain consists of channel and overbank deposits. The proportion of the latter is generally very small.Frequency studies indicate that the flood plains of many streams of different sizes flowing in diverse physiographic and climatic regions are subject to flooding about once a year.The uniform frequency of flooding of the flood-plain surface and the small amount of deposition observed in great floods (average 0.07 foot) support the conclusion that overbank deposition contributes only a minor part of the material constituting the flood plain. The relatively high velocities (1 to 4 fps) which can occur in overbank flows and the reduction in sediment concentration which often accompanies large floods may also help account for this. Although lateral migration of channels is important in controlling the elevation of the flood plain, rates of migration are extremely variable and alone cannot account for the uniform relation the flood-plain surface bears to the channel.Detailed studies of flood plains in Maryland and in North Carolina indicate that it is difficult to differentiate between channel and overbank deposits in a stratigraphic section alone.Because deposition on the flood plain does not continue indefinitely, the flood-plain surface can only be transformed into a terrace surface by some tectonic or climatic change which alters the regimen of the river and causes it to entrench itself below its established bed and associated flood plain. A terrace, then, is distinguished from a flood plain by the frequency with which each is overflowed.

  20. Climate change, atmospheric rivers, and floods in California - a multimodel analysis of storm frequency and magnitude changes

    USGS Publications Warehouse

    Dettinger, M.

    2011-01-01

    Recent studies have documented the important role that "atmospheric rivers" (ARs) of concentrated near-surface water vapor above the Pacific Ocean play in the storms and floods in California, Oregon, and Washington. By delivering large masses of warm, moist air (sometimes directly from the Tropics), ARs establish conditions for the kinds of high snowlines and copious orographic rainfall that have caused the largest historical storms. In many California rivers, essentially all major historical floods have been associated with AR storms. As an example of the kinds of storm changes that may influence future flood frequencies, the occurrence of such storms in historical observations and in a 7-model ensemble of historical-climate and projected future climate simulations is evaluated. Under an A2 greenhouse-gas emissions scenario (with emissions accelerating throughout the 21st Century), average AR statistics do not change much in most climate models; however, extremes change notably. Years with many AR episodes increase, ARs with higher-than-historical water-vapor transport rates increase, and AR storm-temperatures increase. Furthermore, the peak season within which most ARs occur is commonly projected to lengthen, extending the flood-hazard season. All of these tendencies could increase opportunities for both more frequent and more severe floods in California under projected climate changes. ?? 2011 American Water Resources Association.

  1. Flood Inundation Mapping and Emergency Operations during Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Fang, N. Z.; Cotter, J.; Gao, S.; Bedient, P. B.; Yung, A.; Penland, C.

    2017-12-01

    Hurricane Harvey struck the Gulf Coast as Category 4 on August 25, 2017 with devastating and life-threatening floods in Texas. Harris County received up to 49 inches of rainfall over a 5-day period and experienced flooding level and impacts beyond any previous storm in Houston's history. The depth-duration-frequency analysis reveals that the areal average rainfall for Brays Bayou surpasses the 500-year rainfall in both 24 and 48 hours. To cope with this unprecedented event, the researchers at the University of Texas at Arlington and Rice University worked closely with the U.S. Army Corps of Engineers (USACE), the National Weather Service (NWS), the Texas Division of Emergency Management (TDEM), Walter P. Moore and Associates, Inc. and Halff Associates, to conduct a series of meteorological, hydrologic and hydraulic analyses to delineate flood inundation maps. Up to eight major watersheds in Harris County were delineated based the available QPE data from WGRFC. The inundation map over Brays Bayou with their impacts from Hurricane Harvey was delineated in comparison with those of 100-, 500-year, and Probable Maximum Precipitation (PMP) design storms. This presentation will provide insights for both engineers and planners to re-evaluate the existing flood infrastructure and policy, which will help build Houston stronger for future extreme storms. The collaborative effort among the federal, academic, and private entities clearly demonstrates an effective approach for flood inundation mapping initiatives for the nation.

  2. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area

  3. Importance of record length with respect to estimating the 1-percent chance flood

    USGS Publications Warehouse

    Feaster, Toby D.

    2010-01-01

    U.S. Geological Survey (USGS) streamflow gages have been established in every State in the Nation, Puerto Rico, and the Trust Territory of the Pacific Islands. From these st reamflow records, estimates of the magnitude and frequency of floods are often developed and used to design transportation and water- conveyance structures to protect lives and property, and to determine flood-insurance rates. Probably the most recognizable flood statistic computed from USGS stream gaging records is the 1- percent (%) chance flood; better known has the 100-year flood. By definition, this is a flood that has a 1% chance of occurring in any given year. The 1% chance flood is a statistical estimate that can be significantly influenced by length of record and extreme flood events captured in that record. Consequently, it is typically recommended that flood statistics be updated on some regular interval such as every 10 years. This paper examines the influence of record length on the 1% chance flood for the Broad River in Georgia and the substantial difference that can occur in the estimate based on record length and the hydrologic conditions under which that record was collected. 

  4. 7 CFR 1788.3 - Flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Flood insurance. 1788.3 Section 1788.3 Agriculture... Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood hazard areas to the extent available and required under the National Flood...

  5. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  6. Main-channel slopes of selected streams in Iowa for estimation of flood-frequency discharges

    USGS Publications Warehouse

    Eash, David A.

    2003-01-01

    This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating floodfrequency discharges. Multivariable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantifications. The multivariable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantifications of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantifications. Median differences between manual measurements and GIS quantifications of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantifications indicate that use of GIS values of MCS for Region 3 substantially

  7. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    NASA Astrophysics Data System (ADS)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  8. Flood-hazard analysis of four headwater streams draining the Argonne National Laboratory property, DuPage County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.

    2016-11-22

    Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.

  9. Determination of Flood Reduction Alternatives for Climate Change Adaptation in Gyeongancheon basin

    NASA Astrophysics Data System (ADS)

    Han, D.; Joo, H. J.; Jung, J.; Kim, H. S.

    2017-12-01

    Recently, the frequency of extreme rainfall event has increased due to the climate change and the impermeable area in an urban watershed has also increased due to the rapid urbanization. Therefore, the flood risk is increasing and we ought to prepare countermeasures for flood damage reduction. For the determination of appropriate measures or alternatives, firstly, this study estimated the frequency based rainfall considering the climate change according to the each target period(reference : 1971˜2010, Target period Ⅰ : 2011˜2040, Target period Ⅱ : 2041˜2070, Target period Ⅲ : 2071˜2100). Then the future flood discharge was computed by using HEC-HMS model. We set 5 sizes of drainage pumps and detention ponds respectively as the flood reduction alternatives and the flood level in the river was obtained by each alternative through HEC-RAS model. The flood inundation map was constructed using topographical data and flood water level in the river and the economic analysis was conducted for the flood damage reduction studies using Multi Dimensional Flood Damage Analysis (MD-FDA) tool. As a result of the effectiveness analysis of the flood reduction alternatives, the flood level by drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of the detention pond. The flooded area was shrunk by up to 32.64% from 0.3% and inundation depth was also dropped. As a result of a comparison of the Benefit/Cost ratio estimated by the economic analysis, a detention pond E in the target period Ⅰ and the pump D in the periods Ⅱ and Ⅲ were considered as the appropriate alternatives for the flood damage reduction under the climate change. AcknowledgementsThis research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)

  10. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  11. Inclusion of historical information in flood frequency analysis using a Bayesian MCMC technique: a case study for the power dam Orlík, Czech Republic

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Szolgay, Ján; Kohnová, Silvia; Hlavčová, Kamila; Viglione, Alberto

    2010-01-01

    The paper deals with at-site flood frequency estimation in the case when also information on hydrological events from the past with extraordinary magnitude are available. For the joint frequency analysis of systematic observations and historical data, respectively, the Bayesian framework is chosen, which, through adequately defined likelihood functions, allows for incorporation of different sources of hydrological information, e.g., maximum annual flood peaks, historical events as well as measurement errors. The distribution of the parameters of the fitted distribution function and the confidence intervals of the flood quantiles are derived by means of the Markov chain Monte Carlo simulation (MCMC) technique. The paper presents a sensitivity analysis related to the choice of the most influential parameters of the statistical model, which are the length of the historical period h and the perception threshold X0. These are involved in the statistical model under the assumption that except for the events termed as ‘historical’ ones, none of the (unknown) peak discharges from the historical period h should have exceeded the threshold X0. Both higher values of h and lower values of X0 lead to narrower confidence intervals of the estimated flood quantiles; however, it is emphasized that one should be prudent of selecting those parameters, in order to avoid making inferences with wrong assumptions on the unknown hydrological events having occurred in the past. The Bayesian MCMC methodology is presented on the example of the maximum discharges observed during the warm half year at the station Vltava-Kamýk (Czech Republic) in the period 1877-2002. Although the 2002 flood peak, which is related to the vast flooding that affected a large part of Central Europe at that time, occurred in the near past, in the analysis it is treated virtually as a ‘historical’ event in

  12. Floods of Selected Streams in Arkansas, Spring 2008

    USGS Publications Warehouse

    Funkhouser, Jaysson E.; Eng, Ken

    2009-01-01

    Floods can cause loss of life and extensive destruction to property. Monitoring floods and understanding the reasons for their occurrence are the responsibility of many Federal agencies. The National Weather Service, the U.S. Army Corps of Engineers, and the U.S. Geological Survey are among the most visible of these agencies. Together, these three agencies collect and analyze floodflow information to better understand the variety of mechanisms that cause floods, and how the characteristics and frequencies of floods vary with time and location. The U.S. Geological Survey (USGS) has monitored and assessed the quantity of streamflow in our Nation's streams since the agency's inception in 1879. Because of ongoing collection and assessment of streamflow data, the USGS can provide information about a range of surface-water issues including the suitability of water for public supply and irrigation and the effects of agriculture and urbanization on streamflow. As part of its streamflow-data collection activities, the USGS measured streamflow in multiple streams during extreme flood events in Arkansas in the spring of 2008. The analysis of streamflow information collected during flood events such as these provides a scientific basis for decision making related to resource management and restoration. Additionally, this information can be used by water-resource managers to better define flood-hazard areas and to design bridges, culverts, dams, levees, and other structures. Water levels (stage) and streamflow (discharge) currently are being monitored in near real-time at approximately 150 locations in Arkansas. The streamflow-gaging stations measure and record hydrologic data at 15-minute or hourly intervals; the data then are transmitted through satellites to the USGS database and displayed on the internet every 1 to 4 hours. Streamflow-gaging stations in Arkansas are part of a network of over 7,500 active streamflow-gaging stations operated by the USGS throughout the United

  13. Global and local scale flood discharge simulations in the Rhine River basin for flood risk reduction benchmarking in the Flagship Project

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Gusyev, Maksym; Magome, Jun; Sugiura, Ai; Cullmann, Johannes; Takeuchi, Kuniyoshi

    2015-04-01

    The global flood risk assessment is prerequisite to set global measurable targets of post-Hyogo Framework for Action (HFA) that mobilize international cooperation and national coordination towards disaster risk reduction (DRR) and requires the establishment of a uniform flood risk assessment methodology on various scales. To address these issues, the International Flood Initiative (IFI) has initiated a Flagship Project, which was launched in year 2013, to support flood risk reduction benchmarking at global, national and local levels. In the Flagship Project road map, it is planned to identify the original risk (1), to identify the reduced risk (2), and to facilitate the risk reduction actions (3). In order to achieve this goal at global, regional and local scales, international research collaboration is absolutely necessary involving domestic and international institutes, academia and research networks such as UNESCO International Centres. The joint collaboration by ICHARM and BfG was the first attempt that produced the first step (1a) results on the flood discharge estimates with inundation maps under way. As a result of this collaboration, we demonstrate the outcomes of the first step of the IFI Flagship Project to identify flood hazard in the Rhine river basin on the global and local scale. In our assessment, we utilized a distributed hydrological Block-wise TOP (BTOP) model on 20-km and 0.5-km scales with local precipitation and temperature input data between 1980 and 2004. We utilized existing 20-km BTOP model, which is applied globally, and constructed the local scale 0.5-km BTOP model for the Rhine River basin. For the BTOP model results, both calibrated 20-km and 0.5-km BTOP models had similar statistical performance and represented observed flood river discharges, epecially for 1993 and 1995 floods. From 20-km and 0.5-km BTOP simulation, the flood discharges of the selected return period were estimated using flood frequency analysis and were comparable to

  14. A methodology for urban flood resilience assessment

    NASA Astrophysics Data System (ADS)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet

  15. Implications of flood pulse restoration for Populus regeneration on the upper Missouri River

    USGS Publications Warehouse

    Bovee, Ken D.; Scott, Michael L.

    2002-01-01

    We developed a mass balance flow model to reconstruct unregulated daily peak flows in the National Wild and Scenic reach of the Missouri River, Montana. Results indicated that although the observed frequency of large peak flows has not changed in the post-dam period, their magnitude has been reduced from 40 to 50% as a consequence of flow regulation. Reductions in the magnitude of these flows should reduce the expected frequency of large flood-pulses over a longer time-scale. Results of a two-dimensional hydraulic model indicated that limited cottonwood (Populus deltoides subsp. Monilifera) recruitment occurs at relatively small peak discharges, but to maximize establishment of cottonwoods in the Wild and Scenic reach, a threshold of 1850 m3/s would be necessary at the Virgelle gauge. Floods of this magnitude or greater lead to establishment of cottonwood seedlings above the zone of frequent ice-drive disturbance. Restoring the frequency, magnitude, duration and timing of these flood pulses would benefit important natural resource values including riparian cottonwood forests and native fish species in the upper Missouri River basin. However, efforts to naturalize flow must be made in the context of a water management system that was authorized and constructed for the primary purposes of flood control, power generation and irrigation. Using the synthesized flow model and flood damage curves, we examined six scenarios for delivering flows ≥1850 m3/s to the Wild and Scenic reach. Whereas some scenarios appeared to be politically and economically infeasible, our analysis suggested that there is enough operational flexibility in the system to restore more natural flood pulses without greatly compromising other values.

  16. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006

    NASA Astrophysics Data System (ADS)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.

    2006-12-01

    Thirty years ago, over 300 mm of rain fell in about 4 to 6 hours in the middle reaches of the Big Thompson River Basin during the devastating flash flood on July 31, 1976. The rainstorm produced flood discharges that exceeded 40 m3/s/km2. A peak discharge of 883 m3/s was estimated at the Big Thompson River near Drake streamflow-gaging station. The raging waters left 144 people dead, 250 injured, and over 800 people were evacuated by helicopter. Four-hundred eighteen homes and businesses were destroyed, as well as 438 automobiles, and damage to infrastructure left the canyon reachable only via helicopter. Total damage was estimated in excess of $116 million (2006 dollars). Natural hazards similar to the Big Thompson flood are rare, but the probability of a similar event hitting the Front Range, other parts of Colorado, or other parts of the Nation is real. Although much smaller in scale than the Big Thompson flood, several flash floods have happened during the monsoon in early July 2006 in the Colorado foothills that reemphasized the hazards associated with flash flooding. The U.S. Geological Survey (USGS) conducts flood research to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson flood. A summary of hydrologic conditions of the 1976 flood, what the 1976 flood can teach us about flash floods, a description of some of the advances in USGS flood science as a consequence of this disaster, and lessons that we learned to help reduce loss of life from this extraordinary flash flood are discussed. In the 30 years since the Big Thompson flood, there have been important advances in streamflow monitoring and flood warning. The National Weather Service (NWS) NEXRAD radar allows real-time monitoring of precipitation in most places in the United States. The USGS currently (2006) operates about 7,250 real-time streamflow-gaging stations in the United States that are monitored by the USGS, the NWS, and emergency managers

  17. Flood control surveys in the northeast

    Treesearch

    Arthur Bevan

    1947-01-01

    Floods are a grave danger to our Nation's resources. It is estimated that floods cost the United States at least $100 million every year. The recent Mississippi floods, which dramatically brought the seriousness of the situation to public attention, cost half a billion dollars in direct-damages. The Northeast carries a heavy burden of flood losses. In 1936, floods...

  18. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado (hereafter referred to as “Big Cottonwood Creek site”), on August 23, 2016, and on Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado (hereafter referred to as “Fountain Creek site”), on August 29, 2016. A one-dimensional hydraulic model was used to estimate the peak discharge. To define the flood frequency of each flood, peak-streamflow regional-regression equations or statistical analyses of USGS streamgage records were used to estimate annual exceedance probability of the peak discharge. A survey of the high-water mark profile was used to determine the peak stage, and the limitations and accuracy of each component also are presented in this report. Collection and computation of flood data, such as peak discharge, annual exceedance probability, and peak stage at structures critical to Colorado’s infrastructure are an important addition to the flood data collected annually by the USGS.The peak discharge of the August 23, 2016, flood at the Big Cottonwood Creek site was 917 cubic feet per second (ft3/s) with a measurement quality of poor (uncertainty plus or minus 25 percent or greater). The peak discharge of the August 29, 2016, flood at the Fountain Creek site was 5,970 ft3/s with a measurement quality of poor (uncertainty plus or minus 25 percent or greater).The August 23, 2016, flood at the Big Cottonwood Creek site had an annual exceedance probability of less than 0.01 (return period greater than the 100-year flood) and had an annual exceedance probability of greater than 0.005 (return period less than the 200-year flood). The August 23, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return

  19. U.S./China Bilateral Symposium on Extraordinary Floods

    NASA Astrophysics Data System (ADS)

    Kirby, W.

    Accurate appraisal of the risk of extreme floods has long been of concern to hydrologists and water resources managers in both the United States and China. In order to exchange information, assess current developments, and discuss further needs in extreme flood analysis, the U.S. Geological Survey (USGS) and the Bureau of Hydrology of the Ministry of Water Resources and Electric Power of the People's Republic of China (PRC) held the Bilateral Symposium on the Analysis of Extraordinary Flood Events, October 14-18, 1985, in Nanjing, China. Co-convenors of the symposium were Marshall E. Moss (USGS) and Hua Shiqian (Nanjing Research Institute of Hydrology). Liang Ruiju (East China Technical University of Water Resources) was executive secretary of the organizing committee. Participants included 23 U.S. delegates, 36 Chinese delegates, and five guests from other countries. Of the U.S. delegates, 13 were from federal agencies, seven were from universities, and three were private consultants. The U.S. National Science Foundation gave financial support to the nonfederal U.S. delegates. Major topics covered in the 52 papers presented included detection of historical floods and evaluation of the uncertainties in their peak discharges and times of occurrence,frequency analysis and design flood determination in the presence of extraordinary floods and historic floods, anduse of storm data in determining design storms and design floods, The symposium was followed by a 6-day study tour in central China, during which laboratories, field activities, and offices of various water resources agencies were visited and sites of documented historic floods on the Yangtze River and its tributaries were examined.

  20. Hurricane Sandy's flood frequency increasing from year 1800 to 2100.

    PubMed

    Lin, Ning; Kopp, Robert E; Horton, Benjamin P; Donnelly, Jeffrey P

    2016-10-25

    Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City's flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy's flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy's return period is estimated to decrease by ∼3× to 17× from 2000 to 2100.

  1. 44 CFR 73.4 - Restoration of flood insurance coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Restoration of flood... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance...

  2. 44 CFR 73.3 - Denial of flood insurance coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.3 Denial of flood insurance... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Denial of flood insurance...

  3. 44 CFR 73.4 - Restoration of flood insurance coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Restoration of flood...

  4. 44 CFR 73.3 - Denial of flood insurance coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.3 Denial of flood insurance... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Denial of flood insurance...

  5. 44 CFR 73.4 - Restoration of flood insurance coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Restoration of flood insurance...

  6. Statistical Development of Flood Frequency and Magnitude Equations for the Cosumnes and Mokelumne River Drainage Basins, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Burns, R. G.; Meyer, R. W.; Cornwell, K.

    2003-12-01

    In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.

  7. Two-station comparison of peak flows to improve flood-frequency estimates for seven streamflow-gaging stations in the Salmon and Clearwater River Basins, Central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2003-01-01

    Improved flood-frequency estimates for short-term (10 or fewer years of record) streamflow-gaging stations were needed to support instream flow studies by the U.S. Forest Service, which are focused on quantifying water rights necessary to maintain or restore productive fish habitat. Because peak-flow data for short-term gaging stations can be biased by having been collected during an unusually wet, dry, or otherwise unrepresentative period of record, the data may not represent the full range of potential floods at a site. To test whether peak-flow estimates for short-term gaging stations could be improved, the two-station comparison method was used to adjust the logarithmic mean and logarithmic standard deviation of peak flows for seven short-term gaging stations in the Salmon and Clearwater River Basins, central Idaho. Correlation coefficients determined from regression of peak flows for paired short-term and long-term (more than 10 years of record) gaging stations over a concurrent period of record indicated that the mean and standard deviation of peak flows for all short-term gaging stations would be improved. Flood-frequency estimates for seven short-term gaging stations were determined using the adjusted mean and standard deviation. The original (unadjusted) flood-frequency estimates for three of the seven short-term gaging stations differed from the adjusted estimates by less than 10 percent, probably because the data were collected during periods representing the full range of peak flows. Unadjusted flood-frequency estimates for four short-term gaging stations differed from the adjusted estimates by more than 10 percent; unadjusted estimates for Little Slate Creek and Salmon River near Obsidian differed from adjusted estimates by nearly 30 percent. These large differences probably are attributable to unrepresentative periods of peak-flow data collection.

  8. Increasing stress on disaster-risk finance due to large floods

    NASA Astrophysics Data System (ADS)

    Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen C. J. H.; Mechler, Reinhard; Botzen, W. J. Wouter; Bouwer, Laurens M.; Pflug, Georg; Rojas, Rodrigo; Ward, Philip J.

    2014-04-01

    Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. So far, little is known about such flood hazard interdependencies across regions and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins. We present probabilistic trends in continental flood risk, and demonstrate that observed extreme flood losses could more than double in frequency by 2050 under future climate change and socio-economic development. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

  9. Periodic temperature-associated drought/flood drives locust plagues in China

    PubMed Central

    Zhang, Zhibin; Cazelles, Bernard; Tian, Huidong; Christian Stige, Leif; Bräuning, Achim; Stenseth, Nils Chr.

    2008-01-01

    Global warming is currently of great concern. Yet the ecological effects of low-frequency climate variations remain largely unknown. Recent analyses of interdecadal variability in population abundance of the Oriental migratory locust (Locusta migratoria manilensis) in China have revealed negative associations with temperature and positive associations with Yangtze drought and flood frequencies during the past millennium (AD 957–1956). In order to shed new light on the causal relationships between locust abundance, floods, droughts and temperature in ancient China, we used wavelet analysis to explore how the coherencies between the different variables at different frequencies have been changed during the past millennium. We find consistent in-phase coherencies between locusts and drought/flood frequencies, and out-of-phase coherencies between locusts and temperature and between drought/flood and temperature at period components of 160–170 years. Similar results are obtained when historical data of drought/flood frequencies of the Yangtze Delta region are used, despite flood data showing a weak and somewhat inconsistent association with other factors. We suggest that previously unreported periodic cooling of 160–170-year intervals dominate climatic variability in China through the past millennium, the cooling events promoting locust plagues by enhancing temperature-associated drought/flood events. Our results signify a rare example of possible benign effects of global warming on the regional risk of natural disasters such as flood/drought events and outbreaks of pest insects. PMID:19033144

  10. Regional skew for California, and flood frequency for selected sites in the Sacramento-San Joaquin River Basin, based on data through water year 2006

    USGS Publications Warehouse

    Parrett, Charles; Veilleux, Andrea; Stedinger, J.R.; Barth, N.A.; Knifong, Donna L.; Ferris, J.C.

    2011-01-01

    Improved flood-frequency information is important throughout California in general and in the Sacramento-San Joaquin River Basin in particular, because of an extensive network of flood-control levees and the risk of catastrophic flooding. A key first step in updating flood-frequency information is determining regional skew. A Bayesian generalized least squares (GLS) regression method was used to derive a regional-skew model based on annual peak-discharge data for 158 long-term (30 or more years of record) stations throughout most of California. The desert areas in southeastern California had too few long-term stations to reliably determine regional skew for that hydrologically distinct region; therefore, the desert areas were excluded from the regional skew analysis for California. Of the 158 long-term stations used to determine regional skew, 145 have minimally regulated annual-peak discharges, and 13 stations are dam sites for which unregulated peak discharges were estimated from unregulated daily maximum discharge data furnished by the U.S. Army Corp of Engineers. Station skew was determined by using an expected moments algorithm (EMA) program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual peak-discharge data. The Bayesian GLS regression method previously developed was modified because of the large cross correlations among concurrent recorded peak discharges in California and the use of censored data and historical flood information with the new expected moments algorithm. In particular, to properly account for these cross-correlation problems and develop a suitable regression model and regression diagnostics, a combination of Bayesian weighted least squares and generalized least squares regression was adopted. This new methodology identified a nonlinear function relating regional skew to mean basin elevation. The regional skew values ranged from -0.62 for a mean basin elevation of zero to 0.61 for a mean basin elevation

  11. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2016-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  12. Development of regional skews for selected flood durations for the Central Valley Region, California, based on data through water year 2008

    USGS Publications Warehouse

    Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.

    2012-01-01

    Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation

  13. Water availability and flood hazards in the John Day Fossil Beds National Monument, Oregon

    USGS Publications Warehouse

    Frank, Frank J.; Oster, E.A.

    1979-01-01

    The rock formations of the John Day Fossil Beds National Monument area are aquifers that can be expected to yield less than 10 gallons of water per minute to wells. The most permeable of the geologic units is the alluvium that occurs at low elevations along the John Day River and most of the smaller streams. Wells in the alluvial deposits can be expected to yield adequate water supplies for recreational areas; also, wells completed in the underlying bedrock at depths ranging from 50 to 200 feet could yield as much as 10 gallons per minute. Pumping tests on two unused wells indicated yields of 8 gallons per minute and 2 gallons per minute. Nine of the ten springs measured in and near the monument area in late August of 1978 were flowing 0.2 to 30 gallons per minute. Only the Cant Ranch spring and the Johnny Kirk Spring near the Sheep Rock unit had flows exceeding 6 gallons per minute. Chemical analyses of selected constituents of the ground water indicated generally low concentrations of dissolved minerals. Although cloudbursts in the Painted Hills unit could generate a flood wave on the valley floors, flood danger can be reduced by locating recreational sites on high ground. The campground in Indian Canyon of the Clarno unit is vulnerable to cloudburst flooding. About 80 percent of the proposed campground on the John Day River in the Sheep Rock unit is above the estimated level of 1-percent chance flood (100-year flood) of the river. The 1-percent chance flood would extend about 120 feet from the riverbank into the upstream end of the campground. (USGS).

  14. 78 FR 14315 - Notice of Chargeable Rates Under the National Flood Insurance Program for Non-Primary Residences

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ...] Notice of Chargeable Rates Under the National Flood Insurance Program for Non-Primary Residences AGENCY... residences. DATES: The rates announced in this notice are effective January 1, 2013. [[Page 14316

  15. The 1965 Mississippi River flood in Iowa

    USGS Publications Warehouse

    Schwob, Harlan H.; Myers, Richard E.

    1965-01-01

    Flood data compiled for the part of the River along the eastern border include flood discharges, flood elevations, and the frequency of floods of varying magnitudes. They also include the daily or more frequent stage and discharge data for both the Mississippi River and the downstream gaging stations on Iowa tributaries for the period March-May 1965. Sufficient data are presented to permit studied for preparation of plans for protective works and plans for zoning or for flood plain regulation.

  16. The Effect of Seasonal Floods on Health: Analysis of Six Years of National Health Data and Flood Maps

    PubMed Central

    Saulnier, Dell D.; Hanson, Claudia; Ir, Por; Mölsted Alvesson, Helle; von Schreeb, Johan

    2018-01-01

    There is limited knowledge on the effect of seasonal flooding on health over time. We quantified the short- and long-term effects of floods on selected health indicators at public healthcare facilities in 11 districts in Cambodia, a flood-prone setting. Counts of inpatient discharge diagnoses and outpatient consultations for diarrhea, acute respiratory infections, skin infections, injuries, noncommunicable diseases and vector-borne diseases were retrieved from public healthcare facilities for each month between January 2008 and December 2013. Flood water was mapped by month, in square kilometers, from satellite data. Poisson regression models with three lag months were constructed for the health problems in each district, controlled for seasonality and long-term trends. During times of flooding and three months after, there were small to moderate increases in visits to healthcare facilities for skin infections, acute respiratory infections, and diarrhea, while no association was seen at one to two months. The associations were small to moderate, and a few of our results were significant. We observed increases in care seeking for diarrhea, skin infections, and acute respiratory infections following floods, but the associations are uncertain. Additional research on previous exposure to flooding, using community- and facility-based data, would help identify expected health risks after floods in flood-prone settings. PMID:29614051

  17. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...

  18. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...

  19. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...

  20. 77 FR 74142 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ...-2011-0002; Internal Agency Docket No. FEMA-B-1100 and FEMA-B-1222] Proposed Flood Elevation... Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs for communities participating in the National Flood Insurance Program (NFIP), in accordance with section 110 of the Flood Disaster Protection...

  1. Preliminary flood-duration frequency estimates using naturalized streamflow records for the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Lind, Greg D.; Stonewall, Adam J.

    2018-02-13

    In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.

  2. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  3. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  4. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Shankman, David

    2013-01-01

    Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.

  5. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy`s (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events.

  6. Re-assessing the flood risk in Scotland.

    PubMed

    Black, Andrew R; Burns, John C

    2002-07-22

    This paper presents a review of changes in flood risk estimation on Scottish rivers resulting from re-analysis of flood records or from the application of new methods. The review arises at a time when flood damages have received recent prominence through the occurrence of a number of extreme floods in Scotland, and when the possible impacts of climate change on flood risk are receiving considerable attention. An analysis of the nine longest available peaks-over-threshold (POT) flood series for Scottish rivers reveals that, for thresholds yielding two events per year on average, annual POT frequencies on western rivers have increased in the 1980s/1990s to maximum recorded values, while in the east, values were highest in the 1950s/1960s. These results support the results of flood modelling work based on rainfall and temperature records from the 1870s, which indicate that, in western catchments, annual POT frequencies in the 1980s/1990s are unprecedented. No general trends in flood magnitude series were found, but an unexpected cluster of extreme floods is identified as having occurred since 1988, resulting in eight of Scotland's 16 largest gauged rivers producing their maximum recorded flows since then. These shifts are related to recent increases in the dominance of westerly airflows, share similarities with the results of climate change modelling, and collectively point to increases in flood risk in many parts of Scotland. The paper also reviews advances in flood risk estimation arising from the publication of the UK Flood Estimation Handbook, developments in the collection and use of historic flood estimation and the production of maps of 100-year flood areal extent. Finally the challenges in flood risk estimation posed by climate change are examined, particularly in relation to the assumption of stationarity.

  7. Streamflow model of Wisconsin River for estimating flood frequency and volume

    USGS Publications Warehouse

    Krug, William R.; House, Leo B.

    1980-01-01

    The 100-year flood peak at Wisconsin Dells, computed from the simulated, regulated streamflow data for the period 1915-76, is 82,000 cubic feet per second, including the effects of all the reservoirs in the river system, as they are currently operated. It also includes the effects of Lakes Du Bay, Petenwell, and Castle Rock which are significant for spring floods but are insignificant for summer or fall floods because they are normally maintained nearly full in the summer and fall and have very little storage for floodwaters. (USGS)

  8. Guidelines for determining flood flow frequency—Bulletin 17C

    USGS Publications Warehouse

    England, John F.; Cohn, Timothy A.; Faber, Beth A.; Stedinger, Jery R.; Thomas, Wilbert O.; Veilleux, Andrea G.; Kiang, Julie E.; Mason, Robert R.

    2018-03-29

    Accurate estimates of flood frequency and magnitude are a key component of any effective nationwide flood risk management and flood damage abatement program. In addition to accuracy, methods for estimating flood risk must be uniformly and consistently applied because management of the Nation’s water and related land resources is a collaborative effort involving multiple actors including most levels of government and the private sector.Flood frequency guidelines have been published in the United States since 1967, and have undergone periodic revisions. In 1967, the U.S. Water Resources Council presented a coherent approach to flood frequency with Bulletin 15, “A Uniform Technique for Determining Flood Flow Frequencies.” The method it recommended involved fitting the log-Pearson Type III distribution to annual peak flow data by the method of moments.The first extension and update of Bulletin 15 was published in 1976 as Bulletin 17, “Guidelines for Determining Flood Flow Frequency” (Guidelines). It extended the Bulletin 15 procedures by introducing methods for dealing with outliers, historical flood information, and regional skew. Bulletin 17A was published the following year to clarify the computation of weighted skew. The next revision of the Bulletin, the Bulletin 17B, provided a host of improvements and new techniques designed to address situations that often arise in practice, including better methods for estimating and using regional skew, weighting station and regional skew, detection of outliers, and use of the conditional probability adjustment.The current version of these Guidelines are presented in this document, denoted Bulletin 17C. It incorporates changes motivated by four of the items listed as “Future Work” in Bulletin 17B and 30 years of post-17B research on flood processes and statistical methods. The updates include: adoption of a generalized representation of flood data that allows for interval and censored data types; a new method

  9. A geographic information system tool to solve regression equations and estimate flow-frequency characteristics of Vermont Streams

    USGS Publications Warehouse

    Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.

    2003-01-01

    Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.

  10. Terminating the Audit of the National Flood Insurance Program’s Fiscal 1980 Financial Statements.

    DTIC Science & Technology

    1981-09-21

    7 AD-A107 188 GENERAL ACCOUNTING OFFICE WASHINGTON DC ACCOUNTING A ETC F/G 5/1 TERMINATING THE AUDIT OF THE NATIONAL FLOOD INSURANCE PROGRAN S-,-ETC...Management Agency Dear Mr. Giuffrida: A Subject: Terminating the Audit of the National Floodr .) Insurance Program’s Fiscal 1980 Financial...objective of the audit was to express an opinion on the NFIP’s < fiscal 1980 financial statements. We will not meet this objec- tive, however, because

  11. Flood hazard assessment of the Hoh River at Olympic National Park ranger station, Washington

    USGS Publications Warehouse

    Kresch, D.L.; Pierson, T.C.

    1987-01-01

    Federal regulations require buildings and public facilities on Federal land to be located beyond or protected from inundation by a 100-year flood. Flood elevations, velocities and boundaries were determined for the occurrence of a 100-year flood through a reach, approximately 1-mi-long, of the Hoh River at the ranger station complex in Olympic National Park. Flood elevations, estimated by step-backwater analysis of the 100-year flood discharge through 14 channel and flood-plain cross sections of the Hoh River, indicate that the extent of flooding in the vicinity of buildings or public facilities at the ranger station complex is likely to be limited mostly to two historic meander channels that lie partly within loop A of the public campground and that average flood depths of about 2 feet or less would be anticipated in these channels. Mean flow velocities at the cross sections, corresponding to the passage of a 100-year flood, ranged from about 5 to over 11 ft/sec. Flooding in the vicinity of either the visitors center or the residential and maintenance areas is unlikely unless the small earthen dam at the upstream end of Taft Creek were to fail. Debris flows with volumes on the order of 100 to 1,000 cu yards could be expected to occur in the small creeks that drain the steep valley wall north of the ranger station complex. Historic debris flows in these creeks have generally traveled no more than about 100 yards out onto the valley floor. The potential risk that future debris flows in these creeks might reach developed areas within the ranger station complex is considered to be small because most of the developed areas within the complex are situated more than 100 yards from the base of the valley wall. Landslides or rock avalanches originating from the north valley wall with volumes potentially much larger than those for debris flows could have a significant impact on the ranger station complex. The probability that such landslides or avalanches may occur is

  12. Using Deep Learning to Assess Future Flood Magnitude and Frequency in the Semi-arid and Snowmelt-dominated Missouri River Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Francois, B.; Wi, S.; Brown, C.

    2017-12-01

    impact on spring flooding are explored. Future flood frequency obtained with ANNs is compared with the one obtained thanks to hydrological models and with the traditional approach as described in Bulletin 17C. Keywords: Flood, Climate-change, Snow, Neural Networks

  13. Improving techniques to estimate the magnitude and frequency of floods on urban streams in South Carolina, North Carolina, and Georgia, 2011 (ver. 1.1, March 2014) : U.S. Geological Survey scientific investigations report 2014-5030.

    DOT National Transportation Integrated Search

    2014-03-01

    Reliable estimates of the magnitude and frequency : of floods are essential for the design of transportation and : water-conveyance structures, flood-insurance studies, and : flood-plain management. Such estimates are particularly : important in dens...

  14. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    NASA Astrophysics Data System (ADS)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  15. Validation of a 30 m resolution flood hazard model of the conterminous United States

    NASA Astrophysics Data System (ADS)

    Wing, Oliver E. J.; Bates, Paul D.; Sampson, Christopher C.; Smith, Andrew M.; Johnson, Kris A.; Erickson, Tyler A.

    2017-09-01

    This paper reports the development of a ˜30 m resolution two-dimensional hydrodynamic model of the conterminous U.S. using only publicly available data. The model employs a highly efficient numerical solution of the local inertial form of the shallow water equations which simulates fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. Importantly, we use the U.S. Geological Survey (USGS) National Elevation Dataset to determine topography; the U.S. Army Corps of Engineers National Levee Dataset to explicitly represent known flood defenses; and global regionalized flood frequency analysis to characterize return period flows and rainfalls. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps and detailed local hydraulic models developed by the USGS. Where the FEMA SFHAs are based on high-quality local models, the continental-scale model attains a hit rate of 86%. This correspondence improves in temperate areas and for basins above 400 km2. Against the higher quality USGS data, the average hit rate reaches 92% for the 1 in 100 year flood, and 90% for all flood return periods. Given typical hydraulic modeling uncertainties in the FEMA maps and USGS model outputs (e.g., errors in estimating return period flows), it is probable that the continental-scale model can replicate both to within error. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with dramatically lower cost and greater coverage than approaches based on a patchwork of local studies.

  16. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.

    2017-12-01

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  17. 44 CFR 67.4 - Proposed flood elevation determination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Proposed flood elevation..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal...

  18. 44 CFR 67.4 - Proposed flood elevation determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Proposed flood elevation...

  19. 44 CFR 67.4 - Proposed flood elevation determination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Proposed flood elevation...

  20. The 3D Elevation Program—Flood risk management

    USGS Publications Warehouse

    Carswell, William J.; Lukas, Vicki

    2018-01-25

    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these

  1. The National Streamflow Statistics Program: A Computer Program for Estimating Streamflow Statistics for Ungaged Sites

    USGS Publications Warehouse

    Ries(compiler), Kernell G.; With sections by Atkins, J. B.; Hummel, P.R.; Gray, Matthew J.; Dusenbury, R.; Jennings, M.E.; Kirby, W.H.; Riggs, H.C.; Sauer, V.B.; Thomas, W.O.

    2007-01-01

    The National Streamflow Statistics (NSS) Program is a computer program that should be useful to engineers, hydrologists, and others for planning, management, and design applications. NSS compiles all current U.S. Geological Survey (USGS) regional regression equations for estimating streamflow statistics at ungaged sites in an easy-to-use interface that operates on computers with Microsoft Windows operating systems. NSS expands on the functionality of the USGS National Flood Frequency Program, and replaces it. The regression equations included in NSS are used to transfer streamflow statistics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, the equations were developed on a statewide or metropolitan-area basis as part of cooperative study programs. Equations are available for estimating rural and urban flood-frequency statistics, such as the 1 00-year flood, for every state, for Puerto Rico, and for the island of Tutuila, American Samoa. Equations are available for estimating other statistics, such as the mean annual flow, monthly mean flows, flow-duration percentiles, and low-flow frequencies (such as the 7-day, 0-year low flow) for less than half of the states. All equations available for estimating streamflow statistics other than flood-frequency statistics assume rural (non-regulated, non-urbanized) conditions. The NSS output provides indicators of the accuracy of the estimated streamflow statistics. The indicators may include any combination of the standard error of estimate, the standard error of prediction, the equivalent years of record, or 90 percent prediction intervals, depending on what was provided by the authors of the equations. The program includes several other features that can be used only for flood-frequency estimation. These include the ability to generate flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals

  2. Hurricane Sandy’s flood frequency increasing from year 1800 to 2100

    PubMed Central

    Horton, Benjamin P.; Donnelly, Jeffrey P.

    2016-01-01

    Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City’s flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy’s flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy’s return period is estimated to decrease by ∼3× to 17× from 2000 to 2100. PMID:27790992

  3. Probabilistic modelling of flood events using the entropy copula

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zheng, Qian

    2016-11-01

    The estimation of flood frequency is vital for the flood control strategies and hydraulic structure design. Generating synthetic flood events according to statistical properties of observations is one of plausible methods to analyze the flood frequency. Due to the statistical dependence among the flood event variables (i.e. the flood peak, volume and duration), a multidimensional joint probability estimation is required. Recently, the copula method is widely used for multivariable dependent structure construction, however, the copula family should be chosen before application and the choice process is sometimes rather subjective. The entropy copula, a new copula family, employed in this research proposed a way to avoid the relatively subjective process by combining the theories of copula and entropy. The analysis shows the effectiveness of the entropy copula for probabilistic modelling the flood events of two hydrological gauges, and a comparison of accuracy with the popular copulas was made. The Gibbs sampling technique was applied for trivariate flood events simulation in order to mitigate the calculation difficulties of extending to three dimension directly. The simulation results indicate that the entropy copula is a simple and effective copula family for trivariate flood simulation.

  4. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL...

  5. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  6. Application of flood-intensity-duration curve, rainfall-intensity-duration curve and time of concentration to analyze the pattern of storms and their corresponding floods for the natural flood events

    NASA Astrophysics Data System (ADS)

    Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun

    2016-04-01

    The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  7. Geometric and frequency EMI sounding of estuarine earthen flood defence embankments in Ireland using 1D inversion models

    NASA Astrophysics Data System (ADS)

    Viganotti, Matteo; Jackson, Ruth; Krahn, Hartmut; Dyer, Mark

    2013-05-01

    Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.

  8. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  9. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  10. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  11. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  12. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy

    2017-12-01

    A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  13. 78 FR 27 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ...-2012-0003] Final Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final rule. SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made... effect in order to qualify or remain qualified for participation in the National Flood Insurance Program...

  14. 75 FR 78926 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-2010-0003] Final Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final rule. SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made... effect in order to qualify or remain qualified for participation in the National Flood Insurance Program...

  15. 77 FR 74610 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ...-2012-0003] Final Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final rule. SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made... effect in order to qualify or remain qualified for participation in the National Flood Insurance Program...

  16. 44 CFR 61.17 - Group Flood Insurance Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Group Flood Insurance Policy...

  17. 44 CFR 61.17 - Group Flood Insurance Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Group Flood Insurance Policy...

  18. 44 CFR 61.17 - Group Flood Insurance Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Group Flood Insurance Policy...

  19. 44 CFR 61.17 - Group Flood Insurance Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Group Flood Insurance Policy...

  20. 44 CFR 61.17 - Group Flood Insurance Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Group Flood Insurance Policy...

  1. Assessment of Vulnerability to Extreme Flash Floods in Design Storms

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2011-01-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165

  2. Assessment of vulnerability to extreme flash floods in design storms.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  3. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology

  4. Hydroclimatology of the 2008 Midwest floods

    NASA Astrophysics Data System (ADS)

    Budikova, D.; Coleman, J. S. M.; Strope, S. A.; Austin, A.

    2010-12-01

    The late spring/early summer flooding that occurred in the American Midwest between May and June 2008 resulted from a combination of large-scale atmospheric circulation patterns that supported a steady influx of moisture into the area. A low pressure system centered over the central-western United States steered a strong jet and associated storms along its eastern edge from the west to southwest and an anomalously strong Great Plains Low Level Jet brought continuous warm and moist air into the area from the Gulf of Mexico into the area. We examine and quantify here the impact these circulation patterns had on the hydroclimatology of the Midwest highlighting the magnitude, frequency, geographic distribution, and temporal evolution of precipitation that ultimately magnified the flooding. Historical precipitation records were used to assess the regional rainfall characteristics at various geographic and time scales. Five distinct hydroclimatic characteristics contributed to the definition of the 2008 flood including persistent high surface soil moisture conditions prior to flooding exasperated by anomalously high rainfall, extreme rainfall totals covering extensive areas, increased frequency of shorter-term, smaller-magnitude events, persistent multiday heavy precipitation events, and extreme flood-producing rain storms. The major flooding lasted for approximately 24 days and most greatly impacted the state of Iowa, southern Wisconsin, and central Indiana. Its occurrence during the May-June period makes the event especially unusual for this region.

  5. Flood model for Brazil

    NASA Astrophysics Data System (ADS)

    Palán, Ladislav; Punčochář, Petr

    2017-04-01

    Looking on the impact of flooding from the World-wide perspective, in last 50 years flooding has caused over 460,000 fatalities and caused serious material damage. Combining economic loss from ten costliest flood events (from the same period) returns a loss (in the present value) exceeding 300bn USD. Locally, in Brazil, flood is the most damaging natural peril with alarming increase of events frequencies as 5 out of the 10 biggest flood losses ever recorded have occurred after 2009. The amount of economic and insured losses particularly caused by various flood types was the key driver of the local probabilistic flood model development. Considering the area of Brazil (being 5th biggest country in the World) and the scattered distribution of insured exposure, a domain covered by the model was limited to the entire state of Sao Paolo and 53 additional regions. The model quantifies losses on approx. 90 % of exposure (for regular property lines) of key insurers. Based on detailed exposure analysis, Impact Forecasting has developed this tool using long term local hydrological data series (Agencia Nacional de Aguas) from riverine gauge stations and digital elevation model (Instituto Brasileiro de Geografia e Estatística). To provide most accurate representation of local hydrological behaviour needed for the nature of probabilistic simulation, a hydrological data processing focused on frequency analyses of seasonal peak flows - done by fitting appropriate extreme value statistical distribution and stochastic event set generation consisting of synthetically derived flood events respecting realistic spatial and frequency patterns visible in entire period of hydrological observation. Data were tested for homogeneity, consistency and for any significant breakpoint occurrence in time series so the entire observation or only its subparts were used for further analysis. The realistic spatial patterns of stochastic events are reproduced through the innovative use of d-vine copula

  6. Combining information from multiple flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multimodel discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology data set) for 135 catchments in the UK. The advantages of the approach are shown to be: (1) to ensure adequate "baseline" with which to compare future changes; (2) to reduce flood estimate uncertainty; (3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; (4) to diminish the importance of model consistency when model biases are large; and (5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  7. Development of a national Flash flood warning system in France using the AIGA method: first results and main issues

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Organde, Didier; Demargne, Julie; de Saint-Aubin, Céline; Garandeau, Léa; Janet, Bruno; Saint-Martin, Clotilde; Fouchier, Catherine

    2016-04-01

    Developing a national flash flood (FF) warning system is an ambitious and difficult task. On one hand it rises huge expectations from exposed populations and authorities since induced damages are considerable (ie 20 casualties in the recent October 2015 flood at the French Riviera). But on the other hand, many practical and scientific issues have to be addressed and limitations should be clearly stated. The FF warning system to be implemented by 2016 in France by the SCHAPI (French national service in charge of flood forecasting) will be based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The AIGA method has been experimented in real time in the south of France in the RHYTMME project (http://rhytmme.irstea.fr). It consists in comparing discharges generated by a simple conceptual hourly hydrologic model run at a 1-km² resolution to reference flood quantiles of different return periods, at any point along the river network. The hydrologic model ingests operational rainfall radar-gauge products from Météo-France. Model calibration was based on ~700 hydrometric stations over the 2002-2015 period and then hourly discharges were computed at ~76 000 catchment outlets, with areas ranging from 10 to 3 500 km², over the last 19 years. This product makes it possible to calculate reference flood quantiles at each outlet. The on-going evaluation of the FF warnings is currently made at two levels: in a 'classical' way, using discharges available at the hydrometric stations, but also in a more 'exploratory' way, by comparing past flood reports and warnings issued by the system over the 76 000 catchment outlets. The interest of the last method is that it better fit the system objectives since it is designed to monitor small ungauged catchments. Javelle, P., Demargne, J., Defrance, D, .Pansu, J, .Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system

  8. 78 FR 14577 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table below. The FIRM... participation in the Federal Emergency Management Agency's (FEMA's) National Flood Insurance Program (NFIP). In...

  9. Hazards of Extreme Weather: Flood Fatalities in Texas

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Jackson, T.; Bin-Shafique, S.

    2009-12-01

    The Federal Emergency Management Agency (FEMA) considers flooding “America’s Number One Natural Hazard”. Despite flood management efforts in many communities, U.S. flood damages remain high, due, in large part, to increasing population and property development in flood-prone areas. Floods are the leading cause of fatalities related to natural disasters in Texas. Texas leads the nation in flash flood fatalities. There are three times more fatalities in Texas (840) than the following state Pennsylvania (265). This study examined flood fatalities that occurred in Texas between 1960 and 2008. Flood fatality statistics were extracted from three sources: flood fatality databases from the National Climatic Data Center, the Spatial Hazard Event and Loss Database for the United States, and the Texas Department of State Health Services. The data collected for flood fatalities include the date, time, gender, age, location, and weather conditions. Inconsistencies among the three databases were identified and discussed. Analysis reveals that most fatalities result from driving into flood water (about 65%). Spatial analysis indicates that more fatalities occurred in counties containing major urban centers. Hydrologic analysis of a flood event that resulted in five fatalities was performed. A hydrologic model was able to simulate the water level at a location where a vehicle was swept away by flood water resulting in the death of the driver.

  10. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011.

    DOT National Transportation Integrated Search

    2014-03-01

    The central purpose of this report is to present methods : for estimating the magnitude and frequency of floods on : urban and small, rural streams in the Southeast United States : with particular focus on Georgia, South Carolina, and North : Carolin...

  11. Extreme Mississippi River Floods in the Late Holocene: Reconstructions and Simulations

    NASA Astrophysics Data System (ADS)

    Munoz, S. E.; Giosan, L.; Donnelly, J. P.; Dee, S.

    2016-12-01

    Extreme flooding of the Mississippi River is costly in both economic and social terms. Despite ambitious engineering projects conceived in the early 20th century to mitigate damage from extreme floods, economic losses due to flooding have increased over recent years. Forecasting extreme flood occurrence over seasonal or longer time-scales remains a major challenge - especially in light of shifts in hydroclimatic conditions expected in response to continued greenhouse forcing. Here, we present findings from a series of paleoflood records that span the late Holocene derived from laminated sediments deposited in abandoned channels of the Mississippi River. These sedimentary archives record individual overbank floods as unique events beds with upward fining that we identify using grain-size analysis, bulk geochemistry, and radiography. We use sedimentological characteristics to reconstruct flood magnitude by calibrating our records against instrumental streamflow data from nearby gauging stations. We also use the Last Millennium Experiments of the Community Earth System Model (CESM-LME) and historical reanalysis data to examine the state of climate system around river discharge extremes. Our paleo-flood records exhibit strong non-stationarities in flood frequency and magnitude that are associated with fluctuations in the frequency of the El Niño-Southern Oscillation (ENSO), because the warm ENSO phase is associated with increased surface water storage of the lower Mississippi basin that leads to enhanced runoff delivery to the main channel. We also show that the early 20th century was a period of anomalously high flood frequency and magnitude due to the combined effects of river engineering and natural climate variability. Our findings imply that flood risk along the lower Mississippi River is tightly coupled to the frequency of ENSO, highlighting the need for robust projections of ENSO variability under greenhouse warming.

  12. The Complex Relationship Between Heavy Storms and Floods: Implication on Stormwater Drainage design and Management

    NASA Astrophysics Data System (ADS)

    Demissie, Y.; Mortuza, M. R.; Moges, E.; Yan, E.; Li, H. Y.

    2017-12-01

    Due to the lack of historical and future streamflow data for flood frequency analysis at or near most drainage sites, it is a common practice to directly estimate the design flood (maximum discharge or volume of stream for a given return period) based on storm frequency analysis and the resulted Intensity-Duration-Frequency (IDF) curves. Such analysis assumes a direct relationship between storms and floods with, for example, the 10-year rainfall expected to produce the 10-year flood. However, in reality, a storm is just one factor among the many other hydrological and metrological factors that can affect the peak flow and hydrograph. Consequently, a heavy storm does not necessarily always lead to flooding or a flood events with the same frequency. This is evident by the observed difference in the seasonality of heavy storms and floods in most regions. In order to understand site specific causal-effect relationship between heavy storms and floods and improve the flood analysis for stormwater drainage design and management, we have examined the contributions of various factors that affect floods using statistical and information theory methods. Based on the identified dominant causal-effect relationships, hydrologic and probability analyses were conducted to develop the runoff IDF curves taking into consideration the snowmelt and rain-on-snow effect, the difference in the storm and flood seasonality, soil moisture conditions, and catchment potential for flash and riverine flooding. The approach was demonstrated using data from military installations located in different parts of the United States. The accuracy of the flood frequency analysis and the resulted runoff IDF curves were evaluated based on the runoff IDF curves developed from streamflow measurements.

  13. Paleohydrologic techniques used to define the spatial occurrence of floods

    USGS Publications Warehouse

    Jarrett, R.D.

    1990-01-01

    Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods

  14. Estimated Flood-Inundation Mapping for the Upper Blue River, Indian Creek, and Dyke Branch in Kansas City, Missouri, 2006-08

    USGS Publications Warehouse

    Kelly, Brian P.; Huizinga, Richard J.

    2008-01-01

    , and 63rd Street on the Blue River, and at 103rd Street on Indian Creek. The National Weather Service issues peak stage forecasts for Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street during floods. A two-dimensional depth-averaged flow model simulated flooding within a hydraulically complex, 5.6-mile study reach of the Blue River between Hickman Mills Drive and 63rd Street. Hydraulic simulation of the study reach provided information for the estimated flood-inundation maps and water-velocity magnitude and direction maps. Flood profiles of the upper Blue River between the U.S. Geological Survey streamflow gage at Kenneth Road and Hickman Mills Drive were developed from water-surface elevations calculated using Federal Emergency Management Agency flood-frequency discharges and 2006 stage-discharge ratings at U.S. Geological Survey streamflow gages. Flood profiles between Hickman Mills Drive and 63rd Street were developed from two-dimensional hydraulic modeling conducted for this study. Flood profiles of Indian Creek between the Kansas-Missouri border and the mouth were developed from water-surface elevations calculated using current stage-discharge ratings at the U.S. Geological Survey streamflow gage at 103rd Street, and water-surface slopes derived from Federal Emergency Management Agency flood-frequency stage-discharge relations. Mapped flood water-surface elevations at the mouth of Dyke Branch were set equal to the flood water-surface elevations of Indian Creek at the Dyke Branch mouth for all Indian Creek water-surface elevations; water-surface elevation slopes were derived from Federal Emergency Management Agency flood-frequency stage-discharge relations.

  15. Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2013-01-01

    Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.

  16. Assessment of Three Flood Hazard Mapping Methods: A Case Study of Perlis

    NASA Astrophysics Data System (ADS)

    Azizat, Nazirah; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Flood is a common natural disaster and also affect the all state in Malaysia. Regarding to Drainage and Irrigation Department (DID) in 2007, about 29, 270 km2 or 9 percent of region of the country is prone to flooding. Flood can be such devastating catastrophic which can effected to people, economy and environment. Flood hazard mapping can be used is an important part in flood assessment to define those high risk area prone to flooding. The purposes of this study are to prepare a flood hazard mapping in Perlis and to evaluate flood hazard using frequency ratio, statistical index and Poisson method. The six factors affecting the occurrence of flood including elevation, distance from the drainage network, rainfall, soil texture, geology and erosion were created using ArcGIS 10.1 software. Flood location map in this study has been generated based on flooded area in year 2010 from DID. These parameters and flood location map were analysed to prepare flood hazard mapping in representing the probability of flood area. The results of the analysis were verified using flood location data in year 2013, 2014, 2015. The comparison result showed statistical index method is better in prediction of flood area rather than frequency ratio and Poisson method.

  17. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant action...

  18. Flood of August 2, 1972, in the Little Maquoketa River basin, Dubuque County, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1973-01-01

    Flood-peak discharges at 12 sites, basin rainfall, a description of the 1972 flood, brief accounts of other major floods in the basin, maximum flood peaks in northeastern Iowa, selected flood-frequency data, and annual floods of record at 5 sites are given.

  19. Flood type specific construction of synthetic design hydrographs

    NASA Astrophysics Data System (ADS)

    Brunner, Manuela I.; Viviroli, Daniel; Sikorska, Anna E.; Vannier, Olivier; Favre, Anne-Catherine; Seibert, Jan

    2017-02-01

    Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the estimation of the design variables peak and volume by constructing synthetic design hydrographs for different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our approach relies on the fitting of probability density functions to observed flood hydrographs of a certain flood type and accounts for the dependence between peak discharge and flood volume. It makes use of the statistical information contained in the data and retains the process information of the flood type. The method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate that flood type specific synthetic design hydrographs are meaningful in flood-risk management when combined with knowledge on the seasonality and the frequency of different flood types.

  20. Past and present floods in South Moravia

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Chromá, Kateřina; Řezníčková, Ladislava; Valášek, Hubert; Dolák, Lukáš; Stachoň, Zdeněk; Soukalová, Eva; Dobrovolný, Petr

    2015-04-01

    Floods represent the most destructive natural phenomena in the Czech Republic, often causing great material damage or loss of human life. Systematic instrumental measurements of water levels in Moravia (the eastern part of the Czech Republic) started mainly in the 1880s-1890s, while for discharges it was in the 1910s-1920s. Different documentary evidence allows extension of our knowledge about floods prior the instrumental period. The paper presents long-term flood chronologies for four South Moravian rivers: the Jihlava, the Svratka, the Dyje and the Morava. Different documentary data are used to extract floods. Taxation records are of particular importance among them. Since the mid-17th century, damage to property and land (fields, meadows, pastures or gardens) entitled farmers and landowners to request a tax relief. Related documents of this administration process kept mainly in Moravian Land Archives in Brno allow to obtain detail information about floods and their impacts. Selection of floods in the instrumental period is based on calculation of N-year return period of peak water levels and/or peak discharges for selected hydrological stations of the corresponding rivers (with return period of two years and more). Final flood chronologies combine floods derived from both documentary data and hydrological measurements. Despite greater inter-decadal variability, periods of higher flood frequency are c. 1821-1850 and 1921-1950 for all four rivers; for the Dyje and Morava rivers also 1891-1900. Flood frequency fluctuations are further compared with other Central European rivers. Uncertainties in created chronologies with respect to data and methods used for compilation of long-term series and anthropogenic changes in river catchments are discussed. The study is a part of the research project "Hydrometeorological extremes in Southern Moravia derived from documentary evidence" supported by the Grant Agency of the Czech Republic, reg. no. 13-19831S.

  1. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Insurance Program. (7) NFIP means the National Flood Insurance Program authorized under the Act. (8...(b)); (iii) A statement, where applicable, that flood insurance coverage is available under the NFIP... participates in the National Flood Insurance Program (NFIP). Federal law will not allow us to make you the loan...

  2. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Insurance Program. (7) NFIP means the National Flood Insurance Program authorized under the Act. (8...(b)); (iii) A statement, where applicable, that flood insurance coverage is available under the NFIP... participates in the National Flood Insurance Program (NFIP). Federal law will not allow us to make you the loan...

  3. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Insurance Program. (7) NFIP means the National Flood Insurance Program authorized under the Act. (8...(b)); (iii) A statement, where applicable, that flood insurance coverage is available under the NFIP... participates in the National Flood Insurance Program (NFIP). Federal law will not allow us to make you the loan...

  4. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Insurance Program. (7) NFIP means the National Flood Insurance Program authorized under the Act. (8...(b)); (iii) A statement, where applicable, that flood insurance coverage is available under the NFIP... participates in the National Flood Insurance Program (NFIP). Federal law will not allow us to make you the loan...

  5. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Setback and community flood...

  6. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Setback and community flood...

  7. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Setback and community flood...

  8. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Setback and community flood...

  9. 44 CFR 63.12 - Setback and community flood plain management requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Setback and community flood...

  10. Techniques for estimating flood-depth frequency relations for streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1987-01-01

    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  11. High-magnitude flooding across Britain since AD 1750

    NASA Astrophysics Data System (ADS)

    Macdonald, Neil; Sangster, Heather

    2017-03-01

    The last decade has witnessed severe flooding across much of the globe, but have these floods really been exceptional? Globally, relatively few instrumental river flow series extend beyond 50 years, with short records presenting significant challenges in determining flood risk from high-magnitude floods. A perceived increase in extreme floods in recent years has decreased public confidence in conventional flood risk estimates; the results affect society (insurance costs), individuals (personal vulnerability) and companies (e.g. water resource managers). Here, we show how historical records from Britain have improved understanding of high-magnitude floods, by examining past spatial and temporal variability. The findings identify that whilst recent floods are notable, several comparable periods of increased flooding are identifiable historically, with periods of greater frequency (flood-rich periods). Statistically significant relationships between the British flood index, the Atlantic Meridional Oscillation and the North Atlantic Oscillation Index are identified. The use of historical records identifies that the largest floods often transcend single catchments affecting regions and that the current flood-rich period is not unprecedented.

  12. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating

  13. 44 CFR 61.13 - Standard Flood Insurance Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Standard Flood Insurance...

  14. 44 CFR 61.13 - Standard Flood Insurance Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Standard Flood Insurance...

  15. 44 CFR 61.13 - Standard Flood Insurance Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Standard Flood Insurance...

  16. 44 CFR 61.13 - Standard Flood Insurance Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Standard Flood Insurance...

  17. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees

    USGS Publications Warehouse

    Yanosky, Thomas M.

    1983-01-01

    Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)

  18. Floods at Mount Clemens, Michigan

    USGS Publications Warehouse

    Wiitala, S.W.; Ash, Arlington D.

    1962-01-01

    The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.

  19. Floods of May 1981 in west-central Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.; Fassler, John W.

    1982-01-01

    Extensive flooding occurred in west-central Montana during May 22-23, 1981, as a result of a series of rainstorms. Flooding was particularly severe in the communities of East Helena, Belt, and Deer Lodge. Although no lives were lost, total flood damages were estimated by the Montana Disaster Emergency Services Division to be in excess of $30 million. Peak discharges were determined at 75 sites in the flooded area. At 25 sites the May 1981 peak discharge exceeded the computed 100-year frequency flood, and at 29 sites, where previous flow records are available, the May 1981 peak discharge exceeded the previous peak of record. (USGS)

  20. Impact of climatic and environmental changes on flood-duration-frequencies in the Fengle Rriver (YangTze Basin, China)

    NASA Astrophysics Data System (ADS)

    Salles, Christian; Chu, Yin; Tournoud, Marie-George; Ou, Mengli; Perrin, Jean-Louis; Cres, François-Noël; Ma, Youhua

    2016-04-01

    during summer. Using the above methodology the future dynamics of the Fengle River is characterized on discharge-duration-frequency curves. Results will be discussed with regards to the sensitivity of predicted flood occurrence, duration and magnitude by quantifying the impact of rainfall, temperature and land-use changes.

  1. Flood frequency analysis for a braided river catchment in New Zealand: Comparing annual maximum and partial duration series with varying record lengths

    NASA Astrophysics Data System (ADS)

    Nagy, B. K.; Mohssen, M.; Hughey, K. F. D.

    2017-04-01

    This study addresses technical questions concerning the use of the partial duration series (PDS) within the domain of flood frequency analysis. The recurring questions which often prevent the standardised use of the PDS are peak independence and threshold selection. This paper explores standardised approaches to peak and threshold selection to produce PDS samples with differing average annual exceedances, using six theoretical probability distributions. The availability of historical annual maximum (AMS) data (1930-1966) in addition to systemic AMS data (1967-2015) enables a unique comparison between the performance of the PDS sample and the systemic AMS sample. A recently derived formula for the translation of the PDS into the annual domain, simplifying the use of the PDS, is utilised in an applied case study for the first time. Overall, the study shows that PDS sampling returns flood magnitudes similar to those produced by AMS series utilising historical data and thus the use of the PDS should be preferred in cases where historical flood data is unavailable.

  2. Techniques for estimating flood-peak discharges from urban basins in Missouri

    USGS Publications Warehouse

    Becker, L.D.

    1986-01-01

    Techniques are defined for estimating the magnitude and frequency of future flood peak discharges of rainfall-induced runoff from small urban basins in Missouri. These techniques were developed from an initial analysis of flood records of 96 gaged sites in Missouri and adjacent states. Final regression equations are based on a balanced, representative sampling of 37 gaged sites in Missouri. This sample included 9 statewide urban study sites, 18 urban sites in St. Louis County, and 10 predominantly rural sites statewide. Short-term records were extended on the basis of long-term climatic records and use of a rainfall-runoff model. Linear least-squares regression analyses were used with log-transformed variables to relate flood magnitudes of selected recurrence intervals (dependent variables) to selected drainage basin indexes (independent variables). For gaged urban study sites within the State, the flood peak estimates are from the frequency curves defined from the synthesized long-term discharge records. Flood frequency estimates are made for ungaged sites by using regression equations that require determination of the drainage basin size and either the percentage of impervious area or a basin development factor. Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence interval floods. The average standard errors of estimate range from about 33% for the 2-yr flood to 26% for the 100-yr flood. The techniques for estimation are applicable to flood flows that are not significantly affected by storage caused by manmade activities. Flood peak discharge estimating equations are considered applicable for sites on basins draining approximately 0.25 to 40 sq mi. (Author 's abstract)

  3. Are flood occurrences in Europe linked to specific atmospheric circulation types?

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Genevier, M.

    2009-04-01

    Flood damages are amongst the most costly climate-related hazard damages, with annual average flood damage in Europe in the last few decades of around €4bn per year (Barredo, 2007). With such economic and sometimes human losses, it is important to improve our estimations of flood risk for time scales from a few months (for increased preparedness) and to several decades (necessary to establish long-term flood management strategies). This paper investigates links between the occurrence of flood events and the atmospheric circulation patterns that have prevailed in the days leading to the flood. With the recent advances in climate modelling, such links could be exploited to anticipate the extent of potential damages due to flood using seasonal atmospheric forecasts products or future climate projections. The research is undertaken at a pan-European scale and exploits latest research in automatic classification techniques developed within the EU research network COST733 Action. Daily flow data from over 450 sites were used, available from the Global Runoff Data Centre, the European Water Archive, the UK National River Flow Archive and the French Banque Hydro. The atmospheric circulation types were defined following the Objective GrossWetterLagen classification (OGWL) developed by (James, 2007) using the ERA-40 mslp re-analysis, similar to the Hess-Brezowsky subjective classification (Hess and Brezowsky, 1977). Flood events were here defined according to the peak-over-threshold method, selecting the highest independent peaks observed in streamflow time series. The association between flood and atmospheric circulation types is assessed using two indicators. The first indicator calculates the difference between the frequency of occurrence of a circulation type CTi during a flood event to that for any day, expressed in percent. The significance of the anomaly is assessed using the χ2 statistics. The second indicator measures the probability of finding at last k days of

  4. The impact of bathymetry input on flood simulations

    NASA Astrophysics Data System (ADS)

    Khanam, M.; Cohen, S.

    2017-12-01

    Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.

  5. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    USGS Publications Warehouse

    Moody, John A.

    1995-01-01

    . During the flood, the USGS provided continuous streamflow and related information to the National Weather Service (NWS), the U.S. Army Corps of Engineers, the Federal Emergency Management Agency (FEMA), and many State and local agencies as part of its role to provide basic information on the Nation's surface- and ground-water resources at thousands of locations across the United States. The NWS has used the data in forecasting floods and issuing flood warnings. The data have been used by the Corps of Engineers to operate water diversions, dams, locks, and levees. The FEMA and many State and local emergency management agencies have used USGS hydrologic data and NWS forecasts as part of the basis of their local flood-response activities. In addition, USGS hydrologists are conducting a series of investigations to document the effects of the flooding and to improve understanding of the related processes. The major initial findings from these studies will be reported in this Circular series as results become available.U.S. Geological Survey Circular 1120, Floods in the Upper Mississippi River Basin, 1993, consists of individually published chapters that will document the effects of the 1993 flooding. The series includes data and findings on the magnitude and frequency of peak discharges; precipitation; water-quality characteristics, including nutrients and man-made contaminants; transport of sediment; assessment of sediment deposited on flood plains; effects of inundation on ground-water quality; flood-discharge volume; effects of reservoir storage on flood peaks; stream-channel scour at selected bridges; extent of floodplain inundation; and documentation of geomorphologic changes.

  6. Geospatial Analysis for Flood-Risk Management, Resilience, and US Policy

    NASA Astrophysics Data System (ADS)

    Pinter, N.; Hui, R.; Conrad, D. R.; Schaefer, K.

    2016-12-01

    The National Flood Insurance Program (NFIP) was established in 1968 to curtail unfettered development on US floodplains and spiraling taxpayer expenditures for disaster relief. Currently NFIP underwrites >5 million policies, providing >1.25 trillion in coverage, and taking in >3.5 billion in annual premiums. Cumulative flood-damage payouts to date exceed premiums collected by >$20 billion. Our group has obtained nationwide databases of NFIP flood-damage claims back to 1972, annual policies since 1994, and selective Federal Emergency Management Agency (FEMA) repetitive losses. Attributes include property, claims, and loss characteristics. Other attributes were stripped to maintain policyholder anonymity. At present, locations are to the nearest 0.1° lat/long, zip code, and by community. We combine NFIP data with GIS information from a variety of other sources. Over the past 44 years, 1,625,470 non-zero flood claims are documented. Numbers of claims and losses have increased over time, even with extreme events (Hurricanes Katrina and Sandy) excluded. Flood losses have occurred within 100-year floodplains (1% annual exceedance), in coastal hazard zones, and 25% of claims occur outside of mapped flood-hazard areas. We hypothesize that a many losses outside of FEMA's designated Special Flood Hazard Area (SFHA) correlate with (1) outdated map panels, (2) contrasting levels of enforcement and mitigation by state. Other distributed flood losses represent stormwater/drainage damage. Claim rates substantially exceed 1%, both in and outside the SFHA, and for "pre-FIRM" and "post-FIRM" structures. This suggests that ≥100-year floods are occurring more frequently than statutory frequencies suggest. For US homeowners, this suggests that flood insurance is a good deal in a variety of settings. The NFIP data analyzed here contrasts with our group's previous, largely model-driven research. Such empirical flood data exclude model assumptions, but add dizzying array of human and

  7. A statistical approach to evaluate flood risk at the regional level: an application to Italy

    NASA Astrophysics Data System (ADS)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

    2016-04-01

    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate

  8. The English national cohort study of flooding and health: cross-sectional analysis of mental health outcomes at year one.

    PubMed

    Waite, Thomas David; Chaintarli, Katerina; Beck, Charles R; Bone, Angie; Amlôt, Richard; Kovats, Sari; Reacher, Mark; Armstrong, Ben; Leonardi, Giovanni; Rubin, G James; Oliver, Isabel

    2017-01-28

    In winter 2013/14 there was widespread flooding in England. Previous studies have described an increased prevalence of psychological morbidity six months after flooding. Disruption to essential services may increase morbidity however there have been no studies examining whether those experiencing disruption but not directly flooded are affected. The National Study of Flooding and Health was established in order to investigate the longer-term impact of flooding and related disruptions on mental health and wellbeing. In year one we conducted a cross sectional analysis of people living in neighbourhoods affected by flooding between 1 December 2013 and 31 March 2014. 8761 households were invited to participate. Participants were categorised according to exposure as flooded, disrupted by flooding or unaffected. We used validated instruments to screen for probable psychological morbidity, the Patient Health Questionnaire (PHQ 2), Generalised Anxiety Disorder scale (GAD-2) and Post Traumatic Stress Disorder (PTSD) checklist (PCL-6). We calculated prevalence and odds ratios for each outcome by exposure group relative to unaffected participants, adjusting for confounders. 2126 people (23%) responded. The prevalence of psychological morbidity was elevated amongst flooded participants ([n = 622] depression 20.1%, anxiety 28.3%, PTSD 36.2%) and disrupted participants ([n = 1099] depression 9.6%, anxiety 10.7% PTSD 15.2%). Flooding was associated with higher odds of all outcomes (adjusted odds ratios (aORs), 95% CIs for depression 5.91 (3.91-10.99), anxiety 6.50 (3.77-11.24), PTSD 7.19 (4.33-11.93)). Flooded participants who reported domestic utilities disruption had higher odds of all outcomes than other flooded participants, (aORs, depression 6.19 (3.30-11.59), anxiety 6.64 (3.84-11.48), PTSD 7.27 (4.39-12.03) aORs without such disruption, depression, 3.14 (1.17-8.39), anxiety 3.45 (1.45-8.22), PTSD 2.90 (1.25-6.73)). Increased floodwater depth was significantly

  9. 44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Standard Flood Insurance...

  10. 44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Standard Flood Insurance...

  11. 44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Standard Flood Insurance...

  12. 44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Standard Flood Insurance...

  13. 44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Insurance...

  14. Potential increase in floods in California's Sierra Nevada under future climate projections

    USGS Publications Warehouse

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p <= 0. 01) for all the three GCMs in the period 2051-2099. The frequency of flood events above selected historical thresholds also increases under projections from CNRM CM3 and NCAR PCM1 climate models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science

  15. 12 CFR 741.216 - Flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Flood insurance. 741.216 Section 741.216 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS REQUIREMENTS FOR... Also Apply to Federally Insured State-Chartered Credit Unions § 741.216 Flood insurance. Any credit...

  16. Estimated Flood Discharges and Map of Flood-Inundated Areas for Omaha Creek, near Homer, Nebraska, 2005

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Wilson, Richard C.; Strauch, Kellan R.

    2008-01-01

    Repeated flooding of Omaha Creek has caused damage in the Village of Homer. Long-term degradation and bridge scouring have changed substantially the channel characteristics of Omaha Creek. Flood-plain managers, planners, homeowners, and others rely on maps to identify areas at risk of being inundated. To identify areas at risk for inundation by a flood having a 1-percent annual probability, maps were created using topographic data and water-surface elevations resulting from hydrologic and hydraulic analyses. The hydrologic analysis for the Omaha Creek study area was performed using historical peak flows obtained from the U.S. Geological Survey streamflow gage (station number 06601000). Flood frequency and magnitude were estimated using the PEAKFQ Log-Pearson Type III analysis software. The U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System, version 3.1.3, software was used to simulate the water-surface elevation for flood events. The calibrated model was used to compute streamflow-gage stages and inundation elevations for the discharges corresponding to floods of selected probabilities. Results of the hydrologic and hydraulic analyses indicated that flood inundation elevations are substantially lower than from a previous study.

  17. Evaluation of the expected moments algorithm and a multiple low-outlier test for flood frequency analysis at streamgaging stations in Arizona

    USGS Publications Warehouse

    Paretti, Nicholas V.; Kennedy, Jeffrey R.; Cohn, Timothy A.

    2014-01-01

    Flooding is among the costliest natural disasters in terms of loss of life and property in Arizona, which is why the accurate estimation of flood frequency and magnitude is crucial for proper structural design and accurate floodplain mapping. Current guidelines for flood frequency analysis in the United States are described in Bulletin 17B (B17B), yet since B17B’s publication in 1982 (Interagency Advisory Committee on Water Data, 1982), several improvements have been proposed as updates for future guidelines. Two proposed updates are the Expected Moments Algorithm (EMA) to accommodate historical and censored data, and a generalized multiple Grubbs-Beck (MGB) low-outlier test. The current guidelines use a standard Grubbs-Beck (GB) method to identify low outliers, changing the determination of the moment estimators because B17B uses a conditional probability adjustment to handle low outliers while EMA censors the low outliers. B17B and EMA estimates are identical if no historical information or censored or low outliers are present in the peak-flow data. EMA with MGB (EMA-MGB) test was compared to the standard B17B (B17B-GB) method for flood frequency analysis at 328 streamgaging stations in Arizona. The methods were compared using the relative percent difference (RPD) between annual exceedance probabilities (AEPs), goodness-of-fit assessments, random resampling procedures, and Monte Carlo simulations. The AEPs were calculated and compared using both station skew and weighted skew. Streamgaging stations were classified by U.S. Geological Survey (USGS) National Water Information System (NWIS) qualification codes, used to denote historical and censored peak-flow data, to better understand the effect that nonstandard flood information has on the flood frequency analysis for each method. Streamgaging stations were also grouped according to geographic flood regions and analyzed separately to better understand regional differences caused by physiography and climate. The B

  18. Use of historical information in extreme surge frequency estimation: case of the marine flooding on the La Rochelle site in France

    NASA Astrophysics Data System (ADS)

    Hamdi, Y.; Bardet, L.; Duluc, C.-M.; Rebour, V.

    2014-09-01

    Nuclear power plants located in the French Atlantic coast are designed to be protected against extreme environmental conditions. The French authorities remain cautious by adopting a strict policy of nuclear plants flood prevention. Although coastal nuclear facilities in France are designed to very low probabilities of failure (e.g. 1000 year surge), exceptional surges (outliers induced by exceptional climatic events) had shown that the extreme sea levels estimated with the current statistical approaches could be underestimated. The estimation of extreme surges then requires the use of a statistical analysis approach having a more solid theoretical motivation. This paper deals with extreme surge frequency estimation using historical information (HI) about events occurred before the systematic record period. It also contributes to addressing the problem of the presence of outliers in data sets. The frequency models presented in the present paper have been quite successful in the field of hydrometeorology and river flooding but they have not been applied to sea levels data sets to prevent marine flooding. In this work, we suggest two methods of incorporating the HI: the Peaks-Over-Threshold method with HI (POTH) and the Block Maxima method with HI (BMH). Two kinds of historical data can be used in the POTH method: classical Historical Maxima (HMax) data, and Over a Threshold Supplementary (OTS) data. In both cases, the data are structured in historical periods and can be used only as complement to the main systematic data. On the other hand, in the BMH method, the basic hypothesis in statistical modeling of HI is that at least one threshold of perception exists for the whole period (historical and systematic) and that during a giving historical period preceding the period of tide gauging, only information about surges above this threshold have been recorded or archived. The two frequency models were applied to a case study from France, at the La Rochelle site where

  19. Use of historical information in extreme-surge frequency estimation: the case of marine flooding on the La Rochelle site in France

    NASA Astrophysics Data System (ADS)

    Hamdi, Y.; Bardet, L.; Duluc, C.-M.; Rebour, V.

    2015-07-01

    Nuclear power plants located in the French Atlantic coast are designed to be protected against extreme environmental conditions. The French authorities remain cautious by adopting a strict policy of nuclear-plants flood prevention. Although coastal nuclear facilities in France are designed to very low probabilities of failure (e.g., 1000-year surge), exceptional surges (outliers induced by exceptional climatic events) have shown that the extreme sea levels estimated with the current statistical approaches could be underestimated. The estimation of extreme surges then requires the use of a statistical analysis approach having a more solid theoretical motivation. This paper deals with extreme-surge frequency estimation using historical information (HI) about events occurred before the systematic record period. It also contributes to addressing the problem of the presence of outliers in data sets. The frequency models presented in the present paper have been quite successful in the field of hydrometeorology and river flooding but they have not been applied to sea level data sets to prevent marine flooding. In this work, we suggest two methods of incorporating the HI: the peaks-over-threshold method with HI (POTH) and the block maxima method with HI (BMH). Two kinds of historical data can be used in the POTH method: classical historical maxima (HMax) data, and over-a-threshold supplementary (OTS) data. In both cases, the data are structured in historical periods and can be used only as complement to the main systematic data. On the other hand, in the BMH method, the basic hypothesis in statistical modeling of HI is that at least one threshold of perception exists for the whole period (historical and systematic) and that during a giving historical period preceding the period of tide gauging, only information about surges above this threshold have been recorded or archived. The two frequency models were applied to a case study from France, at the La Rochelle site where

  20. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  1. Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; AghaKouchak, Amir; Lall, Upmanu

    2017-12-01

    Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life. Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps (SOMs) that allows the linkage of large-scale processes to local-scale observations. The methodology is applied to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB) in southern Brazil. The SOM clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes, including the South American low-level jet (SALLJ); extratropical cyclones; and the South Atlantic Convergence Zone (SACZ). Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are also found to be associated with these processes. Floods associated with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

  2. User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines

    USGS Publications Warehouse

    Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.

    2006-01-01

    Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.

  3. Hydrologic, Hydraulic, and Flood Analyses of the Blackberry Creek Watershed, Kendall County, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.

    2007-01-01

    Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.

  4. Extreme flood impact on estuarine and coastal biogeochemistry: the 2013 Elbe flood

    NASA Astrophysics Data System (ADS)

    Voynova, Yoana G.; Brix, Holger; Petersen, Wilhelm; Weigelt-Krenz, Sieglinde; Scharfe, Mirco

    2017-02-01

    Within the context of the predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June 2013 not only caused major damages in several European countries but also generated large-scale biogeochemical changes in the Elbe estuary and the adjacent German Bight. The high-frequency monitoring network within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Data from a FerryBox station in the Elbe estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl ferry (traveling between Büsum and Helgoland) documented the salinity changes in the German Bight, which persisted for about 2 months after the peak discharge. The Elbe flood generated a large influx of nutrients and dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a phytoplankton bloom, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the southeastern German Bight in the summer.

  5. Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.

    2017-12-01

    Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.

  6. Historical floods in the Dutch Rhine Delta

    NASA Astrophysics Data System (ADS)

    Glaser, R.; Stangl, H.

    Historical records provide direct information about the climatic impact on society. Especially great natural disasters such as river floods have been for long attracting the attention of humankind. Time series for flood development on the Rhine branches Waal, Nederrijn/Lek and IJssel in the Dutch Rhine Delta are presented in this paper. In the case of the Waal it is even possible to compare historical flood frequencies based on documentary data with the recent development reconstructed from standardized instrumental measurements. In brief, we will also discuss various parameters concerning the structure of the flood series and the "human dimension" of natural disaster, i.e. the vulnerability of society when facing natural disasters.

  7. Urban Infrastructure, Channel-Floodplain Morphology and Flood Flow Patterns

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Smith, J. A.; Nelson, C. B.

    2006-12-01

    The relationship between the channel and the floodplain in urban settings is heavily influenced by (1) altered watershed hydrologic response and frequency distribution of flows, (2) channel enlargement resulting from altered hydrology under conditions of limited sediment supply, (3) direct modification of channels and floodplains for purposes of erosion mitigation, flood protection, commercial development and creation of public amenities, (4) valley constrictions and flow obstructions associated with bridges, culverts, road embankments and other types of floodplain encroachment causing fragmentation or longitudinal segmentation of the riparian corridor. Field observation of inundation patterns associated with recurring floods in the Baltimore metropolitan area is used in combination with 2-dimensional hydraulic modeling to simulate patterns of floodplain inundation and to explore the relationships between magnitude and shape of the flood hydrograph, morphology of the urban channel-floodplain system, and the frequency and extent of floodplain inundation. Case studies include a July 2004 flood associated with a 300-year 2-hour rainfall in a small (14.2 km2) urban watershed, as well as several other events caused by summer thunderstorms with shorter recurrence intervals that generated an extraordinary flood response. The influence of urban infrastructure on flood inundation and flow patterns is expressed in terms of altered (and hysteretic) stage-discharge relationships, stepped flood profiles, rapid longitudinal attenuation of flood waves, and transient flow reversals at confluences and constrictions. Given the current level of interest in restoration measures these patterns merit consideration in planning future development and mitigation efforts.

  8. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  9. A free and open source QGIS plugin for flood risk analysis: FloodRisk

    NASA Astrophysics Data System (ADS)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo

    2016-04-01

    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  10. Historic flooding in northern Georgia, September 16-22, 2009

    USGS Publications Warehouse

    McCallum, Brian E.; Gotvald, Anthony J.

    2010-01-01

    A primary mission of the U.S. Geological Survey (USGS) is the measurement and documentation of the magnitude and extent of hydrologic hazards, such as floods, droughts, and hurricane storm surge. USGS personnel were deployed to document historic, widespread flooding that occurred throughout the Atlanta metropolitan area and northwestern Georgia in the early fall of 2009. The floods were created by prolonged rainfall that occurred during September 16?22, 2009, with an especially intense period of rainfall during the late evening of September 20. The National Weather Service (NWS) reported that the southeastern United States had above-normal precipitation from August into early September, resulting in saturated soil conditions making the region extremely flood prone. Precipitation totals were the sixth highest on record for the month of September for the region (National Weather Service, 2010). Lessons learned from this flood include the need for more effective communication of the latest river information by Federal agencies with flood-threatened communities. Communicating the flood threat in an easy, accessible manner would have helped emergency managers and the public greatly during this flood. In response, the USGS developed WaterAlert (http://water.usgs.gov/wateralert/) to send notifications of flood events by way of text and e-mail. Also in development are real-time flood-inundation maps to give the hydrograph spatial context by way of a map-based product.

  11. Revising time series of the Elbe river discharge for flood frequency determination at gauge Dresden

    NASA Astrophysics Data System (ADS)

    Bartl, S.; Schümberg, S.; Deutsch, M.

    2009-11-01

    The German research programme RIsk MAnagment of eXtreme flood events has accomplished the improvement of regional hazard assessment for the large rivers in Germany. Here we focused on the Elbe river at its gauge Dresden, which belongs to the oldest gauges in Europe with officially available daily discharge time series beginning on 1 January 1890. The project on the one hand aimed to extend and to revise the existing time series, and on the other hand to examine the variability of the Elbe river discharge conditions on a greater time scale. Therefore one major task were the historical searches and the examination of the retrieved documents and the contained information. After analysing this information the development of the river course and the discharge conditions were discussed. Using the provided knowledge, in an other subproject, a historical hydraulic model was established. Its results then again were used here. A further purpose was the determining of flood frequency based on all pre-processed data. The obtained knowledge about historical changes was also used to get an idea about possible future variations under climate change conditions. Especially variations in the runoff characteristic of the Elbe river over the course of the year were analysed. It succeeded to obtain a much longer discharge time series which contain fewer errors and uncertainties. Hence an optimized regional hazard assessment was realised.

  12. Sediment transport and deposition in the lower Missouri River during the 2011 flood

    USGS Publications Warehouse

    Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.

    2013-01-01

    Hermann, Missouri. Measurements made in early January, when SSC was low, indicate that suspended sediment mostly was composed of bed material, but by mid-February, runoff from the plains caused PW to increase at most streamgages. Total suspended-sediment discharge (SSD) during water year 2011 at the selected streamgages in the lower Missouri River ranged from approximately 29 to 64 million tons. Total estimated SSD had the lowest exceedance frequencies in the reaches between Gavins Point Dam and Nebraska City, Nebraska, but exceedance frequencies increased substantially downstream. In 2011, total SSD with low exceedance frequencies were reported at Sioux City, Iowa, Omaha, Nebraska, and Nebraska City, Nebraska, despite moderate-to-high exceedance frequencies for annual average SSC, indicating that the duration of high-magnitude flooding was the primary driver of total SSD. Comparison of median SSC for samples from water year 2011 with samples in the 20 years prior indicated that median SSC for high-action streamflows (streamflows likely to produce a stage exceeding the National Weather Service’s “action stage”) in 2011 were lower than those typical for high-action streamflows. Multiple-comparison analysis indicated that median SSC values for low-action streamflows (streamflows likely to produce stages lower than the National Weather Service’s “action stage”) and high-action streamflows sampled in 2011 at 4 of 6 streamgages were not significantly distinguishable from median SSC values for low-action streamflows in the previous 20 years. Longitudinal comparison of streamflow and SSD exceedance frequencies for 2011 with corresponding frequencies for 2008 and 1993 indicated the important role of tributary contributions to total SSD in the lower Missouri River. In 1993 and 2008, tributaries were the primary source of floodwater in the lower Missouri River, which resulted in a 20-fold increase in total SSD from Sioux City, Iowa, to Hermann, Missouri. In 2011

  13. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  14. Communicating Flood Risk with Street-Level Data

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.

    2015-12-01

    Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.

  15. Warm Season Storms, Floods, and Tributary Sand Inputs below Glen Canyon Dam: Investigating Salience to Adaptive Management in the Context of a 10-Year Long Controlled Flooding Experiment in Grand Canyon National Park, AZ, USA

    NASA Astrophysics Data System (ADS)

    Jain, S.; Melis, T. S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J.

    2013-12-01

    The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of downstream tributary sand supply, endangered native fish, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on the warm season floods (at point-to-regional scales) has been identified as lead-information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars in Grand Canyon; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of tributary sand input from the Paria and Little Colorado Rivers (located 26 and 124 km below the dam, respectively) into the Colorado River in Grand Canyon National Park. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in the southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm season floods from this relatively small, but prolific sand producing drainage of the semi-arid Colorado Plateau. The coupled variations of the flood-driven sediment input (magnitude and timing) from these two drainages into the Colorado River are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the Glen Canyon Dam which are aimed at achieving restoration and maintenance of sandbars and instream ecology. The GCDAMP represents one of the most visible and widely recognized

  16. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    PubMed

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E

    2017-09-11

    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  17. A Probabilistic Analysis of Surface Water Flood Risk in London.

    PubMed

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2018-06-01

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  18. Flood-inundation map and water-surface profiles for floods of selected recurrence intervals, Consumnes River and Deer Creek, Sacramento County, California

    USGS Publications Warehouse

    Guay, Joel R.; Harmon, Jerry G.; McPherson, Kelly R.

    1998-01-01

    The damage caused by the January 1997 floods along the Cosumnes River and Deer Creek generated new interest in planning and managing land use in the study area. The 1997 floodflow peak, the highest on record and considered to be a 150-year flood, caused levee failures at 24 locations. In order to provide a technical basis for floodplain management practices, the U.S. Goelogical Survey, in cooperation with the Federal Emergency Management Agency, completed a flood-inundation map of the Cosumnes River and Deer Creek drainage from Dillard Road bridge to State Highway 99. Flood frequency was estimated from streamflow records for the Cosumnes River at Michigan Bar and Deer Creek near Sloughhouse. Cross sections along a study reach, where the two rivers generally flow parallel to one another, were used with a step-backwater model (WSPRO) to estimate the water-surface profile for floods of selected recurrence intervals. A flood-inundation map was developed to show flood boundaries for the 100-year flood. Water-surface profiles were developed for the 5-, 10-, 50-, 100-, and 500-year floods.

  19. Use of Flood Seasonality in Pooling-Group Formation and Quantile Estimation: An Application in Great Britain

    NASA Astrophysics Data System (ADS)

    Formetta, Giuseppe; Bell, Victoria; Stewart, Elizabeth

    2018-02-01

    Regional flood frequency analysis is one of the most commonly applied methods for estimating extreme flood events at ungauged sites or locations with short measurement records. It is based on: (i) the definition of a homogeneous group (pooling-group) of catchments, and on (ii) the use of the pooling-group data to estimate flood quantiles. Although many methods to define a pooling-group (pooling schemes, PS) are based on catchment physiographic similarity measures, in the last decade methods based on flood seasonality similarity have been contemplated. In this paper, two seasonality-based PS are proposed and tested both in terms of the homogeneity of the pooling-groups they generate and in terms of the accuracy in estimating extreme flood events. The method has been applied in 420 catchments in Great Britain (considered as both gauged and ungauged) and compared against the current Flood Estimation Handbook (FEH) PS. Results for gauged sites show that, compared to the current PS, the seasonality-based PS performs better both in terms of homogeneity of the pooling-group and in terms of the accuracy of flood quantile estimates. For ungauged locations, a national-scale hydrological model has been used for the first time to quantify flood seasonality. Results show that in 75% of the tested locations the seasonality-based PS provides an improvement in the accuracy of the flood quantile estimates. The remaining 25% were located in highly urbanized, groundwater-dependent catchments. The promising results support the aspiration that large-scale hydrological models complement traditional methods for estimating design floods.

  20. Moral Hazard: How The National Flood Insurance Program Is Limiting Risk Reduction

    DTIC Science & Technology

    2016-12-01

    Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December...assessment, floodplain management , and flood insurance. A study of the NFIP concludes that aspects of the program limit risk reduction...floodplain management , risk assessment, disaster recovery, flood insurance claim, pre-flood insurance rate map 15. NUMBER OF PAGES 123 16. PRICE CODE

  1. Knowledge Discovery, Integration and Communication for Extreme Weather and Flood Resilience Using Artificial Intelligence: Flood AI Alpha

    NASA Astrophysics Data System (ADS)

    Demir, I.; Sermet, M. Y.

    2016-12-01

    Nobody is immune from extreme events or natural hazards that can lead to large-scale consequences for the nation and public. One of the solutions to reduce the impacts of extreme events is to invest in improving resilience with the ability to better prepare, plan, recover, and adapt to disasters. The National Research Council (NRC) report discusses the topic of how to increase resilience to extreme events through a vision of resilient nation in the year 2030. The report highlights the importance of data, information, gaps and knowledge challenges that needs to be addressed, and suggests every individual to access the risk and vulnerability information to make their communities more resilient. This abstracts presents our project on developing a resilience framework for flooding to improve societal preparedness with objectives; (a) develop a generalized ontology for extreme events with primary focus on flooding; (b) develop a knowledge engine with voice recognition, artificial intelligence, natural language processing, and inference engine. The knowledge engine will utilize the flood ontology and concepts to connect user input to relevant knowledge discovery outputs on flooding; (c) develop a data acquisition and processing framework from existing environmental observations, forecast models, and social networks. The system will utilize the framework, capabilities and user base of the Iowa Flood Information System (IFIS) to populate and test the system; (d) develop a communication framework to support user interaction and delivery of information to users. The interaction and delivery channels will include voice and text input via web-based system (e.g. IFIS), agent-based bots (e.g. Microsoft Skype, Facebook Messenger), smartphone and augmented reality applications (e.g. smart assistant), and automated web workflows (e.g. IFTTT, CloudWork) to open the knowledge discovery for flooding to thousands of community extensible web workflows.

  2. Towards a Flood Severity Index

    NASA Astrophysics Data System (ADS)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  3. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you live in ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  4. 76 FR 43968 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... qualify or remain qualified for participation in the National Flood Insurance Program (NFIP). In addition, these elevations, once finalized, will be used by insurance agents and others to calculate appropriate flood insurance premium rates for new buildings and the contents in those buildings. DATES: Comments are...

  5. Handbook for Federal Insurance Administration: Flood-insurance studies

    USGS Publications Warehouse

    Kennedy, E.J.

    1973-01-01

    A flood insurance study, made for the Federal Insurance Administration (FIA) of the Department of Housing and Urban Development (HUD) is an analysis of flood inundation frequency for all flood plains within the corporate limits of the community being studied. The study is an application of surveying, hydrology, and hydraulics to determine flood insurance premium rates. Much of the surveying needed can be done by private firms, either by ground methods or photogrammetry. Contracts are needed to let large surveys but purchase orders can be used for small ones. Photogrammetric stereo models, digital regression models, and step-backwater models are needed for most studies. Damage survey data are not involved.

  6. Implementing the EU Floods Directive (2007/60/EC) in Austria: Flood Risk Management Plans

    NASA Astrophysics Data System (ADS)

    Neuhold, Clemens

    2013-04-01

    he Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EFD) aims at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the Community. This task is to be achieved based on three process steps (1) preliminary flood risk assessment (finalised by the end of 2011), (2) flood hazard maps and flood risk maps (due 2013) and (3) flood risk management plans (due 2015). Currently, an interdisciplinary national working group is defining the methodological framework for flood risk management plans in Austria supported by a constant exchange with international bodies and experts. Referring to the EFD the components of the flood risk management plan are (excerpt): 1. conclusions of the preliminary flood risk assessment 2. flood hazard maps and flood risk maps and the conclusions that can be drawn from those maps 3. a description of the appropriate objectives of flood risk management 4. a summary of measures and their prioritisation aiming to achieve the appropriate objectives of flood risk management The poster refers to some of the major challenges in this process, such as the legal provisions, coordination of administrative units, definition of public relations, etc. The implementation of the EFD requires the harmonisation of legal instruments of various disciplines (e.g. water management, spatial planning, civil protection) enabling a coordinated - and ideally binding - practice of flood risk management. This process is highly influenced by the administrative organisation in Austria - federal, provincial and municipality level. The Austrian approach meets this organisational framework by structuring the development of the flood risk management plan into 3 time-steps: (a) federal blueprint, (b) provincial editing and (c) federal finishing as well as reporting to the European Commission. Each time

  7. Improving the flash flood frequency analysis applying dendrogeomorphological evidences

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, V.; Ballesteros, J. A.; Bodoque, J. M.; Stoffel, M.; Bollschweiler, M.; Díez-Herrero, A.

    2009-09-01

    Flash floods are one of the natural hazards that cause major damages worldwide. Especially in Mediterranean areas they provoke high economic losses every year. In mountain areas with high stream gradients, floods events are characterized by extremely high flow and debris transport rates. Flash flood analysis in mountain areas presents specific scientific challenges. On one hand, there is a lack of information on precipitation and discharge due to a lack of spatially well distributed gauge stations with long records. On the other hand, gauge stations may not record correctly during extreme events when they are damaged or the discharge exceeds the recordable level. In this case, no systematic data allows improvement of the understanding of the spatial and temporal occurrence of the process. Since historic documentation is normally scarce or even completely missing in mountain areas, tree-ring analysis can provide an alternative approach. Flash floods may influence trees in different ways: (1) tilting of the stem through the unilateral pressure of the flowing mass or individual boulders; (2) root exposure through erosion of the banks; (3) injuries and scars caused by boulders and wood transported in the flow; (4) decapitation of the stem and resulting candelabra growth through the severe impact of boulders; (5) stem burial through deposition of material. The trees react to these disturbances with specific growth changes such as abrupt change of the yearly increment and anatomical changes like reaction wood or callus tissue. In this study, we sampled 90 cross sections and 265 increment cores of trees heavily affected by past flash floods in order to date past events and to reconstruct recurrence intervals in two torrent channels located in the Spanish Central System. The first study site is located along the Pelayo River, a torrent in natural conditions. Based on the external disturbances of trees and their geomorphological position, 114 Pinus pinaster (Ait

  8. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  9. Using remotely sensed data and stochastic models to simulate realistic flood hazard footprints across the continental US

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Quinn, N.; Sampson, C. C.; Smith, A.; Wing, O.; Neal, J. C.

    2017-12-01

    Remotely sensed data has transformed the field of large scale hydraulic modelling. New digital elevation, hydrography and river width data has allowed such models to be created for the first time, and remotely sensed observations of water height, slope and water extent has allowed them to be calibrated and tested. As a result, we are now able to conduct flood risk analyses at national, continental or even global scales. However, continental scale analyses have significant additional complexity compared to typical flood risk modelling approaches. Traditional flood risk assessment uses frequency curves to define the magnitude of extreme flows at gauging stations. The flow values for given design events, such as the 1 in 100 year return period flow, are then used to drive hydraulic models in order to produce maps of flood hazard. Such an approach works well for single gauge locations and local models because over relatively short river reaches (say 10-60km) one can assume that the return period of an event does not vary. At regional to national scales and across multiple river catchments this assumption breaks down, and for a given flood event the return period will be different at different gauging stations, a pattern known as the event `footprint'. Despite this, many national scale risk analyses still use `constant in space' return period hazard layers (e.g. the FEMA Special Flood Hazard Areas) in their calculations. Such an approach can estimate potential exposure, but will over-estimate risk and cannot determine likely flood losses over a whole region or country. We address this problem by using a stochastic model to simulate many realistic extreme event footprints based on observed gauged flows and the statistics of gauge to gauge correlations. We take the entire USGS gauge data catalogue for sites with > 45 years of record and use a conditional approach for multivariate extreme values to generate sets of flood events with realistic return period variation in

  10. Annual timing of river floods in the Northeast United States: seasonal characterization and temporal trends

    NASA Astrophysics Data System (ADS)

    Collins, M. J.

    2016-12-01

    Increases in flood magnitude and frequency have been documented in climate-sensitive watersheds in the Northeast United States. Associated changes in inundation frequency and/or magnitude, or changes in stream channel form and function, can affect human uses of floodplain environments (e.g., dwellings or transportation infrastructure) as well as aquatic and riparian habitats. Historical changes in flood magnitude and frequency also have important implications for designing floodplain infrastructure and channel modifications because well-accepted statistical methods for design-flood prediction require flood records with stationary means and variances. Changes in flood timing during the year may also be impactful, but have not been studied in detail for the Northeast United States. For example, relatively modest shifts in the timing of winter/spring floods can affect the incidence of ice jam complications. Or, changes in spring or fall flood timing may positively or negatively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. With this study I apply an objective, probabilistic method for identifying flood seasonality in climate-sensitive watersheds of the Mid-Atlantic and New England regions (Hydrologic Unit Codes 01 and 02). Temporal trends in the timing of floods within significant flood seasons at a site are then analyzed using a method that employs directional statistics. The analyses are based on partial duration flood series that are an average of 85 years long. Documented changes in flood timing during the year are considered in the context of both potential historical impacts and expectations for future flood timing given regional climate change projections.

  11. Techniques for estimating flood hydrographs for ungaged urban watersheds

    USGS Publications Warehouse

    Stricker, V.A.; Sauer, V.B.

    1984-01-01

    The Clark Method, modified slightly was used to develop a synthetic, dimensionless hydrograph which can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design of flood prevention. (USGS)

  12. Identification of Dominant Flood Drivers across Canada

    NASA Astrophysics Data System (ADS)

    Singh, J.; Karmakar, S.; Ghosh, S.; Simonovic, S.; Gusain, A.

    2016-12-01

    In recent past, flooding has taken a devastating form causing societal, economic, and environmental losses over the Globe. Reliable information on the cause of occurrence, time, and magnitude of flood events might be useful for effective planning, design and operation of hydraulic structures to minimize losses. In the present study, we used circular statistics to understand the pattern and seasonality in flooding across Canada. A set of analyses is performed on unregulated daily stream flow data from 318 stream gage stations (procure from HYDAT database) with a record of at least 40 years between 1951-2010. Further, an attempt is also made to identify possible primary drivers of flooding across Canada. To accomplish this, daily precipitation record from 561 stations and 10 resolution snowmelt data from ECMWF ERA 20C during 1951-2010 have been used. Majority of stations reported statistically significant negative trend in flood magnitude in south western part, whereas, an increasing trend in frequency of flooding observed in south eastern part of Canada. The results show a strong evidence of regional patterns of seasonality and inter-annual variability in flooding. It is observed, about 42% of flood events occur during spring (March-May) over south eastern part of Canada and are not associated with extreme precipitation, where snowmelt is found to be primary factor for occurrence of flood events. Further, about 44% of flood events occur during summer (June-August) in southwestern region and having strong association with extreme precipitation. Additionally, we observe the negative trend in precipitation driven flood events (summer flooding) in south western part of Canada. The present study on identification of major flood drivers across Canada shows a need to examine the influence of various climate indices quantifying variation of surface temperature anomalies, which will improve flood prediction and consequently flood risk management. Keywords: Canada, Flood

  13. Flood characteristics of Alaskan streams

    USGS Publications Warehouse

    Lamke, R.D.

    1979-01-01

    Peak discharge data for Alaskan streams are summarized and analyzed. Multiple-regression equations relating peak discharge magnitude and frequency to climatic and physical characteristics of 260 gaged basins were determined in order to estimate average recurrence interval of floods at ungaged sites. These equations are for 1.25-, 2-, 5-, 10-, 25-, and 50-year average recurrence intervals. In this report, Alaska was divided into two regions, one having a maritime climate with fall and winter rains and floods, the other having spring and summer floods of a variety or combinations of causes. Average standard errors of the six multiple-regression equations for these two regions were 48 and 74 percent, respectively. Maximum recorded floods at more than 400 sites throughout Alaska are tabulated. Maps showing lines of equal intensity of the principal climatic variables found to be significant (mean annual precipitation and mean minimum January temperature), and location of the 260 sites used in the multiple-regression analyses are included. Little flood data have been collected in western and arctic Alaska, and the predictive equations are therefore less reliable for those areas. (Woodard-USGS)

  14. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  15. Mesh versus bathtub - effects of flood models on exposure analysis in Switzerland

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth

    2016-04-01

    In Switzerland, mainly two types of maps that indicate potential flood zones are available for flood exposure analyses: 1) Aquaprotect, a nationwide overview provided by the Federal Office for the Environment and 2) communal flood hazard maps available from the 26 cantons. The model used to produce Aquaprotect can be described as a bathtub approach or linear superposition method with three main parameters, namely the horizontal and vertical distance of a point to water features and the size of the river sub-basin. Whereas the determination of flood zones in Aquaprotect is based on a uniform, nationwide model, the communal flood hazard maps are less homogenous, as they have been elaborated either at communal or cantonal levels. Yet their basic content (i.e. indication of potential flood zones for three recurrence periods, with differentiation of at least three inundation depths) is described in national directives and the vast majority of communal flood hazard maps are based on 2D inundation simulations using meshes. Apart from the methodical differences between Aquaprotect and the communal flood hazard maps (and among different communal flood hazard maps), all of these maps include a layer with a similar recurrence period (i.e. Aquaprotect 250 years, flood hazard maps 300 years) beyond the intended protection level of installed structural systems. In our study, we compare the resulting exposure by overlaying the two types of flood maps with a complete, harmonized, and nationwide dataset of building polygons. We assess the different exposure at the national level, and also consider differences among the 26 cantons and the six biogeographically unique regions, respectively. It was observed that while the nationwide exposure rates for both types of flood maps are similar, the differences within certain cantons and biogeographical regions are remarkable. We conclude that flood maps based on bathtub models are appropriate for assessments at national levels, while maps

  16. Composite Analysis of Cold Season Atmospheric River Events: Extreme Precipitation and Flooding over the Western United States

    NASA Astrophysics Data System (ADS)

    Eldardiry, H.; Hossain, F.

    2017-12-01

    Atmospheric Rivers (ARs) are narrow elongated corridors with horizontal water vapor transport located within the warm sector of extratropical cyclones. While it is widely known that most of heavy rainfall events across the western United States (US) are driven by ARs, the connection between atmospheric conditions and precipitation during an AR event has not been fully documented. In this study, we present a statistical analysis of the connection between precipitation, temperature, wind, and snowpack during the cold season AR events hitting the coastal regions of the western US. For each AR event, the precipitation and other atmospheric variables are retrieved through the dynamic downscaling of NCEP/NCAR Reanalysis product using the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The results show a low frequency of precipitation (below 0.3) during AR events that reflects the connection of AR with extreme precipitation. Examining the horizontal wind speed during AR events indicates a high correlation (above 0.7) with precipitation. In addition, high levels of snow water equivalence (SWE) are also noticed along the mountainous regions, e.g., Cascade Range and Sierra-Nevada mountain range, during most of AR events. Addressing the impact of duration on the frequency of precipitation, we develop Intensity-Duration-Frequency (IDF) curves during AR events that can potentially describe the future predictability of precipitation along the north and south coast. To complement our analysis, we further investigate the flooding events recorded in the National Centers for Environmental Information (NCEI) storm events database. While some flooding events are attributed to heavy rainfall associated with an AR event, other flooding events are significantly connected to the increase in the snowmelt before the flooding date. Thus, we introduce an index that describes the contribution of rainfall vs snowmelt and categorizes the flooding events during an AR event

  17. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    NASA Astrophysics Data System (ADS)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  18. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  19. New developments at the Flood Forecasting Centre: operational flood risk assessment and guidance

    NASA Astrophysics Data System (ADS)

    Pilling, Charlie

    2017-04-01

    The Flood Forecasting Centre (FFC) is a partnership between the UK Met Office, the Environment Agency and Natural Resources Wales. The FFC was established in 2009 to provide an overview of flood risk across England and Wales and to provide flood guidance services primarily for the emergency response community. The FFC provides forecasts for all natural sources of flooding, these being fluvial, surface water, coastal and groundwater. This involves an assessment of possible hydrometeorological events and their impacts over the next five days. During times of heightened flood risk, the close communication between the FFC, the Environment Agency and Natural Resources Wales allows mobilization and deployment of staff and flood defences. Following a number of severe flood events during winters 2013-14 and 2015-16, coupled with a drive from the changing landscape in national incident response, there is a desire to identify flood events at even longer lead time. This earlier assessment and mobilization is becoming increasingly important and high profile within Government. For example, following the exceptional flooding across the north of England in December 2015 the Environment Agency have invested in 40 km of temporary barriers that will be moved around the country to help mitigate against the impacts of large flood events. Efficient and effective use of these barriers depends on identifying the broad regions at risk well in advance of the flood, as well as scaling the magnitude and duration of large events. Partly in response to this, the FFC now produce a flood risk assessment for a month ahead. In addition, since January 2017, the 'new generation' daily flood guidance statement includes an assessment of flood risk for the 6 to 10 day period. Examples of both these new products will be introduced, as will some of the new developments in science and technical capability that underpin these assessments. Examples include improvements to fluvial forecasting from 'fluvial

  20. Proposal of global flood vulnerability scenarios for evaluating future potential flood losses

    NASA Astrophysics Data System (ADS)

    Kinoshita, Y.; Tanoue, M.; Watanabe, S.; Hirabayashi, Y.

    2015-12-01

    Flooding is one of the most hazardous and damaging natural disasters causing serious economic loss and casualties across the world (Jongman et al., 2015). Previous studies showed that the global temperature increase affects regional weather pattern, and several general circulation model (GCM) simulations suggest the increase of flood events in both frequency and magnitude in many parts of the world (Hirabayashi et al., 2013). Effective adaptation to potential flood risks under the warming climate requires an in-depth understanding of both the physical and socioeconomic contributors of the flood risk. To assess the realistic future potential flood risk, future sophisticated vulnerability scenarios associated with the shared socioeconomic pathways (SSPs) are necessary. In this study we propose a new future vulnerability scenarios in mortality. Our vulnerability scenarios are constructed based on the modeled flood exposure (population potentially suffered by flooding) and a past from 1980 to 2005. All the flood fatality data were classified according to four income levels (high, mid-high, mid-low and low). Our proposed scenarios have three pathways regarding to SSPs; High efficiency (HE) scenario (SSP1, SSP4 (rich country) and SSP5), Medium efficiency (ME) scenario (SSP2), and Low efficiency (LE) scenario (SSP3 and SSP4 (poor country)). The maximum mortality protection level on each category was detected by applying exponential curve fitting with offset term. Slopes in the HE scenario are assumed to be equal to slopes estimated by regression analysis in each category. The slope in the HE scenario is defined by the mean value of all countries' slope value that is approximately -0.33 mortality decreases per year. The EM-DAT mortality data shows a decreasing trend in time in almost all of the countries. Although mortalities in some countries show an increasing trend, this is because these countries were affected by once-in-hundred-years floods after 1990's. The slope in

  1. Response of plant productivity to experimental flooding in a stable and a submerging marsh

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2015-01-01

    Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patensdecreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.

  2. [Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants].

    PubMed

    Ma, Lei-Meng; Wang, Peng-Teng; Wang, Shu-Guang

    2014-01-01

    In order to provide information for elucidating effect of flooding on the formation and function of AM in wetland plants, three AM fungi (Glomus intraradices, Glomus versiforme, Glomus etunicatum) were used to investigate the effects of flooding time length on their colonization in cattail (Typha orientalis) and rice (Oryza sativa L. ). The results showed that the mycorrhizal colonization rate (MCR) presented downtrend with increasing flooding time length. In cattail, MCR of the fungus F3 was higher than those of fungi F1 and F2, but no significant difference in MCR was found between fungi F1 and F2. In rice, the MCRs of fungi F2 and F3 were higher than that of E1. In both plants, the proportional frequency of hyphae was the highest while the proportional frequency of arbuscules and vesicles was very low in all treatments, indicating that hyphal colonization was the main route for AM formation. The proportional frequency of hyphae in cattail increased with the flooding time length, but no significant trend was observed in rice plant. The proportional frequency of arhuscules decreased with the increase of flooding time, and was the highest in the treatment without flooding (treatment IV). The number of spores produced by AM fungi increased with increasing flooding time, and reached the highest in the treatment of long time flooding (treatment I). In the same treatment, the fungus F3 produced more spores than fungi F1 and F2. Changes in wet weight of the two plants showed that AM could increase cattail growth under flooding, hut little effect on rice growth was found. It is concluded that flooding time length significantly affected the mycorrhizal colonization rate and the proportional frequency of colonization. AM could enhance the growth of wetland plant, but this depends on the mycorrhizal dependence of host plant on AM fungi. Therefore, flooding time length should be considered in the inoculation of wetland plants with AM fungi.

  3. Development of a flood-warning network and flood-inundation mapping for the Blanchard River in Ottawa, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.

    2011-01-01

    Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.

  4. The English National Cohort Study of Flooding and Health: the change in the prevalence of psychological morbidity at year two.

    PubMed

    Jermacane, Daiga; Waite, Thomas David; Beck, Charles R; Bone, Angie; Amlôt, Richard; Reacher, Mark; Kovats, Sari; Armstrong, Ben; Leonardi, Giovanni; James Rubin, G; Oliver, Isabel

    2018-03-07

    The longer term impact of flooding on health is poorly understood. In 2015, following widespread flooding in the UK during winter 2013/14, Public Health England launched the English National Study of Flooding and Health. The study identified a higher prevalence of probable psychological morbidity one year after exposure to flooding. We now report findings after two years. In year two (2016), a self-assessment questionnaire including flooding-related exposures and validated instruments to screen for probable anxiety, depression and post-traumatic stress disorder (PTSD) was sent to all participants who consented to further follow-up. Participants exposure status was categorised according to responses in year one; we assessed for exposure to new episodes of flooding and continuing flood-related problems in respondents homes. We calculated the prevalence and odds ratio for each outcome by exposure group relative to unaffected participants, adjusting for confounders. We used the McNemar test to assess change in outcomes between year one and year two. In year two, 1064 (70%) people responded. The prevalence of probable psychological morbidity remained elevated amongst flooded participants [n = 339] (depression 10.6%, anxiety 13.6%, PTSD 24.5%) and disrupted participants [n = 512] (depression 4.1%, anxiety 6.4%, PTSD 8.9%), although these rates were reduced compared to year one. A greater reduction in anxiety 7.6% (95% confidence interval [CI] 4.6-9.9) was seen than depression 3.8% (95% CI 1.5-6.1) and PTSD: 6.6% (95% CI 3.9-9.2). Exposure to flooding was associated with a higher odds of anxiety (adjusted odds ratio [aOR] 5.2 95%, 95% CI 1.7-16.3) and depression (aOR 8.7, 95% CI 1.9-39.8) but not PTSD. Exposure to disruption caused by flooding was not significantly associated with probable psychological morbidity. Persistent damage in the home as a consequence of the original flooding event was reported by 119 participants (14%). The odds of probable psychological

  5. Flood magnitude-frequency analysis and sediment transport capacity rate assessment in a mixed alluvial-bedrock channel at Val Lumnezia, Eastern Switzerland, (Graubünden)

    NASA Astrophysics Data System (ADS)

    Bekaddour, T.

    2012-04-01

    There is growing evidence in the literature that flood frequency has a large impact on the effective time scale of hillslope-derived sediment transport. Here, we present quantitative data on sediment transport in the mountainous Glenner River that drains the 120 km2-large Val Lumnezia basin, eastern Swiss Alps. The longitudinal profile of this stream is characterized by the presence of three ca. 500 m-long knickzones where channel gradients range from 0.02 to 0.2 mm-1 and the stream narrows to < 2 m wide gorges. Upstream and downstream of these knickzone reaches, the stream is flat with gradients < 0.01 mm-1, and cross-sectional widths ≥ 30 m. Measurements of the grain size distribution along the stream yield d84 values that range from ca. 10 to 28 cm, whereas the d50 values scatter around 10 cm. We explore the consequences of the channel morphology and the grain size distribution for the time scales of sediment transport by using a 1-D step-back water hydraulic model (HEC-RAS), to estimate hydraulic conditions at number of flood events and to predict hydraulic parameters and the boundary shear stress. The results reveal that along the knickzone reaches, a 2 years return period flood event Q2 is capable of mobilizing the d84 fraction where boundary critical shear stress exceeds the Shields critical shear stress value at incipient motion. In all other flat stream segments, the d84 fraction is barely attaining incipient motion where the critical boundary shear stress is approximately equal to the Shields critical shear stress at incipient motion. The results differ for smaller grain sizes , where Q2 is capable of mobilizing the d50 fraction along the entire stream. We anticipate that the overall effect of Q2 floods is the enrichment of coarse-grained sediment in the flat channel reaches by the entrainment of the d50 fraction, shifting to a better sorting of the bed particles. As a result, the degree of interlocking of coarse grain material may increases, which

  6. Main flood peaks in the medieval Carpathian Basin (1000-1500): Annual and decadal overview

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2013-04-01

    The analysis of over 140 reported floods is mainly based on contemporary legal evidence (charters), partly on other types of contemporary documentary evidence. Majority of sources contains data on individual flood events (i.e. occurrence, seasonality, magnitude). Concerning main flood peaks, evidence on annual and multi-annual (decadal, multi-decadal) level is also available. Despite data increase in the 13th century, only in the 14th-15th centuries documentation is representative enough to draw further conclusions. Apart from secondary flood peaks (probably in the mid-13th century and the turn of the 13th-14th centuries), three main periods with high flood frequencies are detected: 1330s-1350s, 1390s-1430s, and the late 1480s-1490s (continuing in the early 16th century). The first major flood peak was primarily reported in the eastern Carpathian Basin (the Tisa catchment), and can be characterised by a number of high-intensity flood events (with 1342-1343 in centre). During the second major, prolonged flood peak of 1390s-1430s, and that of the third, late 15th century one the importance of floods occurred on the Danube and in the Danube catchment area has to be as well highlighted. Moreover, in the first half of the 15th century long-term hydrological problems (prolonged high water-level and high flood frequency problems) can be identified. In some cases high flood-frequency periods were accompanied by documented hydromorphological impacts and some impacts on society can be also detected. Results show good agreement with the decadal precipitation reconstruction based on speleothem investigations carried out in North-Hungary.

  7. 77 FR 56669 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in the table below. The purpose of this notice is to seek general information and comment regarding the preliminary FIRM, and where applicable, the FIS report that the Federal Emergency Management Agency (FEMA) has provided to the affected communities. The FIRM and FIS report are the basis of the floodplain management measures that the community is required either to adopt or to show evidence of having in effect in order to qualify or remain qualified for participation in the National Flood Insurance Program (NFIP). In addition, the FIRM and FIS report, once effective, will be used by insurance agents and others to calculate appropriate flood insurance premium rates for new buildings and the contents of those buildings.

  8. Validation of a 30m resolution flood hazard model of the conterminous United States

    NASA Astrophysics Data System (ADS)

    Sampson, C. C.; Wing, O.; Smith, A.; Bates, P. D.; Neal, J. C.

    2017-12-01

    We present a 30m resolution two-dimensional hydrodynamic model of the entire conterminous US that has been used to simulate continent-wide flood extent for ten return periods. The model uses a highly efficient numerical solution of the shallow water equations to simulate fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. We use the US National Elevation Dataset (NED) to determine topography for the model and the US Army Corps of Engineers National Levee Dataset to explicitly represent known flood defences. Return period flows and rainfall intensities are estimated using regionalized frequency analyses. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area maps. We also compare the results obtained from the NED-based continental model with results from a 90m resolution global hydraulic model built using SRTM terrain and identical boundary conditions. Where the FEMA Special Flood Hazard Areas are based on high quality local models the NED-based continental scale model attains a Hit Rate of 86% and a Critical Success Index (CSI) of 0.59; both are typical of scores achieved when comparing high quality reach-scale models to observed event data. The NED model also consistently outperformed the coarser SRTM model. The correspondence between the continental model and FEMA improves in temperate areas and for basins above 400 km2. Given typical hydraulic modeling uncertainties in the FEMA maps, it is probable that the continental-scale model can replicate them to within error. The continental model covers the entire continental US, compared to only 61% for FEMA, and also maps flooding in smaller watersheds not included in the FEMA coverage. The simulations were performed using computing hardware costing less than 100k, whereas the FEMA flood layers are built from thousands of individual local studies that took several decades to develop at an estimated cost (up

  9. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  10. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual

  11. Flood rich periods, flood poor periods and the need to look beyond instrumental records

    NASA Astrophysics Data System (ADS)

    Lane, S. N.

    2009-04-01

    For many, the later 20th Century and early 21st Century has become synonymous with a growing experience of flood risk. Scientists, politicians and the media have ascribed this to changing climate and there are good hypothetical reasons for human-induced climate change to be impacting upon the magnitude and frequency of extreme weather events. In this paper, I will interrogate this claim more carefully, using the UK's instrumental records of river flow, most of which begin after 1960, but a smaller number of which extend back into the 19th Century. Those records that extent back to the 19th Century suggest that major flood events tend to cluster into periods that are relatively flood rich and relatively flood poor, most notably in larger drainage basins: i.e. there is a clear scale issue. The timing (inset, duration, termination) of these periods varies systematically by region although there is a marked flood poor period for much of the UK during the late 1960s, 1970s and 1980s. It follows that at least some of the current experience of flooding, including why it has taken so many policy-makers and flood victims by surprise, may reflect a transition from a flood poor to a flood rich period, exacerbated by possible climate change impacts. These results point to the need to rethink how we think through what drives flood risk. First, it points to the need to look at some of the fundamental oscillations in core atmospheric drivers, such as the North Atlantic Multidecadal Oscillation, in explaining what drives flood risk. Consideration of precipitation, as opposed to river flow, is more advanced in this respect, and those of us working in rivers need to engage much more thoughtfully with atmospheric scientists. Second, it points to the severe inadequacies in using records of only a few decades duration. Even where these are pooled across adjacent sub-catchments, there is likely to be a severe bias in the estimation of flood return periods when we look at instrumental

  12. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...

  13. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...

  14. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...

  15. 44 CFR 59.22 - Prerequisites for the sale of flood insurance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...

  16. Review article: A review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria

    NASA Astrophysics Data System (ADS)

    Nkwunonwo, U. C.; Whitworth, M.; Baily, B.

    2016-02-01

    Urban flooding has been and will continue to be a significant problem for many cities across the developed and developing world. Crucial to the amelioration of the effects of these floods is the need to formulate a sound flood management policy, which is driven by knowledge of the frequency and magnitude of impacts of these floods. Within the area of flood research, attempts are being made to gain a better understanding of the causes, impacts, and pattern of urban flooding. According to the United Nations office for disaster reduction (UNISDR), flood risk is conceptualized on the basis of three integral components which are frequently adopted during flood damage estimation. These components are: probability of flood hazard, the level of exposure, and vulnerabilities of elements at risk. Reducing the severity of each of these components is the objective of flood risk management under the UNISDR guideline and idea of "living with floods". On the basis of this framework, the present research reviews flood risk within the Lagos area of Nigeria over the period 1968-2012. During this period, floods have caused harm to millions of people physically, emotionally, and economically. Arguably over this period the efforts of stakeholders to address the challenges appear to have been limited by, amongst other things, a lack of reliable data, a lack of awareness amongst the population affected, and a lack of knowledge of flood risk mitigation. It is the aim of this research to assess the current understanding of flood risk and management in Lagos and to offer recommendations towards future guidance.

  17. River flood seasonality in the Northeast United States and trends in annual timing

    NASA Astrophysics Data System (ADS)

    Collins, M. J.

    2017-12-01

    The New England and Mid-Atlantic regions of the Northeast United States have experienced climate-associated increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood-generating mechanisms operating in a basin and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and floodplains. Changes in flood seasonality may indicate changes in flood-generating mechanisms, and their interactions, with important implications for habitats, floodplain infrastructure, and human communities. For example, changes in spring or fall flood timing may negatively or positively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. In this study I apply an objective, probabilistic method for identifying flood seasons at a monthly resolution for 90 climate-sensitive watersheds in New England and the Mid-Atlantic (Hydrologic Unit Codes 01 and 02). Historical trends in flood timing during the year are also investigated. The analyses are based on partial duration flood series that are an average of 85 years long. The seasonality of flooding in these regions, and any historical changes, are considered in the context of other ongoing or expected phenological changes in the Northeast U.S. environment that affect flood generation—e.g., the timing of leaf-off/leaf-out for deciduous plants. How these factors interact will affect whether and how flood magnitudes and frequencies change in the future and associated impacts.

  18. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    Flood-frequency analyses use statistical methods to compute peak streamflows for selected recurrence intervals— the average number of years between peak flows that are equal to or greater than a specified peak flow. Analyses are based on annual peak flows at a stream. It has long been assumed that the annual peak streamflows used in these computations were stationary (non-changing) over very long periods of time, except in river basins subject to direct effects of human activities, such as urbanization and regulation. Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned. Maine has many streamgages with 50 to 105 years of recorded annual peak streamflows. In this study, this long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency. Changes over time in annual instantaneous peak streamflows at 28 U.S. Geological Survey streamgages with long-term data (50 or more years) and relatively complete records were investigated by examining linear trends for each streamgage’s period of record. None of the 28 streamgages had more than 5 years of missing data. Eight streamgages have substantial streamflow regulation. Because previous studies have suggested that changes over time may have occurred as a step change around 1970, step changes between each streamgage’s older record (start year to 1970) and newer record (1971 to 2006) also were computed. The median change over time for all 28 streamgages is an increase of 15.9 percent based on a linear change and an increase of 12.4 percent based on a step change. The median change for the 20 unregulated streamgages is slightly higher than for all 28 streamgages; it is 18.4 percent based on a linear change and 15.0 percent based on a step change. Peak flows with 100- and 5-year recurrence intervals were computed for the 28 streamgages using the full annual peak-flow record

  19. Morphometric Analysis to Prioritize Sub-Watershed for Flood Risk Assessment in Central Karakoram National Park Using Gis/rs Approach

    NASA Astrophysics Data System (ADS)

    Syed, N. H.; Rehman, A. A.; Hussain, D.; Ishaq, S.; Khan, A. A.

    2017-11-01

    Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP), where Geographical information system and remote sensing (GIS & RS) approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb), Drainage Texture (Rt), Circulatory ratio (Rc), Elongated ratio (Re), Drainage density (Dd), Stream Length (Lu), Stream order (Su), Slope and Basin length (Lb) have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.

  20. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  1. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico.

    PubMed

    Haer, Toon; Botzen, W J Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M; Ward, Philip J

    2018-06-13

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  2. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard Determination...

  3. Confidence intervals for expected moments algorithm flood quantile estimates

    USGS Publications Warehouse

    Cohn, Timothy A.; Lane, William L.; Stedinger, Jery R.

    2001-01-01

    Historical and paleoflood information can substantially improve flood frequency estimates if appropriate statistical procedures are properly applied. However, the Federal guidelines for flood frequency analysis, set forth in Bulletin 17B, rely on an inefficient “weighting” procedure that fails to take advantage of historical and paleoflood information. This has led researchers to propose several more efficient alternatives including the Expected Moments Algorithm (EMA), which is attractive because it retains Bulletin 17B's statistical structure (method of moments with the Log Pearson Type 3 distribution) and thus can be easily integrated into flood analyses employing the rest of the Bulletin 17B approach. The practical utility of EMA, however, has been limited because no closed‐form method has been available for quantifying the uncertainty of EMA‐based flood quantile estimates. This paper addresses that concern by providing analytical expressions for the asymptotic variance of EMA flood‐quantile estimators and confidence intervals for flood quantile estimates. Monte Carlo simulations demonstrate the properties of such confidence intervals for sites where a 25‐ to 100‐year streamgage record is augmented by 50 to 150 years of historical information. The experiments show that the confidence intervals, though not exact, should be acceptable for most purposes.

  4. 78 FR 78989 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Protection Act of 1973, 42 U.S.C. 4105, and are in accordance with the National Flood Insurance Act of 1968... Springs National Convention Boulevard, Park, AR 71901. Hot Springs National Park, AR 71901. New Mexico...

  5. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  6. Increase in flood frequency during extreme aridity in the Eastern Mediterranean at the last interglacial

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Goldstein, Steven L.; Kushnir, Yochanan; Lazr, Boaz; Stein, Mordechai

    2017-04-01

    The Levant region of the Eastern Mediterranean is expected to suffer greatly from climate change. It is a drought-sensitive area, where warming climate may have already affected political stability in the region. Climate models and observations show a recent drying trend around the entire Mediterranean during winter, the wet season, that has been attributed to a combination of natural variability and increased greenhouse gas concentrations. Together with the drying trend, the region has also experienced more intense rainfall events. Thick halite sequences revealed by the Dead Sea Deep Drilling project (DSDDP) cores show that extremely arid conditions prevailed in the Levant during Marine Isotope Stage (MIS) 5e. This time interval was relatively warm and characterized by an average precipitation rate of 50% compared to the present (based on water and salt budgets). It also exhibited strong fluctuations between wet periods similar to the present-day lasting a few thousands of years, and dry periods with precipitation as low as 20% of the present-day over intervals lasting a few hundreds of years. At the same time, the climate was characterized by scarce but intense rainfall events in the southern Levant and increased flash flood frequency. The increase in precipitation in the south is indicated by changes in 234U/238U activity ratios in authigenic minerals in the cores, which is a good proxy for identifying changes in water sources. The synoptic configuration, of overall increased aridity together with an increase in southern precipitation and flash floods, is known from the present climate but is less dominant than the normal conditions whereby winter precipitation is fed by a Mediterranean moisture source. Climate models suggest that an increase in both summer and winter precipitation occurred during the peak insolation at 125 ka, with both the Mediterranean and the tropics as possible moisture sources. At 120 ka, climate model runs using the NCAR CCM3, show a

  7. Flood boundaries and water-surface profile for the computed 100-year flood, Swift Creek at Afton, Wyoming, 1986

    USGS Publications Warehouse

    Rankl, James G.; Wallace, Joe C.

    1989-01-01

    Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)

  8. Flood Risk and Global Change: Future Prospects

    NASA Astrophysics Data System (ADS)

    Serra-Llobet, A.

    2014-12-01

    Global flood risk is increasing in response to population growth in flood-prone areas, human encroachment into natural flood paths (exacerbating flooding in areas formerly out of harm's way), and climate change (which alters variables driving floods). How will societies respond to and manage flood risk in coming decades? Analysis of flood policy evolution in the EU and US demonstrates that changes occurred in steps, in direct response to disasters. After the flood produced by the collapse of Tous Dam in 1982, Spain initiated a systematic assessment of areas of greatest flood risk and civil protection response. The devastating floods on the Elbe and elsewhere in central Europe in 2002 motivated adoption of the EU Floods Directive (2007), which requires member states to develop systematic flood risk maps (now due) and flood risk management plans (due in 2015). The flooding of New Orleans by Hurricane Katrina in 2005 resulted in a nationwide levee-safety assessment and improvements in communicating risk, but overall less fundamental change in US flood management than manifest in the EU since 2007. In the developing world, large (and increasing) concentrations of populations in low-lying floodplains, deltas, and coasts are increasingly vulnerable, and governments mostly ill-equipped to implement fundamental changes in land use to prevent future increases in exposure, nor to develop responses to the current threats. Even in the developed world, there is surprisingly little research on how well residents of flood-prone lands understand their true risk, especially when they are 'protected' by '100-year' levees. Looking ahead, researchers and decision makers should prioritize improvements in flood risk perception, river-basin-scale assessment of flood runoff processes (under current and future climate and land-use conditions) and flood management alternatives, and bridging the disconnect between national and international floodplain management policies and local land

  9. Dam Construction in Lancang-Mekong River Basin Could Mitigate Future Flood Risk From Warming-Induced Intensified Rainfall: Dam Mitigate Flood Risk in Mekong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Lu, Hui; Ruby Leung, L.

    Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, withmore » more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.« less

  10. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    /vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less

  11. A fluvial and pluvial probabilistic flood hazard analysis for Can Tho city, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martinez, Oriol; Thi Chinh, Do; Viet Dung, Nguyen

    2014-05-01

    Can Tho city is the largest city and the economic heart of the Mekong Delta, Vietnam. Due to its economic importance and envisaged development goals the city grew rapidly in population size and extend over the last two decades. Large parts of the city are located in flood prone areas, and also the central parts of the city recently experienced an increasing number of flood events, both of fluvial and pluvial nature. As the economic power and asset values are constantly increasing, this poses a considerable risk for the city. The the aim of this study is to perform a flood hazard analysis considering both fluvial and pluvial floods and to derive probabilistic flood hazard maps. This requires in a first step an understanding of the typical flood mechanisms. Fluvial floods are triggered by a coincidence of high water levels during the annual flood period in the Mekong Delta with high tidal levels, which cause in combination short term inundations in Can Tho. Pluvial floods are triggered by typical tropical convective rain storms during the monsoon season. These two flood pathways are essentially independent in its sources and can thus be treated in the hazard analysis accordingly. For the fluvial hazard analysis we propose a bivariate frequency analysis of the Mekong flood characteristics, the annual maximum flood discharge Q and the annual flood volume V at the upper boundary of the Mekong Delta, the gauging station Kratie. This defines probabilities of exceedance of different Q-V pairs, which are transferred into synthetic flood hydrographs. The synthetic hydrographs are routed through a quasi-2D hydrodynamic model of the entire Mekong Delta in order to provide boundary conditions for a detailed hazard mapping of Can Tho. This downscaling step is necessary, because the huge complexity of the river and channel network does not allow for a proper definition of boundary conditions for Can Tho city by gauge data alone. In addition the available gauge data around Can Tho

  12. Does antecedent precipitation play a role for floods in (small) Swiss catchments?

    NASA Astrophysics Data System (ADS)

    Froidevaux, Paul; Schwanbeck, Jan; Weingartner, Rolf; Chevalier, Clément; Romppainen-Martius, Olivia

    2014-05-01

    River flooding is one of the most devastating natural hazards worldwide. In Switzerland, like in many other regions, the building of flood protection infrastructures is complicated by difficulties in assessing flood risk due to: - The large year-to-year variability in flood losses. The variations amount to several orders of magnitude (see for ex. Hilker et al., 2009). - The non-stationarity of the flood risk at longer time scales. A pronounced decadal variability in flood risk has been observed by Schmocker-Fackel and Naef (2010) and Köplin et al. (2013) show that climate change will induce diverse and complex regional changes in flood risk. A better understanding of flood processes is therefore required in order to better predict changes in flood frequency. It has been hypothesized that flood frequency variations are linked to changes in the atmospheric circulation. Consequently, the whole mechanism chain starting from atmospheric circulation patterns triggering severe precipitation weather and ending with extreme river discharge must be considered. In a step in that direction we characterize precipitation events that triggered observed annual maximum discharges at 120 discharge stations during the last 53 years in Switzerland. The precipitation dataset is a temporally-homogeneous complex interpolation of daily rain gauge data on a 1 by 1 km grid covering the Swiss territory (MeteoSwiss, 2011). We test the relationship between different catchment-averaged precipitation indices and flood occurrence. We explicitly separate antecedent and event-associated precipitation. The preliminary results show that antecedent precipitation (weekly to monthly sums ending 3 days before the event) are no significant flood predictors for most of the catchments. On the other hand, a very strong signal is found for the 1-3 days precipitation sums. Lessons for flood modeling in Swiss catchments is that a strong effort is required in order to represent the flood-associated weather

  13. Debris flows in Grand Canyon National Park, Arizona: magnitude, frequency and effects on the Colorado River

    USGS Publications Warehouse

    Melis, Theodre S.; Webb, Robert H.; ,

    1993-01-01

    Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.

  14. Composite Flood Risk for Virgin Island

    EPA Pesticide Factsheets

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  15. Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2009-01-01

    This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. Flood discharges at selected recurrence intervals for selected streamgages were computed following the guidelines in Bulletin 17B of the U.S. Interagency Advisory Committee on Water Data. To determine the flood-discharge exceedence probabilities at streamgages in New Hampshire, a new generalized skew coefficient map covering the State was developed. The standard error of the data on new map is 0.298. To improve estimates of flood discharges at selected recurrence intervals for 20 streamgages with short-term records (10 to 15 years), record extension using the two-station comparison technique was applied. The two-station comparison method uses data from a streamgage with long-term record to adjust the frequency characteristics at a streamgage with a short-term record. A technique for adjusting a flood-discharge frequency curve computed from a streamgage record with results from the regression equations is described in this report. Also, a technique is described for estimating flood discharge at a selected recurrence interval for an ungaged site upstream or downstream

  16. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon - links to flooding frequency and climate change.

    PubMed

    Bellucci, L G; Frignani, M; Cochran, J K; Albertazzi, S; Zaggia, L; Cecconi, G; Hopkins, H

    2007-01-01

    Five salt marsh sediment cores from different parts of the Venice Lagoon were studied to determine their depositional history and its relationship with the environmental changes occurred during the past approximately 100 years. X-radiographs of the cores show no disturbance related to particle mixing. Accretion rates were calculated using a constant flux model applied to excess (210)Pb distributions in the cores. The record of (137)Cs fluxes to the sites, determined from (137)Cs profiles and the (210)Pb chronologies, shows inputs from the global fallout of (137)Cs in the late 1950s to early 1960s and the Chernobyl accident in 1986. Average accretion rates in the cores are comparable to the long-term average rate of mean sea level rise in the Venice Lagoon ( approximately 0.25 cm y(-1)) except for a core collected in a marsh presumably affected by inputs from the Dese River. Short-term variations in accretion rate are correlated with the cumulative frequency of flooding, as determined by records of Acqua Alta, in four of the five cores, suggesting that variations in the phenomena causing flooding (such as wind patterns, storm frequency and NAO) are short-term driving forces for variations in marsh accretion rate.

  17. Alternating flood and drought hazards in the Drava Plain, Hungary

    NASA Astrophysics Data System (ADS)

    Lóczy, Dénes; Dezsö, József; Gyenizse, Péter; Ortmann-Ajkai, Adrienne

    2016-04-01

    Our research project covers the assessment of archive data and monitoring present-day water availability in the floodplain of the Hungarian Drava River. Historically flood hazard has been prevalent in the area. Recently, however, flood and drought hazards occur with equal frequency. Potential floodwater storage is defined from the analyses of soil conditions (grain size, porosity, water conductivity etc.) and GIS-based volumetric estimations of storage capacities in oxbows (including communication with groundwater). With the remarkable rate of river channel incision (2.4 m per century) and predictable climate change trends (increased annual mean temperature and decreased summer precipitation), the growing frequency and intensification of drought hazard is expected. For the assessment of drought hazard the impacts of hydrometeorological events, groundwater table dynamics and capillary rise are modelled, the water demands of natural vegetation and agricultural crops are studied. The project is closely linked to the ongoing Old Drava Programme, a comprehensive government project, which envisions floodplain rehabilitation through major transformations in water governance and land use of the region, and has numerous implications for regional development. Authors are grateful for financial support from the Hungarian National Scientific Research Fund (OTKA, contacts nos K 104552 and K 108755) as well as from the Visegrad Fund (31210058). The contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

  18. Copula-based assessment of the relationship between food peaks and flood volumes using information on historical floods by Bayesian Monte Carlo Markov Chain simulations

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Szolgay, Ján.; Bacigál, Tomáå.¡; Kohnová, Silvia

    2010-05-01

    Copula-based estimation methods of hydro-climatological extremes have increasingly been gaining attention of researchers and practitioners in the last couple of years. Unlike the traditional estimation methods which are based on bivariate cumulative distribution functions (CDFs), copulas are a relatively flexible tool of statistics that allow for modelling dependencies between two or more variables such as flood peaks and flood volumes without making strict assumptions on the marginal distributions. The dependence structure and the reliability of the joint estimates of hydro-climatological extremes, mainly in the right tail of the joint CDF not only depends on the particular copula adopted but also on the data available for the estimation of the marginal distributions of the individual variables. Generally, data samples for frequency modelling have limited temporal extent, which is a considerable drawback of frequency analyses in practice. Therefore, it is advised to deal with statistical methods that improve any part of the process of copula construction and result in more reliable design values of hydrological variables. The scarcity of the data sample mostly in the extreme tail of the joint CDF can be bypassed, e.g., by using a considerably larger amount of simulated data by rainfall-runoff analysis or by including historical information on the variables under study. The latter approach of data extension is used here to make the quantile estimates of the individual marginals of the copula more reliable. In the presented paper it is proposed to use historical information in the frequency analysis of the marginal distributions in the framework of Bayesian Monte Carlo Markov Chain (MCMC) simulations. Generally, a Bayesian approach allows for a straightforward combination of different sources of information on floods (e.g. flood data from systematic measurements and historical flood records, respectively) in terms of a product of the corresponding likelihood

  19. Predicting landscape sensitivity to present and future floods in the Pacific Northwest, USA

    Treesearch

    Mohammad Safeeq; Gordon E. Grant; Sarah L. Lewis; Brian Staab

    2015-01-01

    Floods are the most frequent natural disaster, causing more loss of life and property than any other in the USA. Floods also strongly influence the structure and function of watersheds, stream channels, and aquatic ecosystems. The Pacific Northwest is particularly vulnerable to climatically driven changes in flood frequency and magnitude, because snowpacks that...

  20. Conceptualization of a Collaborative Decision Making for Flood Disaster Management

    NASA Astrophysics Data System (ADS)

    Nur Aishah Zubir, Siti; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Hakimie, Hazlinda; Razak, Normy Norfiza Abdul; Aziz Mat Isa, Abdul; Hasini, Hasril; Sahari, Khairul Salleh Mohamed; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Basri, Hidayah; Tukiman, Izawati

    2016-03-01

    Flooding is the utmost major natural hazard in Malaysia in terms of populations affected, frequency, area extent, flood duration and social economic damage. The recent flood devastation towards the end of 2014 witnessed almost 250,000 people being displaced from eight states in Peninsular Malaysia. The affected victims required evacuation within a short period of time to the designated evacuation centres. An effective and efficient flood disaster management would assure non-futile efforts for life-saving. Effective flood disaster management requires collective and cooperative emergency teamwork from various government agencies. Intergovernmental collaborations among government agencies at different levels have become part of flood disaster management due to the need for sharing resources and coordinating efforts. Collaborative decision making during disaster is an integral element in providing prompt and effective response for evacuating the victims.

  1. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...

  2. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...

  3. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...

  4. 44 CFR 60.7 - Revisions of criteria for flood plain management regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...

  5. Modelling Inland Flood Events for Hazard Maps in Taiwan

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage

  6. Accounting For Greenhouse Gas Emissions From Flooded ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  7. Predicting Coastal Flood Severity using Random Forest Algorithm

    NASA Astrophysics Data System (ADS)

    Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.

    2017-12-01

    Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.

  8. Germination of Cherrybark and Nuttal Oak Acorns Following Flooding

    Treesearch

    C. B. Briscoe

    1961-01-01

    Frequency and duration of flooding is undoubtedly one of the most important environmental factors affecting species distribution in bottomland forests. In the life of a tree this influence is first exerted on the seed, and the capacity of seeds to retain viability after submergence by flood water may well be an important factor in determining the success of a species...

  9. Uncertainty quantification in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Hall, Julia; Kiss, Andrea; Parajka, Juraj; Perdigão, Rui A. P.; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2017-04-01

    Uncertainty is inherent to flood risk assessments because of the complexity of the human-water system, which is characterised by nonlinearities and interdependencies, because of limited knowledge about system properties and because of cognitive biases in human perception and decision-making. On top of the uncertainty associated with the assessment of the existing risk to extreme events, additional uncertainty arises because of temporal changes in the system due to climate change, modifications of the environment, population growth and the associated increase in assets. Novel risk assessment concepts are needed that take into account all these sources of uncertainty. They should be based on the understanding of how flood extremes are generated and how they change over time. They should also account for the dynamics of risk perception of decision makers and population in the floodplains. In this talk we discuss these novel risk assessment concepts through examples from Flood Frequency Hydrology, Socio-Hydrology and Predictions Under Change. We believe that uncertainty quantification in flood risk assessment should lead to a robust approach of integrated flood risk management aiming at enhancing resilience rather than searching for optimal defense strategies.

  10. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F. S.

    2015-10-01

    The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 turbidites, 168 of which result from past flood events over the last millennium. The deposit thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA). In contrast, high-intensity flood events are apparent during both, the cold LIA and the warm Medieval Climate Anomaly (MCA). However, there is a tendency towards higher frequencies of these events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in course of 20th century warming trend did not change significantly. Uncertainties lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors (greenhouse gases vs. solar/volcanic eruptions).

  11. Next-Generation Intensity-Duration-Frequency Curves for Hydrologic Design in Snow-Dominated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Sun, Ning; Wigmosta, Mark

    Precipitation-based intensity-duration-frequency (PREC-IDF) curves are a standard tool used to derive design floods for hydraulic infrastructure worldwide. In snow-dominated regions where a large percentage of flood events are caused by snowmelt and rain-on-snow events, the PREC-IDF design approach can lead to substantial underestimation/overestimation of design floods and associated infrastructure. In this study, next-generation IDF (NG-IDF) curves, which characterize the actual water reaching the land surface, are introduced into the design process to improve hydrologic design. The authors compared peak design flood estimates from the National Resource Conservation Service TR-55 hydrologic model driven by NG-IDF and PREC-IDF curves at 399 Snowpackmore » Telemetry (SNOTEL) stations across the western United States, all of which had at least 30 years of high-quality records. They found that about 72% of the stations in the western United States showed the potential for underdesign, for which the PREC-IDF curves underestimated peak design floods by as much as 324%. These results demonstrated the need to update the use of PREC-IDF curves to the use of NG-IDF curves for hydrologic design in snow-dominated regions.« less

  12. Next-Generation Intensity‐Duration‐Frequency Curves for Hydrologic Design in Snow-Dominated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Sun, Ning; Wigmosta, Mark S.

    Precipitation-based intensity-duration-frequency (PREC-IDF) curves are a standard tool used to derive design floods for hydraulic infrastructure worldwide. In snow-dominated regions where a large percentage of flood events are caused by snowmelt and rain-on-snow events, the PREC-IDF design approach can lead to substantial underestimation/overestimation of design floods and associated infrastructure. In this study, next-generation IDF (NG-IDF) curves, which characterize the actual water reaching the land surface, are introduced into the design process to improve hydrologic design. The authors compared peak design flood estimates from the National Resource Conservation Service TR-55 hydrologic model driven by NG-IDF and PREC-IDF curves at 399 Snowpackmore » Telemetry (SNOTEL) stations across the western United States, all of which had at least 30 years of high-quality records. They found that about 72% of the stations in the western United States showed the potential for underdesign, for which the PREC-IDF curves underestimated peak design floods by as much as 324%. These results demonstrated the need to update the use of PREC-IDF curves to the use of NG-IDF curves for hydrologic design in snow-dominated regions.« less

  13. Data for floods of May 1978 in northeastern Wyoming and southeastern Montana

    USGS Publications Warehouse

    Parrett, Charles; Carlson, D.D.; Craig, G.S.; Hull, J.A.

    1978-01-01

    Severe flooding in northeastern Wyoming and southeastern Montana in May 1978 is described by tables of data, graphs, and photographs. Flood peaks were determined at 162 sites in the flooded area. At most of the sites, peak discharges were determined from existing stage-discharge relationship curves, and at 30 of the sites indirect flow measurements were made. At 19 sites, the May 1978 peak discharge exceeded the previous peak of record and also exceeded the computed 100-year frequency flood. (Woodard-USGS)

  14. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F. S.

    2016-02-01

    Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (mesoscale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in the course of the 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar and/or volcanic eruptions).

  15. 44 CFR 60.24 - Planning considerations for flood-related erosion-prone areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flood-related erosion-prone areas. 60.24 Section 60.24 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Additional Considerations in Managing Flood-Prone...

  16. Analysis of institutional mechanisms that support community response to impacts of floods in the middle-zambezi river basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muhonda, P.; Mabiza, C.; Makurira, H.; Kujinga, K.; Nhapi, I.; Goldin, J.; Mashauri, D. A.

    In recent years, the frequency of occurrence of floods has increased in Southern Africa. An increase in the frequency of extreme events is partly attributed to climate change. Floods negatively impact on livelihoods, especially those classified as poor, mainly by reducing livelihood options and also contributing to reduced crop yields. In response to these climatic events, governments within Southern Africa have formulated policies which try to mitigate the impacts of floods. Floods can be deadly, often occurring at short notice, lasting for short periods, and causing widespread damage to infrastructure. This study analysed institutional mechanisms in Mbire District of Zimbabwe which aim at mitigating the impact of floods. The study used both quantitative (i.e. questionnaires) and qualitative (i.e. key informant interviews, focus group discussions and observations) data collection methods. Secondary data such as policy and legislation documents and operational manuals of organisations that support communities affected by disasters were reviewed. Qualitative data was analysed using the thematic approach and social network analysis using UCINET 6. Quantitative data were analysed using SPSS 19.0. The study found out that there exists institutional framework that has been developed at the national and local level to support communities in the study area in response to the impacts of floods. This is supported by various pieces of legislation that are housed in different government departments. However, the existing institutional framework does not effectively strengthen disaster management mechanisms at the local level. Lack of financial resources and appropriate training and skills to undertake flood management activities reduce the capacity of communities and disaster management organisations to effectively mitigate the impacts of floods. The study also found that there are inadequate hydro-meteorological stations to enable accurate forecasts. Even in those cases

  17. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains

    NASA Astrophysics Data System (ADS)

    Wilhelm, Bruno; Vogel, Hendrik; Crouzet, Christian; Etienne, David; Anselmetti, Flavio S.

    2016-04-01

    The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (meso-scale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both, the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in course of 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar/volcanic eruptions).

  18. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2003-01-01

    Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to

  19. Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands

    NASA Astrophysics Data System (ADS)

    Ovando, A.; Martinez, J. M.; Tomasella, J.; Rodriguez, D. A.; von Randow, C.

    2018-07-01

    The Bolivian Amazon wetlands are extensive floodplains distributed over the Mamore, Beni, Madre de Dios and Guapore Rivers. Located within the upper Madeira River Basin, the wetlands play important roles in regulating the biogeochemical processes and hydrological cycle of the region. In addition, they have major ecological and hydrological relevance for the entire Amazon Basin. These wetlands are characterized by the occurrence of episodic floods that result from contrasting hydro-meteorological processes in the Andean Mountain region, the piedmont area and the Amazon lowlands. In this study, we characterized the flood dynamics of the region using multi-temporal flood mapping based on optical altimetry (MODIS - Moderate Resolution Imaging Spectroradiometer - M*D09A1) and satellite altimetry (ENVISAT RA-2 and SARAL AltiKa altimeters). This study provides new insights regarding the frequency, magnitude and spatial distribution of exogenous floods, which are created by flood waves from the Andes; and endogenous floods, which result from runoff originating in the lowlands. The maximum extent of flooding during 2001-2014 was 43144 km2 in the Mamore Basin and 34852 km2 in the Guapore Basin, and the total surface water storage in these floodplains reached 94 km3. The regionalization of flood regimes based on water stage time series signatures allowed those regions that are exposed to frequent floods, which are generally located along rivers without a direct connection with the Andes, to be distinguished from floodplains that are more dependent on flood waves originating in the Andes and its piedmonts. This information is of great importance for understanding the roles of these wetlands in the provision of ecosystem services.

  20. Flood loss assessment in Can Tho City, Vietnam

    NASA Astrophysics Data System (ADS)

    Do, T. C.; Kreibich, H.

    2012-04-01

    Floods are recurring events in the Lower Mekong Basin resulting in loss of life and property, causing damage to agriculture and rural infrastructure, and disrupting social and economic activities. Flood management and mitigation has become a priority issue at the national and regional levels. Besides, it is expected that large areas of the Mekong delta, the Red River delta and the central coast will be flooded by sea-level rise due to climate change. Can Tho City is ranked under the five most flood-tide-influenced cities of Vietnam. It is the biggest city in the Mekong delta and it is located near the Hau river. Like other region of the Mekong delta, Can Tho suffers due to floods from upstream and flood tides from the sea. In the flood season large rural areas of the city are flooded, particularly during tidal days. Flood risk management policy includes preparative measures for living with floods and to minimise the damage caused by floods as well as to take advantage of floods for sustainable development. An intensive literature review, including administrative reports as well as expert interviews have been undertaken to gain more insight into flood characteristics, their consequences and risk mitigation. Therefore, flood damaging processes and trends have been reviewed for Can Tho City and the Mekong Basin in Vietnam. Additionally, suitable flood damage estimation methodologies have been collected as important input for flood risk analyses. On this basis it has been investigated which flood risk mitigation and management strategies promise to be effective in Can Tho City, Vietnam.

  1. Flood of October 1986 at Seward, Alaska

    USGS Publications Warehouse

    Jones, S.H.; Zenone, Chester

    1988-01-01

    Broad areas along the lower Resurrection River and Salmon Creek as well as the surfaces of several adjacent alluvial fans in the Seward area were flooded as a result of the intensive rainstorm of October 9-11, 1986. Severe erosion took place through the steep gradient, mountain canyons and near the apex of the fans, while rock and debris were deposited on the distal parts of the fans. In Godwin, Lost, Box Canyon, Japanese, and Spruce Creek basins, and perhaps others, landslides or debris avalanches dammed the streams temporarily. Subsequent failure or overtopping of these dams led to ' surge-release ' flooding; peak discharge of such a flood at Spruce Creek was 13,600 cu ft/sec, four times as great as any previously known maximum discharge from the basin and 2.5 times as great as the runoff rate from the debris dam. Flood discharges were determined indirectly--using the slope-area method--at ten high-gradient reaches on nine streams. Computed peak discharges for several small basins were the largest since records began in 1963. The largest rainfall-runoff rate unaffected by surge-release was 1 ,020 cu ft per sec per sq mi at Rudolph Creek, which has a drainage area of 1.00 sq mi. The 15.05 inches of rain that fell in one 24-hour period during the storm was assigned a recurrence interval of 100 years or greater. The length of the streamflow record available for most Seward area streams-25 years or less-is inadequate to reliably define flood frequency relations for recurrence intervals as great as 100 years. However, the slope-area determined discharge of Spruce Creek above the debris avalanche indicates a recurrence interval of a 100 years or greater. In addition, conventional flood-frequency analysis techniques are not applicable to peak discharges that are affected by surge-release phenomena. Large, damaging floods have repeatedly caused major damage in the Seward area, and the potential for catastrophic, debris-laden floods is an ever-present threat to areas

  2. Flood Hazard Mapping Assessment for Lebanon

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie

    2014-05-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of

  3. 44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.3 Establishment and maintenance of a flood elevation determination docket (FEDD). The Federal Insurance... of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and...

  4. 44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.3 Establishment and maintenance of a flood elevation determination docket (FEDD). The Federal Insurance... of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and...

  5. Parcel-scale urban coastal flood mapping: Leveraging the multi-scale CoSMoS model for coastal flood forecasting

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Barnard, P. L.; Sanders, B. F.

    2011-12-01

    California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for

  6. Characterising Record Flooding in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Cox, A.; Bates, P. D.; Smith, J. A.

    2017-12-01

    Though the most notable floods in history have been carefully explained, there remains a lack of literature that explores the nature of record floods as a whole in the United Kingdom. We characterise the seasonality, statistical and spatial distribution, and meteorological causes of peak river flows for 521 gauging stations spread across the British Isles. We use annual maximum data from the National River Flow Archive, catchment descriptors from the Flood Estimation Handbook, and historical records of large floods. What we aim to find is in what ways, if any, the record flood for a station is different from more 'typical' floods. For each station, we calculate two indices: the seasonal anomaly and the flood index. Broadly, the seasonal anomaly is the degree to which a station's record flood happens at a different time of year compared to typical floods at that site, whilst the flood index is a station's record flood discharge divided by the discharge of the 1-in-10-year return period event. We find that while annual maximum peaks are dominated by winter frontal rainfall, record floods are disproportionately caused by summer convective rainfall. This analysis also shows that the larger the seasonal anomaly, the higher the flood index. Additionally, stations across the country have record floods that occur in the summer with no notable spatial pattern, yet the most seasonally anomalous record events are concentrated around the south and west of the British Isles. Catchment descriptors tell us little about the flood index at a particular station, but generally areas with lower mean annual precipitation have a higher flood index. The inclusion of case studies from recent and historical examples of notable floods across the UK supplements our analysis and gives insight into how typical these events are, both statistically and meteorologically. Ultimately, record floods in general happen at relatively unexpected times and with unpredictable magnitudes, which is a

  7. Analysis of regional natural flow for evaluation of flood risk according to RCP climate change scenarios

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Chae, B. S.; Wi, S.; KIm, T. W.

    2017-12-01

    Various climate change scenarios expect the rainfall in South Korea to increase by 3-10% in the future. The future increased rainfall has significant effect on the frequency of flood in future as well. This study analyzed the probability of future flood to investigate the stability of existing and new installed hydraulic structures and the possibility of increasing flood damage in mid-sized watersheds in South Korea. To achieve this goal, we first clarified the relationship between flood quantiles acquired from the flood-frequency analysis (FFA) and design rainfall-runoff analysis (DRRA) in gauged watersheds. Then, after synthetically generating the regional natural flow data according to RCP climate change scenarios, we developed mathematical formulas to estimate future flood quantiles based on the regression between DRRA and FFA incorporated with regional natural flows in unguaged watersheds. Finally, we developed a flood risk map to investigate the change of flood risk in terms of the return period for the past, present, and future. The results identified that the future flood quantiles and risks would increase in accordance with the RCP climate change scenarios. Because the regional flood risk was identified to increase in future comparing with the present status, comprehensive flood control will be needed to cope with extreme floods in future.

  8. Back analysis of Swiss flood danger map to define local flood hazards

    NASA Astrophysics Data System (ADS)

    Choffet, Marc; Derron, Marc-Henri; Jaboyedoff, Michel; Leroi, Eric; Mayis, Arnaud

    2010-05-01

    The flood hazard maps for the entire Switzerland will be available at the end of 2011. Furthermore, the Swiss territory has been covered by aerial laser scanning (ALS) providing high resolution digital elevation model (DEM). This paper describes the development of a method for analyzing the local flood hazard based on Swiss hazard maps and HR-DEM. In their original state, Swiss hazard maps are constructed on the basis of an aggregation of information, a matrix intensity, and frequency. The degree of danger represented by the yellow, blue and red zones gives no information on the water level at each point of the territory. The developed method is based on a superposition of the danger map with the HR-DEM to determine the water level in a hazard area. To perform this method, (1) a triangulation is based on the intersection of the hazard map with the HR-DEM. It uses the limits of area where information is contrain. The hazard map perimeter and the boundaries of hazard areas give information on the widest possible overflow in case of flooding. It is also possible to associate it with a return period. (2) Based on these areas and the difference with the DEM, it is possible to calibrate the highest flood level and the extract water levels for the entire area. This analysis of existing documents opens up interesting perspectives for understanding how infrastructures are threatened by flood hazard by predicting water levels and potential damages to buildings while proposing remedial measures. Indeed, this method allows estimating the water level at each point of a building in case of flooding. It is designed to provide spatial information on water height levels; this offers a different approach of buildings in danger zones. Indeed, it is possible to discern several elements, such as areas of water accumulation involving longer flood duration, possible structural damages to buildings due to high hydrostatic pressure, determination of a local hazard, or the display of water

  9. Guidelines for the adaptation to floods in changing climate

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata J.

    2017-08-01

    A decrease of flood damages in the future requires not only adaptation to flood caused by present day climate, but also climate change effects on floods should be taken into account. The paper illustrates the need to take into account changing climate conditions in flood adaptation strategies and to apply in practice the concept of integrated water resource management (IWRM). IWRM is based on a number of policy instruments, economic instruments, political signals, and also, on the effects of climate change on floods and collaboration across national, regional and local administrative units. The guidelines for a country adaptation to floods in a changing climate are outlined. A comparison of the adaptive capacities in Poland and Norway is used to illustrate the need for the implementation of proposed guidelines to assure flood risk management under climate change in a sustainable way.

  10. 77 FR 31814 - National Flood Insurance Program (NFIP); Insurance Coverage and Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... structures (target repetitive loss buildings) insured under the NFIP. The Notice of Proposed Rulemaking (NPRM) defined target repetitive loss buildings as those with four or more losses, or with two or more flood... flood insurance coverage to a target repetitive loss building, if an owner declined an offer of...

  11. The Complexities of Urban Flood Response: Hydrologic Analyses for the Charlotte, North Carolina Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Liu, S.; Ten Veldhuis, M. C.

    2016-12-01

    The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood frequency. We focus on a collection of "small" urban watersheds (with drainage area ranging from 7 to 200 km2) in Charlotte metropolitan region, North Carolina. These watersheds are contrasted by a variety of land surface properties, such as size, shape, land use/land cover type, impervious coverage pattern, stormwater infrastructure, etc. We carried out empirical analyses based on long-term (15 years), high-resolution (1 15 minutes) instantaneous USGS stream gaging observations as well as bias-corrected, high-resolution (1 km2, 15 min) radar rainfall fields developed through the Hydro-NEXRAD system. Extreme floods in Charlotte urban watersheds are primarily induced by a mixture of flood agents including warm season thunderstorms and tropical cyclones, which ultimately contributed to the upper-tail properties of flood frequency. Flood response in urban watersheds is dominantly dictated by space-time characteristics of rainfall, with relatively significant correlation between runoff and rainfall over more developed watersheds. The roles of antecedent soil moisture and stormwater management infrastructure in flood response are also contrasted across the urban watersheds. The largest variability of flood response, in terms of flood peak and timing, exists in the watershed at a scale of 100 km2. The scale-dependent hydrological response is closely related to the pattern and evolution of urban development across watersheds. Our analyses show the complexities of urban flood response in Charlotte metropolitan region. There are no simple metrics that could perfectly explain the contrasts in flood response across urban watersheds. Future research is directed towards sophisticated modeling studies for a predictive understanding of flood frequency in urban watersheds.

  12. Floods on Roseberry Creek, Wacker Branch, and three unnamed tributaries to Roseberry Creek in the vicinity of Scottsboro, Alabama. Flood report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-10-01

    The study was requested by the city to provide information reflecting current flood conditions in order for the community to better administer its floodplain management program and to qualify for participation in the regular phase of the National Flood Insurance Program (NFIP). This report updates and expands the coverage of a previous TVA report published in April 1967. Profiles and flooded area and floodway maps are provided for Roseberry Creek, Wacker Branch, and three previously unstudied tributaries to Roseberry Creek.

  13. Increasing risk of great floods in a changing climate

    USGS Publications Warehouse

    Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L.

    2002-01-01

    Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods - that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km2 - using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.

  14. Flood risk assessment and mapping for the Lebanese watersheds

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs

  15. Providing Flood Risk Science for Resilient Transportation Infrastructure Decisions in Connecticut

    NASA Astrophysics Data System (ADS)

    French, R.; Cifuentes-Lorenzen, A.; Kooris, D.; O'Donnell, J.

    2017-12-01

    The Connecticut Institute for Resilience and Climate Adaptation (CIRCA) provides actionable science to accelerate adaptation and resilience strategies for Connecticut's inland and coastal waterways communities. Connecticut's coastal area has some of the most valuable real estate in the United States due to the Metro North and Shoreline East commuter rail line that connects all 24 coastal municipalities through transit hubs to the New York City metropolitan region. On its way to NY, the rail runs through neighborhoods and coastal marshes and crosses local and state roads. During coastal storms and increasingly at high tides as the sea level rises, the rail line may act like a berm, but also cuts off coastal neighborhoods from the upland. When it crosses a road in a marsh setting, the clearance restriction also severely limits communities' options for moving or elevating the roadway. These flooded roadways and vulnerable transit hubs are already a challenge for municipalities and will continue to be in the future. However, given scarce resources, it is not sufficient to simply know that they are vulnerable using existing low resolution mapping tools. Communities need site-specific, exact estimates of frequency of flooding, incorporating future sea level rise, to make cost determinations and accurately project the useful life of their investment. To address this need CIRCA developed high-resolution dynamic coastal flood risk models and partnered with municipal staff, regional planning bodies and the state to apply them to infrastructure decision-making. We will present three case studies of this approach: 1) the implementation of the US HUD National Disaster Resilience Competition pilot project of road elevation and berm construction in partnership with the Department of Housing and the City of Bridgeport; 2) the City of New London's first rail and ferry transit hub vulnerability assessment for sea level rise and storms and 3) the flooding frequency of a state road

  16. 44 CFR 63.3 - Requirement to be covered by a contract for flood insurance by June 1, 1988.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.3 Requirement to be covered by a contract for flood insurance by June 1, 1988... a contract for flood insurance by June 1, 1988. 63.3 Section 63.3 Emergency Management and...

  17. 44 CFR 63.3 - Requirement to be covered by a contract for flood insurance by June 1, 1988.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.3 Requirement to be covered by a contract for flood insurance by June 1, 1988... a contract for flood insurance by June 1, 1988. 63.3 Section 63.3 Emergency Management and...

  18. 44 CFR 63.3 - Requirement to be covered by a contract for flood insurance by June 1, 1988.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.3 Requirement to be covered by a contract for flood insurance by June 1, 1988... a contract for flood insurance by June 1, 1988. 63.3 Section 63.3 Emergency Management and...

  19. 44 CFR 63.3 - Requirement to be covered by a contract for flood insurance by June 1, 1988.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.3 Requirement to be covered by a contract for flood insurance by June 1, 1988... a contract for flood insurance by June 1, 1988. 63.3 Section 63.3 Emergency Management and...

  20. Special Flood Hazard Evaluation Report, Maumee River, Defiance and Paulding Counties, Ohio

    DTIC Science & Technology

    1988-01-01

    into the Flood Flow Frequency Analysis (FFFA) computer program (Reference 3) to determine the discharge-frequency relationship for the Maumee River...although the flood may occur in any year. It is based on statistical analysis of streamflow records available for the watershed and analysis of rainfall...C) K) K4 10 ERFODBUDR .S ryEgne itit ufI N - FODA ONAYSEIA LO AADEAUTO 6 ? -F -C )I= ~ - %E )tvXJ. AE LO LVTO MAMERVE CROS SECIONLOCAION DEFINCEAND

  1. Deciphering flood frequency curves from a coupled human-nature system perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Abeshu, G. W.; Wang, W.; Ye, S.; Guo, J.; Bloeschl, G.; Leung, L. R.

    2017-12-01

    Most previous studies and applications in deriving or applying FFC are underpinned by the stationarity assumption. To examine the theoretical robustness of this basic assumption, we analyzed the observed FFCs at hundreds of catchments in the contiguous United States along the gradients of climate conditions and human influences. The shape of FFCs is described using three similarity indices: mean annual floods (MAF), coefficient of variance (CV), and a seasonality index defined using circular statistics. The characteristics of catchments are quantified with a small number of dimensionless indices, including particularly: 1) the climatic aridity index, AI, which is a measure of the competition between energy and water availability; 2) reservoir impact index, defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume. The linkages between these two sets of indices are then explored based on a combination of mathematical derivations of the Budyko formula, simple but physically based reservoir operation models, and other auxiliary data. It is found that the shape of FFCs shifts from arid to humid climate, and from periods with weak human influences to periods with strong influences. The seasonality of floods is found to be largely controlled by the synchronization between the seasonal cycles of precipitation and solar radiation in pristine catchments, but also by the reservoir regulation capacity in managed catchments. Our findings may help improve flood-risk assessment and mitigation in both natural and regulated river systems across various climate gradients.

  2. Urban Flood Management with Integrated Inland-River System in Seoul

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, J. S.; Yuk, J. M.

    2015-12-01

    Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.

  3. Detection and attribution of flood change across the United States

    NASA Astrophysics Data System (ADS)

    Archfield, Stacey

    2017-04-01

    In the United States, there have a been an increasing number of studies quantifying trends in the annual maximum flood; yet, few studies examine trends in floods that may occur more than once in a given year and even fewer assess trends in floods on rivers that have undergone substantial changes due to urbanization, land-cover change, and agricultural drainage practices. Previous research has shown that, for streamgages having minimal direct human intervention, trends in the peak magnitude, frequency, duration and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. This study extends previous research to provide a comprehensive assessment of flood change across the United States that includes streamgages having experienced confounding alterations to streamflow (urbanization, storage, and land-cover changes) that provides a comprehensive assessment of flood change. Attribution of these changes is also explored.

  4. Flood of July 21, 1975 in Mercer County, New Jersey

    USGS Publications Warehouse

    Stankowski, Stephen J.; Schopp, Robert D.; Velnich, Anthony J.

    1975-01-01

    Intense rainfall during the evening of July 20 and early morning hours of July 21, 1975 caused flooding of unprecedented magnitude in highly urbanized Mercer County, New Jersey. Over 6 inches (152 millimetres) of rainfall was recorded during a 10-hour period at Trenton, the capital of New Jersey. No lives were lost but damages to highways and bridges, to industrial, business, and residential buildings, to farmlands and crops, and to water supply systems were severe. This report illustrates the magnitude of the flood and provides hydrologic data needed for planning and design to control or lessen damages from future floods. It includes discussions of the antecedent conditions and meteorological aspects of the storm; a description of the flood and comparison to previous floods; a summary of flood stages and discharges; a discussion of flood frequency; and photomosaics which show inundated areas. More than 200 high-water marks are described as to location and elevation above mean sea level.

  5. Muddy floods in Saxony: occurrence, damages and costs

    NASA Astrophysics Data System (ADS)

    Arévalo, S. A.; Reichel, S.; Schindewolf, M.; Schmidt, J.

    2012-04-01

    A muddy flood is a natural hazard with small impact area. Usually a single event covers only a part of a street and some properties, in some cases it might affect up to a whole neighbourhood. Due to this small spatial extend the public awareness is generally low. On the other hand we know from random reports that in some areas, like the Saxon loess belt region, muddy floods do occur repeatedly. The damages caused by muddy floods range from mud covered streets to flooded cellars and houses. Although the awareness of muddy floods in Europe has increased during the last decade, there is still very few information about frequency, spatial extend and the related costs. There have been investigations of muddy flood occurrence in some European countries like England, France, Belgium, Poland and Slovakia, but there is no information available about the muddy flood occurrence in Germany. That is because German state departments do not usually register muddy floods and neither do insurance companies. The only institution that is almost always informed when muddy floods occur are local fire brigades. That is why in this investigation an enquiry of all fire brigades in the study area of the Saxon hilly loess region was performed. The aim was to gain first information about the general dimension of the problem, a temporal and spatial distribution as well as a first appraisal of costs. The obtained database of muddy floods will also serve for further investigation of the problem.

  6. Flood damage curves for consistent global risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra-national

  7. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Ahamed, Aakash; Bolten, John; Doyle, C.; Fayne, Jessica

    2016-01-01

    Floods are the costliest natural disaster (United Nations 2004), causing approximately6.8 million deaths in the twentieth century alone (Doocy et al. 2013).Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD(Munich Re 2013). Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries (Davies et al. 2014).Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assessflooding and extend analytical methods to estimate impacted population and infrastructure.

  8. 76 FR 50918 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ...Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made final for the communities listed below. The BFEs and modified BFEs are the basis for the floodplain management measures that each community is required either to adopt or to show evidence of being already in effect in order to qualify or remain qualified for participation in the National Flood Insurance Program (NFIP).

  9. Assessment of catchments' flooding potential: a physically-based analytical tool

    NASA Astrophysics Data System (ADS)

    Botter, G.; Basso, S.; Schirmer, M.

    2016-12-01

    The assessment of the flooding potential of river catchments is critical in many research and applied fields, ranging from river science and geomorphology to urban planning and the insurance industry. Predicting magnitude and frequency of floods is key to prevent and mitigate the negative effects of high flows, and has therefore long been the focus of hydrologic research. Here, the recurrence intervals of seasonal flow maxima are estimated through a novel physically-based analytic approach, which links the extremal distribution of streamflows to the stochastic dynamics of daily discharge. An analytical expression of the seasonal flood-frequency curve is provided, whose parameters embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which expresses catchment saturation prior to rainfall events, needs to be calibrated on the observed maxima. The method has been tested in a set of catchments featuring heterogeneous daily flow regimes. The model is able to reproduce characteristic shapes of flood-frequency curves emerging in erratic and persistent flow regimes and provides good estimates of seasonal flow maxima in different climatic regions. Performances are steady when the magnitude of events with return times longer than the available sample size is estimated. This makes the approach especially valuable for regions affected by data scarcity.

  10. A comparison of regional flood frequency analysis approaches in a simulation framework

    NASA Astrophysics Data System (ADS)

    Ganora, D.; Laio, F.

    2016-07-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are

  11. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  12. Unstructured mesh adaptivity for urban flooding modelling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  13. Flood-inundation maps for the Scioto River at La Rue, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew

    2015-08-26

    Digital flood-inundation maps for a 3-mile (mi) reach of the Scioto River that extends about 1/2 mi upstream and 1/2 mi downstream of the corporate boundary for La Rue, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of La Rue, Marion County Commissioners, Montgomery Township, and Marion County Scioto River Conservancy. The flood-inundation maps show estimates of the areal extent and depth of flooding correspond ing to selected water levels (stages) at the USGS streamgage on the Scioto River at La Rue (station number 03217500). The maps can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_ inundation/ . Near-real-time stages at this streamgage can be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/oh/nwis/uv/?site_no=03217500 or the National Weather Service (NWS) Advanced Hydro - logic Prediction Service at http://water.weather.gov/ahps2/ hydrograph.php?wfo=cle&gage=LARO1 , which also forecasts flood hydrographs at this site.

  14. Technical note: Design flood under hydrological uncertainty

    NASA Astrophysics Data System (ADS)

    Botto, Anna; Ganora, Daniele; Claps, Pierluigi; Laio, Francesco

    2017-07-01

    Planning and verification of hydraulic infrastructures require a design estimate of hydrologic variables, usually provided by frequency analysis, and neglecting hydrologic uncertainty. However, when hydrologic uncertainty is accounted for, the design flood value for a specific return period is no longer a unique value, but is represented by a distribution of values. As a consequence, the design flood is no longer univocally defined, making the design process undetermined. The Uncertainty Compliant Design Flood Estimation (UNCODE) procedure is a novel approach that, starting from a range of possible design flood estimates obtained in uncertain conditions, converges to a single design value. This is obtained through a cost-benefit criterion with additional constraints that is numerically solved in a simulation framework. This paper contributes to promoting a practical use of the UNCODE procedure without resorting to numerical computation. A modified procedure is proposed by using a correction coefficient that modifies the standard (i.e., uncertainty-free) design value on the basis of sample length and return period only. The procedure is robust and parsimonious, as it does not require additional parameters with respect to the traditional uncertainty-free analysis. Simple equations to compute the correction term are provided for a number of probability distributions commonly used to represent the flood frequency curve. The UNCODE procedure, when coupled with this simple correction factor, provides a robust way to manage the hydrologic uncertainty and to go beyond the use of traditional safety factors. With all the other parameters being equal, an increase in the sample length reduces the correction factor, and thus the construction costs, while still keeping the same safety level.

  15. Popular myths about flooding in Western Washington

    USGS Publications Warehouse

    Jones, Joseph L.

    2011-01-01

    Floods are the most destructive natural hazard in the Nation, causing more deaths and financial loss in the 20th century than any other natural disaster. The most significant 20 riverine floods of the 20th century for which data are available have killed more than 1,843 people and caused more than $50 billion (uninflated) in damages (Perry, 2000). One of the most common means of describing the severity of a flood is a comparison to the "100-year flood." In the last decade, increasing attention has been paid to the fact that some regions, notably the Pacific Northwest, have experienced numerous so-called "100-year" floods in the span of a few years. Part of the confusion stems from the statistical nature of the "100-year flood" (Greene, 1996); however, another part of the confusion is the fact that the statistics are calculated for specific sites (streamgages) on specific rivers, rather than for a region as a whole. Scientists with the U.S. Geological Survey have begun to investigate how the likelihood of flooding may be determined on a regional basis (Troutman and Karlinger, 2003).

  16. Understanding flood risk sensitivity and uncertainty in a subcatchment of the Thames River (United Kingdom)

    NASA Astrophysics Data System (ADS)

    Theofanidi, Sofia; Cloke, Hannah Louise; Clark, Joanna

    2017-04-01

    Floods are a global threat to social, economic and environmental development and there is a likelihood, that they could occur more frequently in the future due to climatic change. The severity of their impacts, which can last for years, has led to the urgent need for local communities and national authorities to develop flood warning systems for a better flood preparedness and emergency response. The flood warning systems often rely on hydrological forecasting tools to predict the hydrological response of a watershed before or during a flood event. Hydrological models have been substantially upgraded since the first use of hydrographs and the use of simple conceptual models. Hydrodynamic and hydraulic routing enables the spatial and temporal prediction of flow rates (peak discharges) and water levels. Moreover, the hydrodynamic modeling in 2D permits the estimation of the flood inundation area. This can be particularly useful because the flood zones can provide essential information about the flood risk and the flood damage. In this study, we use a hydrodynamic model which can simulate water levels and river flows in open channel conditions. The model can incorporate the effect of several river structures in the flood modeling process, such as the existence of bridges and weirs. The flood routing method is based on the solution of continuity and energy momentum equations. In addition, the floodplain inundation modeling which is based on the solution of shallow water equations along the channel's banks, will be used for the mapping of flood extent. A GIS interface will serve as a database, including high resolution topography, vector layers of river network, gauging stations, land use and land cover, geology and soil information. The flood frequency analysis, together with historical records on flood warnings, will enable the understanding on the flow regimes and the selection of particular flood events for modeling. One dimensional and two dimensional simulations

  17. Modeling tools for the assessment of microbiological risks during floods: a review

    NASA Astrophysics Data System (ADS)

    Collender, Philip; Yang, Wen; Stieglitz, Marc; Remais, Justin

    2015-04-01

    Floods are a major, recurring source of harm to global economies and public health. Projected increases in the frequency and intensity of heavy precipitation events under future climate change, coupled with continued urbanization in areas with high risk of floods, may exacerbate future impacts of flooding. Improved flood risk management is essential to support global development, poverty reduction and public health, and is likely to be a crucial aspect of climate change adaptation. Importantly, floods can facilitate the transmission of waterborne pathogens by changing social conditions (overcrowding among displaced populations, interruption of public health services), imposing physical challenges to infrastructure (sewerage overflow, reduced capacity to treat drinking water), and altering fate and transport of pathogens (transport into waterways from overland flow, resuspension of settled contaminants) during and after flood conditions. Hydrological and hydrodynamic models are capable of generating quantitative characterizations of microbiological risks associated with flooding, while accounting for these diverse and at times competing physical and biological processes. Despite a few applications of such models to the quantification of microbiological risks associated with floods, there exists limited guidance as to the relative capabilities, and limitations, of existing modeling platforms when used for this purpose. Here, we review 17 commonly used flood and water quality modeling tools that have demonstrated or implicit capabilities of mechanistically representing and quantifying microbial risk during flood conditions. We compare models with respect to their capabilities of generating outputs that describe physical and microbial conditions during floods, such as concentration or load of non-cohesive sediments or pathogens, and the dynamics of high flow conditions. Recommendations are presented for the application of specific modeling tools for assessing

  18. 75 FR 78613 - Changes in Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Flood Disaster Protection Act of 1973, 42 U.S.C. 4105, and are in accordance with the National Flood Insurance Act of 1968, 42 U.S.C. 4001 et seq., and with 44 CFR part 65. For rating purposes, the currently... within the scope of the Regulatory Flexibility Act, 5 U.S.C. 601- 612, a regulatory flexibility analysis...

  19. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.

  20. Flood AI: An Intelligent Systems for Discovery and Communication of Disaster Knowledge

    NASA Astrophysics Data System (ADS)

    Demir, I.; Sermet, M. Y.

    2017-12-01

    Communities are not immune from extreme events or natural disasters that can lead to large-scale consequences for the nation and public. Improving resilience to better prepare, plan, recover, and adapt to disasters is critical to reduce the impacts of extreme events. The National Research Council (NRC) report discusses the topic of how to increase resilience to extreme events through a vision of resilient nation in the year 2030. The report highlights the importance of data, information, gaps and knowledge challenges that needs to be addressed, and suggests every individual to access the risk and vulnerability information to make their communities more resilient. This project presents an intelligent system, Flood AI, for flooding to improve societal preparedness by providing a knowledge engine using voice recognition, artificial intelligence, and natural language processing based on a generalized ontology for disasters with a primary focus on flooding. The knowledge engine utilizes the flood ontology and concepts to connect user input to relevant knowledge discovery channels on flooding by developing a data acquisition and processing framework utilizing environmental observations, forecast models, and knowledge bases. Communication channels of the framework includes web-based systems, agent-based chat bots, smartphone applications, automated web workflows, and smart home devices, opening the knowledge discovery for flooding to many unique use cases.