Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-01-01
This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.
Two Strategic Decisions Facing Fusion
NASA Astrophysics Data System (ADS)
Baldwin, D. E.
1998-06-01
Two strategic decisions facing the U.S. fusion program are described. The first decision deals with the role and rationale of the tokamak within the U. S. fusion program, and it underlies the debate over our continuing role in the evolving ITER collaboration (mid-1998). The second decision concerns how to include Inertial Fusion Energy (IFE) as a viable part of the national effort to harness fusion energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis
2014-10-01
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Neumeyer; M. Ono; S.M. Kaye
1999-11-01
The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.
Fusion Science Education Outreach
NASA Astrophysics Data System (ADS)
Danielson, C. A.; DIII-D Education Group
1996-11-01
This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.
Inertial Fusion and High-Energy-Density Science in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarter, C B
2001-09-06
Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less
Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-12-01
This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Prioritiesmore » and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.« less
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures - 6.
1983-05-01
structures for the superconducting magnets of magnetic fusion energy power plants and prototypes. The program was conceived and developed jointly by the...staffs of the National Bureau of Standards and the Office of Fusion Energy of the Department of Energy; it is managed by NBS and sponsored by DoE
Report of the Fusion Energy Sciences Advisory Committee Panel on Priorities and Balance
NASA Astrophysics Data System (ADS)
Baker, Charles; Davidson, Ronald; Dean, Stephen; Freidberg, Jeffrey; Sheffield, John
1999-06-01
This report presents the results and recommendations of the deliberations of the DOE Fusion Energy Sciences Advisory Committee (FESAC) Panel on Priorities and Balance, which met in Knoxville, TN, 18-21 August 1999. The Panel identified the achievement of a more integrated national program in magnetic fusion energy (MFE) and inertial fusion energy (IFE) as a major programmatic and policy goal for the years ahead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart Zweben; Samuel Cohen; Hantao Ji
Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Astrophysics Data System (ADS)
Dean, Stephen O.
1988-09-01
Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Technical Reports Server (NTRS)
Dean, Stephen O.
1988-01-01
Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.
ICF quarterly report January - March 1997 volume 7, number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J
The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia L. Finley
The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd waste water monitoring. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report.« less
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
A U.S. Strategy for Timely Fusion Energy Development
NASA Astrophysics Data System (ADS)
Wade, Mickey
2017-10-01
Worldwide energy demand is expected to explode in the latter half of this century. In anticipation of this demand, the U.S. DOE recently asked the National Academy of Science to provide guidance on a long-term strategic plan assuming that ``economical fusion energy within the next several decades is a U.S. strategic interest. ``Delivering on such a plan will require an R&D program that delivers key data and understanding on the building blocks of a) burning plasma physics, b) optimization of the coupled core-edge solution, and c) fusion nuclear science to inform the design of a cost-attractive DEMO reactor in this time frame. Such a program should leverage existing facilities in the U.S. program including ITER, provide substantive motivation for an expanding R&D scope (and funding), and enable timely redirection of resources within the program as appropriate (and endorsed by DOE and the fusion community). This paper will outline a potential strategy that provides world-leading opportunities for the research community in a range of areas while delivering on key milestones required for timely fusion energy development. Supported by General Atomics internal funding.
Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
NASA Astrophysics Data System (ADS)
Zhang, YK; Zhou, RJ; Hu, LQ; Chen, MW; Chao, Y.; EAST team
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11775263 and 11405219), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics, China (Grant No. 11261140328), and the National Magnetic Confnement Fusion Science Program of China (Grant No. 2015GB102004).
Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device
NASA Astrophysics Data System (ADS)
Motojima, Osamu
2006-12-01
The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.
Inertial Confinement Fusion Annual Report 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less
2016 Annual Site Environmental Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Virginia
This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory’s (PPPL) operations. The results of the 2016 environmental surveillance and monitoring program for PPPL’s are presented and discussed. The report also summarizes environmental initiatives, assessments, and community involvement programs that were undertaken in 2016. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality – a clean,more » alternative energy source. 2016 marked the eighteenth year of National Spherical Torus Experiment and the first year of NSTX-U (Upgrade) operations. The NSTX-U Project is a collaboration among national laboratories, universities, and national and international research institutions and is a major element in the US Fusion Energy Sciences Program. Its design tests the physics principles of spherical torus (ST) plasmas, playing an important role in the development of smaller, more economical fusion reactors. NSTX-U began operations after its first upgrade that installed the new center stack magnets and second neutral beam, which would allow for hotter plasmas and greater field strength to maintain the fusion reaction longer. Due to operational issues with a poloidal coil, NSTX-U operated briefly in 2016. In 2016, PPPL’s radiological environmental monitoring program measured tritium in the air at the NSTX-U Stack and at on -site sampling stations. Using highly sensitive monitors, PPPL is capable of detecting small changes in the ambient levels of tritium. The operation of an in- stack monitor located on D-site is used to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations. Also included in PPPL’s radiological environmental monitoring program, are water monitoring – ground and surface, and waste waters. PPPL’s radiological monitoring program characterized the background levels of tritium in the environment; the data are presented in this report. Ground water monitoring continued under the New Jersey Department of Environmental Protection’s Site Remediation Program. PPPL monitored for non-radiological contaminants, mainly volatile organic compounds (components of chlorinated degreasing solvents). In 2016, PPPL was in compliance with its permit limits for surface and sanitary discharges, excepting two elevated chlorine-produced oxidant concentration. PPPL was honored with awards for its waste reduction and recycling program, and its “EPEAT” electronics purchasing for the third consecutive year.« less
Dust charging and levitating in a sheath of plasma containing energetic particles
NASA Astrophysics Data System (ADS)
Ou, Jing; Zhao, Xiao-Yun; Lin, Bin-Bin
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11475223), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (Grant Nos. 11261140328 and 2012K2A2A6000443).
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
The Nova Upgrade Facility for ICF ignition and gain
NASA Astrophysics Data System (ADS)
Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.
1992-01-01
Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
Toroidal rotation induced by 4.6 GHz lower hybrid current drive on EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, Xiang-Hui; Chen, Jun; Hu, Rui-Ji; Li, Ying-Ying; Wang, Fu-Di; Fu, Jia; Ding, Bo-Jiang; Wang, Mao; Liu, Fu-Kun; Zang, Qing; Shi, Yue-Jiang; Lyu, Bo; Wan, Bao-Nian; EAST Team
2017-10-01
Not Available Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB112004 and 2015GB103002), the National Natural Science Foundation of China (Grant Nos. 11405212 and 11261140328), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology China (Grant No. 2016FXZY008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia L. Finley
The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practicalmore » reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C. J.; Edwards, M. J.; McCoy, M. G.
2015-07-07
Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Astrophysics Data System (ADS)
Dean, Stephen O.
1988-03-01
Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.
NASA Astrophysics Data System (ADS)
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia Finley
The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less
Laser Program Annual Report - 1979 Unclassified Excerpts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D
The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less
An accelerated fusion power development plan
NASA Astrophysics Data System (ADS)
Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.
1991-06-01
Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.
Fusion technologies for Laser Inertial Fusion Energy (LIFE)
NASA Astrophysics Data System (ADS)
Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.
2013-11-01
The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Wu, Xueke; Li, Huidong; Wang, Zhanhui; Feng, Hao; Zhou, Yulin
2017-06-01
Not Available Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 11605143), the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province, China (Grant No. 05020732), the National Natural Science Foundation of China (Grant No. 11575055), the Fund from the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), the National ITER Program of China (Contract No. 2014GB113000), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)
NASA Astrophysics Data System (ADS)
Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude
2008-06-01
The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2007 an extremely successful conference. The proceedings were published with the support of Dr Y Sakawa, Dr H Homma, Ms S Karasuyama, Ms M Odagiri, and Ms I Kobatake. Kunioki Mima Co-chair Hiroshi Azechi Technical Program Committee Co-chair John Lindl Co-chair Bruce Hammel Technical Program Committee Co-chair Christine Labaune Co-chair Jean-Claude Gauthier Technical Program Committee Co-chair
Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard
2017-01-01
The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
NASA Astrophysics Data System (ADS)
Jia, Li-Ping; Jasmina, T´; Duan, Wen-Shan
2015-04-01
Not Available Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No 2014GB104002, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA03030100, the National Natural Science Foundation of China under Grant Nos 11275156 and 11304324, the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF201CJ1, and the Serbian Ministry of Education and Science under Grant No III-45010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stencel, J.R.; Finley, V.L.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research sincemore » 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.« less
Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGowan, B.J.; Kotowski, M.; Schleich, D.
1993-11-01
This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less
Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Heller, William; Rai, Durgesh
HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.
Suprathermal Ion Populations in ICF Plasmas - Implications for Diagnostics and Ignition
NASA Astrophysics Data System (ADS)
Knapp, Patrick; Schmit, Paul; Sinars, Daniel
2013-10-01
We report on investigations into the effects of suprathermal ion populations on neutron production in Inertial Confinement and Magneto-Inertial Fusion plasmas. In a recent article we showed that a suprathermal population taking the form of a power-law in energy will significantly modify the shape and width of the neutron spectrum and can dramatically increase the fusion reactivity compared to the Maxwellian case. Specific diagnostic signatures are discussed in detail. We build on this work to include the effect of an applied magnetic field on the neutron spectra, isotropy and production rate. Finally, the impact that these modifications have on the ability to reach high fusion yields and ignition is discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.
Laser-direct-drive program: Promise, challenge, and path forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Laser-direct-drive program: Promise, challenge, and path forward
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.; ...
2017-03-19
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Stability of concentration-related self-interstitial atoms in fusion material tungsten
NASA Astrophysics Data System (ADS)
Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen
2016-05-01
Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the <110> and <111> formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, <110> SIAs are more likely to exist, <111> SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).
NASA Astrophysics Data System (ADS)
He, An; Xue, Cun; Zhou, Youhe
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11702034, 11702218, and 11421062), Fundamental Research Funds for the Central Universities, China (Grant Nos. 310812171011 and G2016KY0305), and the National Key Project of Magneto-Constrained Fusion Energy Development Program, China (Grant No. 2013GB110002).
Laser program annual report 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.
1984-06-01
In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. Themore » format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.« less
Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
Gates, David A.; Anderson, David; Anderson, S.; ...
2018-02-19
This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less
Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, David A.; Anderson, David; Anderson, S.
This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less
Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
NASA Astrophysics Data System (ADS)
Gates, D. A.; Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D. A.; Weitzner, H.; Neilson, G. H.; Ruzic, D.; Andruczyk, D.; Harris, J. H.; Mynick, H.; Hegna, C. C.; Schmitz, O.; Talmadge, J. N.; Curreli, D.; Maurer, D.; Boozer, A. H.; Knowlton, S.; Allain, J. P.; Ennis, D.; Wurden, G.; Reiman, A.; Lore, J. D.; Landreman, M.; Freidberg, J. P.; Hudson, S. R.; Porkolab, M.; Demers, D.; Terry, J.; Edlund, E.; Lazerson, S. A.; Pablant, N.; Fonck, R.; Volpe, F.; Canik, J.; Granetz, R.; Ware, A.; Hanson, J. D.; Kumar, S.; Deng, C.; Likin, K.; Cerfon, A.; Ram, A.; Hassam, A.; Prager, S.; Paz-Soldan, C.; Pueschel, M. J.; Joseph, I.; Glasser, A. H.
2018-02-01
This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in "Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)" [1]. The natural disruption immunity of the stellarator directly addresses "Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices" an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research "Strengthening our partnerships with international research facilities," is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; "Burning Plasma Science: Foundations - Next-generation research capabilities", and "Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria" are proposed.
Stellarator Research Opportunities: A report of the National Stellarator Coordinating Committee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, David A.; Anderson, David
This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less
Plasma Physics Network Newsletter, No. 3
NASA Astrophysics Data System (ADS)
1991-02-01
This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.
The National Ignition Facility: The world's largest optical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2007-10-15
The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
Head-on collision between two solitary waves in a one-dimensional bead chain
NASA Astrophysics Data System (ADS)
Wang, Fu-Gang; Yang, Yang-Yang; Han, Juan-Fang; Duan, Wen-Shan
2018-04-01
Not Available Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002), the National Natural Science Foundation of China (Grant No. 11647313), the Youth Science and Technology Foundation of Gansu Province, China (Grant No. 1606RJYA263), and the Institutes of Higher Education Institutions of Gansu Province, China (Grant No. 2015B-022).
VMOMS — A computer code for finding moment solutions to the Grad-Shafranov equation
NASA Astrophysics Data System (ADS)
Lao, L. L.; Wieland, R. M.; Houlberg, W. A.; Hirshman, S. P.
1982-08-01
Title of program: VMOMS Catalogue number: ABSH Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (See application form in this issue) Computer: PDP-10/KL10; Installation: ORNL Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA Operating system: TOPS 10 Programming language used: FORTRAN High speed storage required: 9000 words No. of bits in a word: 36 Overlay structure: none Peripherals used: line printer, disk drive No. of cards in combined program and test deck: 2839 Card punching code: ASCII
2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less
Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility
1986-01-01
Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and
Bohl, Daniel D; Russo, Glenn S; Basques, Bryce A; Golinvaux, Nicholas S; Fu, Michael C; Long, William D; Grauer, Jonathan N
2014-12-03
There has been an increasing use of national databases to conduct orthopaedic research. Questions regarding the validity and consistency of these studies have not been fully addressed. The purpose of this study was to test for similarity in reported measures between two national databases commonly used for orthopaedic research. A retrospective cohort study of patients undergoing lumbar spinal fusion procedures during 2009 to 2011 was performed in two national databases: the Nationwide Inpatient Sample and the National Surgical Quality Improvement Program. Demographic characteristics, comorbidities, and inpatient adverse events were directly compared between databases. The total numbers of patients included were 144,098 from the Nationwide Inpatient Sample and 8434 from the National Surgical Quality Improvement Program. There were only small differences in demographic characteristics between the two databases. There were large differences between databases in the rates at which specific comorbidities were documented. Non-morbid obesity was documented at rates of 9.33% in the Nationwide Inpatient Sample and 36.93% in the National Surgical Quality Improvement Program (relative risk, 0.25; p < 0.05). Peripheral vascular disease was documented at rates of 2.35% in the Nationwide Inpatient Sample and 0.60% in the National Surgical Quality Improvement Program (relative risk, 3.89; p < 0.05). Similarly, there were large differences between databases in the rates at which specific inpatient adverse events were documented. Sepsis was documented at rates of 0.38% in the Nationwide Inpatient Sample and 0.81% in the National Surgical Quality Improvement Program (relative risk, 0.47; p < 0.05). Acute kidney injury was documented at rates of 1.79% in the Nationwide Inpatient Sample and 0.21% in the National Surgical Quality Improvement Program (relative risk, 8.54; p < 0.05). As database studies become more prevalent in orthopaedic surgery, authors, reviewers, and readers should view these studies with caution. This study shows that two commonly used databases can identify demographically similar patients undergoing a common orthopaedic procedure; however, the databases document markedly different rates of comorbidities and inpatient adverse events. The differences are likely the result of the very different mechanisms through which the databases collect their comorbidity and adverse event data. Findings highlight concerns regarding the validity of orthopaedic database research. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
The next large helical devices
NASA Astrophysics Data System (ADS)
Iiyoshi, Atsuo; Yamazaki, Kozo
1995-06-01
Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive actionmore » plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'« less
Helping Teachers Teach Plasma Physics
NASA Astrophysics Data System (ADS)
Correll, Donald
2008-11-01
Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.
Scientific program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerich, C.
1983-01-01
The Fifth International Conference on High-Power Particle Beams is organized jointly by the Lawrence Livermore National Laboratory and Physics International Company. As in the previous conferences in this series, the program includes the following topics: high-power, electron- and ion-beam acceleration and transport; diode physics; high-power particle beam interaction with plasmas and dense targets; particle beam fusion (inertial confinement); collective ion acceleration; particle beam heating of magnetically confined plasmas; and generation of microwave/free-electron lasers.
NASA Astrophysics Data System (ADS)
Johnson, K. C.
1991-04-01
This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.
2013-03-01
The Baseline Capabilities for State and Major Urban Area Fusion Centers required fusion centers to establish programs to interact with the private...sector. These programs took the form of Public and Private Sector outreach programs. This requirement had a profound budgetary and operational impact on...fusion centers, but agencies received very little guidance about how to plan, organize, and sustain these programs. The goal of this thesis was to
Study of Tungsten effect on CFETR performance
NASA Astrophysics Data System (ADS)
Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration
2017-10-01
An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).
PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers
NASA Astrophysics Data System (ADS)
Takizuka, Tomonori
2008-07-01
This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in physics understanding of dynamics, mitigation and control of ELMs J Rice (MIT, USA): Spontaneous rotation and momentum transport in tokamak plasmas K Ida (NIFS, Japan): Transport barriers in non-axisymmetric magnetic fields F Jenko (IPP, Germany): Transport barriers: Recent progress in theory and simulation T Hoang (CEA, France): Internal transport barriers: Projection to ITER Every talk satisfied the objective of the meeting. A discussion period followed each invited talk in order to expand physics understandings, projection capabilities, and the direction of research around the topic. Short talks were presented by contributing speakers in addition to questions, answers, comments and discussion among the participants. For each topic there was an associated poster session for contributed papers, and lively discussion took place in front of every poster. Through the meeting six invited papers and 77 contributed papers were presented in total. The final session of the meeting was devoted to summaries; R Groebner, T S Hahm and K Ida of the IAC summarized the fruits of topics 1 and 2, 3 and 5, and 4 and 6, respectively. I would like to thank Dr A Malaquias, the IAEA Scientific Secretary, for his continuous support and useful suggestions on the arrangements of the meeting. I am very grateful to the IAC members for their cooperation in selecting topics and invited speakers, and for their important advices on the meeting strategy and proceedings publication. I also wish to express my gratitude to LOC colleagues for their hard work organizing the meeting. Young students of the University of Tsukuba helped us during the meeting. Financial and personel support from JAEA and the University of Tsukuba were essential. Finally I would like to acknowledge the participants of the meeting and the referees for the present proceedings. All of the above contributions contributed to the success of the meeting. Tomonori Takizuka Editor Group photograph International Advisory Committee T Takizuka (Japan Atomic Energy Agency, Japan: Chair) R J Groebner (General Atomics, USA) T S Hahm (Princeton Plasma Physics Laboratory, USA) A E Hubbard (MIT Plasma Science and Fusion Center, USA) K Ida (National Institute for Fusion Science, Japan) S V Lebedev (Ioffe Institute, Russia) G Saibene (EFDA CSU Garching, Germany) W Suttrop (Max-Plank-Institut für Plasmaphysik, Germany) Additional information about this meeting (H-mode-TM-11) is available in its homepage http://www-jt60.naka.jaea.go.jp/h-mode-tm-11/. List of Participants N Aiba (Japan Atomic Energy Agency, Japan) T Akiyama (National Institute for Fusion Science, Japan) N Asakura (Japan Atomic Energy Agency, Japan) L G Askinazi (Ioffe Institute, Russia) M N A Beurskens (EURATOM/UKAEA Fusion Association, UK) J D Callen (University of Wisconsin, USA) T Cho (University of Tsukuba, Japan) P C DeVries (EURATOM/UKAEA Fusion Association, UK) X T Ding (Southwestern Institute of Physics, China) E J Doyle (University of California, Los Angels, USA) A Fukuyama (Kyoto University, Japan) P Gohil (General Atomics, USA) R J Groebner (General Atomics, USA) T S Hahm (Princeton Plasma Physics Laboratory, USA) N Hayashi (Japan Atomic Energy Agency, Japan) Y Higashiyama (Nagoya University, Japan) Y Higashizono (University of Tsukuba, Japan) M Hirata (University of Tsukuba, Japan) G T Hoang (Association Euratom-CEA sur la Fusion Controle, France) G M D Hogeweij (FOM-Institute for Plasma Physics Rijnhuizen, The Netherlands) M Honda (Japan Atomic Energy Agency, Japan) L D Horton (Max-Plank-Institut für Plasmaphysik, Germany) W A Houlberg (ITER Organization) A E Hubbard (MIT Plasma Science and Fusion Center, USA) J W Hughes (MIT Plasma Science and Fusion Center, USA) M Ichimura (University of Tsukuba, Japan) K Ida (National Institute for Fusion Science, Japan) T Ido (National Institute for Fusion Science, Japan) T Imai (University of Tsukuba, Japan) F Imbeaux (Association Euratom-CEA sur la Fusion Controle, France) A Itakura (University of Tsukuba, Japan) K Itoh (National Institute for Fusion Science, Japan) S-I Itoh (Kyushu University, Japan) F Jenko (Max-Plank-Institut für Plasmaphysik, Germany) D Kalupin (Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Germany) Y Kamada (Japan Atomic Energy Agency, Japan) N Kasuya (National Institute for Fusion Science, Japan) I Katanuma (University of Tsukuba, Japan) M Kimura (Kyushu University, Japan) A Kirk (EURATOM/UKAEA Fusion Association, UK) S Kitajima (Tohoku University, Japan) S Kobayashi (Kyoto University, Japan) T Kobuchi (Tohoku University, Japan) J Kohagura (University of Tsukuba, Japan) P T Lang (Max-Plank-Institut für Plasmaphysik, Germany) S V Lebedev (Ioffe Institute, Russia) A W Leonard (General Atomics, USA) J Q Li (Kyoto University, Japan) A Malaquias (International Atomic Energy Agency) Y R Martin (Centre de Recherches en Physique des Plasmas, EPFL, Switzerland) C J McDevitt (University of California, San Diego, USA) D C McDonald (EURATOM/UKAEA Fusion Association, UK) H Meyer (EURATOM/UKAEA Fusion Association, UK) C A Michael (National Institute for Fusion Science, Japan) K Miki (Kyushu University, Japan) R Minami (University of Tsukuba, Japan) T Minami (National Institute for Fusion Science, Japan) Y Miyata (University of Tsukuba, Japan) N Miyato (Japan Atomic Energy Agency, Japan) Y Motegi (University of Tsukuba, Japan) V Mukhovatov (ITER Organization) S Murakami (Kyoto University, Japan) Y Nagashima (Kyushu University, Japan) Y Nakashima (University of Tsukuba, Japan) T Numakura (University of Tsukuba, Japan) S Ohshima (National Institute for Fusion Science, Japan) T Oishi (National Institute for Fusion Science, Japan) T Onjun (Sirindhorn International Institute of Technology, Thailand) T H Osborne (GENERAL Atomics, USA) N Oyama (Japan Atomic Energy Agency, Japan) T Ozeki (Japan Atomic Energy Agency, Japan) V Parail (EURATOM/UKAEA Fusion Association, UK) A Polevoi (ITER Organization, France) J E Rice (MIT Plasma Science and Fusion Center, USA) F Ryter (Max-Plank-Institut für Plasmaphysik, Germany) H Saimaru (University of Tsukuba, Japan) R Sakamoto (National Institute for Fusion Science, Japan) Y Sakamoto (Japan Atomic Energy Agency, Japan) M Sasaki (University of Tokyo, Japan) Y Shi (Institute of Plasma Physics, Chinese Academy of Science, China) A Shimizu (National Institute for Fusion Science, Japan) T Shimozuma (National Institute for Fusion Science, Japan) P B Snyder (General Atomics, USA) C Suzuki (National Institute for Fusion Science, Japan) H Takahashi (National Institute for Fusion Science, Japan) Y Takahashi (Nagoya University, Japan) Y Takeiri (National Institute for Fusion Science, Japan) H Takenaga (Japan Atomic Energy Agency, Japan) M Takeuchi (Nagoya University, Japan) T Takizuka (Japan Atomic Energy Agency, Japan) N Tamura (National Institute for Fusion Science, Japan) K Tanaka (National Institute for Fusion Science, Japan) S Tokuda (Japan Atomic Energy Agency, Japan) S Tokunaga (Kyushu University, Japan) G Turri (Centre de Recherches en Physique des Plasmas, EPFL, Switzerland) H Urano (Japan Atomic Energy Agency, Japan) H Utoh (Tohok University, Japan) K Uzawa (Kyoto University, Japan) M Valovic (EURATOM/UKAEA Fusion Association, UK) L Vermare (Max-Plank-Institut für Plasmaphysik, Germany) F Watanabe (Nagoya University, Japan) M Yagi (Kyushu University, Japan) Y Yamaguchi (University of Tsukuba, Japan) K Yamazaki (Nagoya University, Japan) M Yokoyama (National Institute for Fusion Science, Japan) M Yoshida (Japan Atomic Energy Agency, Japan) M Yoshinuma (National Institute for Fusion Science, Japan)
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin
2016-08-01
Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)
Effect of Hyper-Resistivity on Nonlinear Tearing Modes
NASA Astrophysics Data System (ADS)
Yang, Wen; Li, Ding; Xu, Xue-qiao
2018-06-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11675257, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039. This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, LLNL-JRNL-748586.
Epidural Abscess: A Propensity Analysis of Surgical Treatment Strategies.
Chaker, Anisse N; Bhimani, Abhiraj D; Esfahani, Darian R; Rosinski, Clayton L; Geever, Brett W; Patel, Akash S; Hobbs, Jonathan G; Burch, Taylor G; Patel, Saavan; Mehta, Ankit I
2018-06-18
Observational analysis of retrospectively collected data. A retrospective study was performed in order to compare the surgical profile of risk factors and perioperative complications for laminectomy and laminectomy with fusion procedures in the treatment of SEA. Spinal epidural abscess (SEA) is a highly morbid condition typically presenting with back pain, fever, and neurologic deficits. Posterior fusion has been used to supplement traditional laminectomy of SEA to improve spinal stability. At present, the ideal surgical strategy - laminectomy with or without fusion - remains elusive. 30-day outcomes such as reoperation and readmission following laminectomy and laminectomy with fusion in patients with SEA were investigated utilizing the American College of Surgeons National Quality Improvement Program database. Demographics and clinical risk factors were collected, and propensity matching was performed to account for differences in risk profiles between the groups. 738 patients were studied (608 laminectomy alone, 130 fusion). The fusion population was in worse health. The fusion population experienced significantly greater rate of return to the operating room (odds ratio (OR) 1.892), with the difference primarily accounted for by cervical spine operations. Additionally, fusion patients had significantly greater rates of blood transfusion. Infection was the most common reason for reoperation in both populations. Both laminectomy and laminectomy with fusion effectively treat SEA, but addition of fusion is associated with significantly higher rates of transfusion and perioperative return to the operating room. In operative situations where either procedure is reasonable, surgeons should consider that fusion nearly doubles the odds of reoperation in the short-term, and weigh this risk against the benefit of added stability. 3.
Using Reengineering as an Integrating Capstone Experience
ERIC Educational Resources Information Center
Matos, Victor; Grasser, Rebecca
2007-01-01
This paper presents an example of integrating IT skills using an interesting real life problem. We describe how the reverse- and forward-engineering of the USA National Do Not Call registry was used in our capstone course to illustrate the fusion of different (but interdependent) issues and techniques learned in the IT program. The purpose of the…
III International Conference on Laser and Plasma Researches and Technologies
NASA Astrophysics Data System (ADS)
2017-12-01
A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
National Spherical Torus Experiment (NSTX) and Planned Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yueng Kay Martin; Ono, M.; Kaye, S.
1998-01-01
The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less
An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR
NASA Astrophysics Data System (ADS)
Yu, Guanying; Liu, Xufeng; Liu, Songlin
2016-10-01
The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)
Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR
NASA Astrophysics Data System (ADS)
Zhu, Qingjun; Li, Jia; Liu, Songlin
2016-07-01
In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Review of the magnetic fusion program by the 1986 ERAB Fusion Panel
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.
1987-09-01
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.
Exploring magnetized liner inertial fusion with a semi-analytic model
McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...
2016-01-01
In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Exploring magnetized liner inertial fusion with a semi-analytic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, R. D.; Slutz, S. A.; Vesey, R. A.
In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Exploring magnetized liner inertial fusion with a semi-analytic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.
In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Outreach programs in physics at Hampton University
NASA Astrophysics Data System (ADS)
Pittman, Carlane J.; Temple, Doyle A.
1996-07-01
The Department of Physics at Hampton University generates over 4.5 M dollars of external research funding annually and operates three research centers, the Nuclear High Energy Physics Research Center, the Research Center for Optical Physics, and the Center for Fusion Training and Research. An integral component of these centers is an active outreach and recruitment program led by the Associate Director for Outreach. This program includes summer internships and research mentorships, both at Hampton University and at national laboratories such as CEBAF and NASA Langley. Faculty presentations ar local area elementary schools, middle schools and high schools are also under the auspices of this program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of currentmore » scientific excellence and recommendations for future goals and balance within the Program was requested.« less
The national ignition facility high-energy ultraviolet laser system
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2004-09-01
The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1982-02-22
The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1982-04-20
The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less
Fusion energy for space missions in the 21st century: Executive summary
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1991-01-01
Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, R
The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leadermore » in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights include: (1) Leadership of the Laboratory's Physical Data Research Program that provides fundamental physics information for the Stockpile Stewardship Program. (2) Development of the handheld Microbead Immunoassay Dipstick System that will allow relatively untrained first-responders to run sophisticated onsite diagnostics for pathogens, including those associated with biowarfare agents, by using a simple, one-step measurement. (3) Major advances in target design for inertial fusion energy research using both laser and ion-beam drivers. (4) Development of the Advanced Technology Kill Vehicle concept for use as a high-performance interceptor in a broad range of missile defense programs. Over the course of the past decade, the Laboratory has seen its major program evolve from weapons research, development, and testing, to Stockpile Stewardship. Today, the country's national security priorities are changing rapidly: nuclear security is becoming a broader set of missions, and the Laboratory is being asked to contribute to a range of new mission areas from countering bioterrorism to ensuring information security. As we embark on the twenty-first century, the new PAT Directorate is poised to help lead the Laboratory's response to the country's changing national security needs.« less
Inertial Confinement Fusion and the National Ignition Facility (NIF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, P.
2012-08-29
Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF.more » NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L. and Levine, J.D.
The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7more » million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 10 20 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an adjacent area to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less
A Trusted National Fusion Center Network: Are Baseline Capabilities and Accreditation Needed?
2010-09-01
Criminal Intelligence Sharing Plan NCTC National Counterterrorism Center NEMA National Emergency Management Agency NFCA National Fusion Center...1997, during its mid-year conference, the National Emergency Management Association ( NEMA ) met to discuss the need for the development of nationally...and accreditation. EMAP is governed by a commission comprised of ten members, consisting of five representatives from NEMA and five
Scientific and technological advancements in inertial fusion energy
Hinkel, D. E.
2013-09-26
Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less
Fusion 2.0: The Next Generation of Fusion in California: Aligning State and Regional Fusion Centers
2010-03-01
bible ” for fusion center management, as evidenced by the theme of the 2009 National Fusion Center Conference; appropriately called “Achieving Baseline...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS FUSION 2.0: THE NEXT GENERATION OF FUSION IN CALIFORNIA: ALIGNING STATE AND...Master’s Thesis 4. TITLE AND SUBTITLE Fusion 2.0: The Next Generation of Fusion in California: Aligning State and Regional Fusion
Advancing Pre-college Science and Mathematics Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Rick
With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
The National Ignition Facility: The Path to a Carbon-Free Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2011-03-16
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
The National Ignition Facility: the path to a carbon-free energy future.
Stolz, Christopher J
2012-08-28
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.
The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000,more » renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.« less
Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1
NASA Astrophysics Data System (ADS)
1992-07-01
The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.
University of Rochester, Laboratory for Laser Energetics
NASA Astrophysics Data System (ADS)
1987-01-01
In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.
Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poe, R.T.; Choi, B.H.
Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less
LLNL electro-optical mine detection program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.; Aimonetti, W.; Barth, M.
1994-09-30
Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem ofmore » sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.« less
76 FR 49757 - Fusion Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...
Fusion energy for space: Feasibility demonstration. A proposal to NASA
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1992-01-01
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.
Energy-resolved neutron imaging for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Moran, M. J.; Haan, S. W.; Hatchett, S. P.; Izumi, N.; Koch, J. A.; Lerche, R. A.; Phillips, T. W.
2003-03-01
The success of the National Ignition Facility program will depend on diagnostic measurements which study the performance of inertial confinement fusion (ICF) experiments. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. They also can provide valuable information in cases where experiments produce unexpected results. Although x-ray and neutron images provide similar data, they do have significant differences. X-ray images represent the distribution of high-temperature regions where fusion occurs, while neutron images directly reveal the spatial distribution of fusion-neutron emission. X-ray imaging has the advantage of a relatively straightforward path to the imaging system design. Neutron imaging, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and nonburning regions of the nuclear fuel. The usefulness of energy-resolved neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, J.S.
1983-06-01
The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Fusion energy division annual progress report, period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less
General Atomics Sciences Education Foundation Outreach Programs
NASA Astrophysics Data System (ADS)
Winter, Patricia S.
1997-11-01
Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].
A new gated x-ray detector for the Orion laser facility
NASA Astrophysics Data System (ADS)
Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal
2012-10-01
Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.
What are the Risk Factors for Cerebrovascular Accidents After Elective Orthopaedic Surgery?
Minhas, Shobhit V; Goyal, Preeya; Patel, Alpesh A
2016-03-01
Perioperative cerebrovascular accidents (CVAs) are one of the leading causes of patient morbidity, mortality, and medical costs. However, little is known regarding the rates of these events and risk factors for CVA after elective orthopaedic surgery. Our goals were to (1) establish the national, baseline proportion of patients experiencing a 30-day CVA and the timing of CVA; and (2) determine independent risk factors for 30-day CVA rates after common elective orthopaedic procedures. Patients undergoing elective TKA, THA, posterior or posterolateral lumbar fusion, anterior cervical discectomy and fusion, and total shoulder arthroplasty, from 2006 to 2012, were identified from the American College of Surgeons National Surgical Quality Improvement Program(®) database. A total of 42,150 patients met inclusion criteria. Thirty-day CVA rates were recorded for each procedure, and patients were assessed for characteristics associated with CVA through univariate analysis. Multivariate regression models were created to identify independent risk factors for CVA. A total of 55 (0.13%) patients experienced a CVA within 30 days of the procedure, occurring a median of 2 days after surgery (range, 1-30 days) with 0.08% of patients experiencing a CVA after TKA, 0.15% after THA, 0.00% after single-level anterior cervical discectomy and fusion, 0.38% after multilevel anterior cervical discectomy and fusions, 0.20% after single-level posterior or posterolateral lumbar fusion, 0.70% after multilevel posterior or posterolateral lumbar fusion, and 0.22% after total shoulder arthroplasty. Independent risk factors for CVA included age of 75 years or older (odds ratio [OR], 2.50; 95% CI, 1.44-4.35; p = 0.001), insulin-dependent diabetes mellitus (OR, 3.08; CI, 1.47-6.45; p = 0.003), hypertension (OR, 2.71; CI, 1.19-6.13; p = 0.017), history of transient ischemic attack (OR, 2.83; CI, 1.24-6.45; p = 0.013), dyspnea (OR, 2.51; CI, 1.30-4.86; p = 0.006), chronic obstructive pulmonary disease (OR, 2.33; CI, 1.06-5.13; p = 0.036), and operative time of 180 minutes or greater (OR, 3.25; CI 1.60-6.60; p = 0.001). Numerous nonmodifiable patient comorbidities and increased operative time were associated with CVA after elective orthopaedic procedures. However, the American College of Surgeons National Surgical Quality Improvement Program(®) database does not code for cardiac arrhythmia or atrial fibrillation, which other studies have suggested may be important predictor variables; those may be important risk factors, although we were unable to evaluate them in our study. Surgeons should counsel patients with these risk factors and limit their operative time to reduce the risk of these adverse events, and future studies should examine other patient characteristics such as arrhythmia and noncoronary heart disease and assess the role of pharmacologic prophylaxis in patients with these risk factors. Level III, prognostic study.
Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory
NASA Astrophysics Data System (ADS)
Friedman, Alex
2007-07-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.
Northern Everglades, Florida, satellite image map
Thomas, Jean-Claude; Jones, John W.
2002-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
Magnetized Target Fusion in Advanced Propulsion Research
NASA Technical Reports Server (NTRS)
Cylar, Rashad
2003-01-01
The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the underlying principles involved in MTF. Magnetized Target Fusion is an attempt to combine MCF (magnetic confinement fusion) for energy confinement and ICF (inertial confinement fusion) for efficient compression heating and wall free containment of the fusing plasma. It also seeks to combine the best features to these two main commonplace approaches to fusion.
Steady State Advanced Tokamak (SSAT): The mission and the machine
NASA Astrophysics Data System (ADS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.
Deyo, Richard A.; Lurie, Jon D.; Carey, Timothy S.; Tosteson, Anna N.A.; Mirza, Sohail K.
2015-01-01
Study design Analysis of the State Inpatient Database of North Carolina, 2005–2012, and the Nationwide Inpatient Sample, including all inpatient lumbar fusion admissions from non-federal hospitals. Objective To examine the influence of a major commercial policy change that restricted lumbar fusion for certain indications, and to forecast the potential impact if the policy were adopted nationally. Summary of Background Data Few studies have examined the effects of recent changes in commercial coverage policies that restrict the use of lumbar fusion. Methods We included adults undergoing elective lumbar fusion or re-fusion operations in North Carolina. We aggregated data into a monthly time series to report changes in the rates and volume of lumbar fusion operations for disc herniation or degeneration, spinal stenosis, spondylolisthesis, or revision fusions. Time series regression models were used to test for significant changes in the use of fusion operation following a major commercial coverage policy change initiated on January 1st, 2011. Results There was a substantial decline in the use of lumbar fusion for disc herniation or degeneration following the policy change on January 1st, 2011. Overall rates of elective lumbar fusion operations in North Carolina (per 100,000 residents) increased from 103.2 in 2005 to 120.4 in 2009, before declining to 101.9 by 2012. The population rate (per 100,000 residents) of fusion among those under age 65 increased from 89.5 in 2005 to 101.2 in 2009, followed by a sharp decline to 76.8 by 2012. There was no acceleration in the already increasing rate of fusion for spinal stenosis, spondylolisthesis or revision procedures, but there was a coincident increase in decompression without fusion. Conclusions This commercial insurance policy change had its intended effect of reducing fusion operations for indications with less evidence of effectiveness without changing rates for other indications or resulting in an overall reduction in spine surgery. Nevertheless, broader adoption of the policy could significantly reduce the national rates of fusion operations and associated costs. PMID:26679877
LLE 2008 annual report, October 2007 - September 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-01-31
The research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) focuses on inertial confinement fusion (ICF) research supporting the goal of achieving ignition on the National Ignition Facility (NIF). This program includes the full use of the OMEGA EP Laser System. Within the National Ignition Campaign (NIC), LLE is the lead laboratory for the validation of the performance of cryogenic target implosions, essential to all forms of ICF ignition. LLE has taken responsibility for a number of critical elements within the Integrated Experimental Teams (IET’s) supporting the demonstration of indirect-drive ignition on the NIF and is themore » lead laboratory for the validation of the polardrive approach to ignition on the NIF. LLE is also developing, testing, and building a number of diagnostics to be deployed on the NIF for the NIC.« less
Laser program annual report, 1977. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.F.; Jarman, B.D.
1978-07-01
An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, N.R.
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power spacemore » systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.« less
Mission and Objectives for the X-1 Advanced Radiation Source*
NASA Astrophysics Data System (ADS)
Rochau, Gary E.; Ramirez, Juan J.; Raglin, Paul S.
1998-11-01
Sandia National Laboratories PO Box 5800, MS-1178, Albuquerque, NM 87185 The X-1 Advanced Radiation Source represents a next step in providing the U.S. Department of Energy's Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories' Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm3), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230-300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,200 MJ in the laboratory. Non-ignition sources will provide cold x-ray environments (<15 keV) and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV-80 keV). This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the project mission, objective, and preliminary schedule.
Bortolini, Tiago; Newson, Martha; Natividade, Jean Carlos; Vázquez, Alexandra; Gómez, Ángel
2018-04-01
A visceral feeling of oneness with a group - identity fusion - has proven to be a stronger predictor of pro-group behaviours than other measures of group bonding, such as group identification. However, the relationship between identity fusion, other group alignment measures and their different roles in predicting pro-group behaviour is still controversial. Here, we test whether identity fusion is related to, but different from, unidimensional and multidimensional measures of group identification. We also show that identity fusion explains further variance of the endorsement of pro-group behaviour than these alternative measures and examine the structural and discriminant properties of identity fusion and group identification measures in three different contexts: nationality, religion, and football fandom. Finally, we extend the fusion literature to a new culture: Brazil. To the best of our knowledge, this is the first research explicitly addressing a comparison between these two forms of group alignment, identity fusion and identification with a group, and their role in predicting pro-group behaviours. © 2018 The British Psychological Society.
Laser Programs, the first 25 years, 1972-1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, E.M.
1998-03-04
Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Lasermore » Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.« less
Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Petti; Brad J. Merrill; Phillip Sharpe
2006-07-01
The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In thismore » paper, recent accomplishments are reviewed and future directions outlined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Hutch
Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan,more » aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)« less
LLE Review 116 (July-September 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozas, J.A., editor
2010-03-12
This issue has the following articles: (1) Optimizing Electron-Positron Pair Production on kJ-Class High-Intensity Lasers for the Purpose of Pair-Plasma Creation; (2) Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA; (3) Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil; (4) A Measurable Lawson Criterion and Hydro-Equivalent Curves for Inertial Confinement Fusion; (5) Pulsed-THz Characterization of Hg-Based, High-Temperature Superconductors; (6) LLE's Summer High School Research Program; (7) FY08 Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazeltine, Richard D.
The mission of the Institute for Fusion Studies has been to serve as a national center for theoretical fusion and plasma physics research. As an independent scientific group of critical size, its objectives were to conduct research on fundamental phenomena important to fusion; to serve as a center for fusion theory exchange activities with other countries; to exchange scientific developments with other academic disciplines; and to train students and postdoctoral fellows in fusion and plasma physics research.
The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion
NASA Astrophysics Data System (ADS)
Miller, J. D.
1986-11-01
One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.
Distributed Information Fusion through Advanced Multi-Agent Control
2016-10-17
AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015
Distributed Information Fusion through Advanced Multi-Agent Control
2016-09-09
AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015
The Terra Data Fusion Project: An Update
NASA Astrophysics Data System (ADS)
Di Girolamo, L.; Bansal, S.; Butler, M.; Fu, D.; Gao, Y.; Lee, H. J.; Liu, Y.; Lo, Y. L.; Raila, D.; Turner, K.; Towns, J.; Wang, S. W.; Yang, K.; Zhao, G.
2017-12-01
Terra is the flagship of NASA's Earth Observing System. Launched in 1999, Terra's five instruments continue to gather data that enable scientists to address fundamental Earth science questions. By design, the strength of the Terra mission has always been rooted in its five instruments and the ability to fuse the instrument data together for obtaining greater quality of information for Earth Science compared to individual instruments alone. As the data volume grows and the central Earth Science questions move towards problems requiring decadal-scale data records, the need for data fusion and the ability for scientists to perform large-scale analytics with long records have never been greater. The challenge is particularly acute for Terra, given its growing volume of data (> 1 petabyte), the storage of different instrument data at different archive centers, the different file formats and projection systems employed for different instrument data, and the inadequate cyberinfrastructure for scientists to access and process whole-mission fusion data (including Level 1 data). Sharing newly derived Terra products with the rest of the world also poses challenges. As such, the Terra Data Fusion Project aims to resolve two long-standing problems: 1) How do we efficiently generate and deliver Terra data fusion products? 2) How do we facilitate the use of Terra data fusion products by the community in generating new products and knowledge through national computing facilities, and disseminate these new products and knowledge through national data sharing services? Here, we will provide an update on significant progress made in addressing these problems by working with NASA and leveraging national facilities managed by the National Center for Supercomputing Applications (NCSA). The problems that we faced in deriving and delivering Terra L1B2 basic, reprojected and cloud-element fusion products, such as data transfer, data fusion, processing on different computer architectures, science, and sharing, will be presented with quantitative specifics. Results from several science-specific drivers for Terra fusion products will also be presented. We demonstrate that the Terra Data Fusion Project itself provides an excellent use-case for the community addressing Big Data and cyberinfrastructure problems.
South Florida Everglades: satellite image map
Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.
2001-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
Neutron cross section standards and instrumentation. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasson, O.A.
The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutronmore » detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.« less
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; ...
2017-09-25
A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awe, T. J.; Shelton, K. P.; Sefkow, A. B.
A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less
Resolving Controversies Concerning the Kinetic Structure of Multi-Ion Plasma Shocks
NASA Astrophysics Data System (ADS)
Keenan, Brett; Simakov, Andrei; Chacon, Luis; Taitano, William
2017-10-01
Strong collisional shocks in multi-ion plasmas are featured in several high-energy-density environments, including Inertial Confinement Fusion (ICF) implosions. Yet, basic structural features of these shocks remain poorly understood (e.g., the shock width's dependence on the Mach number and the plasma ion composition, and temperature decoupling between ion species), causing controversies in the literature; even for stationary shocks in planar geometry [cf., Ref. and Ref.]. Using a LANL-developed, high-fidelity, 1D-2V Vlasov-Fokker-Planck code (iFP), as well as direct comparisons to multi-ion hydrodynamic simulations and semi-analytic predictions, we critically examine steady-state, planar shocks in two-ion species plasmas and put forward resolutions to these controversies. This work was supported by the Los Alamos National Laboratory LDRD Program, Metropolis Postdoctoral Fellowship for W.T.T., and used resources provided by the Los Alamos National Laboratory Institutional Computing Program.
Perkins, L J; Betti, R; LaFortune, K N; Williams, W H
2009-07-24
Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of approximately 120-250 MJ may be possible with laser drive energies of 1-1.6 MJ, while gains of approximately 50 may still be achievable at only approximately 0.2 MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G approximately 126E (MJ);{0.510}. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.
Fusion programs in applied plasma physics
NASA Astrophysics Data System (ADS)
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.
In Defense of the National Labs and Big-Budget Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, J R
2008-07-29
The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tappedmore » in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider (LHC) at CERN, and the International Tokamak Experimental Reactor (ITER) in Cadarache, France, a magnetic-confinement fusion research project. The postWWII histories of particle and fusion physics contain remarkable examples of both international competition, with an emphasis on secrecy, and international cooperation, with an emphasis on shared knowledge and resources. Initiatives to share sometimes came from surprising directions. Most large-scale scientific projects have potential defense applications. NIF certainly does; it is primarily designed to create small-scale fusion explosions. Blue Gene/L operates in part in service to NIF, and in part to various defense projects. The most important defense projects include stewardship of the national nuclear weapons stockpile, and the proposed redesign and replacement of those weapons with fewer, safer, more reliable, longer-lived, and less apocalyptic warheads. Many well-meaning people will consider the optimal lifetime of a nuclear weapon to be zero, but most thoughtful people, when asked how much longer they think this nation will require them, will ask for some time to think. NIF is also designed to create exothermic small-scale fusion explosions. The malapropos 'exothermic' here is a convenience to cover a profusion of complexities, but the basic idea is that the explosions will create more recoverable energy than was used to create them. One can hope that the primary future benefits of success for NIF will be in cost-effective generation of electrical power through controlled small-scale fusion reactions, rather than in improved large-scale fusion explosions. Blue Gene/L also services climate research, genomic research, materials research, and a myriad of other computational problems that become more feasible, reliable, and precise the larger the number of computational nodes employed. Blue Gene/L has to be sited within a security complex for obvious reasons, but its value extends to the nation and the world. There is a duality here between large-scale scientific research machines and the supercomputers used to model them. An astounding example is illustrated in a graph released by EFDAJET, at Oxfordshire, UK, presently the largest operating magnetic-confinement fusion experiment. The graph shows plasma confinement times (an essential performance parameter) for all the major tokamaks in the international fusion program, over their existing lifetimes. The remarkable thing about the data is not so much confinement-time versus date or scale, but the fact that the data are given for both the computer model predictions and the actual experimental measurements, and the two are in phenomenal agreement over the extended range of scales. Supercomputer models, sometimes operating with the intricacy of Schroedinger's equation at quantum physical scales, have become a costly but enormously cost-saving tool.« less
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.
2004-02-01
The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.
U. S. fusion programs: Struggling to stay in the game
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, M.
Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less
The national ignition facility and atomic data
NASA Astrophysics Data System (ADS)
Crandall, David H.
1998-07-01
The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.
The Quest for Fusion at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hartouni, Edward
2017-01-01
Arthur Eddington speculated in 1920 on the internal constitution of stars and described the possibility of nuclear fusion based on the then new results from special relativity and measurements of light nuclei masses. By 1929 Atkinson and Houtermans worked out the calculations for nuclear fusion in stars and initiating nuclear astrophysics. All of these sciences were pressed into service during the World War II, and the applications developed, particularly under the auspices of the Manhattan Project provided both weapons with which to wage and win that conflict, but also the possibilities to harness these applications of the nuclear processes of fission and fusion for peaceful purposes. 32 years after Eddington's speculation the United States demonstrated the application of fusion in a famous nuclear weapons test. In the following years many ideas for producing ``controlled'' fusion through inertial confinement were pursued. The invention of the laser opened up new avenues which have culminated in the National Ignition Facility, NIF. I will attempt to cover the ground between Eddington, through the Manhattan Project and provide a current status of this quest at NIF. LLNL-ABS-704367-DRAFT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Presentation Stations of the General Atomics Fusion Educational Program
NASA Astrophysics Data System (ADS)
Lee, R. L.; Fusion Group Education Outreach Team
1996-11-01
The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.
Bench Test of the Vibration Compensation Interferometer for EAST Tokamak
NASA Astrophysics Data System (ADS)
Li, Gongshun; Yang, Yao; Liu, Haiqing; Jie, Yinxian; Zou, Zhiyong; Wang, Zhengxing; Zeng, Long; Wei, Xuechao; Li, Weiming; Lan, Ting; Zhu, Xiang; Liu, Yukai; Gao, Xiang
2016-02-01
A visible laser-based vibration compensation interferometer has recently been designed for the EAST tokamak and the bench test has been finished. The system was optimized for its installation on EAST. The value of the final optical power before the detectors without plasma has been calculated from the component bench test result, which is quite close to the measured value. A nanometer level displacement (of the order of the laser's wavelength) has been clearly measured by a modulation of piezoelectric ceramic unit, proving the system's capability. supported by the National Magnetic Confinement Fusion Program of China (Nos. 2014GB106002, 2014GB106003, 2014GB106004) and National Natural Science Foundation of China (Nos. 11105184, 11375237, 11505238)
Semi-analytic modeling and simulation of magnetized liner inertial fusion
NASA Astrophysics Data System (ADS)
McBride, R. D.; Slutz, S. A.; Hansen, S. B.
2013-10-01
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) pre-heat of the fuel; (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, and internal magnetic pressure and heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) deuterium-deuterium and deuterium-tritium primary fusion reactions; and (9) magnetized alpha-particle heating. We will first show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper. We will then use this model to illustrate the MagLIF parameter space, energetics, and efficiencies, and to show the experimental challenges that we will likely be facing as we begin testing MagLIF using the infrastructure presently available at the Z facility. Finally, we will demonstrate how this scenario could likely change as various facility upgrades are made over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NIF Operations Management Plan, August 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wonterghem, Bruno M.
Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) is a key component of the National Nuclear Security Administration’s (NNSA) Stockpile Stewardship Program, whose purpose is to maintain the safety, reliability, and effectiveness of our nation’s nuclear stockpile without underground nuclear testing. The NIF is crucial to the Stockpile Stewardship Program because it is the only facility that can create the conditions of extreme temperature and pressure—conditions that exist only in stars or in exploding nuclear weapons—that are relevant to understanding how our modern nuclear weapons operate. As such, the NIF’s primary mission is to attain fusion ignition in themore » laboratory. Fusion ignition not only supports Stockpile Stewardship needs, but also provides the basis for future decisions about fusion’s potential as a long-term energy source. Additionally, NIF provides scientists with access to high-energy-density regimes that can yield new insight and understanding in the areas of astrophysics, hydrodynamics, material properties, plasma physics, and radiative properties. The use of the NIF to support the Stockpile Stewardship Program and the advancement of basic high-energy-density science understanding is planned and managed through program-level execution plans and NIF directorate-level management teams. An example of a plan is the National Ignition Campaign Execution Plan. The NIF Operations Management Plan provides an overview of the NIF Operations organization and describes how the NIF is supported by the LLNL infrastructure and how it is safely and responsibly managed and operated. Detailed information on NIF management of the organization is found in a series of supporting plans, policies, and procedures. A list of related acronyms can be found in Appendix A of this document. The purpose of this document is to provide a roadmap of how the NIF Operations organization functions. It provides a guide to understanding the requirements, document flow down, organizational vision and mission, performance metrics, and interrelationship of the NIF Operations organization with other directorate and laboratory organizations. This document also provides a listing of roles and responsibilities, core processes, procedures, authority matrices, change control boards, and other information necessary for successfully functioning in the NIF Operations organization. This document, the NIF Shot Operations Plan, and the NIF Maintenance Plan together represent the primary documents satisfying our Conduct of Operations compliance requirement.« less
Bohl, Daniel D; Ahn, Junyoung; Tabaraee, Ehsan; Ahn, Junho; Jain, Akshay; Grauer, Jonathan N; Singh, Kern
2015-11-01
Retrospective review of prospectively collected data. To determine the incidence and risk factors for the development of a urinary tract infection (UTI) after a posterior lumbar fusion procedure. UTI after surgery is common and has important clinical consequences for both patients and the health care system. Few studies have examined UTI after spinal fusion procedures. Patients undergoing posterior lumbar fusion procedures during 2011 to 2013 were identified in the American College of Surgeons National Surgical Quality Improvement Program database. Statistical comparisons were made using multivariate regression with adjustment for demographic, comorbidity, and operative characteristics. A total of 10,825 patients met inclusion criteria. The incidence of a UTI was 1.77% (95% confidence interval = 1.52%-2.02%). Independent risk factors for a UTI were greater age (for 50-59 yr, relative risk [RR] = 1.0; 60-69 yr, RR = 2.1; ≥70 yr, RR = 3.5; P < 0.001), female sex (RR = 2.2, P < 0.001), dependent functional status (RR = 2.1, P = 0.010), malnutrition (RR = 2.3, P = 0.004), diabetic status (for non-insulin-dependent diabetes, RR = 1.5; for insulin-dependent diabetes, RR = 1.9; P = 0.011), and increased operative duration (for 120-179 min, RR = 1.4; 180-239 min, RR = 2.3; and for ≥240 min, RR = 2.7; P < 0.001).Patients who developed a UTI had a greater risk for systemic sepsis than other patients (11.5% vs. 0.63%; adjusted RR = 14.4, P < 0.001). Patients who developed a UTI had a greater risk for readmission than other patients (36.7% vs. 5.0%; adjusted RR = 6.1, P < 0.001). UTIs occur in nearly 1 in 50 patients undergoing posterior lumbar fusion procedures. Patients who are older, female, dependent, malnourished, or diabetic are at greater risk and should be counseled and monitored accordingly. In addition, morbidity associated with a UTI in this population is substantial, as demonstrated by a 14-fold increase in the risk for systemic sepsis and a 6-fold increase in the risk for readmission. As such, increased preventative measures should be targeted to the patients identified here to be at greatest risk. 3.
On Fusing Recursive Traversals of K-d Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less
Laser and Optical Fiber Metrology in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporea, Dan; Sporea, Adelina
2008-04-15
The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical andmore » optoelectronic parts, tests run under the EU's Fusion Program.« less
Singh, Ankit; Srivastava, Subhi; Chouksey, Ankita; Panwar, Bhupendra Singh; Verma, Praveen C; Roy, Sribash; Singh, Pradhyumna K; Saxena, Gauri; Tuli, Rakesh
2015-04-01
Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP-RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP-RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP-RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP-RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.
Fusion plasma theory project summaries
NASA Astrophysics Data System (ADS)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.
Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State
Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric
2009-01-01
Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693
NASA Astrophysics Data System (ADS)
Moussa, Jonathan; Ryan-Anderson, Ciaran
The canonical modern plan for universal quantum computation is a Clifford+T gate set implemented in a topological error-correcting code. This plan has the basic disparity that logical Clifford gates are natural for codes in two spatial dimensions while logical T gates are natural in three. Recent progress has reduced this disparity by proposing logical T gates in two dimensions with doubled, stacked, or gauge color codes, but these proposals lack an error threshold. An alternative universal gate set is Clifford+F, where a fusion (F) gate converts two logical qubits into a logical qudit. We show that logical F gates can be constructed by identifying compatible pairs of qubit and qudit codes that stabilize the same logical subspace, much like the original Bravyi-Kitaev construction of magic state distillation. The simplest example of high-distance compatible codes results in a proposal that is very similar to the stacked color code with the key improvement of retaining an error threshold. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Fusion policy advisory committee named
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Department of Energy Secretary James Watkins has announced the formation of new Fusion Policy Advisory Committee which will recommend a policy for conducting DOE's fusion energy research program. Issues that will be considered by the committee include the balance of research activities within the programs, the timing of experiments to test the burning of plasma fuel, the International Thermonuclear Experimental Reactor, and the development of laser technologies, DOE said. Watkins said that he would be entirely open to the committee's advice.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
NASA Astrophysics Data System (ADS)
Hansen, Stephanie
2017-10-01
The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.
Fusion Simulation Program Definition. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, John R.
2012-09-05
We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.
Vonck, Caroline E.; Tanenbaum, Joseph E.; Smith, Gabriel A.; Benzel, Edward C.; Mroz, Thomas E.; Steinmetz, Michael P.
2017-01-01
Study Design: Retrospective trends analysis. Objectives: Cervical fusion is a common adjunctive surgical modality used in the treatment of cervical spondylotic myelopathy (CSM). The purpose of this study was to quantify national trends in patient demographics, hospital characteristics, and outcomes in the surgical management of CSM. Methods: This was a retrospective study that used the National Inpatient Sample. The sample included all patients over 18 years of age with a diagnosis of CSM who underwent cervical fusion from 2003 to 2013. The outcome measures were in-hospital mortality, length of stay, and hospital charges. Chi-square tests were performed to compare categorical variables. Independent t tests were performed to compare continuous variables. Results: We identified 62 970 patients with CSM who underwent cervical fusion from 2003 to 2013. The number of fusions performed per year in the treatment of CSM increased from 3879 to 8181. The average age of all fusion patients increased from 58.2 to 60.6 years (P < .001). Length of stay did not change significantly from a mean of 3.7 days. In-hospital mortality decreased from 0.6% to 0.3% (P < .01). Hospital charges increased from $49 445 to $92 040 (P < .001). Conclusions: This study showed a dramatic increase in cervical fusions to treat CSM from 2003 to 2013 concomitant with increasing age of the patient population. Despite increases in average age and number of comorbidities, length of stay remained constant and a decrease in mortality was seen across the study period. However, hospital charges increased dramatically.
A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch
NASA Astrophysics Data System (ADS)
McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.
2016-10-01
We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.
Measurement of the beryllium-7 plus proton fusion cross section
NASA Astrophysics Data System (ADS)
Fitzgerald, Ryan P.
2005-11-01
The fusion of protons with radioactive nuclei plays an important role in a wide variety of astrophysical scenarios ranging from high-temperature environments like novae and X-ray bursts to the production of neutrinos in the sun. For example, the 8 B neutrino flux measured in neutrino detectors on earth is directly proportional to the cross section for the fusion of protons with radioactive 7 Be. An experimental program has been established to study proton-fusion experiments in inverse kinematics at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) using a windowless gas target and the Daresbury Recoil Separator (DRS). The performance of the target and separator have been well characterized using a variety of experiments with stable beams including 12 C, 19 F, and 24 Mg. For instance, the areal density of hydrogen in the target was determined to 3% accuracy. This well-characterized system was used to measure accurate stopping powers for many elements in hydrogen gas for the first time. The first measurement of a proton-fusion cross section with a radioactive ion beam at ORNL, the fusion of protons with 7 Be, was performed using the hydrogen gas target and the DRS. The 7 Be was produced at the Triangle Universities Nuclear Laboratory (TUNL) and chemically isolated at ORNL. An average 7 Be beam current of 2.5 ppA bombarded the windowless gas target for a period of 3 days. Recoiling B-8 nuclei were efficiently collected using the DRS and were clearly identified in a gas-filled ion detector. The cross section at a center-of-mass energy of 1.502 MeV was determined to be 1.12 mb with 24% uncertainty. The zero-energy S-factor was determined to be 26.8 eV-b with 25% uncertainty. The technique has been clearly demonstrated, and a precise measurement of the fusion cross section will be possible with the development of a somewhat more intense 7 Be radioactive ion beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan, Vladislav Alexander
Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less
Stabilized Liner Compressor: The Return of Linus
NASA Astrophysics Data System (ADS)
Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan
2015-11-01
To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.
Cluster-impact fusion, or beam-contaminant fusion? (abstract)a),b)
NASA Astrophysics Data System (ADS)
Lo, Daniel H.; Petrasso, Richard D.; Wenzel, Kevin W.
1992-10-01
Beuhler, Friedlander, and Friedman (BFF) reported anomalously huge D-D fusion rates while bombarding deuterated targets with (D2O)N+ clusters (N˜25-1000) accelerated to ≊325 keV [R. J. Beuhler et al., Phys. Rev. Lett. 63, 1292 (1989); R. J. Beuhler et al., J. Phys. Chem. 94, 7665 (1990)] [i.e., ≊0.3 keV lab energy for D in (D2O)100+]. However, from our analysis of BFF's fusion product spectra, we conclude that their D lab energy was ˜50 keV. Therefore, no gross anomalies exist. Also, from our analysis of the BFF beam-ranging experiments through 500 μg/cm2 of Au, we conclude that light-ion-beam contaminants (e.g., D+ of order 100 keV) have not been ruled out, and are the probable cause of their fusion reactions. This work was supported by LLNL Subcontract B116798, Department of Energy (DOE) Grant No. DE-FG02-91ER54109, DOE Magnetic Fusion Energy Technology Fellowship Program (D. H. Lo), and DOE Fusion Energy Postdoctoral Research Program (Kevin W. Wenzel).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
1977-08-15
This report deals with some techniques in applied programming using the Livermore Timesharing System (LTSS) on the CDC 7600 computers at the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network). This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been revised to accommodate differences between LLLCC and NMFECC implementations. Topics include: maintaining programs, debugging, recovering from system crashes, and using the central processing unit, memory, and input/output devices efficiently and economically. Routines that aid in these procedures aremore » mentioned. The companion report, UCID-17556, An LTSS Compendium, discusses the hardware and operating system and should be read before reading this report.« less
Sheean, Andrew J; Tennent, David J; Owens, Johnny G; Wilken, Jason M; Hsu, Joseph R; Stinner, Daniel J
2016-11-01
Fractures of the distal tibia, ankle, and foot sustained through a high-energy mechanism can be extremely debilitating, and ankle and/or subtalar fusion may be indicated if the limb is deemed salvageable. Functional outcomes among this population are often poor. The purposes of this study were to evaluate the effect of an advanced rehabilitation program combined with the use of a custom ankle-foot orthosis for patients with ankle or subtalar fusion on selected physical performance measures and patient-derived outcome measures and to determine if the response to treatment was predicated upon the type of fusion. We conducted a prospective, longitudinal, observational, cohort study composed of 23 active duty Service Members treated for lower extremity trauma. Patients were separated into 2 groups: group 1 was composed of 12 patients who underwent isolated ankle fusion or ankle fusion combined with ipsilateral subtalar fusion, group 2 was composed of 11 patients who underwent subtalar fusion only. Patient-reported outcome (PRO) measures and physical performance measures were recorded at baseline and at the conclusion of the rehabilitation program. Significant improvements in both groups were seen in each of the 4 physical performance measures. Only group 2 showed significant improvements in all domains of the Veteran's Rand 12-Item Health Survey (VR-12) and Short Musculoskeletal Function Assessment (SMFA) at all points during the course of rehabilitation. Among a subset of patients treated for severe lower extremity trauma with ankle and/or subtalar fusion, an integrated orthotic and rehabilitation initiative improved physical performance and PRO measures over an 8-week course. Level III, prospective comparative series. © The Author(s) 2016.
Preface to the Special Issue: Strategic Opportunities for Fusion Energy
Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.; ...
2016-01-23
Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.
Export Control Requirements for Tritium Processing Design and R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, William Kirk; Maynard, Sarah-Jane Wadsworth
This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance documentmore » has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.« less
Export Control Requirements for Tritium Processing Design and R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, William Kirk; Maynard, Sarah-Jane Wadsworth
2015-10-30
This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance documentmore » has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.« less
Experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Svyatskiy, Daniil; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Huang, Cheng-Kun; McDevitt, Christopher
2015-11-01
The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility. This work is performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.
Overview of the National Ignition Campaign (NIC)
NASA Astrophysics Data System (ADS)
Moses, Edward
2010-11-01
The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.
Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowcliff, A.F.; Burn, G.
1999-04-01
This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately.« less
Regional distribution of forest height and biomass from multisensor data fusion
Yifan Yu; Sassan Saatch; Linda S. Heath; Elizabeth LaPoint; Ranga Myneni; Yuri Knyazikhin
2010-01-01
Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Petrov, Yu. V.
2013-12-03
Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less
Remote experimental site concept development
NASA Astrophysics Data System (ADS)
Casper, Thomas A.; Meyer, William; Butner, David
1995-01-01
Scientific research is now often conducted on large and expensive experiments that utilize collaborative efforts on a national or international scale to explore physics and engineering issues. This is particularly true for the current US magnetic fusion energy program where collaboration on existing facilities has increased in importance and will form the basis for future efforts. As fusion energy research approaches reactor conditions, the trend is towards fewer large and expensive experimental facilities, leaving many major institutions without local experiments. Since the expertise of various groups is a valuable resource, it is important to integrate these teams into an overall scientific program. To sustain continued involvement in experiments, scientists are now often required to travel frequently, or to move their families, to the new large facilities. This problem is common to many other different fields of scientific research. The next-generation tokamaks, such as the Tokamak Physics Experiment (TPX) or the International Thermonuclear Experimental Reactor (ITER), will operate in steady-state or long pulse mode and produce fluxes of fusion reaction products sufficient to activate the surrounding structures. As a direct consequence, remote operation requiring robotics and video monitoring will become necessary, with only brief and limited access to the vessel area allowed. Even the on-site control room, data acquisition facilities, and work areas will be remotely located from the experiment, isolated by large biological barriers, and connected with fiber-optics. Current planning for the ITER experiment includes a network of control room facilities to be located in the countries of the four major international partners; USA, Russian Federation, Japan, and the European Community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begoli, Edmon; Boehmann, Brant; DeNap, Frank A
In 2003 a joint effort between the U.S. Department of Homeland Security (DHS) and the U.S. Department of Justice created state and metropolitan intelligence fusion centers. These fusion centers were an effort to share law enforcement, disaster, and terrorism related information and intelligence between state and local jurisdictions and to share terrorism related intelligence between state and local law enforcement agencies and various federal entities. In 2006, DHS commissioned the Oak Ridge National Laboratory to establish and manage a groundbreaking program to assist local, state, and tribal leaders in developing the tools and methods required to anticipate and forestall terroristmore » events and to enhance disaster response. This program, called the Southeast Region Research Initiative (SERRI), combines science and technology with validated operational approaches to address regionally unique requirements and suggest regional solutions with the potential for national application. In 2009, SERRI sponsored the Multistate Sharing Initiative (MSSI) to assist state and metropolitan intelligence fusion centers with sharing information related to a wider variety of state interests than just terrorism. While these fusion centers have been effective at sharing data across organizations within their respective jurisdictions, their organizational structure makes bilateral communication with federal entities convenient and also allows information to be further disbursed to other local entities when appropriate. The MSSI-developed Suspicious Activity Report (SAR) sharing system allows state-to-state sharing of non-terrorism-related law enforcement and disaster information. Currently, the MSSI SAR system is deployed in Alabama, Kentucky, Tennessee, and South Carolina. About 1 year after implementation, cognizant fusion center personnel from each state were contacted to ascertain the status of their MSSI SAR systems. The overwhelming response from these individuals was that the MSSI SAR system was an outstanding success and contributed greatly to the security and resiliency of their states. At least one state commented that SERRI's implementation of the MSSI SAR actually 'jump started' and accelerated deployment and acceptance of the Nationwide Suspicious Activity Reporting Initiative (NSI). While all states were enthusiastic about their systems, South Carolina and Tennessee appeared to be the heaviest users of their respective systems. With NSI taking the load of sharing SARs with other states, Tennessee has redeployed the MSSI SAR system within Tennessee to allow SAR sharing between state and local organizations including Tennessee's three Homeland Security Regions, eleven Homeland Security Districts, and more than 500 police and sheriff offices, as well as with other states. In one success story from South Carolina, the Economy SAR System was used to compile similar SARs from throughout the state which were then forwarded to field liaison officers, emergency management personnel, and law enforcement officers for action.« less
NASA Astrophysics Data System (ADS)
Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert
2013-11-01
Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Tarasankar DebRoy
In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that themore » reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.« less
Dynamic Information Collection and Fusion
2015-12-02
AFRL-AFOSR-VA-TR-2016-0069 DYNAMIC INFORMATION COLLECTION AND FUSION Venugopal Veeravalli UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 12/02/2015...TITLE AND SUBTITLE Dynamic Information Collection and Fusion 5a. CONTRACT NUMBER FA9550-10-1-0458 5b. GRANT NUMBER AF FA9550-10-1-0458 5c. PROGRAM...information collection, fusion , and inference from diverse modalities Our research has been organized under three inter-related thrusts. The first thrust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.
Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.
Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets
NASA Astrophysics Data System (ADS)
Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.
2018-02-01
The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.
Understanding L-H transition in tokamak fusion plasmas
NASA Astrophysics Data System (ADS)
Xu, Guosheng; Wu, Xingquan
2017-03-01
This paper reviews the current state of understanding of the L-H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L-H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L-H transition. We uncover a comprehensive physical picture of the L-H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L-H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.
LLE 2010 Annual Report October 2009 - September 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
The fiscal year ending September 2010 (FY10) concluded the third year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year including work on the National Ignition Campaign (NIC). It also reports on LLE's progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the NIC and high-energy density (HED) campaigns, the National Laser Users Facility (NLUF), and for other external users; andmore » programs focusing on the education of high school, undergraduate, and graduate students during the year.« less
Will fusion be ready to meet the energy challenge for the 21st century?
NASA Astrophysics Data System (ADS)
Bréchet, Yves; Massard, Thierry
2016-05-01
Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Kwan, J
Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less
Extension of high poloidal beta scenario in DIII-D to lower q95 for steady state fusion reactor
NASA Astrophysics Data System (ADS)
Huang, J.; Gong, X.; Qian, J.; Ding, S.; Ren, Q.; Guo, W.; Pan, C.; Li, G.; Xia, T.; Garofalo, A.; Lao, L.; Hyatt, A.; Ferron, J.; Collins, C.; Lin, D.; McKee, G.; Rhode, T.; McClenaghan, J.; Holcomb, C.; Cui, L.; Heidbrink, W.; Zhu, Y.; Diiid Team; East Team
2017-10-01
DIII-D/EAST joint experiments have improved the high poloidal beta scenario with sustained large-radius internal transport barrier (ITB) extended to high plasma current Ip 1MA with q95 6.0. Slight off-axis NBCD is applied to obtain broader current density profile, ITBs can now be sustained below the previously observed βp threshold with excellent confinement (H98y2 1.8). The scenario also exhibits a local negative shear appearing with q increased at rho 0.4, which helps ITB formation and sustainment. This confirms TGLF prediction that negative magnetic shear can help recover ITB and achieve high confinement with reduced q95. Detailed analysis shows that the Shafranov shift and q profile is critical in the ITB formation at high βp regime. Supported in part by National Magnetic Confinement Fusion Program of China 2015GB102000, 2015GB110005, and US Department of Energy under DE-FC02-04ER54698.
Nuclear science outreach program for high school girls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, D.E.; Stone, C.A.
1996-12-31
The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.
Development of Electron Beam Pumped KrF Lasers for Fusion Energy
2008-01-01
Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include
Shock Ignition Target Design for Inertial Fusion Energy
2010-01-01
Shock ignition target design for inertial fusion energy Andrew J. Schmitt,1, a) Jason W. Bates,1 Steven P. Obenschain,1 Steven T. Zalesak,2 and David...2010 to 00-00-2010 4. TITLE AND SUBTITLE Shock ignition target design for inertial fusion energy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
America COMPETES Act and the FY2010 Budget
2009-06-29
Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early
Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; ...
2015-09-21
The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less
Risk Factors for Blood Transfusion With Primary Posterior Lumbar Fusion.
Basques, Bryce A; Anandasivam, Nidharshan S; Webb, Matthew L; Samuel, Andre M; Lukasiewicz, Adam M; Bohl, Daniel D; Grauer, Jonathan N
2015-11-01
Retrospective cohort study. To identify factors associated with blood transfusion for primary posterior lumbar fusion surgery, and to identify associations between blood transfusion and other postoperative complications. Blood transfusion is a relatively common occurrence for patients undergoing primary posterior lumbar fusion. There is limited information available describing which patients are at increased risk for blood transfusion, and the relationship between blood transfusion and short-term postoperative outcomes is poorly characterized. The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients undergoing primary posterior lumbar fusion from 2011 to 2013. Multivariate analysis was used to find associations between patient characteristics and blood transfusion, along with associations between blood transfusion and postoperative outcomes. Out of 4223 patients, 704 (16.7%) had a blood transfusion. Age 60 to 69 (relative risk [RR] 1.6), age greater than equal to 70 (RR 1.7), American Society of Anesthesiologists class greater than equal to 3 (RR 1.1), female sex (RR 1.1), pulmonary disease (RR 1.2), preoperative hematocrit less than 36.0 (RR 2.0), operative time greater than equal to 310 minutes (RR 2.9), 2 levels (RR 1.6), and 3 or more levels (RR 2.1) were independently associated with blood transfusion. Interbody fusion (RR 0.9) was associated with decreased rates of blood transfusion. Receiving a blood transfusion was significantly associated with any complication (RR 1.7), sepsis (RR 2.6), return to the operating room (RR 1.7), deep surgical site infection (RR 2.6), and pulmonary embolism (RR 5.1). Blood transfusion was also associated with an increase in postoperative length of stay of 1.4 days (P < 0.001). 1 in 6 patients received a blood transfusion while undergoing primary posterior lumbar fusion, and risk factors for these occurrences were characterized. Strategies to minimize blood loss might be considered in these patients to avoid the associated complications. 3.
Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed
2018-02-14
At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.
Progress in Fast Ignition Studies with Electrons and Protons
NASA Astrophysics Data System (ADS)
MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.
2009-09-01
Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.
The National Ignition Facility and Industry
NASA Astrophysics Data System (ADS)
Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.
1994-09-01
The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Fusion Centers: Issues and Options for Congress
2008-01-18
largely financed and staffed by the states, and there is no one “model” for how a center should be structured. State and local law enforcement and...Information and Receive “Feedback” . . . . . . . . . . . . . . . . . . 69 4e . Establish a Mechanism for Fusion Centers to Have Input into the NIPF...intelligence fusion centers, particularly when networked together nationally, represent a proactive tool to be used to fight a global jihadist adversary which
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2009-05-01
The recently proposed Super Marx pure deuterium micro-detonation ignition concept [1] is compared to the Lawrence Livermore National Ignition Facility (NIF) laser DT fusion-fission hybrid concept (LIFE) [2]. A typical example of the LIFE concept is a fusion gain 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation gains of the same magnitude can in theory be reached. If the theoretical prediction can be supported by more elaborate calculations, the Super Marx approach is likely to make lasers obsolete as a means for the ignition of thermonuclear micro-explosions. [1] ``Ignition of a Deuterium Micro-Detonation with a Gigavolt Super Marx Generator,'' Winterberg, F., Journal of Fusion Energy, Springer, 2008. http://www.springerlink.com/content/r2j046177j331241/fulltext.pdf. [2] ``LIFE: Clean Energy from Nuclear Waste,'' https://lasers.llnl.gov/missions/energy&_slash;for&_slash;the&_slash;future/life/
Inertial-confinement fusion with lasers
Betti, R.; Hurricane, O. A.
2016-05-03
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, S.A.; Beach, R.J.; Bibeau, C.
We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.
2008-05-22
security organizations. At lower levels of the Counter-Terrorism structure, fusion centers exist within nearly all fifty states. This is a completely new...all Americans who do not convert to Islam. He elaborated how Muslims believe that rabbis and monks altered the Torah and Bible and that only the ...Forces (JTTF), and fusion artment of Homeland Security, the National Counterterrorism Center, and changes to the organization of the FBI and Congress
PHYSICS: Will Livermore Laser Ever Burn Brightly?
Seife, C; Malakoff, D
2000-08-18
The National Ignition Facility (NIF), a superlaser being built here at Lawrence Livermore National Laboratory in an effort to use lasers rather than nuclear explosions to create a fusion reaction, is supposed to allow weapons makers to preserve the nuclear arsenal--and do nifty fusion science, too. But a new report that examines its troubled past also casts doubt on its future. Even some of NIF's scientific and political allies are beginning to talk openly of a scaled-down version of the original 192-laser design.
Inertial-confinement fusion with lasers
NASA Astrophysics Data System (ADS)
Betti, R.; Hurricane, O. A.
2016-05-01
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W; Katoh, Yutai; Melton, Stephanie G.
2016-12-01
This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.
Status of fusion research and implications for D/He-3 systems
NASA Technical Reports Server (NTRS)
Miley, George H.
1988-01-01
World wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The main program described is focused on Deuterium-Tritium devices. In magnetic confinement, three of the most promising high beta approaches with a reasonable experimental data base are the Field Reversed Configuration, the high field tokamak, and the dense Z-pinch. The situation is less clear in inertial confinement where the first step requires an experimental demonstration of D/T spark ignition. It appears that fusion research has reached a point in time where an R and D plan to develop a D/He-3 fusion reactor can be laid out with some confidence of success.
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
New High Gain Target Design for a Laser Fusion Power Plant
2000-06-07
target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds
Should the US abandon efforts to develop commercial fusion power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, W.D.; Kinter, E.E.
1993-01-22
This article presents viewpoints and rationale for continuing and disbanding the US efforts to develop commercial fusion power. The views of W.D. Kay, an assistant professor of political science at Northeastern University, are presented regarding - yes, abandon efforts. Meanwhile, the views of Edwin Keutes, former director of the Magnetic Fusion Program for DOE, are presented for continued development.
National Ignition Facility project acquisition plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaghan, R.W.
The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertialmore » Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.« less
Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J
2012-04-01
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.
2012-04-15
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less
National Ignition Facility under fire over ignition failure
NASA Astrophysics Data System (ADS)
Allen, Michael
2016-08-01
The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).
Current status and future R&D for reduced-activation ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.
1998-10-01
International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2011-04-01
A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The program is suited for a weakly-bound two-body projectile colliding with a stable target. The initial orientation of the segment joining the two breakup fragments is considered to be isotropic. Additional comments: Several source routines from Numerical Recipies, and the Mersenne Twister random number generator package are included to enable independent compilation. Running time: About 75 minutes for input provided, using a PC with 1.5 GHz processor.
Combined Engineering Education Based on Regional Needs Aiming for Design Education
NASA Astrophysics Data System (ADS)
Hama, Katsumi; Yaegashi, Kosuke; Kobayashi, Junya
The importance of design education that cultivates integrated competences has been suggested in higher educational institutions in fields of engineering in relation to quality assurance of engineering education. However, it is also pointed out to lay stress on cooperative education in collaboration with the community because there is a limit to correspond to the design education only by a group of educational institutions. This paper reports the outline of the practical engineering education, which is executing in the project learning of Hakodate National College of Technology, based on regional needs and the result of the activity as a model of education program for fusion and combination.
LLE 2009 annual report, October 2008-September 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
none, none
2010-01-01
The fiscal year ending September 2009 (FY2009) concluded the second year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year. It also reports on LLE’s progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the National Laser Users’ Facility (NLUF), and other external users; and programs focusingon the education of high school, undergraduate, and graduate students during the year.
Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST
NASA Astrophysics Data System (ADS)
Liao, Ken; Rowan, William; Fu, Jia; Li, Ying-Ying; Lyu, Bo; Marchuk, Oleksandr; Ralchenko, Yuri
2017-10-01
We have developed the Spectral Motional Stark Effect technique for measuring magnetic field amplitude and pitch angle on EAST. The experiments were conducted using the tangential co-injection heating beam at A port and Beam Emission Spectroscopy array at D port. A spatial calibration of the observation channels was conducted before the campaign. As a first check, the measured magnetic field amplitude was compared to prediction. Since the toroidal field is dominant, we recovered the expected 1/R shape over the spatial range 1.75
NASA Astrophysics Data System (ADS)
Ortiz, Deedee; Dominguez, Arturo; Zwicker, Andrew; Greco, Shannon
2016-10-01
Between 1993-2014, the National Undergraduate Fellowship (NUF) program, sponsored by the DOE Office of Fusion Energy Sciences, provided summer research internships for outstanding undergraduate students from around the country. Since then, the NUF program was merged into the Science Undergraduate Laboratory Internship (SULI) program, sponsored by the DOE Office of Workforce Development for Teachers and Students. While there were many similarities between the two programs, the SULI program did not include the one-week introductory course in plasma physics or the opportunity for participants to present their summer research results at this meeting. In the past two years, working with representatives from both OFES and WDTS, we have again implemented some of the most important components of the NUF program. The week-long, introductory course in plasma physics is included and streamed live- especially important since most undergraduate physics students have not taken a plasma physics course before they begin their research. Students are again able to present their research to our community, a critical component of a full research experience and plans are underway to obtain additional funding to once again include universities as eligible host sites.
NASA Technical Reports Server (NTRS)
Oneil, William F.
1993-01-01
The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.
Association between insurance status and patient safety in the lumbar spine fusion population.
Tanenbaum, Joseph E; Alentado, Vincent J; Miller, Jacob A; Lubelski, Daniel; Benzel, Edward C; Mroz, Thomas E
2017-03-01
Lumbar fusion is a common and costly procedure in the United States. Reimbursement for surgical procedures is increasingly tied to care quality and patient safety as part of value-based reimbursement programs. The incidence of adverse quality events among lumbar fusion patients is unknown using the definition of care quality (patient safety indicators [PSI]) used by the Centers for Medicare and Medicaid Services (CMS). The association between insurance status and the incidence of PSI is similarly unknown in lumbar fusion patients. This study sought to determine the incidence of PSI in patients undergoing inpatient lumbar fusion and to quantify the association between primary payer status and PSI in this population. A retrospective cohort study was carried out. The sample comprised all adult patients aged 18 years and older who were included in the Nationwide Inpatient Sample (NIS) that underwent lumbar fusion from 1998 to 2011. The incidence of one or more PSI, a validated and widely used metric of inpatient health-care quality and patient safety, was the primary outcome variable. The NIS data were examined for all cases of inpatient lumbar fusion from 1998 to 2011. The incidence of adverse patient safety events (PSI) was determined using publicly available lists of the International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes. Logistic regression models were used to determine the association between primary payer status (Medicaid and self-pay relative to private insurance) and the incidence of PSI. A total of 539,172 adult lumbar fusion procedures were recorded in the NIS from 1998 to 2011. Patients were excluded from the secondary analysis if "other" or "missing" was listed for primary insurance status. The national incidence of PSI was calculated to be 2,445 per 100,000 patient years of observation, or approximately 2.5%. In a secondary analysis, after adjusting for patient demographics and hospital characteristics, Medicaid and self-pay patients had significantly greater odds of experiencing one or more PSI during the inpatient episode relative to privately insured patients (odds ratio 1.16, 95% confidence interval 1.07-1.27). Among patients undergoing inpatient lumbar fusion, insurance status is associated with the adverse health-care quality events used to determine hospital reimbursement by the CMS. The source of this disparity must be studied to improve the quality of care delivered to vulnerable patient populations. Copyright © 2016 Elsevier Inc. All rights reserved.
Recent Upgrades at the Safety and Tritium Applied Research Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew
This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less
Fusion/Astrophysics Teacher Research Academy
NASA Astrophysics Data System (ADS)
Correll, Donald
2005-10-01
In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.
Fuel gain exceeding unity in an inertially confined fusion implosion.
Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R
2014-02-20
Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
Selected Tracking and Fusion Applications for the Defence and Security Domain
2010-05-01
SUBTITLE Selected Tracking and Fusion Applications for the Defence and Security Domain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...characterized, for example, by sensor ranges from less than a meter to hundreds of kilometers, by time scales ranging from less than second to a few...been carried out within the framework of a multinational technology program called MAJIIC (Multi-Sensor Aerospace-Ground Joint ISR Interoperability
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-01-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-09-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.
A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobble, James Allen; Sinars, Daniel Brian
The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF programmore » shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.« less
Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples
Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.
2015-02-14
Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less
Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA
NASA Astrophysics Data System (ADS)
Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.
2010-11-01
Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).
Prospects for Attractive Fusion Power
NASA Astrophysics Data System (ADS)
Najmabadi, Farrokh
2006-10-01
During the past ten years, the ARIES Team, a national team involving universities, national laboratories, and industry, has studied a variety of magnetic fusion power plants (tokamaks, stellarators, ST, and RFP). In this paper, we present the top-level requirements and goals for commercial fusion power plants developed with consultation with US utilities and industry. We will review several ARIES designs and discuss the candidate options for physics operation regime as well engineering design of various components (e.g., choice of structural material, coolant, breeder). For each option, we will discuss (1) the potential to satisfy the requirements and goals, and (2) the critical R&D needs. In particular, we will discuss fusion R&D issues which are similar to those of advanced fission systems. For tokamaks, our results indicate that dramatic improvement over first-stability operation can be obtained through either utilization of high-field magnets (e.g., high-temperature superconductors) or operation in advanced-tokamak modes (e.g., reversed-shear). In particular, if full benefits of reversed-shear operation are realized, as is assumed in ARIES-AT, tokamak power plants will have a cost of electricity competitive with other sources of electricity. Emerging technologies such as advanced Baryon cycle, high-temperature superconductor, and advanced manufacturing techniques can improve the cost and attractiveness of fusion plants.
Distributed Monte Carlo Information Fusion and Distributed Particle Filtering
2014-08-24
Distributed Monte Carlo Information Fusion and Distributed Particle Filtering Isaac L. Manuel and Adrian N. Bishop Australian National University and...2 20 + vit , (21) where vit is Gaussian white noise with a random variance. We initialised the filters with the state xi0 = 0.1 for all i ∈ V . This
Association of insurance status and spinal fusion usage in the United States during two decades.
John, Jason; Mirahmadizadeh, Alireza; Seifi, Ali
2018-05-01
This study examined the distribution of spinal fusion usage among payer groups in the United States. Using the National Inpatient Sample (NIS) database, total discharges, length of stay, and mean hospital charges of patients who underwent spinal fusion from 1997 to 2014 in the United States were determined and analyzed. 5,715,625 total discharges with spinal fusion were reported. Among them, 2,875,188 (50.3%) were covered by private insurance, 1,710,182 by Medicare (29.9%), 342,638 (6.0%) by Medicaid, and 91,990 (1.6%) were uninsured. A statistically significant increase in spinal fusion usage occurred within each payer group over the study period (P < 0.001). For every year of the study period, private insurance patients had the most number and uninsured patients had the least number of total discharges with spinal fusion. Furthermore, annual growth in spinal fusion usage was greatest among private insurance patients, and smallest among uninsured patients. Total discharges with spinal fusion increased significantly across all payer groups between 1997 and 2014, but not equally. Further inquiry is indicated to determine the etiology of spinal fusion usage discrepancies between payer groups. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bennett, Kristin
2004-03-01
As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.
SEAL Studies of Variant Blanket Concepts and Materials
NASA Astrophysics Data System (ADS)
Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.
1997-09-01
Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.
Characterizing the Degree of Fuel Magnetization for MagLIF Using Neutron Diagnostics
NASA Astrophysics Data System (ADS)
Hahn, K. D.; Chandler, G. A.; Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Harding, E.; Ruiz, C. L.; Jones, B.; Gomez, M. R.; Ampleford, D. J.; Torres, J. A.; Alberto, P. J.; Cooper, G. W.; Styron, J. D.
2017-10-01
We are studying Magnetized Liner Inertial Fusion sources which utilize deuterium fuel and produce up to 4e12 primary DD and 5e10 secondary DT neutrons. For this concept, magnetizing the fuel can relax the stagnation pressures and densities required for ignition by insulating the hot fuel and confining the charged fusion products. The degree of magnetization of the fuel at stagnation is quantified using secondary DT neutron spectral measurements in the axial and radial directions and is also related to the ratio of the secondary DT yield to the primary DD yield. Measurements have confirmed that charged fusion products are strongly magnetized, as indicated by the product of the magnetic field and the fuel radius, to 0.4 MG-cm. We present new results that compare the degree of fuel magnetization inferred from spectral and yield measurements. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
Park, Moon Soo; Ju, Young-Su; Moon, Seong-Hwan; Kim, Tae-Hwan; Oh, Jae Keun; Makhni, Melvin C; Riew, K Daniel
2016-10-15
National population-based cohort study. To compare the reoperation rates between cervical spondylotic radiculopathy and myelopathy in a national population of patients. There is an inherently low incidence of reoperation after surgery for cervical degenerative disease. Therefore, it is difficult to sufficiently power studies to detect differences between reoperation rates of different cervical diagnoses. National population-based databases provide large, longitudinally followed cohorts that may help overcome this challenge. We used the Korean Health Insurance Review and Assessment Service national database to select our study population. We included patients with the diagnosis of cervical spondylotic radiculopathy or myelopathy who underwent anterior cervical discectomy and fusion from January 2009 to June 2014. We separated patients into two groups based on diagnosis codes: cervical spondylotic radiculopathy or cervical spondylotic myelopathy. Age, sex, presence of diabetes, osteoporosis, associated comorbidities, number of operated cervical disc levels, and hospital types were considered potential confounding factors. The overall reoperation rate was 2.45%. The reoperation rate was significantly higher in patients with cervical spondylotic myelopathy than in patients with cervical radiculopathy (myelopathy: P = 0.0293, hazard ratio = 1.433, 95% confidence interval 1.037-1.981). Male sex, presence of diabetes or associated comorbidities, and hospital type were noted to be risk factors for reoperation. The reoperation rate after anterior cervical discectomy and fusion was higher for cervical spondylotic myelopathy than for cervical spondylotic radiculopathy in a national population of patients. 3.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
A new vision for fusion energy research: Fusion rocket engines for planetary defense
Wurden, G. A.; Weber, T. E.; Turchi, P. J.; ...
2015-11-16
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
A new vision for fusion energy research: Fusion rocket engines for planetary defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, G. A.; Weber, T. E.; Turchi, P. J.
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.
2015-04-01
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μ m in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1 /2 the neutron yield coming from α -particle self-heating.
A Summary of the NASA Fusion Propulsion Workshop 2000
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)
2001-01-01
A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.
Variability in Standard Outcomes of Posterior Lumbar Fusion Determined by National Databases.
Joseph, Jacob R; Smith, Brandon W; Park, Paul
2017-01-01
National databases are used with increasing frequency in spine surgery literature to evaluate patient outcomes. The differences between individual databases in relationship to outcomes of lumbar fusion are not known. We evaluated the variability in standard outcomes of posterior lumbar fusion between the University HealthSystem Consortium (UHC) database and the Healthcare Cost and Utilization Project National Inpatient Sample (NIS). NIS and UHC databases were queried for all posterior lumbar fusions (International Classification of Diseases, Ninth Revision code 81.07) performed in 2012. Patient demographics, comorbidities (including obesity), length of stay (LOS), in-hospital mortality, and complications such as urinary tract infection, deep venous thrombosis, pulmonary embolism, myocardial infarction, durotomy, and surgical site infection were collected using specific International Classification of Diseases, Ninth Revision codes. Analysis included 21,470 patients from the NIS database and 14,898 patients from the UHC database. Demographic data were not significantly different between databases. Obesity was more prevalent in UHC (P = 0.001). Mean LOS was 3.8 days in NIS and 4.55 in UHC (P < 0.0001). Complications were significantly higher in UHC, including urinary tract infection, deep venous thrombosis, pulmonary embolism, myocardial infarction, surgical site infection, and durotomy. In-hospital mortality was similar between databases. NIS and UHC databases had similar demographic patient populations undergoing posterior lumbar fusion. However, the UHC database reported significantly higher complication rate and longer LOS. This difference may reflect academic institutions treating higher-risk patients; however, a definitive reason for the variability between databases is unknown. The inability to precisely determine the basis of the variability between databases highlights the limitations of using administrative databases for spinal outcome analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
ESnet authentication services and trust federations
NASA Astrophysics Data System (ADS)
Muruganantham, Dhivakaran; Helm, Mike; Genovese, Tony
2005-01-01
ESnet provides authentication services and trust federation support for SciDAC projects, collaboratories, and other distributed computing applications. The ESnet ATF team operates the DOEGrids Certificate Authority, available to all DOE Office of Science programs, plus several custom CAs, including one for the National Fusion Collaboratory and one for NERSC. The secure hardware and software environment developed to support CAs is suitable for supporting additional custom authentication and authorization applications that your program might require. Seamless, secure interoperation across organizational and international boundaries is vital to collaborative science. We are fostering the development of international PKI federations by founding the TAGPMA, the American regional PMA, and the worldwide IGTF Policy Management Authority (PMA), as well as participating in European and Asian regional PMAs. We are investigating and prototyping distributed authentication technology that will allow us to support the "roaming scientist" (distributed wireless via eduroam), as well as more secure authentication methods (one-time password tokens).
The Wonders of Physics Outreach Program
NASA Astrophysics Data System (ADS)
Sprott, J. C.; Mirus, K. A.; Newman, D. E.; Watts, C.; Feeley, R. E.; Fernandez, E.; Fontana, P. W.; Krajewski, T.; Lovell, T. W.; Oliva, S.; Stoneking, M. R.; Thomas, M. A.; Jaimison, W.; Maas, K.; Milbrandt, R.; Mullman, K.; Narf, S.; Nesnidal, R.; Nonn, P.
1996-11-01
One important step toward public education about fusion energy is to first elevate the public's appreciation of science in general. Toward this end, the Wonders of Physics program was started at the University of Wisconsin-Madison in 1984 as a public lecture and demonstration series in an attempt to stem a growing tide of science illiteracy and to bolster the public's perception of the scientific enterprise. Since that time, it has grown into a public outreach endeavor which consists of a traveling demonstration show, educational pamphlets, videos, software, a website (http://sprott.physics.wisc.edu/wop.htm), and the annual public lecture demonstration series including tours highlighting the Madison Symmetric Torus and departmental facilities. The presentation has been made about 400 times to a total audience in excess of 50,000. Sample educational materials and Lecture Kits will be available at the poster session. Currently at Oak Ridge National Laboratories. Currently at Max Planck Institut fuer Plasmaphysik. *Currently at Johnson Controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeper, Ramon J.
This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.
Effects of magnetization on fusion product trapping and secondary neutron spectraa)
NASA Astrophysics Data System (ADS)
Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.
2015-05-01
By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.
A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indrajit Charit; Megan Frary; Darryl Butt
2011-03-31
This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and leadmore » to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.« less
A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST
NASA Astrophysics Data System (ADS)
Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun
2016-12-01
A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)
NASA Astrophysics Data System (ADS)
Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang
2016-01-01
The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).
One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion
NASA Astrophysics Data System (ADS)
Santarius, John
2009-11-01
This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.
LIFE: a sustainable solution for developing safe, clean fusion power.
Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob
2013-06-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors.
Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klueh, R.L.
1997-04-01
An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction withmore » the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.« less
Fusion materials semiannual progress report for the period ending December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less
Development of DEMO-FNS tokamak for fusion and hybrid technologies
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.
2015-07-01
The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin
2015-12-01
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Winterberg, F.
2009-01-01
The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Progress towards ignition on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, M. J.; Patel, P. K.; Lindl, J. D.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mgmore » of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.« less
Heating Efficiency of Beat Wave Excitation in a Density Gradient,
1988-02-01
and Technology, January 1988. PPG-1124 Research Highlights in The Pisces Program," R.V. Conn, et al, January 1988. PPG-1125 "Magnetic Fusion ... Energy , vol. 5. Technical Assessement of Critical Issues in the Steady State Operation of Fusion Confinement Devices," D. M. Goebel, Assessment Chairman
NASA Astrophysics Data System (ADS)
Barnes, Cris W.
2009-05-01
The great vision of fusion power - harnessing the energy source of the stars for the good of people on Earth - is and has always been a highly attractive one. The history of fusion research is full of interesting tales, from its discovery to the recent completion of the US National Ignition Facility (NIF), now the world's largest laser (see Physics World March p7). Unfortunately, a new popular account of this history, Sun in a Bottle, mostly retells old stories of notable fusion failures, from mysterious early devices in Argentina through the cold-fusion debacle of the late 1980s. As a scientist who has devoted his career to plasma physics and fusion, I am - at least according to author Charles Seife - part of a community of researchers "unable to rid themselves of their intemperate self-deception". Having read it, I appear to be faced with a choice: am I a fraud or an incompetent?
Plasma-Jet Magneto-Inertial Fusion Burn Calculations
NASA Astrophysics Data System (ADS)
Santarius, John
2010-11-01
Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.
An epidemic model for biological data fusion in ad hoc sensor networks
NASA Astrophysics Data System (ADS)
Chang, K. C.; Kotari, Vikas
2009-05-01
Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.
Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.
Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C
2015-04-10
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.
Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, T.; Hurricane, O. A.; Callahan, D. A.
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier resultsmore » have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.« less
Feasibility study on sensor data fusion for the CP-140 aircraft: fusion architecture analyses
NASA Astrophysics Data System (ADS)
Shahbazian, Elisa
1995-09-01
Loral Canada completed (May 1995) a Department of National Defense (DND) Chief of Research and Development (CRAD) contract, to study the feasibility of implementing a multi- sensor data fusion (MSDF) system onboard the CP-140 Aurora aircraft. This system is expected to fuse data from: (a) attributed measurement oriented sensors (ESM, IFF, etc.); (b) imaging sensors (FLIR, SAR, etc.); (c) tracking sensors (radar, acoustics, etc.); (d) data from remote platforms (data links); and (e) non-sensor data (intelligence reports, environmental data, visual sightings, encyclopedic data, etc.). Based on purely theoretical considerations a central-level fusion architecture will lead to a higher performance fusion system. However, there are a number of systems and fusion architecture issues involving fusion of such dissimilar data: (1) the currently existing sensors are not designed to provide the type of data required by a fusion system; (2) the different types (attribute, imaging, tracking, etc.) of data may require different degree of processing, before they can be used within a fusion system efficiently; (3) the data quality from different sensors, and more importantly from remote platforms via the data links must be taken into account before fusing; and (4) the non-sensor data may impose specific requirements on the fusion architecture (e.g. variable weight/priority for the data from different sensors). This paper presents the analyses performed for the selection of the fusion architecture for the enhanced sensor suite planned for the CP-140 aircraft in the context of the mission requirements and environmental conditions.
NASA Astrophysics Data System (ADS)
Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.
2017-09-01
Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.
Assessment of the MHD capability in the ATHENA code using data from the ALEX facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1989-03-01
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.
Complications after surgery for lumbar stenosis in a veteran population.
Deyo, Richard A; Hickam, David; Duckart, Jonathan P; Piedra, Mark
2013-09-01
Secondary analysis of the prospectively collected Veterans Affairs National Surgical Quality Improvement Program database. Determine rates of major medical complications, wound complications, and mortality among patients undergoing surgery for lumbar stenosis and examine risk factors for these complications. Surgery for spinal stenosis is concentrated among older adults, in whom complications are more frequent than among middle-aged patients. Many studies have focused on infections or device complications, but fewer studies have focused on major cardiopulmonary complications, using prospectively collected data. We identified patients who underwent surgery for a primary diagnosis of lumbar stenosis between 1998 and 2009 from the Veterans Affairs National Surgical Quality Improvement Program database. We created a composite of major medical complications, including acute myocardial infarction, stroke, pulmonary embolism, pneumonia, systemic sepsis, coma, and cardiac arrest. Among 12,154 eligible patients, major medical complications occurred in 2.1%, wound complications in 3.2%, and 90-day mortality in 0.6%. Major medical complications, but not wound complications, were strongly associated with age. American Society of Anesthesiologists (ASA) class was a strong predictor of complications. Insulin use, long-term corticosteroid use, and preoperative functional status were also significant predictors. Fusion procedures were associated with higher complication rates than with decompression alone. In logistic regressions, ASA class and age were the strongest predictors of major medical complications (odds ratio for ASA class 4 vs. class 1 or 2: 2.97; 95% confidence interval, 1.68-5.25; P = 0.0002). After adjustment for comorbidity, age, and functional status, fusion procedures remained associated with higher medical complication rates than were decompressions alone (odds ratio = 2.85; 95% confidence interval, 2.14-3.78; P < 0.0001). ASA class, age, type of surgery, insulin or corticosteroid use, and functional status were independent risk factors for major medical complications. These factors may help in selecting patients and planning procedures, improving patient safety.
Aperture tolerances for neutron-imaging systems in inertial confinement fusion.
Ghilea, M C; Sangster, T C; Meyerhofer, D D; Lerche, R A; Disdier, L
2008-02-01
Neutron-imaging systems are being considered as an ignition diagnostic for the National Ignition Facility (NIF) [Hogan et al., Nucl. Fusion 41, 567 (2001)]. Given the importance of these systems, a neutron-imaging design tool is being used to quantify the effects of aperture fabrication and alignment tolerances on reconstructed neutron images for inertial confinement fusion. The simulations indicate that alignment tolerances of more than 1 mrad would introduce measurable features in a reconstructed image for both pinholes and penumbral aperture systems. These simulations further show that penumbral apertures are several times less sensitive to fabrication errors than pinhole apertures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieser, Patti; Hopkins, David
The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter. In this simulation of plasma turbulence inside PPPL's National Spherical Torus Experiment, the colorful strings represent higher and lower electron density in turbulent plasma as it circles around a donut-shaped fusion reactor; red and orange are higher density. This image is among those featured in the slide show, "Plasmas are Hot and Fusion is Cool," a production of PPPL and the Princeton University Broadcastmore » Center.« less
NASA Astrophysics Data System (ADS)
Jones, Robert
2017-10-01
I have suggested that fusion researchers should put more effort into the study of beta > 1 or wall confined plasmas. Magneto-Inertial Fusion and Magnetized Target Fusion projects at Los Alamos National Laboratory are recent examples of this sort of work. Unfortunately, theoretical studies of such systems may be employing overly optimistic models of the magnetic thermal insulation. One might well expect such systems to have stochastic field lines. If that is the case then we might want to employ turbulent thermal insulation as suggested in my papers: Current Science, pg 991, 1988 and Bull. Am. Phys. Soc., Nov. 4, 2009.
Tritium proof-of-principle pellet injector: Phase 2
NASA Astrophysics Data System (ADS)
Fisher, P. W.; Gouge, M. J.
1995-03-01
As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase-2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and DT mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and DT extrusions; integrate, test and evaluate the extruder in a repeating, single-stage light gas gun sized for the ITER application (pellet diameter approximately 7-8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory requiring secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to thirteen pellets have been extruded at rates up to 1 Hz and accelerated to speeds of order 1.0-1.1 km/s using hydrogen propellant gas at a supply pressure of 65 bar. The pellets are typically 7.4 mm in diameter and up to 11 mm in length and are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first wall tritium inventories by a process called isotopic fueling where tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.
Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk
2017-01-04
Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
Energy crop mapping with enhanced TM/MODIS time series in the BCAP agricultural lands
NASA Astrophysics Data System (ADS)
Wang, Cuizhen; Fan, Qian; Li, Qingting; SooHoo, William M.; Lu, Linlin
2017-02-01
Since the mid-2000s, agricultural lands in the United States have been undergoing rapid change to meet the increasing bioenergy demand. In 2009 the USDA Biomass Crop Assistance Program (BCAP) was established. In its Project Area 1, land owners are financially supported to grow perennial prairie grasses (switchgrass) in their row-crop lands. To promote the program, this study tested the feasibility of biomass crop mapping based on unique timings of crop development. With a previously published data fusion algorithm - the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), a 10-day normalized difference vegetation index (NDVI) time series in 2007 was established by fusing MODIS reflectance into TM image series. Two critical dates - peak growing (PG) and peak drying (PD) - were extracted and a unique "PG-0-PD" timing sequence was defined for each crop. With a knowledge-based decision tree approach, the classification of enhanced TM/MODIS time series reached an overall accuracy of 76% against the USDA Crop Data layer (CDL). Especially, our results showed that winter wheat single cropping and wheat-soybean double cropping were much better classified, which may provide additional information for the CDL product. More importantly, this study extracted the first spatial layer of warm-season prairie grasses that have not been published in any national land cover products, which could serve as a base map for decision making of bioenergy land use in BCAP land.
NASA Astrophysics Data System (ADS)
Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.
2017-07-01
A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Amy; Callis, Richard; Efthimion, Philip
Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality.more » However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.« less
SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Alkesh
Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable amongmore » these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty researchers in the HU CFRT mentor the students during summers. Mentors spend a considerable amount of time and efforts in training, teaching, guiding and supervising research projects. The HU CFRT has so far conducted nine workshops during the summers of 1996-2000 and 2002-2005. The first workshop was conducted in summer 1996. Students for the workshop are chosen from a national pool of exceptionally talented high school rising seniors/juniors. To our knowledge, most of these students have gone on to prestigious universities such as Duke University, John Hopkins University, CalTech, UCLA, Hampton University, etc. after completing their high school. For instance, Tiffany Fisher, participant of the 1996 summer workshop completed her BS in Mathematics at Hampton University in May 2001. She then went on to Wake Forest University at Winston-Salem, North Carolina to pursue graduate studies. Anshul Haldipur, participant of the 1999 summer workshop, began his undergraduate studies at Duke University in 2000. Christina Nguyen and Ilissa Martinez, participants of the 2000 summer workshop, are pursuing their undergraduate degrees at the UCLA and Florida State University respectively. The organizing committee of the APS DPP annual meeting invited Dr. Punjabi to deliver an invited talk on training the next generation of fusion scientists and engineers at the 2005 APS DPP meeting in Denver, CO. The organizing committee distributed a special flier with the Bulletin to highlight this invited talk and another talk on education as well the expo. This has given wide publicity and recognition to our workshops and Hampton University. Prof. Punjabi's talk: 'LI2 2: Training the next generation of fusion scientists and engineers: summer high school fusion science workshop, Bull. Amer. Phys. Soc. 50, 221 (2005)' was very well-received. He talked about HU education and outreach initiative and the HU CFRT Summer High School Workshop. The audience had a considerable number of questions about our workshops and the High School to PhD Pipeline in fusion science. Professor William Mathews of University of Delaware offered to give the HU Team MHD codes to use, and Professor Birdsall of University of California, Berkeley, plasma theory and simulation group, offered to give the team simple simulation codes to use. We are very happy and proud and very gratified by this, and we thank the US DOE OFES, Dr. Sam Barish and Dr. Michael Crisp for their support and encouragement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P.J.
Lasers and laser-based sources are now routinely used to control and manipulate nuclear processes, e.g. fusion, fission and resonant nuclear excitation. Two such “nuclear photonics” activities with the potential for profound societal impact will be reviewed in this presentation: the pursuit of laser-driven inertial confinement fusion at the National Ignition Facility and the development of laser-based, mono-energetic gamma-rays for isotope-specific detection, assay and imaging of materials.
Effects of magnetization on fusion product trapping and secondary neutron spectra
Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...
2015-05-14
In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less
NASA Astrophysics Data System (ADS)
Stambaugh, Ronald D.
2013-01-01
The journal Nuclear Fusion has played a key role in the development of the physics basis for fusion energy. That physics basis has been sufficiently advanced to enable construction of such major facilities as ITER along the tokamak line in magnetic fusion and the National Ignition Facility (NIF) in laser-driven fusion. In the coming decade, while ITER is being constructed and brought into deuterium-tritium (DT) operation, this physics basis will be significantly deepened and extended, with particular key remaining issues addressed. Indeed such a focus was already evident with about 19% of the papers submitted to the 24th IAEA Fusion Energy Conference in San Diego, USA appearing in the directly labelled ITER and IFE categories. Of course many of the papers in the other research categories were aimed at issues relevant to these major fusion directions. About 17% of the papers submitted in the 'Experiment and Theory' categories dealt with the highly ITER relevant and inter-related issues of edge-localized modes, non-axisymmetric fields and plasma rotation. It is gratifying indeed to see how the international community is able to make such a concerted effort, facilitated by the ITPA and the ITER-IO, around such a major issue for ITER. In addition to deepening and extending the physics bases for the mainline approaches to fusion energy, the coming decade should see significant progress in the physics basis for additional fusion concepts. The stellarator concept should reach a high level of maturity with such facilities as LHD operating in Japan and already producing significant results and the W7-X in the EU coming online soon. Physics issues that require pulses of hundreds of seconds to investigate can be confronted in the new superconducting tokamaks coming online in Asia and in the major stellarators. The basis for steady-state operation of a tokamak may be further developed in the upper half of the tokamak operating space—the wall stabilized regime. New divertor geometries are already being investigated. Progress should continue on additional driver approaches in inertial fusion. Nuclear Fusion will continue to play a major role in documenting the significant advances in fusion plasma science on the way to fusion energy. Successful outcomes in projects like ITER and NIF will bring sharply into focus the remaining significant issues in fusion materials science and fusion nuclear science and technology needed to move from the scientific feasibility of fusion to the actual realization of fusion power production. These issues are largely common to magnetic and inertial fusion. Progress in these areas has been limited by the lack of suitable major research facilities. Hopefully the coming decade will see progress along these lines. Nuclear Fusion will play its part with increased papers reporting significant advances in fusion materials and nuclear science and technology. The reputation and status of the journal remains high; paper submissions are increasing and the Impact Factor for the journal remains high at 4.09 for 2011. We look forward in the coming months to publishing expanded versions of many of the outstanding papers presented at the IAEA FEC in San Diego. We congratulate Dr Patrick Diamond of the University of California at San Diego for winning the 2012 Nuclear Fusion Prize for his paper [1] and Dr Hajime Urano of the Japan Atomic Energy Agency for winning the 2011 Nuclear Fusion Prize for his paper [2]. Papers of such quality by our many authors enable the high standard of the journal to be maintained. The Nuclear Fusion editorial office understands how much effort is required by our referees. The Editorial Board decided that an expression of thanks to our most loyal referees is appropriate and so, since January 2005, we have been offering ten of the most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. This year, three of the top referees have reviewed five manuscripts in the period November 2011 to December 2012 and provided excellent advice to the authors. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in recent years. The following people have been selected: Marina Becoulet, CEA-Cadarache, France Jiaqui Dong, Southwestern Institute of Physics, China Emiliano Fable, Max-Planck-Institut für Plasmaphysik, Germany Ambrogio Fasoli, Ecole Polytechnique Federale de Lausanne, Switzerland Eric Fredrickson, Princeton Plasma Physics Laboratory, USA Manuel Garcia-Munoz, Max-Planck-Institut fuer Plasmaphysik, Germany William Heidbrink, California University, USA Katsumi Ida, National Inst. For Fusion Science, Japan Peter Stangeby, Toronto University, Canada James Strachan, Princeton Plasma Physics Laboratory, USA Victor Yavorskij, Ukraine National Academy of Sciences, Ukraine In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2012. Our thanks to them!
2016-09-01
other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for
Critical Fusion--Technology and Equity in Secondary Education
ERIC Educational Resources Information Center
Magolda, Peter
2006-01-01
This manuscript reports on the first year of a formative, external program evaluation of the Critical Fusion Initiative (CFI), which involved a higher education institution, a public high school, a corporation, and two nonprofit organizations. The initiative fused technology and education to address the issue of equity by assisting 16 high school…
PBFA II, a 100 TW Pulsed Power Driver for the Inertial Confinement Fusion Program
1985-06-01
providing a 30 MV, 15 ns output pulse,which accelerates lithium ions. The ions will focus onto a pellet containing deuterium-tritium, producing fusion ... energy . Several research areas will be reviewed: low jitter, highly reliable 370 kJ Marx generators; highly synchronized gas switching at 5 MV; efficient
Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon
2008-12-18
Krypton Fluoride (KrF) laser for fusion energy and is sponsored by the Department of Energy’s (DOE) High Average Power Laser (HAPL) program. DOE...Electronics Conference, Arlington VA, October 2007. 9. “Electron Beam Pumped Lasers for Fusion Energy and Directed Energy Applications”, presented by
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.
BigFoot: a program to reduce risk for indirect drive laser fusion
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2017-10-01
The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR
NASA Astrophysics Data System (ADS)
Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team
2017-10-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).
Nonlinear Excitation of the Ablative Rayleigh-Taylor Instability for All Wave Numbers
NASA Astrophysics Data System (ADS)
Zhang, H.; Betti, R.; Gopalaswamy, V.; Aluie, H.; Yan, R.
2017-10-01
Small-scale modes of the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2-D and 3-D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations. Compared to 2-D, linearly stable ARTI modes are more easily destabilized in 3-D and the penetrating bubbles have a higher density because of enhanced vorticity. It is shown that for conditions found in laser fusion targets, short-wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material. This work was supported by the Office of Fusion Energy Sciences Nos. DE-FG02-04ER54789, DE-SC0014318, the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the Ministerio de Ciencia e Innovacion of Spain (Grant No. ENE2011-28489), and the NANL LDRD program through Project Number 20150568ER.
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), andmore » National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, David
2016-10-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A Hybrid Ion/Electron Beam Fast Ignition Concept
NASA Astrophysics Data System (ADS)
Albright, B. J.
2009-11-01
Fast ignition (FI) inertial confinement fusion is an approach to high-gain inertial fusion, whereby a dense core of deuterium/tritium fuel is assembled via direct or indirect drive and then a hot spot within the core is heated rapidly (over a time scale of order 10 ps) to ignition conditions by beams of fast charged particles. These particle beams are generated outside the capsule by the interaction of ultra-intense laser pulses with solid density targets. Most study of FI to date has focused on the use of electron [Tabak et al., Phys. Plasmas 1, 1696 (1994)] or ion [Fern'andez et al., Nuclear Fusion 49, 065004 (2009)] beams, however a hybrid approach involving both may have advantages. This paper will describe recent work in this arena. Work performed under the auspices of the U. S. Dept. of Energy by the Los Alamos National Security, Los Alamos National Laboratory. This work was supported by LANL Laboratory Directed Research and Development (LDRD).
Enhanced chemical weapon warning via sensor fusion
NASA Astrophysics Data System (ADS)
Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James
2011-05-01
Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.
NASA Astrophysics Data System (ADS)
Steiner, Adam M.; Campbell, Paul C.; Yager-Elorriaga, David A.; Cochrane, Kyle R.; Mattsson, Thomas R.; Jordan, Nicholas M.; McBride, Ryan D.; Lau, Y. Y.; Gilgenbach, Ronald M.
2018-03-01
Presented are the results from the liner ablation experiments conducted at 550 kA on the Michigan Accelerator for Inductive Z-Pinch Experiments. These experiments were performed to evaluate a hypothesis that the electrothermal instability (ETI) is responsible for the seeding of magnetohydrodynamic instabilities and that the cumulative growth of ETI is primarily dependent on the material-specific ratio of critical temperature to melting temperature. This ratio is lower in refractory metals (e.g., tantalum) than in non-refractory metals (e.g., aluminum or titanium). The experimental observations presented herein reveal that the plasma-vacuum interface is remarkably stable in tantalum liner ablations. This stability is particularly evident when contrasted with the observations from aluminum and titanium experiments. These results are important to various programs in pulsed-power-driven plasma physics that depend on liner implosion stability. Examples include the magnetized liner inertial fusion (MagLIF) program and the cylindrical dynamic material properties program at Sandia National Laboratories, where liner experiments are conducted on the 27-MA Z facility.
HLYWD: a program for post-processing data files to generate selected plots or time-lapse graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, J.K. Jr.
1980-05-01
The program HLYWD is a post-processor of output files generated by large plasma simulation computations or of data files containing a time sequence of plasma diagnostics. It is intended to be used in a production mode for either type of application; i.e., it allows one to generate along with the graphics sequence, segments containing title, credits to those who performed the work, text to describe the graphics, and acknowledgement of funding agency. The current version is designed to generate 3D plots and allows one to select type of display (linear or semi-log scales), choice of normalization of function values formore » display purposes, viewing perspective, and an option to allow continuous rotations of surfaces. This program was developed with the intention of being relatively easy to use, reasonably flexible, and requiring a minimum investment of the user's time. It uses the TV80 library of graphics software and ORDERLIB system software on the CDC 7600 at the National Magnetic Fusion Energy Computing Center at Lawrence Livermore Laboratory in California.« less
The first experiments on the national ignition facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.
2006-06-01
A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
2000-02-01
HIBEAM is a 2 1/2D particle-in-cell (PIC) simulation code developed in the late 1990's in the Heavy-Ion Fusion research program at Lawrence Berkeley National Laboratory. The major purpose of HIBEAM is to simulate the transverse (i.e., X-Y) dynamics of a space-charge-dominated, non-relativistic heavy-ion beam being transported in a static accelerator focusing lattice. HIBEAM has been used to study beam combining systems, effective dynamic apertures in electrostatic quadrupole lattices, and emittance growth due to transverse misalignments. At present, HIBEAM runs on the CRAY vector machines (C90 and J90's) at NERSC, although it would be relatively simple to port the code tomore » UNIX workstations so long as IMSL math routines were available.« less
Final Report on ITER Task Agreement 81-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brad J. Merrill
An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quenchmore » event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L.; Wiezcorek, M.A.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasmamore » Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.« less
The Genetic Programming of Industrial Microorganisms.
ERIC Educational Resources Information Center
Hopwood, David A.
1981-01-01
Traces the development of the field of industrial microbial genetics, describing a range of techniques for genetic programing. Includes a discussion of site-directed mutagenesis, protoplast fusion, and recombinant DNA manipulations. (CS)
NASA Astrophysics Data System (ADS)
Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.
2017-10-01
The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.
Influence of toroidal rotation on tearing modes
NASA Astrophysics Data System (ADS)
Cai, Huishan; Cao, Jintao; Li, Ding
2017-10-01
Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.
Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)
NASA Astrophysics Data System (ADS)
Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa
2017-10-01
The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.
Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST
NASA Astrophysics Data System (ADS)
Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team
2016-06-01
This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)
Controlling Rayleigh-Taylor instabilities in solid liner implosions with rotating magnetic fields
NASA Astrophysics Data System (ADS)
Schmit, P. F.; McBride, R. D.; Robertson, G. K.; Velikovich, A. L.
2016-10-01
We report calculations demonstrating that a remarkable reduction in the growth of the magneto-Rayleigh-Taylor instability (MRTI) in initially solid, cylindrical metal shells can be achieved by applying a magnetic drive with a tilted, dynamic polarization, forming a solid-liner dynamic screw pinch (SLDSP). Using a self-consistent analytic framework, we demonstrate that MRTI growth factors of the most detrimental modes may be reduced by up to two orders of magnitude relative to conventional z-pinch implosions. One key application of this technique is to enable increasingly stable, higher performance liner implosions to achieve fusion. We weigh the potentially dramatic benefits of the SLDSP against the practical tradeoffs required to achieve the desired drive field history and identify promising target designs for future experimental and computational investigations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles
Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera
2015-01-01
Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-01-01
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-12-13
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.
Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment
NASA Technical Reports Server (NTRS)
Dent, William V., Jr.
1998-01-01
The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.
Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module
NASA Astrophysics Data System (ADS)
Deepak, SHARMA; Paritosh, CHAUDHURI
2018-04-01
The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.
Fusion Centers: Issues and Options for Congress
2007-07-06
financed and staffed by the states, and there is no one “model” for how a center should be structured. State and local law enforcement and criminal...Centers to Task the IC for Information and Receive “Feedback” . . . . . . . . . . . . . . . . . . 70 4e . Establish a Mechanism for Fusion Centers to Have...together nationally, represent a proactive tool to be used to fight a global jihadist adversary which has both centralized and decentralized elements
Magnetic Inertial Confinement Fusion (MICF)
NASA Astrophysics Data System (ADS)
Miao, Feng; Zheng, Xianjun; Deng, Baiquan; Liu, Wei; Ou, Wei; Huang, Yi
2016-11-01
Based on the similarity in models of the early Sun and the 3-D common focal region of the micro-pinch in X-pinch experiments, a novel hybrid fusion configuration by continuous focusing of multiple Z-pinched plasma beams on spatially symmetric plasma is proposed. By replacing gravity with Lorentz force with subsequent centripetal spherical pinch, the beam-target fusion reactivity is enhanced in a quasi-spherical converging region, thus achieving MICF. An assessment, presented here, suggests that a practical fusion power source could be achieved using deuterium alone. Plasma instabilities can be suppressed by fast rotation resulting from an asymmetric tangential torsion in the spherical focal region of this configuration. Mathematical equivalence with the Sun allows the development of appropriate equations for the focal region of MICF, which are solved numerically to provide density, temperature and pressure distributions that produce net fusion energy output. An analysis of MICF physics and a preliminary experimental demonstration of a single beam are also carried out. supported by National Natural Science Foundation of China (Nos. 11374217 and 11176020)
Current status and recent research achievements in SiC/SiC composites
NASA Astrophysics Data System (ADS)
Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.
2014-12-01
The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.
Department of Energy - Office of Science Early Career Research Program
NASA Astrophysics Data System (ADS)
Horwitz, James
The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/
Inertial Fusion Power Plant Concept of Operations and Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anklam, T.; Knutson, B.; Dunne, A. M.
2015-01-15
Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less
Inertial fusion power plant concept of operations and maintenance
NASA Astrophysics Data System (ADS)
Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek
2015-02-01
Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.
Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?
NASA Astrophysics Data System (ADS)
Strelkov, V. S.
2017-12-01
This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion can be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1-10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.
NASA Astrophysics Data System (ADS)
Stacey, W. M.
2009-09-01
The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.
EDITORIAL: Plasma Surface Interactions for Fusion
NASA Astrophysics Data System (ADS)
2006-05-01
Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005). We are indebted to Lynda Saddiq and Fay Ownby, secretaries in the Physics Division of ORNL, whose special efforts, devotion, and expertise made possible both the Workshop and these Proceedings. J T Hogan, P S Krstic and F W Meyer Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372, USA
The National Network of Fusion Centers: Perception and Reality
2014-12-01
growing exponentially to the post-recession era of austerity. As this pendulum moved from one side to the other, perceptions and attitudes about the...decline. The article provides insight into the advantages and drawbacks of the development of a national marketing strategy and highlights factors
Hydrodynamic instabilities at an oblique interface: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.
2017-10-01
Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.
NASA Astrophysics Data System (ADS)
Hogan, W. J.
2004-12-01
The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA2003 and are, therefore, overviews of all ICF research being done in the Americas, Asia, and Europe. The next two papers are also reviews but of a different sort. The Teller Medal is awarded at the IFSA conferences for pioneering work and leadership in inertial fusion and high energy density science. The two recipients for 2003 were H. Takabe of the Institute of Laser Engineering at Osaka University and L. Suter of Lawrence Livermore National Laboratory. These awardees were asked to deliver the two Teller Lectures at IFSA based upon the work for which they were being honoured. The papers presented here are expansions of those two review talks. Suter chose to focus his review on his recent work on ignition physics for targets driven by 0.54 m light. This is of interest because large facilities like the National Ignition Facility (NIF) will deliver much more energy in the frequency doubled wavelength than in the frequency tripled one. Takabe, on the other hand chose to give a historical perspective of his lifelong work. The other 14 papers were selected to represent a cross-section of the research being conducted in the science and engineering of inertial fusion. The papers by Haan et al and Holstein et al represent some of the recent progress in target design calculations for the ignition first experiments. Haan presents his team's work on indirect drive ignition targets (driven by 0.35 m) intended for the National Ignition Facility (NIF) when all the beamlines are activated. Holstein does the same for targets being design for the Laser MegaJoule (LMJ). Suter's paper, presented earlier as a Teller Lecture also falls into this ignition target physics category. The next four papers look at some of the exciting high energy density physics being studied in ICF facilities around the world. Glenzer et al looks at stimulated light scattering processes in hot dense plasmas. Pukhov et al look at relativistic laser-plasma interactions that produce energetic particles and x-rays. Peyrusse et al examine atomic physics and radiative processes in hot dense plasmas. Koenig et al examine ways to simulate planetary physics processes using high pressures generated in laser driven shocks. Non-laser approaches to inertial fusion were also fully represented at IFSA2003. The paper by Lebedev et al shows important physics developments in Z-pinch plasmas. Sharp et al present chamber transport modelling for heavy ion fusion drivers. Technology development studies were also well represented at IFSA2003. There was a special session on facility and driver developments that contained several papers. Presented here are the papers by Miller et al on the NIF, Danson et al on the Vulcan petawatt facility, and Myers et al on KrF lasers for IFE. A paper by Goodin et al shows progress in finding cost effective target manufacturing methods for IFE. Finally, there were many papers at IFSA2003 that focused upon the very promising but more immature field of fast ignition. Barty et al give an overview of the development issues for short pulse lasers that will be essential if fast ignition is to become mainstream. A paper by Kodama et al looks at target physics using cone focus targets. Fast ignition lasers and innovative target physics within this concept were a `hot topic' at IFSA2003. The IFSA conferences have become the principal forum for the exchange of research results in inertial fusion and high energy and density science. There is a unique blend of science and technology. All fields of inertial fusion are represented. This special issue is a snapshot and a cross-section of the field at this time. We hope the reader is encouraged to look into more of the papers in areas that interest them. References [1] Inertial Fusion Sciences and Applications: State of the Art 2003 ed B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi American Nuclear Society (July 2004) These IFSA2003 proceedings may be purchased on-line at http://www.ans.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L.; Wieczorek, M.A.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physicsmore » Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.« less
2011-02-15
already robust lineup of 57 National Guard Combat Support Teams (CSTs) and 17 CBRNE Enhanced Response Force Packages (CERFPs) to increase the existing...analysis of disparate data sources, identification of intelligence gaps, and proactive collection of intelligence against those gaps which could
AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENCE NAVAL SITE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOSKOWITZ,P.D.; POMERVILLE,J.; GAVRILOV,S.
2001-02-25
The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. Bymore » providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and historical status of monitoring at specific sites and objects and to establish new monitoring protocols as required, for example, in an off-normal accident situation. Plans are being developed to implement the use of this system at most RF Naval sites handling spent nuclear fuel.« less
AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENSE NAVAL SITE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOSKOWITZ,P.D.; POMERVILLE,J.; GAVRILOV,S.
2001-02-25
The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. Bymore » providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and historical status of monitoring at specific sites and objects and to establish new monitoring protocols as required, for example, in an off-normal accident situation. Plans are being developed to implement the use of this system at most RF Naval sites handling spent nuclear fuel.« less
A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body.
Lindmo, Karine; Simonsen, Anne; Brech, Andreas; Finley, Kim; Rusten, Tor Erik; Stenmark, Harald
2006-07-01
Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing has also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
2014-12-24
Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less
Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; ...
2015-09-03
The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. Thus, the ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT atmore » the National Ignition Facility.« less
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C.-K.; McDevitt, C. J.
2015-09-01
The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1988-10-28
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less
Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T
2018-02-23
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.
Overview of the NSTX Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Sichta; J. Dong; G. Oliaro
2001-12-03
The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. Since achieving first plasma in 1999, the device has been used for fusion research through an international collaboration of more than twenty institutions. The NSTX is operated through a collection of control systems that encompass a wide range of technology, from hardwired relay controls to real-time control systems with giga-FLOPS of capability. This paper presents a broad introduction to the controlmore » systems used on NSTX, with an emphasis on the computing controls, data acquisition, and synchronization systems.« less
NASA Astrophysics Data System (ADS)
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Yang, S. T.
2018-02-01
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.
Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H
2012-10-01
Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
Overview of the FuZE Fusion Z-Pinch Experiment
NASA Astrophysics Data System (ADS)
Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.
2017-10-01
Successful results of the sheared flow stabilized (SFS) Z-pinch from ZaP and ZaP-HD have motivated the new FuZE project to scale the plasma performance to fusion conditions. The SFS Z-pinch is immune to the instabilities that plague the conventional Z-pinch yet maintains the same favorable radial scaling. The plasma density and temperature increase rapidly with decreasing plasma radius, which naturally leads to a compact configuration at fusion conditions. The SFS Z-pinch is being investigated as a novel approach to a compact fusion device in a collaborative ARPA-E ALPHA project with the University of Washington and Lawrence Livermore National Laboratory. The project includes an experimental effort coupled with high-fidelity physics modeling using kinetic and fluid simulations. Along with scaling law analysis, computational and experimental results from the FuZE device are presented. This work is supported by an award from US ARPA-E.
Second program on energy research and technologies
NASA Technical Reports Server (NTRS)
1982-01-01
The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations Management (3) Fusion Energy (4) Health and Environmental Research (5) High Energy and Nuclear Physics (6...
Superconducting magnet development for tokamaks and mirrors: a technical assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverick, C.; Jacobs, R. B.; Boom, R. W.
1977-11-01
The role of superconducting magnets in Magnetic Fusion Energy Research and Development is assessed from a consideration of program plans and schedules, the present status of the programs and the research and development suggestions arising from recent studies and workshops. A principal conclusion is that the large superconducting magnet systems needed for commercial magnetic fusion reactors can be constructed. However such magnets working under severe conditions, with increasingly stringent reliability, safety and cost restrictions can never be built unless experience is first gained in a number of important installations designed to prove physics and technology steps on the way tomore » commercial power demonstration. The immediate problem is to design a technology program in the absence of definite device needs and specifications, giving a priority weighting to the multiplicity of good, high quality development program suggestions when all proposals cannot be supported.« less
Measles Virus Fusion Protein: Structure, Function and Inhibition
Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.
2016-01-01
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811
Measles Virus Fusion Protein: Structure, Function and Inhibition.
Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C
2016-04-21
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
2005-09-01
appropriate use and dissemination. When information begins to flow in both directions, national and local entities can benefit from the developing...Linc Radios • Cell Phones • Laptops 88 4. The various systems, both traditional and “high-tech,” used by GISAC to disseminate terrorism...1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: State
CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui
2017-12-01
Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)
Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data
NASA Technical Reports Server (NTRS)
Gamba, P.; Houshmand, B.
1998-01-01
In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.
Joint Data Management for MOVINT Data-to-Decision Making
2011-07-01
flux tensor , aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these...methods include voting , neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way...Information Fusion, 2010. [16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor constrained geodesic active contours with sensor fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less
Cellular bone matrices: viable stem cell-containing bone graft substitutes
Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.
2015-01-01
BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. PMID:24929059
Cellular bone matrices: viable stem cell-containing bone graft substitutes.
Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A
2014-11-01
Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions
NASA Astrophysics Data System (ADS)
McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.
2015-11-01
We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Optimizing Higgs factories by modifying the recoil mass
NASA Astrophysics Data System (ADS)
Gu, Jiayin; Li, Ying-Ying
2018-02-01
It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)
Goz, Vadim; Weinreb, Jeffrey H; Schwab, Frank; Lafage, Virginie; Errico, Thomas J
2014-09-01
Lumbar interbody fusion (LIF) techniques have been used for years to treat a number of pathologies of the lower back. These procedures may use an anterior, posterior, or combined surgical approach. Each approach is associated with a unique set of complications, but the exact prevalence of complications associated with each approach remains unclear. To investigate the rates of perioperative complications of anterior lumbar interbody fusion (ALIF), posterior/transforaminal lumbar interbody fusion (P/TLIF), and LIF with a combined anterior-posterior interbody fusion (APF). Retrospective review of national data from a large administrative database. Patients undergoing ALIF, P/TLIF, or APF. Perioperative complications, length of stay (LOS), total costs, and mortality. The Nationwide Inpatient Sample database was queried for patients undergoing ALIF, P/TLIF, or APF between 2001 and 2010 as identified via International Classification of Diseases, ninth revision codes. Univariate analyses were carried out comparing the three cohorts in terms of the outcomes of interest. Multivariate analysis for primary outcomes was carried out adjusting for overall comorbidity burden, race, gender, age, and length of fusion. National estimates of annual total number of procedures were calculated based on the provided discharge weights. Geographic distribution of the three cohorts was also investigated. An estimated total of 923,038 LIFs were performed between 2001 and 2010 in the United States. Posterior/transforaminal lumbar interbody fusions accounted for 79% to 86% of total LIFs between 2001 and 2010, ALIFs for 10% to 15%, and APF decreased from 10% in 2002 to less than 1% in 2010. On average, P/TLIF patients were oldest (54.55 years), followed by combined approach (47.23 years) and ALIF (46.94 years) patients (p<.0001). Anterior lumbar interbody fusion, P/TLIF, and combined surgical costs were $75,872, $65,894, and $92,249, respectively (p<.0001). Patients in the P/TLIF cohort had the greatest number of comorbidities, having the highest prevalence for 10 of 17 comorbidities investigated. Anterior-posterior interbody fusion group was associated with the greatest number of complications, having the highest incidence of 12 of the 16 complications investigated. These data help to define the perioperative risks for several LIF approaches. Comparison of outcomes showed that a combined approach is more expensive and associated with greater LOS, whereas ALIF is associated with the highest postoperative mortality. These trends should be taken into consideration during surgical planning to improve clinical outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Heim, Sverre
2014-01-01
Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the "grep" command-line utility. The "grep" command searches the text for specific expressions and displays, by default, the lines where matches occur. The "specific expression" was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with "grep". In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The "grep" command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, Brian; Dart, Eli; Tierney, Brian
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of themore » DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.« less
Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.
Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao
2013-08-01
Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.
The Long way Towards Inertial Fusion Energy (lirpp Vol. 13)
NASA Astrophysics Data System (ADS)
Velarde, Guillermo
2016-10-01
In 1955 the first Geneva Conference was held in which two important events took place. Firstly, the announcement by President Eisenhower of the Program Atoms for Peace declassifying the information concerning nuclear fission reactors. Secondly, it was forecast that due to the research made on stellerators and magnetic mirrors, the first demo fusion facility would be in operation within ten years. This forecasting, as all of us know today, was a mistake. Forty years afterwards, we can say that probably the first Demo Reactor will be operative in some years more and I sincerely hope that it will be based on the inertial fusion concept...
NASA Astrophysics Data System (ADS)
Brown, C. E.
1995-12-01
The purpose of this report is to describe the research programs and program activities of the US Department of Energy (DOE) that most directly relate to topics in the field of environmental geology. In this light, the mission of the DOE and the definition of environmental geology will be discussed. In a broad sense, environmental geology is that branch of earth science that emphasizes the entire spectrum of human interactions with the physical environment that include environmental health, mineral exploration and exploitation, waste management, energy use and conservation, global change, environmental law, natural and man-made hazard assessment, and land-use planning. A large number of research, development, and demonstration programs are under DOE's administration and guidance that directly or indirectly relate to topics in environmental geology. The primary mission of the DOE is to contribute to the welfare of the nation by providing the scientific foundation, technology, policy, and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The research and development funding effort has most recently been redirected toward greater utilization of clean fossil fuels, especially natural gas, weatherization, renewable energy, energy efficiency, fusion energy, and high-energy physics. This paper will summarize the role that environmental geology has played and will continue to play in the execution of DOE's mission and the energy options that DOE has investigated closely. The specific options are those that center around energy choices, such as alternative-fueled transportation, building technologies, energy-efficient lighting, and clean energy.
Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations
NASA Astrophysics Data System (ADS)
Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.
2014-10-01
The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Thick Nano-Crystalline Diamond films for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawedeit, Christoph
This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuermore » Nukleartechnik at Technical University of Germany supported the work.« less
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; ...
2018-02-22
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Direct-drive implosions at the National Ignition Facility were conducted to reduce CBET by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams over the equatorial region of the target. For the first time, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in themore » average ablation pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Direct-drive implosions at the National Ignition Facility were conducted to reduce CBET by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams over the equatorial region of the target. For the first time, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in themore » average ablation pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.
2012-09-07
This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magnetomore » Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.« less
A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration
2004-09-01
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha
Cell biology. ER-to-Golgi traffic--this bud's for you.
Brittle, E E; Waters, M G
2000-07-21
How do protein-transporting vesicles, which bud from the endoplasmic reticulum (ER), specifically dock to, and fuse with, the Golgi apparatus? In their Perspective, Brittle and Waters discuss new work (Allan et al.) suggesting that some vesicle-associated docking and fusion proteins are "programmed" during vesicle budding from the ER and direct downstream events that occur during fusion of these transport vesicles with the membranes of the Golgi.
A Comprehensive Fusion Liaison Officer Program: The Arizona Model
2015-03-01
Office of Intelligence and Analysis, Office of Intelligence and Analysis Strategic Plan Fiscal Year 2011–Fiscal Year 2018 (Washington, DC: U.S...needs. The second chapter will provide a historical perspective to the reader on the creation of the post 9/11 city of Phoenix’s Liaison Officer...fusion centers’ benefit to address baseline capabilities and further benefit their home agencies. Chapter VI provides the reader recommendations and
A Physics Exploratory Experiment on Plasma Liner Formation
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter
2002-01-01
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.
Segment fusion of ToF-SIMS images.
Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A
2016-06-08
The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.
De la Garza-Ramos, Rafael; Nakhla, Jonathan; Gelfand, Yaroslav; Echt, Murray; Scoco, Aleka N; Kinon, Merritt D; Yassari, Reza
2018-03-01
To identify predictive factors for critical care unit-level complications (CCU complication) after long-segment fusion procedures for adult spinal deformity (ASD). The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database [2010-2014] was reviewed. Only adult patients who underwent fusion of 7 or more spinal levels for ASD were included. CCU complications included intraoperative arrest/infarction, ventilation >48 hours, pulmonary embolism, renal failure requiring dialysis, cardiac arrest, myocardial infarction, unplanned intubation, septic shock, stroke, coma, or new neurological deficit. A stepwise multivariate regression was used to identify independent predictors of CCU complications. Among 826 patients, the rate of CCU complications was 6.4%. On multivariate regression analysis, dependent functional status (P=0.004), combined approach (P=0.023), age (P=0.044), diabetes (P=0.048), and surgery for over 8 hours (P=0.080) were significantly associated with complication development. A simple scoring system was developed to predict complications with 0 points for patients aged <50, 1 point for patients between 50-70, 2 points for patients 70 or over, 1 point for diabetes, 2 points dependent functional status, 1 point for combined approach, and 1 point for surgery over 8 hours. The rate of CCU complications was 0.7%, 3.2%, 9.0%, and 12.6% for patients with 0, 1, 2, and 3+ points, respectively (P<0.001). The findings in this study suggest that older patients, patients with diabetes, patients who depend on others for activities of daily living, and patients who undergo combined approaches or surgery for over 8 hours may be at a significantly increased risk of developing a CCU-level complication after ASD surgery.
Adogwa, Owoicho; Lilly, Daniel T; Vuong, Victoria D; Desai, Shyam A; Ouyang, Bichun; Khalid, Syed; Khanna, Ryan; Bagley, Carlos A; Cheng, Joseph
2018-04-22
Health care systems are increasing efforts to minimize postoperative hospital stays to improve resource use. Common explanations for extended postoperative stay are baseline patient sickness, postoperative complications, or physician practice differences. However, the degree to which extended length of stay (LOS) represents patient illness or postoperative complications remains unknown. The aim is to investigate the influence of postoperative complications and elderly patient comorbidities on extended LOS after anterior cervical discectomy and fusion. This retrospective study was performed from January 1, 2008, to December 31, 2014, on data from the American College of Surgeons National Surgical Quality Improvement Program. Patient demographics, comorbidities, LOS, and inpatient complications were recorded. Multivariable logistic regression analysis was used to determine the odds ratio for risk-adjusted extended LOS. The primary outcome was the degree extended LOS represented patient illness or postoperative complications. Of 4730 participants, 1351 (28.56%) had extended LOS. A minority of patients with extended LOS had a history of relevant comorbidities-diabetes (29.53%), chronic obstructive pulmonary disease (9.4%), congestive heart failure (1.04%), myocardial infarction (0.33%), acute renal failure (0.3%), and stroke (5.92%). Among patients with normal LOS, 96.8% had no complications, 2.7% had 1 complication, and 0.5% had greater than 1 complication. In patients with extended LOS, 79.4% had no complications, 14.5% had 1 complication, and 6.1% had greater than 1 complication (P < 0.0001). Our study suggests much of LOS variation after an anterior cervical discectomy and fusion is not attributable to baseline patient illness or complications and most likely represents differences in practice style or surgeon preference. Copyright © 2018 Elsevier Inc. All rights reserved.
ADS-B and multilateration sensor fusion algorithm for air traffic control
NASA Astrophysics Data System (ADS)
Liang, Mengchen
Air traffic is expected to increase rapidly in the next decade. But, the current Air Traffic Control (ATC) system does not meet the demand of the future safety and efficiency. The Next Generation Air Transportation System (NextGen) is a transformation program for the ATC system in the United States. The latest estimates by Federal Aviation Administration (FAA) show that by 2018 NextGen will reduce total delays in flight by 35 percent and provide 23 billion dollars in cumulative benefits. A satellite-based technology called the Automatic Dependent Surveillance-Broadcast (ADS-B) system is one of the most important elements in NextGen. FAA expects that ADS-B systems will be available in the National Airspace System (NAS) by 2020. However, an alternative surveillance system is needed due to vulnerabilities that exist in ADS-B systems. Multilateration has a high accuracy performance and is believed to be an ideal back-up strategy for ADS-B systems. Thus, in this study, we develop the ADS-B and multilateration sensor fusion algorithm for aircraft tracking applications in ATC. The algorithm contains a fault detection function for ADS-B information monitoring by using Trajectory Change Points reports from ADS-B and numerical vectors from a hybrid estimation algorithm. We consider two types of faults in the ADS-B measurement model to show that the algorithm is able to deal with the bad data from ADS-B systems and automatically select good data from multilateration systems. We apply fuzzy logic concepts and generate time variant parameters during the fusion process. The parameters play a role of weights for combining data from different sensors. The algorithm performance is validated through two aircraft tracking examples.
The impact of preoperative epidural injections on postoperative infection in lumbar fusion surgery.
Singla, Anuj; Yang, Scott; Werner, Brian C; Cancienne, Jourdan M; Nourbakhsh, Ali; Shimer, Adam L; Hassanzadeh, Hamid; Shen, Francis H
2017-05-01
OBJECTIVE Lumbar epidural steroid injections (LESIs) are performed for both diagnostic and therapeutic purposes for a variety of indications, including low-back pain, the leading cause of disability and expense due to work-related conditions in the US. The steroid agent used in epidural injections is reported to relieve nerve root inflammation, local ischemia, and resultant pain, but the injection may also have an adverse impact on spinal surgery performed thereafter. In particular, the possibility that preoperative epidural injections may increase the risk of surgical site infection after lumbar spinal fusion has been reported but has not been studied in detail. The goal of the present study was to use a large national insurance database to analyze the association of preoperative LESIs with surgical site infection after lumbar spinal fusion. METHODS A nationwide insurance database of patient records was used for this retrospective analysis. Current Procedural Terminology codes were used to query the database for patients who had undergone LESI and 1- or 2-level lumbar posterior spinal fusion procedures. The rate of postoperative infection after 1- or 2-level posterior spinal fusion was analyzed. These study patients were then divided into 3 separate cohorts: 1) lumbar spinal fusion performed within 1 month after LESI, 2) fusion performed between 1 and 3 months after LESI, and 3) fusion performed between 3 and 6 months after LESI. The study patients were compared with a control cohort of patients who underwent lumbar fusion without previous LESI. RESULTS The overall 3-month infection rate after lumbar spinal fusion procedure was 1.6% (1411 of 88,540 patients). The infection risk increased in patients who received LESI within 1 month (OR 2.6, p < 0.0001) or 1-3 months (OR 1.4, p = 0.0002) prior to surgery compared with controls. The infection risk was not significantly different from controls in patients who underwent lumbar fusion more than 3 months after LESI. CONCLUSIONS Lumbar spinal fusion performed within 3 months after LESI may be associated with an increased rate of postoperative infection. This association was not found when lumbar fusion was performed more than 3 months after LESI.
A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindmo, Karine; Simonsen, Anne; Brech, Andreas
2006-07-01
Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing hasmore » also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.« less
Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.
2011-07-31
Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test formore » determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.« less
Event Discrimination Using Seismoacoustic Catalog Probabilities
NASA Astrophysics Data System (ADS)
Albert, S.; Arrowsmith, S.; Bowman, D.; Downey, N.; Koch, C.
2017-12-01
Presented here are three seismoacoustic catalogs from various years and locations throughout Utah and New Mexico. To create these catalogs, we combine seismic and acoustic events detected and located using different algorithms. Seismoacoustic events are formed based on similarity of origin time and location. Following seismoacoustic fusion, the data is compared against ground truth events. Each catalog contains events originating from both natural and anthropogenic sources. By creating these seismoacoustic catalogs, we show that the fusion of seismic and acoustic data leads to a better understanding of the nature of individual events. The probability of an event being a surface blast given its presence in each seismoacoustic catalog is quantified. We use these probabilities to discriminate between events from natural and anthropogenic sources. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
The Research of EAST Pedestal Structure and Preliminary Application
NASA Astrophysics Data System (ADS)
Wang, Tengfei; Zang, Qing; Han, Xiaofeng; Xiao, Shumei; Hu, Ailan; Zhao, Junyu
2016-10-01
The pedestal characteristic is an important basis for high confinement mode (H-mode) research. Because of the finite spatial resolution of Thomson scattering (TS) diagnostic on Experimental Advanced Superconducting Tokamak (EAST), it is necessary to characterize the pedestal with a suitable functional form. Based on simulated and experimental data of EAST, it is shown that the two-line method with a bilinear fitting has better reproducibility of pedestal parameters than hyperbolic tangent (tanh) and modified hyperbolic tangent (mtanh) methods. This method has been applied to EAST type I edge localized mode (ELM) discharges, and the electron pedestal density is found to be proportional to the line-averaged density and the edge pressure gradient is found to be proportional to the pedestal pressure. Furthermore, the ion poloidal gyro-radius has been identified as the suitable parameter to describe the pedestal pressure width. supported by National Natural Science Foundation of China (Nos. 11275233 and 11405206), and the National Magnetic Confinement Fusion Science Program of China (No. 2013GB112003), and Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-15-JC01)
Investigation of molecular penetration depth variation with SMBI fluxes
NASA Astrophysics Data System (ADS)
Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo
2016-09-01
We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
The design of the optical Thomson scattering diagnostic for the National Ignition Facility.
Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J
2016-11-01
The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.
AE activity during transient beta drops in high poloidal beta discharges
NASA Astrophysics Data System (ADS)
Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.
2016-10-01
Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Claude; Hammel, Bruce; Azechi, Hiroshi; Labaune, Christine
2006-06-01
The Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA 2005) was held September 4-9, 2005 at the Bellevue Conference Center in Biarritz, France. The host organizations for this conference were the University of Bordeaux 1, the Centre National de la Recherche Scientifique (CNRS) and the Commissariat a l'Energie Atomique (CEA). The conference objective was to review of the state of the art of research in inertial fusion sciences and applications since the last conference held in Monterey California, USA, in 2003. Altogether 509 abstracts were submitted, 418 accepted, and more than 440 persons from 23 countries attended the conference. These Proceedings contain 249 of the papers presented at IFSA 2005. This collection of papers represents the manuscripts submitted to and passing the peer review process. The IFSA 2005 conference is the first of a new series of three conferences to be organized in France, Japan and the USA and governed under Annex I of the Memorandum of Agreement, signed in June 2004, among the Lawrence Livermore Laboratory operated by the University of California (UC), Osaka University, and Institut Lasers et Plasmas (ILP), operated by CNRS Delegation Aquitaine. The IFSA 2005 continued the strong tradition of the three previous conferences in Bordeaux, Kyoto and Monterey. It was the largest IFSA yet with a substantial participation from countries such as China and Russia. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, there continues to be significant progress in the international inertial fusion community. At IFSA 2005, researchers presented the exciting advances in traditional hot spot ignition approach, including results from the early experiments from the NIF laser. A particularly emphasis of the meeting was the rapid and exciting progress in the fast ignition scheme. Integrated and basic physics experiments on GekkoXII, Vulcan, and other laser-matter interaction facilities have shown promising results. A lot of new results of experiments and numerical simulations in ultra-intense laser interactions have also been presented. The Megajoule Laser (LMJ), as one of two facilities being built to achieve target ignition, was a key attraction of IFSA 2005. About 200 participants toured the LMJ construction site and the LIL laser prototype during the conference. Before the tour, a special Facility Focus session examined progress on inertial fusion facilities around the world, including the soon-to-be-completed OMEGA-EP upgrade at Rochester, USA, and FIREX I, at Osaka, Japan. Recent progresses in hohlraum physics continue to give confidence in the ultimate achievement of ignition on the NIF Laser and the Megajoule Laser. The USA are pursuing a very focused program on ICF under the National Ignition Campaign (NIC). In China, a national project has been launched, the goal of which is fusion ignition and plasma burning in about 2020. Progress in direct drive has been notable over the past few years with the cryogenic implosions at LLE, polar direct-drive that may enable to switch rapidly from an indirect- to a direct-drive laser configuration, adiabat shaping of laser pulses, and even "Saturn targets", a short circuit topic from ICF to laboratory astrophysics. About this last topic, radiative shocks and plasma jets were among the most studied subjects. There were also sessions on the technologies of al1 types of drivers, including KrF and DPSSL lasers, particle beams, and Z-pinches. Advances in Z-pinch included double-hohlraum irradiation symmetry and the construction of a PW laser beam for the Z-facility. Advance in plasma diagnostics were dominated by proton imaging from ultra-intense interactions and precise imaging spectroscopy of core implosions. Of special interest, advanced target physics and reactor design studies have started to be more present during this IFSA edition. These Proceedings start with special chapters on the keynote speeches and the Teller lectures. The keynotes give an overview of progress in inertial fusion in North America, Europe and Asia. The Teller lectures show the contributions of this year's two winners: Joe Kilkenny of General Atomics and Max Tabak of LLNL. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers facilities, lasers, particle beams, Z-pinches, target fabrication and reactor design; Part C covers fundamental high-energy density science and other applications of inertial fusion VI technology such as plasma diagnostics, atomic physics and X-ray sources, laboratory astrophysics and laser particle acceleration. The readers should be aware that for some of the papers, only a short version is presented in this book: the extended version will be published in a topical issue of the European Physical Journal. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2005 an extremely successful conference. Jean-Claude Gauthier, technical committee co-chair Bruce Hammel, technical committee co-chair Hiroshi Azechi, technical committee co-chair Christine Labaune, proceedings co-editor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Cadwallader
The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclearmore » endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.« less
Heavy ion driven LMF design concept
NASA Astrophysics Data System (ADS)
Lee, E. P.
1991-08-01
The US Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.
Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl
2016-10-01
The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.
Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.
2014-10-01
Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
2017-07-31
Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels Sb. GRANT NUMBER N00014-12-1-0475 Sc. PROGRAM...naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...Steel, Phase Transformations 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER a. REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES u u
Integrating public health and medical intelligence gathering into homeland security fusion centres.
Lenart, Brienne; Albanese, Joseph; Halstead, William; Schlegelmilch, Jeffrey; Paturas, James
Homeland security fusion centres serve to gather, analyse and share threat-related information among all levels of governments and law enforcement agencies. In order to function effectively, fusion centres must employ people with the necessary competencies to understand the nature of the threat facing a community, discriminate between important information and irrelevant or merely interesting facts and apply domain knowledge to interpret the results to obviate or reduce the existing danger. Public health and medical sector personnel routinely gather, analyse and relay health-related inform-ation, including health security risks, associated with the detection of suspicious biological or chemical agents within a community to law enforcement agencies. This paper provides a rationale for the integration of public health and medical personnel in fusion centres and describes their role in assisting law enforcement agencies, public health organisations and the medical sector to respond to natural or intentional threats against local communities, states or the nation as a whole.
NASA Astrophysics Data System (ADS)
Zhang, G. X.; Hu, S. P.; Zhang, G. L.; Zhang, H. Q.; Yao, Y. J.; Huang, Z.; Wang, M. L.; Sun, H. B.; Valiente-Dobòn, J. J.; Testov, D.; Goasduff, A.; John, P. R.; Siciliano, M.; Galtarosa, F.; Francesco, R.; Mengoni, D.; Bazzacco, D.; Li, E. T.; Hao, X.
2018-05-01
Investigation of the breakup and transfer effect of weakly bound nuclei on the fusion process has been an interesting research topic in the past several years. In comparison with radioactive ion beam (RIB), the beam intensities of stable weakly bound nuclei such as 6,7Li and 9Be, which have significant breakup probability, are orders of magnitude higher. Precise fusion measurements induced by these nuclei have already been performed. However, the conclusion of reaction dynamics was not clear and has contradiction. In order to have a proper understanding of the influence of breakup and transfer of weakly bound projectiles on the fusion process, the 6Li+89Y experiment with incident energies of 22 MeV and 34 MeV was performed on Galileo array in combination with Si-ball EUCLIDES at Legnaro National Laboratory (LNL) in Italy. Using the coincidence by the charged particles and γ-rays, the different reaction channels can be clearly identified.
Be Bold : An Alternative Plan for Fusion Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, Glen Anthony
Government sponsored magnetic fusion energy research in the USA has been on downward trajectory since the early 1990’s. The present path is unsustainable. Indeed, our research community and national research facilities are withering from old-age and lack of investment. The present product (tokamak-centric production of electricity) does not yet work, will not be economic, and is clearly not valued or needed by our society. Even if a prototype existed at any cost, DT-based fusion energy would come too late to significantly impact the reduction of CO 2 emissions in this century. This white paper outlines what “being bold” could meanmore » with respect to the invention and application of nuclear fusion technologies, and how the USA could once again set a visionary example for the world. I present the discussion in two parts, reflecting on the NAS panel two-part assignment of a plan “with” and “without” ITER.« less
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.
1999-01-01
Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Lee, R. L.
1999-11-01
The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.
General software design for multisensor data fusion
NASA Astrophysics Data System (ADS)
Zhang, Junliang; Zhao, Yuming
1999-03-01
In this paper a general method of software design for multisensor data fusion is discussed in detail, which adopts object-oriented technology under UNIX operation system. The software for multisensor data fusion is divided into six functional modules: data collection, database management, GIS, target display and alarming data simulation etc. Furthermore, the primary function, the components and some realization methods of each modular is given. The interfaces among these functional modular relations are discussed. The data exchange among each functional modular is performed by interprocess communication IPC, including message queue, semaphore and shared memory. Thus, each functional modular is executed independently, which reduces the dependence among functional modules and helps software programing and testing. This software for multisensor data fusion is designed as hierarchical structure by the inheritance character of classes. Each functional modular is abstracted and encapsulated through class structure, which avoids software redundancy and enhances readability.
Generic Stellarator-like Magnetic Fusion Reactor
NASA Astrophysics Data System (ADS)
Sheffield, John; Spong, Donald
2015-11-01
The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.
An acceleration system for Laplacian image fusion based on SoC
NASA Astrophysics Data System (ADS)
Gao, Liwen; Zhao, Hongtu; Qu, Xiujie; Wei, Tianbo; Du, Peng
2018-04-01
Based on the analysis of Laplacian image fusion algorithm, this paper proposes a partial pipelining and modular processing architecture, and a SoC based acceleration system is implemented accordingly. Full pipelining method is used for the design of each module, and modules in series form the partial pipelining with unified data formation, which is easy for management and reuse. Integrated with ARM processor, DMA and embedded bare-mental program, this system achieves 4 layers of Laplacian pyramid on the Zynq-7000 board. Experiments show that, with small resources consumption, a couple of 256×256 images can be fused within 1ms, maintaining a fine fusion effect at the same time.
Relevance of advanced nuclear fusion research: Breakthroughs and obstructions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppi, Bruno, E-mail: coppi@mit.edu
2016-03-25
An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less
Overview of FAR-TECH's magnetic fusion energy research
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.
2017-10-01
FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.
Conceptual design of the National Ignition Facility
NASA Astrophysics Data System (ADS)
Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.
1995-12-01
The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was formally submitted to Congress as part of the President's FY 1996 budget. If funded as planned, the Project will cost approximately $1.1 billion and will be completed at the end of FY 2002.
Saavoss, Josh D; Koenig, Lane; Cher, Daniel J
2016-01-01
Sacroiliac joint (SIJ) dysfunction is associated with a marked decrease in quality of life. Increasing evidence supports minimally invasive SIJ fusion as a safe and effective procedure for the treatment of chronic SIJ dysfunction. The impact of SIJ fusion on worker productivity is not known. Regression modeling using data from the National Health Interview Survey was applied to determine the relationship between responses to selected interview questions related to function and economic outcomes. Regression coefficients were then applied to prospectively collected, individual patient data in a randomized trial of SIJ fusion (INSITE, NCT01681004) to estimate expected differences in economic outcomes across treatments. Patients who receive SIJ fusion using iFuse Implant System(®) have an expected increase in the probability of working of 16% (95% confidence interval [CI] 11%-21%) relative to nonsurgical patients. The expected change in earnings across groups was US $3,128 (not statistically significant). Combining the two metrics, the annual increase in worker productivity given surgical vs nonsurgical care was $6,924 (95% CI $1,890-$11,945). For employees with chronic, severe SIJ dysfunction, minimally invasive SIJ fusion may improve worker productivity compared to nonsurgical treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The 2013 International Sherwood Fusion Theory Conference was held in Santa Fe, NM from April 15-17. There were 15 invited talks spanning the field of fusion theory on topics such as stellerator theory, intrinsic rotation in tokamaks, transport in the plasma edge, and plasma-wall interactions. Author-provided summaries of several of the invited talks are included on pages 5 to 10 of this document. Plenary talks were given by Per Helander (Max-Planck-Institut fuer Plasmaphysik, Greifswald, Germany) on “Overview of recent developments in stellerator theory”, Amit Misra (Los Alamos National Laboratory) on “Stable storage of Helium at interfaces in nanocomposites”, Sergei Krasheninnikovmore » (UC San Diego) on “On the physics of the first wall in fusion devices”, and Stuart Bale (UC Berkeley) on “Solar wind thermodynamics and turbulence: collisional – collisionless transitions”.« less
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...
2016-03-04
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, D. T.; Woods, D. T.; Smalyuk, V. A.
2015-05-19
The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ~2 × 10⁹ at a convergence ratio of R₀/R ~ 10 and little impact due to the growth of hydrodynamic instabilities andmore » mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.« less
Report on the Installation and Preparedness of a Protochips Fusion in-situ Heating Holder for TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.
2017-03-01
This brief report documents the procurement and installation of a Protochips Fusion (formerly Aduro) high-temperature, high stability transmission electron microscopy (TEM) specimen holder that allows for the high spatial resolution characterization of material specimens at high temperature in situ of an electron microscope. This specimen holder was specifically procured for use with The FEI Talos F200X Scanning/Transmission Electron Microscope (STEM) in Oak Ridge National Laboratory’s (ORNL’s) Low Activation Materials Development and Analysis (LAMDA) Laboratory. The Protochips Fusion holder will enable high-resolution structural and chemical analysis of irradiated materials at high temperature, becoming a unique capability worldwide, and would encourage high-qualitymore » in situ experiments to be conducted on irradiated materials.« less
Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geissel, Matthias; Awe, Thomas James; Bliss, David E.
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less
US fusion effort hit by tokamak losses
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2016-11-01
Stewart Prager, director of the Princeton Plasma Physics Laboratory (PPPL) in the US, resigned in late September just weeks after a major setback at the lab's National Spherical Torus Experiment Upgrade (NSTX-U).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.
The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventionalmore » fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.« less
Overview of long pulse H-mode operation on EAST
NASA Astrophysics Data System (ADS)
Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.
Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2016-10-01
The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.
FY14 LLNL OMEGA Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Fournier, K. B.; Baker, K.
In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less
Fusion Energy Sciences Network Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dart, Eli; Tierney, Brian
2012-09-26
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Officemore » of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.« less
FY15 LLNL OMEGA Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Baker, K. L.; Barrios, M. A.
In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less
An Overview of Research and Design Activities at CTFusion
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Jarboe, T. R.; Hossack, A. C.
2016-10-01
CTFusion, a newly formed company dedicated to the development of compact, toroidal fusion energy, is a spin-off from the University of Washington that will build upon the successes of the HIT-SI research program. The mission of the company to develop net-gain fusion power cores that will serve as the heart of economical fusion power plants or radioactive-waste destroying burner reactors. The overarching vision and development plan of the company will be presented, along with a detailed justification and design for our next device, the HIT-TD (Technology Demonstration) prototype. By externally driving the edge current and imposing non-axisymmetric magnetic perturbations, HIT-TD should demonstrate the sustainment of stable spheromak configurations with Imposed-Dynamo Current Drive (IDCD), as was accomplished in the HIT-SI device, with higher current gains and temperatures than previously possible. HIT-TD, if successful, will be an instrumental step along this path to economical fusion energy, and will serve as the stepping stone to our Proof-Of-Principle device (HIT-PoP). Beyond the implications of higher performance, sustained spheromaks for fusion applications, the HIT-TD platform will provide a unique system to observe plasma self-organizational phenomena of interest for other fusion devices, and astrophysical systems as well. Lastly, preliminary nuclear engineering design simulations with the MCNP6 code of the HIT-FNSF (Fusion Nuclear Science Facility) device will be presented.
Datte, P. S.; Ross, J. S.; Froula, D. H.; ...
2016-09-21
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datte, P. S.; Ross, J. S.; Froula, D. H.
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
Cutler, J A; Tahir, R; Sreenivasamurthy, S K; Mitchell, C; Renuse, S; Nirujogi, R S; Patil, A H; Heydarian, M; Wong, X; Wu, X; Huang, T-C; Kim, M-S; Reddy, K L; Pandey, A
2017-07-01
Two major types of leukemogenic BCR-ABL fusion proteins are p190 BCR-ABL and p210 BCR-ABL . Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190 BCR-ABL and p210 BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210 BCR-ABL , we observed an increased engagement of molecules active proximal to the membrane and in the case of p190 BCR-ABL , an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.
Electron Shock Ignition of Inertial Fusion Targets
Shang, W. L.; Betti, R.; Hu, S. X.; ...
2017-11-07
Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2.
Next-generation laser for Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C.D.; Deach, R.J.; Bibeau, C.
1997-09-29
We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; MacGowan, B. J.; Meezan, N. B.; Adams, P. A.; Alfonso, J. B.; Alger, E. T.; Alherz, Z.; Alvarez, L. F.; Alvarez, S. S.; Amick, P. V.; Andersson, K. S.; Andrews, S. D.; Antonini, G. J.; Arnold, P. A.; Atkinson, D. P.; Auyang, L.; Azevedo, S. G.; Balaoing, B. N. M.; Baltz, J. A.; Barbosa, F.; Bardsley, G. W.; Barker, D. A.; Barnes, A. I.; Baron, A.; Beeler, R. G.; Beeman, B. V.; Belk, L. R.; Bell, J. C.; Bell, P. M.; Berger, R. L.; Bergonia, M. A.; Bernardez, L. J.; Berzins, L. V.; Bettenhausen, R. C.; Bezerides, L.; Bhandarkar, S. D.; Bishop, C. L.; Bond, E. J.; Bopp, D. R.; Borgman, J. A.; Bower, J. R.; Bowers, G. A.; Bowers, M. W.; Boyle, D. T.; Bradley, D. K.; Bragg, J. L.; Braucht, J.; Brinkerhoff, D. L.; Browning, D. F.; Brunton, G. K.; Burkhart, S. C.; Burns, S. R.; Burns, K. E.; Burr, B.; Burrows, L. M.; Butlin, R. K.; Cahayag, N. J.; Callahan, D. A.; Cardinale, P. S.; Carey, R. W.; Carlson, J. W.; Casey, A. D.; Castro, C.; Celeste, J. R.; Chakicherla, A. Y.; Chambers, F. W.; Chan, C.; Chandrasekaran, H.; Chang, C.; Chapman, R. F.; Charron, K.; Chen, Y.; Christensen, M. J.; Churby, A. J.; Clancy, T. J.; Cline, B. D.; Clowdus, L. C.; Cocherell, D. G.; Coffield, F. E.; Cohen, S. J.; Costa, R. L.; Cox, J. R.; Curnow, G. M.; Dailey, M. J.; Danforth, P. M.; Darbee, R.; Datte, P. S.; Davis, J. A.; Deis, G. A.; Demaret, R. D.; Dewald, E. L.; di Nicola, P.; di Nicola, J. M.; Divol, L.; Dixit, S.; Dobson, D. B.; Doppner, T.; Driscoll, J. D.; Dugorepec, J.; Duncan, J. J.; Dupuy, P. C.; Dzenitis, E. G.; Eckart, M. J.; Edson, S. L.; Edwards, G. J.; Edwards, M. J.; Edwards, O. D.; Edwards, P. W.; Ellefson, J. C.; Ellerbee, C. H.; Erbert, G. V.; Estes, C. M.; Fabyan, W. J.; Fallejo, R. N.; Fedorov, M.; Felker, B.; Fink, J. T.; Finney, M. D.; Finnie, L. F.; Fischer, M. J.; Fisher, J. M.; Fishler, B. T.; Florio, J. W.; Forsman, A.; Foxworthy, C. B.; Franks, R. M.; Frazier, T.; Frieder, G.; Fung, T.; Gawinski, G. N.; Gibson, C. R.; Giraldez, E.; Glenn, S. M.; Golick, B. P.; Gonzales, H.; Gonzales, S. A.; Gonzalez, M. J.; Griffin, K. L.; Grippen, J.; Gross, S. M.; Gschweng, P. H.; Gururangan, G.; Gu, K.; Haan, S. W.; Hahn, S. R.; Haid, B. J.; Hamblen, J. E.; Hammel, B. A.; Hamza, A. V.; Hardy, D. L.; Hart, D. R.; Hartley, R. G.; Haynam, C. A.; Heestand, G. M.; Hermann, M. R.; Hermes, G. L.; Hey, D. S.; Hibbard, R. L.; Hicks, D. G.; Hinkel, D. E.; Hipple, D. L.; Hitchcock, J. D.; Hodtwalker, D. L.; Holder, J. P.; Hollis, J. D.; Holtmeier, G. M.; Huber, S. R.; Huey, A. W.; Hulsey, D. N.; Hunter, S. L.; Huppler, T. R.; Hutton, M. S.; Izumi, N.; Jackson, J. L.; Jackson, M. A.; Jancaitis, K. S.; Jedlovec, D. R.; Johnson, B.; Johnson, M. C.; Johnson, T.; Johnston, M. P.; Jones, O. S.; Kalantar, D. H.; Kamperschroer, J. H.; Kauffman, R. L.; Keating, G. A.; Kegelmeyer, L. M.; Kenitzer, S. L.; Kimbrough, J. R.; King, K.; Kirkwood, R. K.; Klingmann, J. L.; Knittel, K. M.; Kohut, T. R.; Koka, K. G.; Kramer, S. W.; Krammen, J. E.; Krauter, K. G.; Krauter, G. W.; Krieger, E. K.; Kroll, J. J.; La Fortune, K. N.; Lagin, L. J.; Lakamsani, V. K.; Landen, O. L.; Lane, S. W.; Langdon, A. B.; Langer, S. H.; Lao, N.; Larson, D. W.; Latray, D.; Lau, G. T.; Le Pape, S.; Lechleiter, B. L.; Lee, Y.; Lee, T. L.; Li, J.; Liebman, J. A.; Lindl, J. D.; Locke, S. F.; Loey, H. K.; London, R. A.; Lopez, F. J.; Lord, D. M.; Lowe-Webb, R. R.; Lown, J. G.; Ludwigsen, A. P.; Lum, N. W.; Lyons, R. R.; Ma, T.; MacKinnon, A. J.; Magat, M. D.; Maloy, D. T.; Malsbury, T. N.; Markham, G.; Marquez, R. M.; Marsh, A. A.; Marshall, C. D.; Marshall, S. R.; Maslennikov, I. L.; Mathisen, D. G.; Mauger, G. J.; Mauvais, M.-Y.; McBride, J. A.; McCarville, T.; McCloud, J. B.; McGrew, A.; McHale, B.; Macphee, A. G.; Meeker, J. F.; Merill, J. S.; Mertens, E. P.; Michel, P. A.; Miller, M. G.; Mills, T.; Milovich, J. L.; Miramontes, R.; Montesanti, R. C.; Montoya, M. M.; Moody, J.; Moody, J. D.; Moreno, K. A.; Morris, J.; Morriston, K. M.; Nelson, J. R.; Neto, M.; Neumann, J. D.; Ng, E.; Ngo, Q. M.; Olejniczak, B. L.; Olson, R. E.; Orsi, N. L.; Owens, M. W.; Padilla, E. H.; Pannell, T. M.; Parham, T. G.; Patterson, R. W., Jr.; Pavel, G.; Prasad, R. R.; Pendlton, D.; Penko, F. A.; Pepmeier, B. L.; Petersen, D. E.; Phillips, T. W.; Pigg, D.; Piston, K. W.; Pletcher, K. D.; Powell, C. L.; Radousky, H. B.; Raimondi, B. S.; Ralph, J. E.; Rampke, R. L.; Reed, R. K.; Reid, W. A.; Rekow, V. V.; Reynolds, J. L.; Rhodes, J. J.; Richardson, M. J.; Rinnert, R. J.; Riordan, B. P.; Rivenes, A. S.; Rivera, A. T.; Roberts, C. J.; Robinson, J. A.; Robinson, R. B.; Robison, S. R.; Rodriguez, O. R.; Rogers, S. P.; Rosen, M. D.; Ross, G. F.; Runkel, M.; Runtal, A. S.; Sacks, R. A.; Sailors, S. F.; Salmon, J. T.; Salmonson, J. D.; Saunders, R. L.; Schaffer, J. R.; Schindler, T. M.; Schmitt, M. J.; Schneider, M. B.; Segraves, K. S.; Shaw, M. J.; Sheldrick, M. E.; Shelton, R. T.; Shiflett, M. K.; Shiromizu, S. J.; Shor, M.; Silva, L. L.; Silva, S. A.; Skulina, K. M.; Smauley, D. A.; Smith, B. E.; Smith, L. K.; Solomon, A. L.; Sommer, S.; Soto, J. G.; Spafford, N. I.; Speck, D. E.; Springer, P. T.; Stadermann, M.; Stanley, F.; Stone, T. G.; Stout, E. A.; Stratton, P. L.; Strausser, R. J.; Suter, L. J.; Sweet, W.; Swisher, M. F.; Tappero, J. D.; Tassano, J. B.; Taylor, J. S.; Tekle, E. A.; Thai, C.; Thomas, C. A.; Thomas, A.; Throop, A. L.; Tietbohl, G. L.; Tillman, J. M.; Town, R. P. J.; Townsend, S. L.; Tribbey, K. L.; Trummer, D.; Truong, J.; Vaher, J.; Valadez, M.; van Arsdall, P.; van Prooyen, A. J.; Vergel de Dios, E. O.; Vergino, M. D.; Vernon, S. P.; Vickers, J. L.; Villanueva, G. T.; Vitalich, M. A.; Vonhof, S. A.; Wade, F. E.; Wallace, R. J.; Warren, C. T.; Warrick, A. L.; Watkins, J.; Weaver, S.; Wegner, P. J.; Weingart, M. A.; Wen, J.; White, K. S.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wilhelmsen, K.; Williams, E. A.; Williams, W. H.; Willis, L.; Wilson, E. F.; Wilson, B. A.; Witte, M. C.; Work, K.; Yang, P. S.; Young, B. K.; Youngblood, K. P.; Zacharias, R. A.; Zaleski, T.; Zapata, P. G.; Zhang, H.; Zielinski, J. S.; Kline, J. L.; Kyrala, G. A.; Niemann, C.; Kilkenny, J. D.; Nikroo, A.; van Wonterghem, B. M.; Atherton, L. J.; Moses, E. I.
2011-02-01
We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of TRAD=300eV and a symmetric implosion to a 100μm diameter hot core.
Electron Shock Ignition of Inertial Fusion Targets
NASA Astrophysics Data System (ADS)
Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.; Ren, C.; Christopherson, A. R.; Bose, A.; Theobald, W.
2017-11-01
It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e 's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e 's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ˜1016 W /cm2 .
Electron Shock Ignition of Inertial Fusion Targets.
Shang, W L; Betti, R; Hu, S X; Woo, K; Hao, L; Ren, C; Christopherson, A R; Bose, A; Theobald, W
2017-11-10
It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ∼10^{16} W/cm^{2}.
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
Hodor, P G; Ettensohn, C A
1998-07-01
Cell-cell fusion occurs in a wide variety of developmental contexts, yet the mechanisms involved are just beginning to be elucidated. In the sea urchin embryo, primary mesenchyme cells (PMCs) fuse to form syncytial filopodial cables within which skeletal spicules are deposited. Taking advantage of the optical transparency and ease of micromanipulation of sea urchin embryos, we have developed methods for directly observing the dynamics of PMC fusion in vivo. A fraction of the PMCs was labeled with fluorescent dextran and transfer of the dye to unlabeled PMCs was followed by time-lapse, fluorescence microscopy. Fusion was first detected about 2 h after PMCs began to migrate within the blastocoel. Fusion proceeded in parallel with the assembly of the PMC ring pattern and was complete by the early gastrula stage. The formation of a single, extensive PMC syncytium was confirmed by DiI labeling of fixed embryos. When single micromeres were isolated and cultured in unsupplemented seawater, they divided and their progeny underwent fusion. This shows that the capacity to fuse is autonomously programmed in the micromere-PMC lineage by the 16-cell stage. PMC transplantations at late embryonic stages revealed that these cells remain fusion-competent long after their fusion is complete. At late stages, other mesenchyme cells (blastocoelar cells) are also present within the blastocoel and are migrating and fusing with one another. Fusion-competent blastocoelar cells and PMCs come into contact but do not fuse with one another, indicating that these two cell types fuse by distinct mechanisms. When secondary mesenchyme cells convert to a skeletogenic fate they alter their fusogenic properties and join the PMC syncytium, as shown by transfer of fluorescent dextran. Our analysis has provided a detailed picture of the cellular basis and regulation of mesodermal cell fusion and has important implications regarding molecular mechanisms that underlie fusion.
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.
2015-05-01
The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less
Monticone, Marco; Ambrosini, Emilia; Rocca, Barbara; Foti, Calogero; Ferrante, Simona
2017-06-01
The Tampa Scale of Kinesiophobia (TSK) is a commonly-used measure for the assessment of fear of movement beliefs in chronic complaints, but its responsiveness in subjects after lumbar fusion has been never reported. Evaluating the responsiveness and minimal clinically important differences (MCIDs) for the TSK and its subscales after lumbar fusion. Population-based cohort study. Secondary care rehabilitation hospital. In-patients undergoing rehabilitation after lumbar fusion. At the beginning and end of a four-week motor and cognitive-behavioral rehabilitation program, 180 patients completed the TSK. After the intervention, the global perceived effect (GPE) was analyzed to produce a dichotomous outcome (improved vs. stable). Responsiveness for the TSK and its subscales were calculated by distribution (effect size [ES], standardized response mean [SRM]) and anchor-based methods (receiver operating characteristics (ROC) curves; correlations between change scores of the TSK and its subscales and GPE). ROC curves were also used to compute MCID values. The ES ranged from 1.63 to 1.77 and the SRM from 1.25 to 1.39 for TSK and its subscales. The ROC analyses revealed a value of area under the curve (0.999 [95% CI: 0.978; 1.000], 0.998 [95% CI: 0.975; 1.000], 0.990 [95% CI: 0.962; 0.999] for the TSK, Harm and Activity Avoidance subscales, respectively). MCID values greater than 6 (95% CI: >5; >6), 4 (95% CI: >3; >5), and 2 (95% CI: >2; >2) were achieved for the TSK, Harm and Activity Avoidance subscales, respectively. Correlations between change scores of the TSK and its subscales and GPE were high (0.786-0.830). The TSK and its subscales were sensitive in detecting clinical changes in subjects undergoing rehabilitation after lumbar fusion. The obtained MCID values will help in the design of future randomized controlled trials and in the interpretation of the clinical impact of a rehabilitation program after lumbar fusion.
Application of the aqueous self-cooled blanket concept to fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, L.; Steiner, D.; Embrechts, M.J.
1986-01-01
The development of a reliable, safe, and economically attractive tritium breeding blanket is an essential requirement in the path to commercial fusion power. The primary objective of the recently completed Blanket Comparison and Selection Study (BCSS) was to evaluate previously proposed concepts, and thereby identify a limited number of preferred options that would provide the focus for an R and D program. The water-cooled concepts in the BCSS scored relatively low. We consider it prudent that a promising water-cooled blanket concept be included in this program since nearly all power producing reactors currently rely on water technology. It is inmore » this context that we propose the novel water-cooled blanket concept described herein.« less
Mach-Zehnder Fiber-Optic Links for ICF Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, E. K., Hermann, H. W.
2012-11-01
This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.
Response to Questions on Presentation to NAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W R
2011-03-17
Response to questions on the presentation 'Overview to Chamber and Power Plant Designs for IFE' made at the 1/29-31 meeting of the National Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel
2015-12-01
In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.
Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph
2015-01-01
Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.
Performance testing of a prototype Pd-Ag diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, G. A.; Hodge, B. J.
The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less
The Quality and Readability of Information Available on the Internet Regarding Lumbar Fusion
Zhang, Dafang; Schumacher, Charles; Harris, Mitchel B.; Bono, Christopher M.
2015-01-01
Study Design An Internet-based evaluation of Web sites regarding lumbar fusion. Objective The Internet has become a major resource for patients; however, the quality and readability of Internet information regarding lumbar fusion is unclear. The objective of this study is to evaluate the quality and readability of Internet information regarding lumbar fusion and to determine whether these measures changed with Web site modality, complexity of the search term, or Health on the Net Code of Conduct certification. Methods Using five search engines and three different search terms of varying complexity (“low back fusion,” “lumbar fusion,” and “lumbar arthrodesis”), we identified and reviewed 153 unique Web site hits for information quality and readability. Web sites were specifically analyzed by search term and Web site modality. Information quality was evaluated on a 5-point scale. Information readability was assessed using the Flesch-Kincaid score for reading grade level. Results The average quality score was low. The average reading grade level was nearly six grade levels above that recommended by National Work Group on Literacy and Health. The quality and readability of Internet information was significantly dependent on Web site modality. The use of more complex search terms yielded information of higher reading grade level but not higher quality. Conclusions Higher-quality information about lumbar fusion conveyed using language that is more readable by the general public is needed on the Internet. It is important for health care providers to be aware of the information accessible to patients, as it likely influences their decision making regarding care. PMID:26933614
The Quality and Readability of Information Available on the Internet Regarding Lumbar Fusion.
Zhang, Dafang; Schumacher, Charles; Harris, Mitchel B; Bono, Christopher M
2016-03-01
Study Design An Internet-based evaluation of Web sites regarding lumbar fusion. Objective The Internet has become a major resource for patients; however, the quality and readability of Internet information regarding lumbar fusion is unclear. The objective of this study is to evaluate the quality and readability of Internet information regarding lumbar fusion and to determine whether these measures changed with Web site modality, complexity of the search term, or Health on the Net Code of Conduct certification. Methods Using five search engines and three different search terms of varying complexity ("low back fusion," "lumbar fusion," and "lumbar arthrodesis"), we identified and reviewed 153 unique Web site hits for information quality and readability. Web sites were specifically analyzed by search term and Web site modality. Information quality was evaluated on a 5-point scale. Information readability was assessed using the Flesch-Kincaid score for reading grade level. Results The average quality score was low. The average reading grade level was nearly six grade levels above that recommended by National Work Group on Literacy and Health. The quality and readability of Internet information was significantly dependent on Web site modality. The use of more complex search terms yielded information of higher reading grade level but not higher quality. Conclusions Higher-quality information about lumbar fusion conveyed using language that is more readable by the general public is needed on the Internet. It is important for health care providers to be aware of the information accessible to patients, as it likely influences their decision making regarding care.
NASA Astrophysics Data System (ADS)
Stambaugh, Ronald D.
2014-01-01
This last year being an odd numbered year, the pages of Nuclear Fusion saw a large influx of expanded papers from the 2012 Fusion Energy Conference in San Diego. Many papers have focused on the scientific and technical challenges posed by ITER. Contributions are steadily increasing from the new superconducting tokamaks in Asia. The ITER Project continues to move ahead. Construction at the Cadarache site is quite remarkable. Buildings completed include the huge Poloidal Field Coils Winding Facility and the Headquarters building, which has been occupied by the ITER staff. Work is progressing on the Assembly building and the Cryostat Workshop. The base of the tokamak complex is being laid. Besides the construction that is taking place and will take place at the site, components from around the world have to navigate the complex route from Marseilles to the site. A test convoy replicating the dimensions and weights of the most exceptional ITER loads successfully traversed that route in 2013. We are pleased to report that the IAEA and ITER have finalized the agreement for ITER authors to publish papers in Nuclear Fusion . Nuclear Fusion is proud to continue its key role in providing the leading forum for the documentation of scientific progress and exchange of research results internationally toward fusion energy. Refereeing The Nuclear Fusion editorial office appreciates greatly the effort made by our referees to sustain the high quality of the journal. Since January 2005, we have been offering the most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in previous years. The following people have been selected: J.M. Canik, Oak Ridge National Laboratory, USA I.T. Chapman, Culham Centre for Fusion Energy, UK L.-G. Eriksson, Commission of the European Communities, Belgium T. Evans, General Atomics, USA A. Hassanein, Purdue University, USA Y.-M. Jeon, National Fusion Research Institute, Spain S. Kajita, Nagoya University, Japan T.P. Kiviniemi, Aalto University, Finland R.M. More, Lawrence Livermore National Laboratory, USA F. Sattin, Associazione Euratom-ENEA-CNR, Italy J.A. Snipes, ITER Organization, France W. Suttrop, Max Planck Institute for Plasma Physics-Garching, Germany F.L. Tabares, Energy Environment and Technology Research Centre, Spain Y. Ueda, Osaka University, Japan V.S. Voitsenya, Kharkov Institute of Physics and Technology, Ukraine G. Xu, Chinese Academy of Sciences-Hefei Institutes of Physical Sciences, People's Republic of China In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion . At the end of this issue we give the full list of all referees for 2013. Our thanks to them! We also wish to express our thanks to Paul Thomas, who served as Guest Editor for the special issue of the overview and summary reports from the 24th Fusion Energy Conference in San Diego, October 2012. This issue is of great value as a summary of the major developments worldwide in fusion research in the last two years. Authors The winner of the 2013 Nuclear Fusion Award is D.G. Whyte for the paper: I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod [1], and we congratulate him and coauthors on this achievement. We also note special topic papers published in 2013: Technical challenges in the construction of the steady-state stellarator Wendestein 7-X by H.S. Bosch et al [2], Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER by I.T. Chapman et al [3] and IFMIF: overview of the validation activities by J. Knaster et al [4]. The Board of Editors The Board of Editors has had a substantial turnover in members. For their great service to the journal, we wish to thank the following outgoing Board Members whose term of service was reached at the end of 2012: Keith Burrell, Atsushi Fukuyama, Guenter Janeschitz, Myeun Kwon, Alberto Loarte, Derek Stork, Tony Taylor and Kazuo Toi. We welcome the new Board Members who have joined the Board from the start of 2013: Pietro Barabaschi, Riccardo Betti, Rich Callis, Wonho Choi, Yasuaki Kishimoto, Joaquin Sánchez, Paul Thomas, Mickey Wade, Howard Wilson, Hiroshi Yamada and Steve Zinkle. We look forward to working with the Board to maintain the high standing of Nuclear Fusion . The Nuclear Fusion office and IOP Publishing Just as the journal depends on the authors, referees, and Board of Editors, so its success is also due to the tireless and largely unsung efforts of the IAEA Nuclear Fusion office in Vienna and IOP Publishing in Bristol. I would like to express my personal thanks to the team for the support that they have given to me, the authors and the referees. Season's greetings I would like to wish our readers, authors, referees, Board of Editors, and Vienna and Bristol office staff season's greetings and thank them for their contributions to Nuclear Fusion in 2013. References [1] Whyte D.G. et al 2010 I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod Nucl. Fusion 50 105005 [2] Bosch H.-S. et al 2013 Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X Nucl. Fusion 53 126001 [3] Chapman I.T. et al 2013 Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER Nucl. Fusion 53 066001 [4] Knaster J. et al 2013 IFMIF: overview of the validation activities Nucl. Fusion 53 116001
Status and improvement of CLAM for nuclear application
NASA Astrophysics Data System (ADS)
Huang, Qunying
2017-08-01
A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.
Orth, Charles D.
2016-02-23
We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields — not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulationsmore » and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.
The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less
Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.
Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J
2015-06-26
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR
NASA Astrophysics Data System (ADS)
Zhang, Xiaokang; Liu, Songlin; Zhu, Qingjun; Gao, Fangfang; Li, Jia
2016-11-01
The water-cooled ceramic breeder (WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor (CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-vacuum vessel components is essential for the assessment of radioactive wastes and the safety of CFETR. The activation calculation of CFETR in-vacuum vessel components was carried out by using the Monte Carlo N-Particle Transport Code MCNP, IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, and the nuclear inventory code FISPACT-2007 and corresponding EAF-2007 libraries. In these analyses, the three-dimensional (3-D) neutronics model was employed and the WCCB blanket, the divertor, and the shield were modeled in detail to provide the detailed spatial distribution of the neutron flux and energy spectra. Then the neutron flux, energy spectra and the materials specification were transferred to FISPACT for the activation calculation with an assumed irradiation scenario of CFETR. This paper presents the main results of the activation analysis to evaluate the radioactivity, the decay heat, the contact dose, and the waste classification of the radioactive materials. At the time of shutdown, the activity of the WCCB blanket is 1.88×1019 Bq and the specific activity, the decay heat and the contact dose rate are 1.7 × 1013 Bq/kg, 3.05 MW, and 2.0 × 103 Sv/h respectively. After cooling for 100 years, 79% (4166.4 tons) radioactive wastes produced from the blanket, divertor, high temperature shield (HTS) and low temperature shield (LTS) need near surface disposal, while 21% (1112.3 tons) need geological disposal. According to results of the contact dose rate, all the components of the blanket, divertor, HTS and LTS could potentially be recycled after shutdown by using advanced remote handling equipment. In addition, the selection of Eurofer97 or RAFM for the divertor is better than that of SS316 because SS316 makes the activity of the divertor-body keep at a relatively high level. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015BG108002, 2014GB122000, 2014GB119000), National Natural Science Foundation of China (No. 11175207)
International Police Cooperation on Countering Transnational Terrorism
2012-06-01
First Response Network FTF Fusion Task Force GNI Gross National Income HENU Heads of EUROPOL National Units Group ICPC International Criminal...Destruction xi ACKNOWLEDGMENTS First and foremost, I would like to submit my sincerest gratitude to my advisors, Michael E. Freeman, Ph.D., and David C...target country). 3 The first known international police cooperation initiative was launched in 1851 under the name Police Union of German States
2014-07-01
technology work seeks to address gaps in the management, processing, and fusion of heterogeneous (i.e., soft and hard ) information to aid human decision...and bandwidth) to exploit the vast and growing amounts of data [16], [17]. There is also a broad research program on techniques for soft and hard ...Mott, G. de Mel, and T. Pham, “Integrating hard and soft information sources for D2D using controlled natural language,” in Proc. Information Fusion
Tritium distribution in ground water around large underground fusion explosions
Stead, F.W.
1963-01-01
Tritium will be released in significant amounts from large underground nuclear fusion explosions in the Plowshare Program. The tritium could become highly concentrated in nearby ground waters, and could be of equal or more importance as a possible contaminant than other long-lived fission-product and induced radionuclides. Behavior of tritiated water in particular hydrologic and geologic environments, as illustrated by hypothetical explosions in dolomite and tuff, must be carefully evaluated to predict under what conditions high groundwater concentrations of tritium might occur.
Intelligent Data Fusion for Wide-Area Assessment of UXO Contamination
2008-02-29
Development Program (SERDP). The authors thank the SERDP staff and team members for their assistance, particularly Dr. Herb Nelson and Dr. Dan Steinhurst...Fusion and Integration for Intelligent Systems, Taipei, Taiwan , R.O.C., Aug., 1999. 4. B.J. Johnson, T.G. Moore, B.J. Blejer, C.F. Lee, T.P. Opar, S...gene-expression data using Dempster-Shafer Theory of evidence to predict breast cancer tumors,” Bioinformation 1(5), 170-5, (2006) 21. Dr. Herb H. Nelson, personal communication (2007)
2016-03-03
for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved
Feasibility study of a magnetic fusion production reactor
NASA Astrophysics Data System (ADS)
Moir, R. W.
1986-12-01
A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.
Christensen, Finn Bjarke
2004-10-01
Chronic low back pain (CLBP) has become one of the most common causes of disability in adults under 45 years of age and is consequently one of the most common reasons for early retirement in industrialised societies. Accordingly, CLBP represents an expensive drain on society's resources and is a very challenging area for which a consensus for rational therapy is yet to be established. The spinal fusion procedure was introduced as a treatment option for CLBP more than 70 years ago. However, few areas of spinal surgery have caused so much controversy as spinal fusion. The literature reveals divergent opinions about when fusion is indicated and how it should be performed. Furthermore, the significance of the role of postoperative rehabilitation following spinal fusion may be underestimated. There exists no consensus on the design of a program specific for rehabilitation. Ideally, for any given surgical procedure, it should be possible to identify not only possible complications relative to a surgical procedure, but also what symptoms may be expected, and what pain behaviour may be expected of a particular patient. The overall aims of the current studies were: 1) to introduce patient-based functional outcome evaluation into spinal fusion treatment; 2) to evaluate radiological assessment of different spinal fusion procedures; 3) to investigate the effect of titanium versus stainless steel pedicle screws on mechanical fixation and bone ingrowth in lumbar spinal fusion; 4) to analyse the clinical and radiological outcome of different lumbar spinal fusion techniques; 5) to evaluate complications and re-operation rates following different surgical procedures; and 6) to analyse the effect of different rehabilitation strategies for lumbar spinal fusion patients. The present thesis comprises 9 studies: 2 clinical retrospective studies, 1 clinical prospective case/reference study, 5 clinical randomised prospective studies and 1 animal study (Mini-pigs). In total, 594 patients were included in the investigation from 1979 to 1999. Each had prior to inclusion at least 2 years of CLBP and had therefore been subjected to most of the conservative treatment leg pain, due to localized isthmic spondylolisthesis grades I-II or primary or secondary degeneration. PATIENT-BASED FUNCTIONAL OUTCOME: Patients' self-reported parameters should include the impact of CLBP on daily activity, work and leisure time activities, anxiety/depression, social interests and intensity of back and leg pain. Between 1993 and 2003 approximately 1400 lumbar spinal fusion patients completed the Dallas Pain Questionnaire under prospective design studies. In 1996, the Low Back Pain Rating scale was added to the standard questionnaire packet distributed among spinal fusion patients. In our experience, these tools are valid instruments for clinical assessment of candidates for spinal fusion procedures. It is extremely difficult to interpret radiographs of both lumbar posterolateral fusion and anterior interbody fusion. Plain radiographs are clearly not the perfect media for analysis of spinal fusion, but until new and better diagnostic methods are available for clinical use, radiographs will remain the golden standard. Therefore, the development of a detailed reliable radiographic classification system is highly desirable. The classification used in the present thesis for the evaluation of posteroalteral spinal fusion, both with and without instrumentation, demonstrated good interobserver and intraobserver agreement. The classification showed acceptable reliability and may be one way to improve interstudy and intrastudy correlation of radiologic outcomes after posterolateral spinal fusion. Radiology-based evaluation of anterior lumbar interbody fusion is further complicated when cages are employed. The use of different cage designs and materials makes it almost impossible to establish a standard radiological classification system for anterior fusions. BONE-SCREW INTERFACE: Mechanical binding at the bone-screw interface was significantly greater for titanium pedicle screws than it was for stainless steel. This could be explained by the fact that the titanium screws had superior bone on-growth. There was no correlation between screw removal torques and pull-out strength. Clinically, the use of titanium and titanium-alloy pedicle screws may be preferable for osteoporotic patients and those with decreased osteogenesis. The present series of studies observed significant long-term functional improvement for approximately 70% of patients who had undergone lumbar spinal fusion procedure. Solid fusion as determined from radiographs ranged from 52% to 92% depending on the choice of surgical procedure. The choice of surgical procedure should relate to the diagnosis, as patients with isthmic spondylolisthesis (Grades I and II) are best served with posterolateral fusion without instrumentation, and patients with disc degeneration seem to gain most from instrumented posterolateral fusion or circumferential fusion. The number of perioperative complications increased with the use of pedicle screw systems to support posterolateral fusions and increased further with the use of circumferential fusions. There was no significant association between outcome result and perioperative complications. The risk of reoperation within 2 years after the spinal fusion procedure was, however, significantly lower for those who had received circumferential fusion in comparison to posterolateral fusion with instrumentation. Furthermore, the risk of non-union was found to be significantly lower for patients who had received circumferential fusion as compared to posterolateral fusion with and without instrumentation. The complications of sexual dysfunction and fusion at non-intended levels were found to be significant but without influence on the overall outcome. The patients in the Back-café group performed a succession of many daily tasks significantly better and moreover had less pain compared with both the Video and Training groups 2 years after lumbar spinal fusion. The Video group had significantly greater treatment demands outside the hospital system. This study demonstrates the importance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.
Smalyuk, V A; Tipton, R E; Pino, J E; Casey, D T; Grim, G P; Remington, B A; Rowley, D P; Weber, S V; Barrios, M; Benedetti, L R; Bleuel, D L; Bradley, D K; Caggiano, J A; Callahan, D A; Cerjan, C J; Clark, D S; Edgell, D H; Edwards, M J; Frenje, J A; Gatu-Johnson, M; Glebov, V Y; Glenn, S; Haan, S W; Hamza, A; Hatarik, R; Hsing, W W; Izumi, N; Khan, S; Kilkenny, J D; Kline, J; Knauer, J; Landen, O L; Ma, T; McNaney, J M; Mintz, M; Moore, A; Nikroo, A; Pak, A; Parham, T; Petrasso, R; Sayre, D B; Schneider, M B; Tommasini, R; Town, R P; Widmann, K; Wilson, D C; Yeamans, C B
2014-01-17
We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.
Development of aerogel-lined targets for inertial confinement fusion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Tom
2013-03-28
This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, andmore » the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paguio, R. R.; Smith, G. E.; Taylor, J. L.
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearinger, J P
This month's issue has the following articles: (1) Leveraging the National Ignition Facility to Meet the Climate-Energy Challenge--Commentary by George H. Miller; (2) The Journey into a New Era of Scientific Discoveries--The world's largest laser is dedicated on May 29, 2009; (3) Safe and Sustainable Energy with LIFE--A revolutionary technology to generate electricity, modeled after the National Ignition Facility, could either be a pure fusion energy source or combine the best of fusion and fission energy; (4) A Simulated Rehearsal for Battle--Livermore's Joint Conflict and Tactical Simulation is the most widely used tactical model in the world; (5) Improving Catalysismore » with a 'Noble' Material--By infusing carbon aerogels with platinum, researchers have produced a more affordable and efficient catalytic material; and (6) A Time Machine for Fast Neutrons--A new, robust time-projection chamber that provides directional detection of fast neutrons could greatly improve search methods for nuclear materials.« less
Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...
2017-12-04
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
PREFACE: Progress in the ITER Physics Basis
NASA Astrophysics Data System (ADS)
Ikeda, K.
2007-06-01
I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were fundamental to its completion. I am pleased to witness the extensive collaborations, the excellent working relationships and the free exchange of views that have been developed among scientists working on magnetic fusion, and I would particularly like to acknowledge the importance which they assign to ITER in their research. This close collaboration and the spirit of free discussion will be essential to the success of ITER. Finally, the PIPB identifies issues which remain in the projection of burning plasma performance to the ITER scale and in the control of burning plasmas. Continued R&D is therefore called for to reduce the uncertainties associated with these issues and to ensure the efficient operation and exploitation of ITER. It is important that the international fusion community maintains a high level of collaboration in the future to address these issues and to prepare the physics basis for ITER operation. ITPA Coordination Committee R. Stambaugh (Chair of ITPA CC, General Atomics, USA) D.J. Campbell (Previous Chair of ITPA CC, European Fusion Development Agreement—Close Support Unit, ITER Organization) M. Shimada (Co-Chair of ITPA CC, ITER Organization) R. Aymar (ITER International Team, CERN) V. Chuyanov (ITER Organization) J.H. Han (Korea Basic Science Institute, Korea) Y. Huo (Zengzhou University, China) Y.S. Hwang (Seoul National University, Korea) N. Ivanov (Kurchatov Institute, Russia) Y. Kamada (Japan Atomic Energy Agency, Naka, Japan) P.K. Kaw (Institute for Plasma Research, India) S. Konovalov (Kurchatov Institute, Russia) M. Kwon (National Fusion Research Center, Korea) J. Li (Academy of Science, Institute of Plasma Physics, China) S. Mirnov (TRINITI, Russia) Y. Nakamura (National Institute for Fusion Studies, Japan) H. Ninomiya (Japan Atomic Energy Agency, Naka, Japan) E. Oktay (Department of Energy, USA) J. Pamela (European Fusion Development Agreement—Close Support Unit) C. Pan (Southwestern Institute of Physics, China) F. Romanelli (Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Italy and European Fusion Development Agreement—Close Support Unit) N. Sauthoff (Princeton Plasma Physics Laboratory, USA and Oak Ridge National Laboratories, USA) Y. Saxena (Institute for Plasma Research, India) Y. Shimomura (ITER Organization) R. Singh (Institute for Plasma Research, India) S. Takamura (Nagoya University, Japan) K. Toi (National Institute for Fusion Studies, Japan) M. Wakatani (Kyoto University, Japan (deceased)) H. Zohm (Max-Planck-Institut für Plasmaphysik, Garching, Germany)
FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Das, A. K.
2010-01-01
The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials Science and Technology, for delivering the key note address to set the tenor of the symposium. I would also like to thank the Plasma Science Society of India (PSSI) for agreeing to hold this important event at BARC. Thanks are due to Dr L M Gantayet, Director, BTDG, BARC and chairman, Scientific Program Committee and all my colleagues in the Symposium Organizing Committee who have made this symposium possible. Finally, our thanks to all the Funding agencies, Board of Research in Nuclear Science, Department of Science and Technology, The Board of Fusion Research, and all industrial exhibitor and sponsors for their unstinted support and encouragement. Dr A K Das Chairman, Organizing Committee Bhabha Atomic Research Center, Mumbai
Physics through the 1990s: Atomic, molecular and optical physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.
LTSS compendium: an introduction to the CDC 7600 and the Livermore Timesharing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
1977-08-15
This report is an introduction to the CDC 7600 computer and to the Livermore Timesharing System (LTSS) used by the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network) on their 7600's. This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been broadened to point out differences in implementation at LLLCC. It also contains information about LLLCC not relevant to NMFECC. This report is written for computational physicists who want to prepare large production codes to run under LTSSmore » on the 7600's. The generalized discussion of the operating system focuses on creating and executing controllees. This document and its companion, UCID-17557, CDC 7600 LTSS Programming Stratagems, provide a basis for understanding more specialized documents about individual parts of the system.« less
Resistive MHD Simulation of Quasi-Single-Helicity State on KTX
NASA Astrophysics Data System (ADS)
Luo, Bing; Zhu, Ping; Li, Hong; Liu, Wandong
2016-10-01
The potential formation of quasi-single-helicity (QSH) state on Keda Torus eXperiment (KTX) is evaluated in resistive MHD simulations using the NIMROD code. In this work, we focus on the effects of finite resistivity on the mode structure and characteristics of the dominant linear and nonlinear resistive tearing-mode instability in a finite β, cylindrical reversed field pinch model configuration for KTX. In the typical resistivity regimes of KTX where Lundquist number S =105 , the plasma reaches a steady QSH state after the initial transient phase of multiple helicities. The dominat mode of the QSH state is developed from the dominat linear tearing mode instability. The conditions for and the variations of the formation of QSH states in different resistivity regimes of KTX will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.
Tearing mode dynamics and sawtooth oscillation in Hall-MHD
NASA Astrophysics Data System (ADS)
Ma, Zhiwei; Zhang, Wei; Wang, Sheng
2017-10-01
Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.
NASA Astrophysics Data System (ADS)
Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.
2017-06-01
We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.
EDITORIAL: Message from the Editor Message from the Editor
NASA Astrophysics Data System (ADS)
Thomas, Paul
2011-01-01
As usual, being an even year, the 23rd IAEA Fusion Energy Conference took place at Daejeon, Korea. The event was notable not just for the quality of the presentations but also for the spectacular opening ceremony, in the presence of the Prime Minister, Kim Hwang-sik. The Prime Minister affirmed the importance of research into fusion energy research and pledged support for ITER. Such political visibility is good news, of course, but it brings with it the obligation to perform. Fortunately, good performance was much in evidence in the papers presented at the conference, of which a significant proportion contain 'ITER' in the title. Given this importance of ITER and the undertaking by the Nuclear Fusion journal to publish papers associated with Fusion Energy Conference presentations, the Nuclear Fusion Editorial Board has decided to adopt a simplified journal scope that encompasses technology papers more naturally. The scope is available from http://iopscience.iop.org/0029-5515/page/Journal%20information but is reproduced here for clarity: Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes: the production, heating and confinement of high temperature plasmas; the physical properties of such plasmas; the experimental or theoretical methods of exploring or explaining them; fusion reactor physics; reactor concepts; fusion technologies. The key to scope acceptability is now '....significant advances....' rather than any particular area of controlled thermonuclear fusion research. It is hoped that this will make scope decisions easier for the Nuclear Fusion office, the referees and the Editor.The Nuclear Fusion journal has continued to make an important contribution to the research programme and has maintained its position as the leading journal in the field. This is underlined by the fact that Nuclear Fusion has received an impact factor of 4.270, as listed in ISI's 2009 Science Citation Index. The journal depends entirely on its authors and referees and so I would like to thank them all for their work in 2010 and look forward to a continuing, successful collaboration in 2011. Refereeing The Nuclear Fusion editorial office understands how much effort is required of our referees. The Editorial Board decided that an expression of thanks to our most loyal referees is appropriate and so, since January 2005, we have been offering the top ten most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. This year, two of the top referees have reviewed four or more manuscripts in the period November 2009 to November 2010 and provided particularly detailed advice to the authors. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in the last four years. Guest Editors' work on papers submitted to their special issues is also excluded from consideration. The following people have been selected: Osamu Naito, Japan Atomic Energy Agency, Naka, Japan Masahiro Kobayashi, National Institute for Fusion Science, Toki, Japan Duccio Testa, Lausanne Federal Polytechnic University, Switzerland Vladimir Pustovitov, Russian Research Centre, Kurchatov Insitute, Russia Christopher Holland, University of California at San Diego, USA Yuri Gribov, ITER International Organisation, Cadarache, France Eriko Jotaki, Kyushu University, Japan Sven Wiesen, Jülich Research Centre, Germany Viktor S. Marchenko, Ukraine National Academy of Sciences, Ukraine Richard Stephens, General Atomics, USA In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2010. Our thanks to them! Authors The winner of the 2010 Nuclear Fusion Award was J.E. Rice et al for the paper entitled 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' (2007 Nucl. Fusion 47 1618-24). The prize was awarded at the Fusion Energy Conference in Daejeon, together with the 2009 Nuclear Fusion Award to Steve Sabbagh. The Board of Editors Roger Weynants retired as a member of the Board of Editors in 2010. On behalf of the Nuclear Fusion office and the Chairman of the Board, Mitsuru Kikuchi, I would like to thank him for his effort in support of the journal; Roger was one of the most active members of the Board and his balanced and competent advice was extremely valuable on many difficult decisions. At the same time we welcome Tony Donne whom I am sure does not need any introduction to the readers of Nuclear Fusion; I am confident he can only further the success of the journal. The Nuclear Fusion office and IOP Publishing Just as the journal depends on the authors and referees, so its success is also due to the tireless and largely unsung efforts of the Nuclear Fusion office in Vienna and IOP Publishing in Bristol. I would like to express my personal thanks to Maria Bergamini-Roedler, Katja Haslinger, Sophy Le Masurier, Yasmin McGlashan, Caroline Wilkinson, Sarah Ryder, Katie Gerrard and Stephanie Kent for the support that they have given to me, the authors and the referees. Season's greetings I would like to wish our readers, authors, referees and Board of Editors season's greetings and thank them for their contributions to Nuclear Fusion in 2010.
Interactive Plasma Physics Education Using Data from Fusion Experiments
NASA Astrophysics Data System (ADS)
Calderon, Brisa; Davis, Bill; Zwicker, Andrew
2010-11-01
The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.
Materials handbook for fusion energy systems
NASA Astrophysics Data System (ADS)
Davis, J. W.; Marchbanks, M. F.
A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.
Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J
2008-10-01
Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.
A New Internet Tool for Automatic Evaluation in Control Systems and Programming
ERIC Educational Resources Information Center
Munoz de la Pena, D.; Gomez-Estern, F.; Dormido, S.
2012-01-01
In this paper we present a web-based innovative education tool designed for automating the collection, evaluation and error detection in practical exercises assigned to computer programming and control engineering students. By using a student/instructor code-fusion architecture, the conceptual limits of multiple-choice tests are overcome by far.…
Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236
Exploring lower-cost pathways to economical fusion power
Hsu, Scott C.
2017-08-04
This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less
Exploring lower-cost pathways to economical fusion power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Scott C.
This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less
NASA Astrophysics Data System (ADS)
MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.; Weber, C. R.; Robey, H. F.; Alfonso, E. L.; Biener, J.; Bunn, T.; Crippen, J. W.; Farrell, M.; Felker, S.; Field, J. E.; Hsing, W. W.; Kong, C.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Stadermann, M.; Wild, C.
2018-05-01
We report a reduced X-ray shadow imprint of hydrodynamic instabilities on the high-density carbon ablator surface of inertial confinement fusion (ICF) capsules using a reduced diameter fuel fill tube on the National Ignition Facility (NIF). The perturbation seed mass from hydrodynamic instabilities was reduced by approximately an order of magnitude by reducing both the diameter and wall thickness of the fill tube by ˜2×, consistent with analytical estimates. This work demonstrates a successful mitigation strategy for engineered features for ICF implosions on the NIF.
Cryogenci DT and D2 Targets for Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, T.C.; Betti, R.; Craxton, R.S.
Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIf. Significant progress with the formation and characterization of cryogenic targets for both direct and x-ray drive will be described. Results from recent cryogenic implosions will also be presented.
Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics
1987-10-01
This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed
Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General
2017-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells
NASA Astrophysics Data System (ADS)
Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping
2017-01-01
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Laboratory Directed Research and Development FY2011 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, W; Sketchley, J; Kotta, P
2012-03-22
A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.« less
NASA Astrophysics Data System (ADS)
Kolesnichenko, Ya.
2010-08-01
The history of fusion research resembles the way in which one builds skyscrapers: laying the first foundation stone, one thinks about the top of the skyscraper. At the early stages of fusion, when it became clear that the thermonuclear reactor would operate with DT plasma confined by the magnetic field, the study of the `top item'—the physics of 3.5 MeV alpha particles produced by the DT fusion reaction—was initiated. The first publications on this topic appeared as long ago as the 1960s. At that time, because the physics of alpha particles was far from the experimental demand, investigations were carried out by small groups of theoreticians who hoped to discover important and interesting phenomena in this new research area. Soon after the beginning of the work, theoreticians discovered that alpha particles could excite various instabilities in fusion plasmas. In particular, at the end of the 1960s an Alfvén instability driven by alpha particles was predicted. Later it turned out that a variety of Alfvén instabilities with very different features does exist. Instabilities with perturbations of the Alfvénic type play an important role in current experiments; it is likely that they will affect plasma performance in ITER and future reactors. The first experimental manifestation of instabilities excited by superthermal particles in fusion devices was observed in the PDX tokamak in 1983. In this device a large-scale instability—the so called `fishbone instability'—associated with ions produced by the neutral beam injection resulted in a loss of a large fraction of the injected energy. Since then, the study of energetic-ion-driven instabilities and the effects produced by energetic ions in fusion plasmas has attracted the growing attention of both experimentalists and theorists. Recognizing the importance of this topic, the first conference on fusion alpha particles was held in 1989 in Kyiv under the auspices of the IAEA. The meeting in Kyiv and several subsequent meetings (Aspenäs (1991), Trieste (1993), Princeton (1995), and JET/Abingdon (1997)) were entitled `Alpha Particles in Fusion Research'. During the JET/Abingdon meeting in 1997 it was decided to extend the topic by including other suprathermal particles, in particular accelerated electrons, and rename the meetings accordingly. The subsequent meetings with the current name `Energetic Particles in Magnetic Confinement Systems' were held in Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005) and Kloster Seeon (2007). The most recent meeting in this series was held in Kyiv, Ukraine, in September 2009. This was an anniversary meeting, 20 years after the first meeting. Like the first meeting, it was hosted by the Institute for Nuclear Research, National Academy of Sciences of Ukraine. It was attended by about 80 researchers from 18 countries, ITER, and EC. The program of the meeting consisted of 78 presentations, including 12 invited talks, 16 oral contributed talks, and 50 posters, which were selected by the International Advisory Committee (IAC). The IAC consisted of 11 people representing EC (L.-G. Eriksson), Germany (S. Günter), Italy (F. Zonca), Japan (K. Shinohara and K. Toi), Switzerland (A. Fasoli), UK (S. Sharapov), Ukraine (Ya. Kolesnichenko—IAC Chair), USA (H. Berk, W. Heidbrink, and R. Nazikian). The meeting program covered a wide range of physics issues concerning energetic ions in toroidal fusion facilities—tokamaks, stellarators, and spherical tori. Many new interesting and practically important results of both experimental and theoretical studies were reported. The research presented covered topics such as instabilities driven by energetic ions, transport of energetic ions caused by plasma microturbulence and destabilized eigenmodes, non-linear phenomena induced by the instabilities, classical transport processes, effects of runaway electrons, diagnostics of energetic ions and plasmas, and aspects of ITER physics. In addition to these topics, which were also covered at previous conferences in this series and have become conventional, experimental and theoretical results on the influence of energetic ions on bulk plasma transport properties were also reported. Some materials from the meeting are available on the web page http://www.kinr.kiev.ua/TCM/index.html. 24 of the works presented at the meeting are published in this special issue. These works were reviewed to the usual high standard of Nuclear Fusion. The guest editor of this special issue is grateful to the publishers for their cooperation.
Van R. Kane; Malcolm P. North; James A. Lutz; Derek J. Churchill; Susan L. Roberts; Douglas F. Smith; Robert J. McGaughey; Jonathan T. Kane; Matthew L. Brooks
2014-01-01
Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low-and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We...
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.
2013-10-01
Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Analysis of the Zeeman effect on D α spectra on the EAST tokamak
NASA Astrophysics Data System (ADS)
Gao, Wei; Huang, Juan; Wu, Chengrui; Xu, Zong; Hou, Yumei; Jin, Zhao; Chen, Yingjie; Zhang, Pengfei; Zhang, Ling; Wu, Zhenwei; EAST Team
2017-04-01
Based on the passive spectroscopy, the {{{D}}}α atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis (OSMA) system in EAST tokamak. The Zeeman splitting of the {{{D}}}α spectral lines has been observed. A fitting procedure by using a nonlinear least squares method was applied to fit and analyze all polarization π and +/- σ components of the {{{D}}}α atomic spectra to acquire the information of the local plasma. The spectral line shape was investigated according to emission spectra from different regions (e.g., low-field side and high-field side) along the viewing chords. Each polarization component was fitted and classified into three energy categories (the cold, warm, and hot components) based on different atomic production processes, in consistent with the transition energy distribution by calculating the gradient of the {{{D}}}α spectral profile. The emission position, magnetic field intensity, and flow velocity of a deuterium atom were also discussed in the context. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275231 and 11575249) and the National Magnetic Confinement Fusion Energy Research Program of China (Grant No. 2015GB110005).
Quantification of spheno-occipital synchondrosis fusion in a contemporary Malaysian population.
Hisham, Salina; Flavel, Ambika; Abdullah, Nurliza; Noor, Mohamad Helmee Mohamad; Franklin, Daniel
2018-03-01
Timing of fusion of the spheno-occipital synchondrosis (SOS) is correlated with age. Previous research, however, has demonstrated variation in the timing of closure among different global populations. The present study aims to quantify the timing of SOS fusion in Malaysian individuals as visualised in multi-detector computed tomography (CT) scans and to thereafter formulate age estimation models based on fusion status. Anonymised cranial CT scans of 336 males and 164 females, aged 5-25 years, were acquired from the National Institute of Forensic Medicine, Hospital Kuala Lumpur and Department of Diagnostic Imaging, Hospital Sultanah Aminah. The scans were received in DICOM format and reconstructed into three-dimensional images using OsiriX. The SOS is scored as open, fusing endocranially, fusing ectocranially or completely fused. Statistical analyses are performed using IBM SPSS Statistics version 24. Transition analysis (Nphases2) is then utilised to calculate age ranges for each stage. To assess the reliability of an observation, intra- and inter-observer agreement is quantified using Fleiss Kappa and was found to be excellent (κ=0.785-0.907 and 0.812). The mean (SD) age for complete fusion is 20.84 (2.84) years in males and 19.78 (3.35) years in females. Transition ages between Stages 0 and 1, 1 and 2, and 2 and 3 in males are 12.52, 13.98 and 15.52 years, respectively (SD 1.37); in females, the corresponding data are 10.47, 12.26 and 13.80 years (SD 1.72). Complete fusion of the SOS was observed in all individuals above the age of 18 years. SOS fusion status provides upper and lower age boundaries for forensic age estimation in the Malaysian sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how doesmore » this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.« less
Infusing Plasma into the High School Curriculum through Teacher Professional Development
NASA Astrophysics Data System (ADS)
Merali, Aliya; Guilbert, Nicholas; Ortiz, Myrna; Zwicker, Andrew
2013-10-01
A 2004 report submitted by the Fusion Energy Sciences Advisory Committee noted a critical need for action to prevent a shortage of fusion researchers, specifically highlighting the need for more students to enter the field. In an effort to expose students to plasma physics early on, PPPL created a professional development program for teachers, which provides the resources for infusing plasma into high school curricula. Over the last 15 years, teachers from across the country have participated in a one-week Plasma Camp course including lectures, labs, tours, curriculum planning, and classroom equipment funding opportunities. A 2005 survey indicated that at least 75% of program alumni used material from the workshop annually, primarily in the form of demonstrations. In a 2013 survey, participants were asked to detail how they use the workshop information in their classrooms, how the program has altered their teaching methods, and what factors, if any, have hindered the implementation of a plasma curriculum. Results of the 2013 survey will be presented.
Conceptual design of a laser fusion power plant. Part I. An integrated facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less
MacPhee, A. G.; Casey, D. T.; Clark, D. S.; ...
2017-03-30
Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
Munro, D. H.; Field, J. E.; Hatarik, R.; ...
2017-02-21
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.
2017-05-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacPhee, A. G.; Casey, D. T.; Clark, D. S.
Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less
Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...
2016-05-26
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less
Generalized Lawson Criteria for Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipton, Robert E.
2015-08-27
The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented whichmore » allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.« less
IEC fusion: The future power and propulsion system for space
NASA Astrophysics Data System (ADS)
Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon
2000-01-01
Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. .
Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less
Lead (Pb) Hohlraum: Target for Inertial Fusion Energy
Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.
2013-01-01
Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285
Lead (Pb) hohlraum: target for inertial fusion energy.
Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R
2013-01-01
Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.
NASA Astrophysics Data System (ADS)
Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.; Zylstra, A. B.; Rosenberg, M. J.; Glebov, V. Yu.
2016-11-01
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.
Sutcliffe, G D; Milanese, L M; Orozco, D; Lahmann, B; Gatu Johnson, M; Séguin, F H; Sio, H; Frenje, J A; Li, C K; Petrasso, R D; Park, H-S; Rygg, J R; Casey, D T; Bionta, R; Turnbull, D P; Huntington, C M; Ross, J S; Zylstra, A B; Rosenberg, M J; Glebov, V Yu
2016-11-01
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.
Simulating Operation of a Complex Sensor Network
NASA Technical Reports Server (NTRS)
Jennings, Esther; Clare, Loren; Woo, Simon
2008-01-01
Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.