The National Geospatial Technical Operations Center
Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.
2009-01-01
The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).
EPA National Geospatial Data Policy
National Geospatial Data Policy (NGDP) establishes principles, responsibilities, and requirements for collecting and managing geospatial data used by Federal environmental programs and projects within the jurisdiction of the U.S. EPA
EPA Geospatial Quality Council Promoting Quality Assurance in the Geospatial Coummunity
After establishing a foundation for the EPA National Geospatial Program, the EPA Geospatial Quality Council (GQC) is, in part, focusing on improving administrative efficiency in the geospatial community. To realize this goal, the GQC is developing Standard Operating Procedures (S...
The National Map product and services directory
Newell, Mark R.
2008-01-01
As one of the cornerstones of the U.S. Geological Survey's (USGS) National Geospatial Program (NGP), The National Map is a collaborative effort among the USGS and other Federal, state, and local partners to improve and deliver topographic information for the Nation. It has many uses ranging from recreation to scientific analysis to emergency response. The National Map is easily accessible for display on the Web, as products, and as downloadable data. The geographic information available from The National Map includes orthoimagery (aerial photographs), elevation, geographic names, hydrography, boundaries, transportation, structures, and land cover. Other types of geographic information can be added to create specific types of maps. Of major importance, The National Map currently is being transformed to better serve the geospatial community. The USGS National Geospatial Program Office (NGPO) was established to provide leadership for placing geographic knowledge at the fingertips of the Nation. The office supports The National Map, Geospatial One-Stop (GOS), National Atlas of the United States®, and the Federal Geographic Data Committee (FGDC). This integrated portfolio of geospatial information and data supports the essential components of delivering the National Spatial Data Infrastructure (NSDI) and capitalizing on the power of place.
Carswell, William J.
2011-01-01
increases the efficiency of the Nation's geospatial community by improving communications about geospatial data, products, services, projects, needs, standards, and best practices. The NGP comprises seven major components (described below), that are managed as a unified set. For example, The National Map establishes data standards and identifies geographic areas where specific types of geospatial data need to be incorporated into The National Map. Partnership Network Liaisons work with Federal, State, local, and tribal partners to help acquire the data. Geospatial technical operations ensure the quality control, integration, and availability to the public of the data acquired. The Emergency Operations Office provides the requirements to The National Map and, during emergencies and natural disasters, provides rapid dissemination of information and data targeted to the needs of emergency responders. The National Atlas uses data from The National Map and other sources to make small-scale maps and multimedia articles about the maps.
National Geospatial-Intelligence Agency Academic Research Program
NASA Astrophysics Data System (ADS)
Loomer, S. A.
2004-12-01
"Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.
Student Focused Geospatial Curriculum Initiatives: Internships and Certificate Programs at NCCU
NASA Astrophysics Data System (ADS)
Vlahovic, G.; Malhotra, R.
2009-12-01
This paper reports recent efforts by the Department of Environmental, Earth and Geospatial Sciences faculty at North Carolina Central University (NCCU) to develop a leading geospatial sciences program that will be considered a model for other Historically Black College/University (HBCU) peers nationally. NCCU was established in 1909 and is the nation’s first state supported public liberal arts college funded for African Americans. In the most recent annual ranking of America’s best black colleges by the US News and World Report (Best Colleges 2010), NCCU was ranked 10th in the nation. As one of only two HBCUs in the southeast offering an undergraduate degree in Geography (McKee, J.O. and C. V. Dixon. Geography in Historically Black Colleges/ Universities in the Southeast, in The Role of the South in Making of American Geography: Centennial of the AAG, 2004), NCCU is uniquely positioned to positively affect talent and diversity of the geospatial discipline in the future. Therefore, successful creation of research and internship pathways for NCCU students has national implications because it will increase the number of minority students joining the workforce and applying to PhD programs. Several related efforts will be described, including research and internship projects with Fugro EarthData Inc., Center for Remote Sensing and Mapping Science at the University of Georgia, Center for Earthquake Research and Information at the University of Memphis and the City of Durham. The authors will also outline requirements and recent successes of ASPRS Provisional Certification Program, developed and pioneered as collaborative effort between ASPRS and NCCU. This certificate program allows graduating students majoring in geospatial technologies and allied fields to become provisionally certified by passing peer-review and taking the certification exam. At NCCU, projects and certification are conducted under the aegis of the Geospatial Research, Innovative Teaching and Service (GRITS) Center housed in the Department of Environmental, Earth and Geospatial Sciences. The GRITS center was established in 2006 with funding from the National Science Foundation to promote the learning and application of geospatial technologies. Since then GRITS has been a hub for Geographical Information Science (GIS) curriculum development, faculty and professional GIS workshops, grant writing and outreach efforts. The Center also serves as a contact point for partnerships with other universities, national organizations and businesses in the geospatial arena - and as a result, opens doors to the professional world for our graduate and undergraduate students.
76 FR 55939 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
...The National Geospatial Advisory Committee (NGAC) will meet on October 4-5, 2011 at the National Conservation Training Center, 698 Conservation Way, Shepherdstown, WV 25443. The meeting will be held in Room 201 Instructional East. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, has been established to advise the Chair of the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
75 FR 30855 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
...The National Geospatial Advisory Committee (NGAC) will meet on June 22-23, 2010 at the National Conservation Training Center, 698 Conservation Way, Shepherdstown, WV 25443. The meeting will be held in Room 201 Instructional East. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, has been established to advise the Chair of the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)
NASA Astrophysics Data System (ADS)
Loomer, Scott A.
2006-05-01
The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through training programs and recruitment are discussed.
77 FR 32978 - Call for Nominations to the National Geospatial Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... the Department and the FGDC on policy and management issues related to the effective operation of... through the Federal Geographic Data Committee related to management of Federal geospatial programs, development of the National Spatial Data Infrastructure, and the implementation of Office of Management and...
76 FR 78944 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
...The National Geospatial Advisory Committee (NGAC) will meet on January 12, 2012, from 1 p.m. to 4 p.m. EST. The meeting will be held via Web conference and teleconference. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, has been established to advise the Chair of the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
75 FR 54385 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
...The National Geospatial Advisory Committee (NGAC) will meet on September 22-23, 2010 at the American Institute of Architects Building, 1735 New York Avenue, NW., Washington, DC 20006. The meeting will be held in the Gallery Room. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, was established to advise the Chair of the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
78 FR 16527 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
...The National Geospatial Advisory Committee (NGAC) will meet on April 3, 2013, from 1:00 p.m. to 5:00 p.m. EST. The meeting will be held via Web conference and teleconference. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, has been established to advise the Chair of the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
78 FR 71638 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
...The National Geospatial Advisory Committee (NGAC) will meet on December 11, 2013, from 1:00 p.m. to 5:00 p.m. EST. The meeting will be held via web conference and teleconference. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, has been established to advise the Chair of the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
76 FR 10914 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
...The National Geospatial Advisory Committee (NGAC) will meet on March 17-18, 2011 at the American Institute of Architects Building, 1735 New York Avenue, NW., Washington, DC 20006. The meeting will be held in the Gallery Room. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, was established to advise the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
76 FR 28449 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
...The National Geospatial Advisory Committee (NGAC) will meet on June 8-9, 2011 at the American Institute of Architects Building, 1735 New York Avenue, NW., Washington, DC 20006. The meeting will be held in the Gallery Room. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, was established to advise the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
75 FR 71141 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
...The National Geospatial Advisory Committee (NGAC) will meet on December 7-8, 2010 at the American Institute of Architects Building, 1735 New York Avenue, NW., Washington, DC 20006. The meeting will be held in the Gallery Room. The NGAC, which is composed of representatives from governmental, private sector, non-profit, and academic organizations, was established to advise the Federal Geographic Data Committee on management of Federal geospatial programs, the development of the National Spatial Data Infrastructure, and the implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include:
Baker, Nancy T.
2011-01-01
This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.
NHDPlusHR: A national geospatial framework for surface-water information
Viger, Roland; Rea, Alan H.; Simley, Jeffrey D.; Hanson, Karen M.
2016-01-01
The U.S. Geological Survey is developing a new geospatial hydrographic framework for the United States, called the National Hydrography Dataset Plus High Resolution (NHDPlusHR), that integrates a diversity of the best-available information, robustly supports ongoing dataset improvements, enables hydrographic generalization to derive alternate representations of the network while maintaining feature identity, and supports modern scientific computing and Internet accessibility needs. This framework is based on the High Resolution National Hydrography Dataset, the Watershed Boundaries Dataset, and elevation from the 3-D Elevation Program, and will provide an authoritative, high precision, and attribute-rich geospatial framework for surface-water information for the United States. Using this common geospatial framework will provide a consistent basis for indexing water information in the United States, eliminate redundancy, and harmonize access to, and exchange of water information.
Center of Excellence for Geospatial Information Science research plan 2013-18
Usery, E. Lynn
2013-01-01
The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.
Celebrating ten years of collaboration
Cushing, W. Matthew
2017-01-01
Since the GEOSUR Program launched in 2007, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has had the honor of collaborating with CAF, PAIGH, and others supporting the Latin America GEOSUR Program. The catalyst for starting the program was the convergence of regional geospatial activities USGS, PAIGH, and CAF had been involved in and they seized the opportunity to consolidate, and increase the sharing of geospatial information at national and regional levels.
Usery, E. Lynn
2011-01-01
The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).
United States Geological Survey (USGS) Natural Hazards Response
Lamb, Rynn M.; Jones, Brenda K.
2012-01-01
The primary goal of U.S. Geological Survey (USGS) Natural Hazards Response is to ensure that the disaster response community has access to timely, accurate, and relevant geospatial products, imagery, and services during and after an emergency event. To accomplish this goal, products and services provided by the National Geospatial Program (NGP) and Land Remote Sensing (LRS) Program serve as a geospatial framework for mapping activities of the emergency response community. Post-event imagery and analysis can provide important and timely information about the extent and severity of an event. USGS Natural Hazards Response will also support the coordination of remotely sensed data acquisitions, image distribution, and authoritative geospatial information production as required for use in disaster preparedness, response, and recovery operations.
National Hydropower Plant Dataset, Version 2 (FY18Q3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samu, Nicole; Kao, Shih-Chieh; O'Connor, Patrick
The National Hydropower Plant Dataset, Version 2 (FY18Q3) is a geospatially comprehensive point-level dataset containing locations and key characteristics of U.S. hydropower plants that are currently either in the hydropower development pipeline (pre-operational), operational, withdrawn, or retired. These data are provided in GIS and tabular formats with corresponding metadata for each. In addition, we include access to download 2 versions of the National Hydropower Map, which was produced with these data (i.e. Map 1 displays the geospatial distribution and characteristics of all operational hydropower plants; Map 2 displays the geospatial distribution and characteristics of operational hydropower plants with pumped storagemore » and mixed capabilities only). This dataset is a subset of ORNL's Existing Hydropower Assets data series, updated quarterly as part of ORNL's National Hydropower Asset Assessment Program.« less
U.S. EPAs Geospatial Data Access Project
To improve public health and the environment, the United States Environmental Protection Agency (EPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata Shapefile, Feature Class or extensible markup language (XML) file containing facility and site information from EPA's national program systems. The files are Internet accessible from the Envirofacts Web site (https://www3.epa.gov/enviro/). The data may be used with geospatial mapping applications. (Note: The files omit facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the files contain a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.
75 FR 6056 - National Geospatial Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... DEPARTMENT OF THE INTERIOR Office of the Secretary National Geospatial Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of renewal of National Geospatial Advisory Committee... renewed the National Geospatial Advisory Committee. The Committee will provide advice and recommendations...
32 CFR 320.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Responsibilities. 320.3 Section 320.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.3 Responsibilities. (a) Director of NGA: (1...
32 CFR 320.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Responsibilities. 320.3 Section 320.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.3 Responsibilities. (a) Director of NGA: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Exemptions. 320.12 Section 320.12 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.12 Exemptions. (a) Exempt systems of record...
32 CFR 320.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Responsibilities. 320.3 Section 320.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.3 Responsibilities. (a) Director of NGA: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Definitions. 320.2 Section 320.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.2 Definitions. As used in this part: (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Definitions. 320.2 Section 320.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.2 Definitions. As used in this part: (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Exemptions. 320.12 Section 320.12 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.12 Exemptions. (a) Exempt systems of record...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Fees. 320.10 Section 320.10 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.10 Fees. Individuals may request copies for retention of...
32 CFR 320.4 - Procedures for requesting information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Procedures for requesting information. 320.4 Section 320.4 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.4 Procedures for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Fees. 320.10 Section 320.10 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.10 Fees. Individuals may request copies for retention of...
32 CFR 320.5 - Disclosure of requested information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Disclosure of requested information. 320.5 Section 320.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.5 Disclosure of...
32 CFR 320.5 - Disclosure of requested information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Disclosure of requested information. 320.5 Section 320.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.5 Disclosure of...
32 CFR 320.4 - Procedures for requesting information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Procedures for requesting information. 320.4 Section 320.4 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.4 Procedures for...
32 CFR 320.4 - Procedures for requesting information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Procedures for requesting information. 320.4 Section 320.4 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.4 Procedures for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Fees. 320.10 Section 320.10 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.10 Fees. Individuals may request copies for retention of...
32 CFR 320.5 - Disclosure of requested information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Disclosure of requested information. 320.5 Section 320.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.5 Disclosure of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Penalties. 320.11 Section 320.11 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.11 Penalties. The Privacy Act of 1974 (5 U.S.C...
32 CFR 320.8 - Appeal of initial adverse agency determination on correction or amendment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Appeal of initial adverse agency determination on correction or amendment. 320.8 Section 320.8 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY...
32 CFR 320.6 - Request for correction or amendment to record.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Request for correction or amendment to record. 320.6 Section 320.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.6 Request...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Penalties. 320.11 Section 320.11 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.11 Penalties. The Privacy Act of 1974 (5 U.S.C...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Penalties. 320.11 Section 320.11 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.11 Penalties. The Privacy Act of 1974 (5 U.S.C...
32 CFR 320.8 - Appeal of initial adverse agency determination on correction or amendment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Appeal of initial adverse agency determination on correction or amendment. 320.8 Section 320.8 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY...
32 CFR 320.6 - Request for correction or amendment to record.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Request for correction or amendment to record. 320.6 Section 320.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.6 Request...
32 CFR 320.6 - Request for correction or amendment to record.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Request for correction or amendment to record. 320.6 Section 320.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.6 Request...
32 CFR 320.8 - Appeal of initial adverse agency determination on correction or amendment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Appeal of initial adverse agency determination on correction or amendment. 320.8 Section 320.8 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY...
NASA Astrophysics Data System (ADS)
Vlahovic, G.; Malhotra, R.; Renslow, M.; Albert, B.; Harris, J.
2007-12-01
Two ongoing initiatives funded by the NSF-GEO and NSF-HRD directorates are being used to enhance the geospatial program at the North Carolina Central University (NCCU) to make it a leader, regionally and nationally, in geoscience education. As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU has established a Geospatial Research, Innovative Teaching, and Service (GRITS) Center and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer "Provisional" GIS certification to students graduating with Geography degrees. This presentation will focus on the role that ongoing geospatial initiatives are playing in attracting students to this program, increasing opportunities for academic and industry internships and employment in the field after graduation, and increasing awareness of the NCCU geosciences program among GIS professionals in North Carolina. Some of the program highlights include "Provisional" ASPRS certification recently awarded to three NCCU graduate students - the first three students in the nation to complete the provisional certification process. This summer GRITS Center faculty conducted two GIS workshops for academic users and three more are planned in the near future for North Carolina GIS professionals. In addition, a record number of students were awarded paid internship positions with government agencies, non profit organizations and the industry. This past summer our students worked at NOAA, NC Conservation Fund, UNC Population Center, and Triangle Aerial Surveys. NCCUs high minority enrollment (at the present above 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and a possible role model for other HBCUs.
The National Map: New Viewer, Services, and Data Download
Dollison, Robert M.
2010-01-01
Managed by the U.S. Geological Survey's (USGS) National Geospatial Program, The National Map has transitioned data assets and viewer applications to a new visualization and product and service delivery environment, which includes an improved viewing platform, base map data and overlay services, and an integrated data download service. This new viewing solution expands upon the National Geospatial Intelligence Agency (NGA) Palanterra X3 viewer, providing a solid technology foundation for navigation and basic Web mapping functionality. Building upon the NGA viewer allows The National Map to focus on improving data services, functions, and data download capabilities. Initially released to the public at the 125th anniversary of mapping in the USGS on December 3, 2009, the viewer and services are now the primary distribution point for The National Map data. The National Map Viewer: http://viewer.nationalmap.gov
To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (http://www.epa.gov/enviro). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.
US EPA Region 4 RMP Facilities
To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (http://www.epa.gov/enviro). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site.
32 CFR 320.7 - Agency review of request for correction or amendment of record.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Agency review of request for correction or amendment of record. 320.7 Section 320.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320...
32 CFR 320.7 - Agency review of request for correction or amendment of record.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Agency review of request for correction or amendment of record. 320.7 Section 320.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320...
32 CFR 320.7 - Agency review of request for correction or amendment of record.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Agency review of request for correction or amendment of record. 320.7 Section 320.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320...
Cartographic standards to improve maps produced by the Forest Inventory and Analysis program
Charles H. (Hobie) Perry; Mark D. Nelson
2009-01-01
The Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis (FIA) program is incorporating an increasing number of cartographic products in reports, publications, and presentations. To create greater quality and consistency within the national FIA program, a Geospatial Standards team developed cartographic design standards for FIA map...
78 FR 32554 - Privacy Act; Implementation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
...] Privacy Act; Implementation AGENCY: National Geospatial-Intelligence Agency (NGA), DoD. ACTION: Direct... Privacy Act Program by adding the (j)(2) and (k)(2) exemptions to accurately describe the basis for... changes dealing with DoD's management of its Privacy Programs. DoD expects no opposition to the changes...
78 FR 69393 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
.... FOR FURTHER INFORMATION CONTACT: National Geospatial-Intelligence Agency (NGA), ATTN: Human...: Delete entry and replace with ``Human Development Directorate, National Geospatial-Intelligence Agency...; System of Records AGENCY: National Geospatial-Intelligence Agency, DoD. ACTION: Notice to alter a System...
77 FR 5820 - National Geospatial Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... DEPARTMENT OF THE INTERIOR Office of the Secretary National Geospatial Advisory Committee AGENCY... that the Secretary of the Interior has renewed the National Geospatial Advisory Committee. The Committee will provide advice and recommendations to the Federal Geographic Data Committee (FGDC), through...
To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places subject to environmental regulation or of environmental interest. Through the Geospatial Data Download Service, the public is now able to download the EPA Geodata shapefile containing facility and site information from EPA's national program systems. The file is Internet accessible from the Envirofacts Web site (https://www3.epa.gov/enviro/). The data may be used with geospatial mapping applications. (Note: The shapefile omits facilities without latitude/longitude coordinates.) The EPA Geospatial Data contains the name, location (latitude/longitude), and EPA program information about specific facilities and sites. In addition, the file contains a Uniform Resource Locator (URL), which allows mapping applications to present an option to users to access additional EPA data resources on a specific facility or site. This dataset shows Brownfields listed in the 2012 Facility Registry System.
32 CFR 320.9 - Disclosure of record to person other than the individual to whom it pertains.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Disclosure of record to person other than the individual to whom it pertains. 320.9 Section 320.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA...
32 CFR 320.9 - Disclosure of record to person other than the individual to whom it pertains.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Disclosure of record to person other than the individual to whom it pertains. 320.9 Section 320.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA...
32 CFR 320.9 - Disclosure of record to person other than the individual to whom it pertains.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Disclosure of record to person other than the individual to whom it pertains. 320.9 Section 320.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA...
32 CFR 320.6 - Request for correction or amendment to record.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.6 Request... writing with the NGA Office of General Counsel for amendment. Such requests shall specify the particular...
32 CFR 320.6 - Request for correction or amendment to record.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.6 Request... writing with the NGA Office of General Counsel for amendment. Such requests shall specify the particular...
Lessons from Providing Professional Development in Remote Sensing for Community College Instructors
NASA Astrophysics Data System (ADS)
Allen, J. E.
2014-12-01
Two-year colleges and Tribal colleges are important centers for workforce education and training. A professional development program funded by the National Science Foundation's Advanced Technological Education Program, 2007-2011 and 2012-2015, is providing the resources needed by instructors at those colleges to develop courses and programs in remote sensing. The highly successful program, "Integrated Geospatial Education and Technology Training-Remote Sensing (iGETT-RS)" will complete its currently funded work in May 2015. 76 instructors of Geographic Information Systems (GIS) from all over the country will have been served. Each of them will have spent 18 months on the project, participating in two Summer Institutes at NASA and USGS and in monthly webinars on science and technology of remote sensing. iGETT-RS participants have created their own exercises and "concept modules" for the classroom, and many have created new courses and new programs across the country. As the external evaluator for iGETT-RS expressed it, the impact on project participants can "only be described as transformational." Viewers of this presentation will learn about the iGETT-RS project design and approach; successes, failures and lessons learned by the staff; and how to access the workshop materials and participant-authored classroom resources. Viewers will also learn about the Geospatial Technology Competency Model at the US Department of Labor, and about specifications for the Remote Sensing Model Course recently developed by the National Geospatial Technology Center to provide invaluable frameworks for faculty, students, administrators and employers.
Geospatial Technology Strategic Plan 1997-2000
D'Erchia, Frank; D'Erchia, Terry D.; Getter, James; McNiff, Marcia; Root, Ralph; Stitt, Susan; White, Barbara
1997-01-01
Executive Summary -- Geospatial technology applications have been identified in many U.S. Geological Survey Biological Resources Division (BRD) proposals for grants awarded through internal and partnership programs. Because geospatial data and tools have become more sophisticated, accessible, and easy to use, BRD scientists frequently are using these tools and capabilities to enhance a broad spectrum of research activities. Bruce Babbitt, Secretary of the Interior, has acknowledged--and lauded--the important role of geospatial technology in natural resources management. In his keynote address to more than 5,500 people representing 87 countries at the Environmental Systems Research Institute Annual Conference (May 21, 1996), Secretary Babbitt stated, '. . .GIS [geographic information systems], if properly used, can provide a lot more than sets of data. Used effectively, it can help stakeholders to bring consensus out of conflict. And it can, by providing information, empower the participants to find new solutions to their problems.' This Geospatial Technology Strategic Plan addresses the use and application of geographic information systems, remote sensing, satellite positioning systems, image processing, and telemetry; describes methods of meeting national plans relating to geospatial data development, management, and serving; and provides guidance for sharing expertise and information. Goals are identified along with guidelines that focus on data sharing, training, and technology transfer. To measure success, critical performance indicators are included. The ability of the BRD to use and apply geospatial technology across all disciplines will greatly depend upon its success in transferring the technology to field biologists and researchers. The Geospatial Technology Strategic Planning Development Team coordinated and produced this document in the spirit of this premise. Individual Center and Program managers have the responsibility to implement the Strategic Plan by working within the policy and guidelines stated herein.
78 FR 32635 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
...; System of Records AGENCY: National Geospatial-Intelligence Agency, DoD. ACTION: Notice to Add a New System of Records. SUMMARY: The National Geospatial-Intelligence Agency is establishing a new system of... information. FOR FURTHER INFORMATION CONTACT: National Geospatial-Intelligence Agency [[Page 32636
78 FR 35606 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
...; System of Records AGENCY: National Geospatial-Intelligence Agency, DoD. ACTION: Notice to alter a System of Records. SUMMARY: The National Geospatial-Intelligence Agency is altering a system of records in.... FOR FURTHER INFORMATION CONTACT: National Geospatial-Intelligence Agency (NGA), ATTN: Security...
75 FR 43497 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
...; System of Records AGENCY: National Geospatial-Intelligence Agency (NGA), DoD. ACTION: Notice to add a system of records. SUMMARY: The National Geospatial-Intelligence Agency (NGA) proposes to add a system of...-3808. SUPPLEMENTARY INFORMATION: The National Geospatial-Intelligence Agency notices for systems of...
Wright, Alyson; Lovett, Ray; Roe, Yvette; Richardson, Alice
2017-06-05
Objectives The aim of the study was to assess the utility of national Aboriginal survey data in a regional geospatial analysis of daily smoking prevalence for Aboriginal and Torres Strait Islander Australians and discuss the appropriateness of this analysis for policy and program impact assessment. Methods Data from the last two Australian Bureau of Statistics (ABS) national surveys of Aboriginal and Torres Strait Islander people, the National Aboriginal and Torres Strait Islander Social Survey 2014-15 (n=7022 adults) and the National Aboriginal and Torres Strait Islander Health Survey 2012-13 (n=10896 adults), were used to map the prevalence of smoking by Indigenous regions. Results Daily smoking prevalence in 2014-15 at Indigenous regions ranges from 27.1% (95%CI 18.9-35.3) in the Toowoomba region in Queensland to 68.0% (95%CI 58.1-77.9) in the Katherine region in the Northern Territory. The confidence intervals are wide and there is no significant difference in daily smoking prevalence between the two time periods for any region. Conclusion There are significant limitations with analysing national survey data at finer geographical scales. Given the national program for Indigenous tobacco control is a regional model, evaluation requires finer geographical analysis of smoking prevalence to inform public health progress, policy and program effects. Options to improve the data currently collected include increasing national survey sample sizes, implementing a smoking status question in census surveys, investing in current cohort studies focused on this population or implementing localised surveys. What is known about the topic? The last geospatial analysis of Aboriginal and Torres Strait Islander smoking prevalence was undertaken in 1997. Current national survey data have not been analysed geospatially. What does this paper add? This paper provides new insights into the use of national survey data for understanding regional patterns and prevalence levels of smoking in Aboriginal and Torres Strait Islander populations. What are the implications for practitioners? The findings of the study suggest caution when interpreting prevalence maps and highlight the need for greater sample sizes in national survey data. The analysis is also an opportunity to assess the use of national survey data in evaluating the policy impact of programs targeted at a regional level.
Enhancing The National Map Through Tactical Planning and Performance Monitoring
,
2008-01-01
Tactical planning and performance monitoring are initial steps toward improving 'the way The National Map works' and supporting the U.S. Geological Survey (USGS) Science Strategy. This Tactical Performance Planning Summary for The National Map combines information from The National Map 2.0 Tactical Plan and The National Map Performance Milestone Matrix. The National Map 2.0 Tactical Plan is primarily a working document to guide The National Map program's execution, production, and metrics monitoring for fiscal years (FY) 2008 and 2009. The Tactical Plan addresses data, products, and services, as well as supporting and enabling activities. The National Map's 2-year goal for FY 2008 and FY 2009 is to provide a range of geospatial products and services that further the National Spatial Data Infrastructure and underpin USGS science. To do this, the National Geospatial Program will develop a renewed understanding during FY 2008 of key customer needs and requirements, develop the infrastructure to support The National Map business model, modernize its business processes, and reengineer its workforce. Priorities for The National Map will be adjusted if necessary to respond to changes to the project that may impact resources, constrain timeframes, or change customer needs. The supporting and enabling activities that make it possible to produce the products and services of The National Map will include partnership activities, improved compatibility of systems, outreach, and integration of data themes.
Broad-Scale Assessment of Fuel Treatment Opportunities
Patrick D. Miles; Kenneth E. Skog; Wayne D. Shepperd; Elizabeth D. Reinhardt; Roger D. Fight
2006-01-01
The Forest Inventory and Analysis (FIA) program has produced estimates of the extent and composition of the Nation?s forests for several decades. FIA data have been used with a flexible silvicultural thinning option, a fire hazard model for preharvest and postharvest fire hazard assessment, a harvest economics model, and geospatial data to produce a Web-based tool to...
Geospatial considerations for a multiorganizational, landscape-scale program
O'Donnell, Michael S.; Assal, Timothy J.; Anderson, Patrick J.; Bowen, Zachary H.
2013-01-01
Geospatial data play an increasingly important role in natural resources management, conservation, and science-based projects. The management and effective use of spatial data becomes significantly more complex when the efforts involve a myriad of landscape-scale projects combined with a multiorganizational collaboration. There is sparse literature to guide users on this daunting subject; therefore, we present a framework of considerations for working with geospatial data that will provide direction to data stewards, scientists, collaborators, and managers for developing geospatial management plans. The concepts we present apply to a variety of geospatial programs or projects, which we describe as a “scalable framework” of processes for integrating geospatial efforts with management, science, and conservation initiatives. Our framework includes five tenets of geospatial data management: (1) the importance of investing in data management and standardization, (2) the scalability of content/efforts addressed in geospatial management plans, (3) the lifecycle of a geospatial effort, (4) a framework for the integration of geographic information systems (GIS) in a landscape-scale conservation or management program, and (5) the major geospatial considerations prior to data acquisition. We conclude with a discussion of future considerations and challenges.
The 3D Elevation Program: summary of program direction
Snyder, Gregory I.
2012-01-01
The 3D Elevation Program (3DEP) initiative responds to a growing need for high-quality topographic data and a wide range of other three-dimensional representations of the Nation's natural and constructed features. The National Enhanced Elevation Assessment (NEEA), which was completed in 2011, clearly documented this need within government and industry sectors. The results of the NEEA indicated that enhanced elevation data have the potential to generate $13 billion in new benefits annually. The benefits apply to food risk management, agriculture, water supply, homeland security, renewable energy, aviation safety, and other areas. The 3DEP initiative was recommended by the National Digital Elevation Program and its 12 Federal member agencies and was endorsed by the National States Geographic Information Council (NSGIC) and the National Geospatial Advisory Committee (NGAC).
NOAA - National Oceanic and Atmospheric Administration - Information
Council Committees Services & Programs Freedom of Information Act (FOIA) Commerce Geospatial Resources Homeland Security and Employee Check-In Information Quality NOAA Libraries NOAALink Paperwork Reduction & Information Collection Privacy Radio Frequency Management Contact Us Staff Directory IT Workforce
Estimating and circumventing the effects of perturbing and swapping inventory plot locations
Ronald E. McRoberts; Geoffrey R. Holden; Mark D. Nelson; Greg C. Liknes; Warren K. Moser; Andrew J. Lister; Susan L. King; Elizabeth B. LaPoint; John W. Coulston; W. Brad Smith; Gregory A. Reams
2005-01-01
The Forest Inventory and Analysis (FIA) program of the USDA Forest Service reports data and information about the Nation's forest resources. Increasingly, users request that FIA data and information be reported and distributed in a geospatial context, and they request access to exact plot locations for their own analyses. However, the FIA program is constrained by...
NASA Astrophysics Data System (ADS)
Johnson, A. B.
2012-12-01
Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used to create customized curriculum integrating geospatial science and technology into geoscience programs.
NASA Technical Reports Server (NTRS)
Hemmings, Sarah; Limaye, Ashutosh; Irwin, Dan
2011-01-01
Background: SERVIR -- the Regional Visualization and Monitoring System -- helps people use Earth observations and predictive models based on data from orbiting satellites to make timely decisions that benefit society. SERVIR operates through a network of regional hubs in Mesoamerica, East Africa, and the Hindu Kush-Himalayas. USAID and NASA support SERVIR, with the long-term goal of transferring SERVIR capabilities to the host countries. Objective/Purpose: The purpose of this presentation is to describe how the SERVIR system helps the SERVIR regions cope with eight areas of societal benefit identified by the Group on Earth Observations (GEO): health, disasters, ecosystems, biodiversity, weather, water, climate, and agriculture. This presentation will describe environmental health applications of data in the SERVIR system, as well as ongoing and future efforts to incorporate additional health applications into the SERVIR system. Methods: This presentation will discuss how the SERVIR Program makes environmental data available for use in environmental health applications. SERVIR accomplishes its mission by providing member nations with access to geospatial data and predictive models, information visualization, training and capacity building, and partnership development. SERVIR conducts needs assessments in partner regions, develops custom applications of Earth observation data, and makes NASA and partner data available through an online geospatial data portal at SERVIRglobal.net. Results: Decision makers use SERVIR to improve their ability to monitor air quality, extreme weather, biodiversity, and changes in land cover. In past several years, the system has been used over 50 times to respond to environmental threats such as wildfires, floods, landslides, and harmful algal blooms. Given that the SERVIR regions are experiencing increased stress under larger climate variability than historic observations, SERVIR provides information to support the development of adaptation strategies for nations affected by climate change. Conclusions: SERVIR is a platform for collaboration and cross-agency coordination, international partnerships, and delivery of web-based geospatial information services and applications. SERVIR makes a variety of geospatial data available for use in studies of environmental health outcomes.
SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality
Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.
2009-01-01
The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.
Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L; Cheriyadat, Anil M
2010-01-01
With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. Inmore » this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.« less
32 CFR 320.5 - Disclosure of requested information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.5 Disclosure of... nonexempt NGA system of records. However, nothing in this section shall allow an individual access to any information compiled by NGA in reasonable anticipation of a civil or criminal action or proceeding. (b...
32 CFR 320.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.3 Responsibilities. (a) Director of NGA: (1) Implements the NGA privacy program. (2) Designates the Director of the Public Affairs Office as the NGA... General Counsel as the NGA Privacy Act Officer and the principal point of contact for matters involving...
32 CFR 320.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.3 Responsibilities. (a) Director of NGA: (1) Implements the NGA privacy program. (2) Designates the Director of the Public Affairs Office as the NGA... General Counsel as the NGA Privacy Act Officer and the principal point of contact for matters involving...
32 CFR 320.5 - Disclosure of requested information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.5 Disclosure of... nonexempt NGA system of records. However, nothing in this section shall allow an individual access to any information compiled by NGA in reasonable anticipation of a civil or criminal action or proceeding. (b...
NASA Astrophysics Data System (ADS)
Leydsman-McGinty, E. I.; Ramsey, R. D.; McGinty, C.
2013-12-01
The Remote Sensing/GIS Laboratory at Utah State University, in cooperation with the United States Environmental Protection Agency, is quantifying impervious surfaces for three watershed sub-basins in Utah. The primary objective of developing watershed-scale quantifications of impervious surfaces is to provide an indicator of potential impacts to wetlands that occur within the Wasatch Front and along the Great Salt Lake. A geospatial layer of impervious surfaces can assist state agencies involved with Utah's Wetlands Program Plan (WPP) in understanding the impacts of impervious surfaces on wetlands, as well as support them in carrying out goals and actions identified in the WPP. The three watershed sub-basins, Lower Bear-Malad, Lower Weber, and Jordan, span the highly urbanized Wasatch Front and are consistent with focal areas in need of wetland monitoring and assessment as identified in Utah's WPP. Geospatial layers of impervious surface currently exist in the form of national and regional land cover datasets; however, these datasets are too coarse to be utilized in fine-scale analyses. In addition, the pixel-based image processing techniques used to develop these coarse datasets have proven insufficient in smaller scale or detailed studies, particularly when applied to high-resolution satellite imagery or aerial photography. Therefore, object-based image analysis techniques are being implemented to develop the geospatial layer of impervious surfaces. Object-based image analysis techniques employ a combination of both geospatial and image processing methods to extract meaningful information from high-resolution imagery. Spectral, spatial, textural, and contextual information is used to group pixels into image objects and then subsequently used to develop rule sets for image classification. eCognition, an object-based image analysis software program, is being utilized in conjunction with one-meter resolution National Agriculture Imagery Program (NAIP) aerial photography from 2011.
ERIC Educational Resources Information Center
Gaudet, Cyndi; Annulis, Heather; Kmiec, John
2010-01-01
The Geospatial Technology Apprenticeship Program (GTAP) pilot was designed as a replicable and sustainable program to enhance workforce skills in geospatial technologies to best leverage a $30 billion market potential. The purpose of evaluating GTAP was to ensure that investment in this high-growth industry was adding value. Findings from this…
77 FR 67831 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
... from governmental, private sector, non-profit, and academic organizations, has been established to... Dialogue --National Address Database --Geospatial Priorities --NGAC Subcommittee Activities --FGDC Update...
Mapping Applications Center, National Mapping Division, U.S. Geological Survey
,
1996-01-01
The Mapping Applications Center (MAC), National Mapping Division (NMD), is the eastern regional center for coordinating the production, distribution, and sale of maps and digital products of the U.S. Geological Survey (USGS). It is located in the John Wesley Powell Federal Building in Reston, Va. The MAC's major functions are to (1) establish and manage cooperative mapping programs with State and Federal agencies; (2) perform new research in preparing and applying geospatial information; (3) prepare digital cartographic data, special purpose maps, and standard maps from traditional and classified source materials; (4) maintain the domestic names program of the United States; (5) manage the National Aerial Photography Program (NAPP); (6) coordinate the NMD's publications and outreach programs; and (7) direct the USGS mapprinting operations.
Using the Geospatial Web to Deliver and Teach Giscience Education Programs
NASA Astrophysics Data System (ADS)
Veenendaal, B.
2015-05-01
Geographic information science (GIScience) education has undergone enormous changes over the past years. One major factor influencing this change is the role of the geospatial web in GIScience. In addition to the use of the web for enabling and enhancing GIScience education, it is also used as the infrastructure for communicating and collaborating among geospatial data and users. The web becomes both the means and the content for a geospatial education program. However, the web does not replace the traditional face-to-face environment, but rather is a means to enhance it, expand it and enable an authentic and real world learning environment. This paper outlines the use of the web in both the delivery and content of the GIScience program at Curtin University. The teaching of the geospatial web, web and cloud based mapping, and geospatial web services are key components of the program, and the use of the web and online learning are important to deliver this program. Some examples of authentic and real world learning environments are provided including joint learning activities with partner universities.
32 CFR 320.4 - Procedures for requesting information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.4 Procedures for... be informed whether or not any NGA system of records contains a record pertaining to him. (b) Any individual requesting such information in person may appear at NGA General Counsel Office (refer to the NGA...
32 CFR 320.4 - Procedures for requesting information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.4 Procedures for... be informed whether or not any NGA system of records contains a record pertaining to him. (b) Any individual requesting such information in person may appear at NGA General Counsel Office (refer to the NGA...
Geospatial Data Science Analysis | Geospatial Data Science | NREL
different levels of technology maturity. Photo of a man taking field measurements. Geospatial analysis energy for different technologies across the nation? Featured Analysis Products Renewable Energy
Screening Assessment Report and Atlas with Geospatial Data
This Navajo Nation AUM Screening Assessment Report and the accompanying Atlas with Geospatial Data documents NAUM project data collection and screening results for all known AUMs on the Navajo Nation.
32 CFR 320.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.1 Purpose and scope. (a) This part is published... whether the National Geospatial-Intelligence Agency (NGA) maintains or has disclosed a record pertaining...
32 CFR 320.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.1 Purpose and scope. (a) This part is published... whether the National Geospatial-Intelligence Agency (NGA) maintains or has disclosed a record pertaining...
32 CFR 320.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.1 Purpose and scope. (a) This part is published... whether the National Geospatial-Intelligence Agency (NGA) maintains or has disclosed a record pertaining...
Taylor, Charles J.; Nelson, Hugh L.
2008-01-01
Geospatial data needed to visualize and evaluate the hydrogeologic framework and distribution of karst features in the Interior Low Plateaus physiographic region of the central United States were compiled during 2004-2007 as part of the Ground-Water Resources Program Karst Hydrology Initiative (KHI) project. Because of the potential usefulness to environmental and water-resources regulators, private consultants, academic researchers, and others, the geospatial data files created during the KHI project are being made available to the public as a provisional regional karst dataset. To enhance accessibility and visualization, the geospatial data files have been compiled as ESRI ArcReader data folders and user interactive Published Map Files (.pmf files), all of which are catalogued by the boundaries of surface watersheds using U.S. Geological Survey (USGS) eight-digit hydrologic unit codes (HUC-8s). Specific karst features included in the dataset include mapped sinkhole locations, sinking (or disappearing) streams, internally drained catchments, karst springs inventoried in the USGS National Water Information System (NWIS) database, relic stream valleys, and karst flow paths obtained from results of previously reported water-tracer tests.
Geospatial Information Response Team
Witt, Emitt C.
2010-01-01
Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of geospatial experts and equipment.
Geospatial resources for the geologic community: The USGS National Map
Witt, Emitt C.
2015-01-01
Geospatial data are a key component of investigating, interpreting, and communicating the geological sciences. Locating geospatial data can be time-consuming, which detracts from time spent on a study because these data are not obviously placed in central locations or are served from many disparate databases. The National Map of the US Geological Survey is a publicly available resource for accessing the geospatial base map data needs of the geological community from a central location. The National Map data are available through a viewer and download platform providing access to eight primary data themes, plus the US Topo and scanned historical topographic maps. The eight themes are elevation, orthoimagery, hydrography, geographic names, boundaries, transportation, structures, and land cover, and they are being offered for download as predefined tiles in formats supported by leading geographic information system software. Data tiles are periodically refreshed to capture the most current content and are an efficient method for disseminating and receiving geospatial information. Elevation data, for example, are offered as a download from the National Map as 1° × 1° tiles for the 10- and 30- m products and as 15′ × 15′ tiles for the higher-resolution 3-m product. Vector data sets with smaller file sizes are offered at several tile sizes and formats. Partial tiles are not a download option—any prestaged data that intersect the requesting bounding box will be, in their entirety, part of the download order. While there are many options for accessing geospatial data via the Web, the National Map represents authoritative sources of data that are documented and can be referenced for citation and inclusion in scientific publications. Therefore, National Map products and services should be part of a geologist’s first stop for geospatial information and data.
Mapping the Future Today: The Community College of Baltimore County Geospatial Applications Program
ERIC Educational Resources Information Center
Jeffrey, Scott; Alvarez, Jaime
2010-01-01
The Geospatial Applications Program at the Community College of Baltimore County (CCBC), located five miles west of downtown Baltimore, Maryland, provides comprehensive instruction in geographic information systems (GIS), remote sensing and global positioning systems (GPS). Geospatial techniques, which include computer-based mapping and remote…
Integrated Geospatial Education and Technology Training (iGETT) for Workforce Development
NASA Astrophysics Data System (ADS)
Allen, J. E.; Johnson, A.; Headley, R. K.
2009-12-01
The increasing availability of no-cost remote sensing data and improvements in analysis software have presented an unprecedented opportunity for the integration of geospatial technologies into a wide variety of disciplines for learning and teaching at community colleges and Tribal colleges. These technologies magnify the effectiveness of problem solving in agriculture, disaster management, environmental sciences, urbanization monitoring, and multiple other domains for societal benefit. This session will demonstrate the approach and lessons learned by federal and private industry partners leading a professional development program, “Integrated Geospatial Education and Technology Training” (iGETT; http://igett.delmar.edu), 2007-2010. iGETT is funded by the National Science Foundation’s Advanced Technological Education Program, (NSF DUE 0703185). 40 participants were selected from a nationwide pool and received training in how to understand, identify, download, and integrate federal land remote sensing data into existing Geographic Information Systems programs to address specific issues of concern to the local workforce. Each participant has authored a “Learning Unit” that covers at least two weeks of class time. All training resources and Learning Units are publicly available on the iGETT Web site. A follow-on project is under consideration to develop core competencies for the remote sensing technician. Authors: Jeannie Allen, Sigma Space Corp. for NASA Landsat, at Goddard Space Flight Center; Ann Johnson, ESRI Higher Education; Rachel Headley, USGS EROS Land Remote Sensing Program
Professional Development in Remote Sensing for Community College Instructors
NASA Astrophysics Data System (ADS)
Allen, J. E.; Cruz, C.
2014-11-01
The ingredients for the highly successful, ongoing educator professional development program, "Integrated Geospatial Education and Technology Training-Remote Sensing (iGETT-RS)" came into place in 2006 when representatives of public and private organizations convened a two-day workshop at the National Science Foundation (NSF) to explore issues around integrating remote sensing with Geographic Information Systems (GIS) instruction at two-year (community and Tribal) colleges. The results of that 2006 workshop informed the shape of a grant proposal, and two phases of iGETT-RS were funded by NSF's Advanced Technological Education Program (NSF DUE #0703185, 2007-2011, and NSF DUE #1205069, 2012-2015). 76 GIS instructors from all over the country have been served. Each of them has spent 18 months on the project, participating in monthly webinars and two Summer Institutes, and creating their own integrated geospatial exercises for the classroom. The project will be completed in June 2015. As the external evaluator for iGETT expressed it, the impact on participating instructors "can only be described as transformative." This paper describes how iGETT came about, how it was designed and implemented, how it affected participants and their programs, and what has been learned by the project staff about delivering professional development in geospatial technologies for workforce preparedness.
Geospatial Information is the Cornerstone of Effective Hazards Response
Newell, Mark
2008-01-01
Every day there are hundreds of natural disasters world-wide. Some are dramatic, whereas others are barely noticeable. A natural disaster is commonly defined as a natural event with catastrophic consequences for living things in the vicinity. Those events include earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, and wildfires. Man-made disasters are events that are caused by man either intentionally or by accident, and that directly or indirectly threaten public health and well-being. These occurrences span the spectrum from terrorist attacks to accidental oil spills. To assist in responding to natural and potential man-made disasters, the U.S. Geological Survey (USGS) has established the Geospatial Information Response Team (GIRT) (http://www.usgs.gov/emergency/). The primary purpose of the GIRT is to ensure rapid coordination and availability of geospatial information for effective response by emergency responders, and land and resource managers, and for scientific analysis. The GIRT is responsible for establishing monitoring procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing relevant geospatial products and services. The GIRT is focused on supporting programs, offices, other agencies, and the public in mission response to hazards. The GIRT will leverage the USGS Geospatial Liaison Network and partnerships with the Department of Homeland Security (DHS), National Geospatial-Intelligence Agency (NGA), and Northern Command (NORTHCOM) to coordinate the provisioning and deployment of USGS geospatial data, products, services, and equipment. The USGS geospatial liaisons will coordinate geospatial information sharing with State, local, and tribal governments, and ensure geospatial liaison back-up support procedures are in place. The GIRT will coordinate disposition of USGS staff in support of DHS response center activities as requested by DHS. The GIRT is a standing team that is available during all hazard events and is on high alert during the hurricane season from June through November each year. To track all of the requirements and data acquisitions processed through the team, the GIRT will use the new Emergency Request Track (ER Track) tool. Currently, the ER Track is only available to USGS personnel.
NASA's Geospatial Interoperability Office(GIO)Program
NASA Technical Reports Server (NTRS)
Weir, Patricia
2004-01-01
NASA produces vast amounts of information about the Earth from satellites, supercomputer models, and other sources. These data are most useful when made easily accessible to NASA researchers and scientists, to NASA's partner Federal Agencies, and to society as a whole. A NASA goal is to apply its data for knowledge gain, decision support and understanding of Earth, and other planetary systems. The NASA Earth Science Enterprise (ESE) Geospatial Interoperability Office (GIO) Program leads the development, promotion and implementation of information technology standards that accelerate and expand the delivery of NASA's Earth system science research through integrated systems solutions. Our overarching goal is to make it easy for decision-makers, scientists and citizens to use NASA's science information. NASA's Federal partners currently participate with NASA and one another in the development and implementation of geospatial standards to ensure the most efficient and effective access to one another's data. Through the GIO, NASA participates with its Federal partners in implementing interoperability standards in support of E-Gov and the associated President's Management Agenda initiatives by collaborating on standards development. Through partnerships with government, private industry, education and communities the GIO works towards enhancing the ESE Applications Division in the area of National Applications and decision support systems. The GIO provides geospatial standards leadership within NASA, represents NASA on the Federal Geographic Data Committee (FGDC) Coordination Working Group and chairs the FGDC's Geospatial Applications and Interoperability Working Group (GAI) and supports development and implementation efforts such as Earth Science Gateway (ESG), Space Time Tool Kit and Web Map Services (WMS) Global Mosaic. The GIO supports NASA in the collection and dissemination of geospatial interoperability standards needs and progress throughout the agency including areas such as ESE Applications, the SEEDS Working Groups, the Facilities Engineering Division (Code JX) and NASA's Chief Information Offices (CIO). With these agency level requirements GIO leads, brokers and facilitates efforts to, develop, implement, influence and fully participate in standards development internationally, federally and locally. The GIO also represents NASA in the OpenGIS Consortium and ISO TC211. The OGC has made considerable progress in regards to relations with other open standards bodies; namely ISO, W3C and OASIS. ISO TC211 is the Geographic and Geomatics Information technical committee that works towards standardization in the field of digital geographic information. The GIO focuses on seamless access to data, applications of data, and enabling technologies furthering the interoperability of distributed data. Through teaming within the Applications Directorate and partnerships with government, private industry, education and communities, GIO works towards the data application goals of NASA, the ESE Applications Directorate, and our Federal partners by managing projects in four categories: Geospatial Standards and Leadership, Geospatial One Stop, Standards Development and Implementation, and National and NASA Activities.
The National Map 2.0 Tactical Plan: "Toward the (Integrated) National Map"
Zulick, Carl A.
2008-01-01
The National Map's 2-year goal, as described in this plan, is to provide a range of geospatial products and services that meet the basic goals of the original vision for The National Map while furthering the National Spatial Data Infrastructure that underpins U.S. Geological Survey (USGS) science. To accomplish this goal, the National Geospatial Program (NGP) will acquire, store, maintain, and distribute base map data. The management team for the NGP sets priorities for The National Map in three areas: Data and Products, Services, and Management. Priorities for fiscal years 2008 and 2009 (October 1, 2007 through September 30, 2009), involving the current data inventory, data acquisition, and the integration of data, are (1) incorporating current data from Federal, State, and local organizations into The National Map to the degree possible, given data availability and program resources; (2) collaborating with other USGS programs to incorporate data that support the USGS Science Strategy; (3) supporting the Department of the Interior (DOI) high-priority geospatial information needs; (4) emergency response; (5) homeland security, natural hazards; and (6) graphics products delivery. The management team identified known constraints, enablers, and drivers for the acquisition and integration of data. The NGP management team also identified customer-focused products and services of The National Map. Ongoing planning and management activities direct the development and delivery of these products and services. Management of work flow processes to support The National Map priorities are identified and established through a business-driven prioritization process. This tactical plan is primarily for use as a document to guide The National Map program for the next two fiscal years. The document is available to the public because of widespread interest in The National Map. The USGS collaborates with a broad range of customers and partners who are essential to the success of The National Map, including the science community, State and Federal agencies involved in homeland security, planners and emergency responders at the local level, and private companies. Partner contributions and data remain a primary input and foundation of The National Map. Partnership strategies for each of The National Map's component data themes are outlined in this plan. Because of the importance of The National Map customers, a reassessment of customer needs will be completed during 2008. Results of the assessment will be incorporated into future decisions and priorities. A performance milestone matrix has been developed that contains the full list of milestones, major deliverables, and major tasks. The matrix forms the basis for reporting on accomplishments and issues. However, a number of risks, dependencies, and issues have been identified that could affect meeting milestones in the matrix, such as: the USGS is not the Circular A-16 lead for boundaries, transportation, and structures; availability of sufficient and sustainable funding; availability of Federal workforce and contractors with necessary skills, and numerous competing customer and stakeholder requirements.
Digital Mapping and Environmental Characterization of National Wild and Scenic River Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Bosnall, Peter; Hetrick, Shelaine L
2013-09-01
Spatially accurate geospatial information is required to support decision-making regarding sustainable future hydropower development. Under a memorandum of understanding among several federal agencies, a pilot study was conducted to map a subset of National Wild and Scenic Rivers (WSRs) at a higher resolution and provide a consistent methodology for mapping WSRs across the United States and across agency jurisdictions. A subset of rivers (segments falling under the jurisdiction of the National Park Service) were mapped at a high resolution using the National Hydrography Dataset (NHD). The spatial extent and representation of river segments mapped at NHD scale were compared withmore » the prevailing geospatial coverage mapped at a coarser scale. Accurately digitized river segments were linked to environmental attribution datasets housed within the Oak Ridge National Laboratory s National Hydropower Asset Assessment Program database to characterize the environmental context of WSR segments. The results suggest that both the spatial scale of hydrography datasets and the adherence to written policy descriptions are critical to accurately mapping WSRs. The environmental characterization provided information to deduce generalized trends in either the uniqueness or the commonness of environmental variables associated with WSRs. Although WSRs occur in a wide range of human-modified landscapes, environmental data layers suggest that they provide habitats important to terrestrial and aquatic organisms and recreation important to humans. Ultimately, the research findings herein suggest that there is a need for accurate, consistent, mapping of the National WSRs across the agencies responsible for administering each river. Geospatial applications examining potential landscape and energy development require accurate sources of information, such as data layers that portray realistic spatial representations.« less
75 FR 39272 - Call for Nominations to the National Geospatial Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... DEPARTMENT OF THE INTERIOR U.S. Geological Survey Call for Nominations to the National Geospatial Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION: Call for Nominations, National... mail to John Mahoney, U.S. Geological Survey, U.S. Department of the Interior, 909 First Avenue, Suite...
NASA Astrophysics Data System (ADS)
Ross, A.; Little, M. M.
2013-12-01
NASA's Atmospheric Science Data Center (ASDC) is piloting the use of Geographic Information System (GIS) technology that can be leveraged for crisis planning, emergency response, and disaster management/awareness. Many different organizations currently use GIS tools and geospatial data during a disaster event. ASDC datasets have not been fully utilized by this community in the past due to incompatible data formats that ASDC holdings are archived in. Through the successful implementation of this pilot effort and continued collaboration with the larger Homeland Defense and Department of Defense emergency management community through the Homeland Infrastructure Foundation-Level Data Working Group (HIFLD WG), our data will be easily accessible to those using GIS and increase the ability to plan, respond, manage, and provide awareness during disasters. The HIFLD WG Partnership has expanded to include more than 5,900 mission partners representing the 14 executive departments, 98 agencies, 50 states (and 3 territories), and more than 700 private sector organizations to directly enhance the federal, state, and local government's ability to support domestic infrastructure data gathering, sharing and protection, visualization, and spatial knowledge management.The HIFLD WG Executive Membership is lead by representatives from the Department of Defense (DoD) Office of the Assistant Secretary of Defense for Homeland Defense and Americas' Security Affairs - OASD (HD&ASA); the Department of Homeland Security (DHS), National Protection and Programs Directorate's Office of Infrastructure Protection (NPPD IP); the National Geospatial-Intelligence Agency (NGA) Integrated Working Group - Readiness, Response and Recovery (IWG-R3); the Department of Interior (DOI) United States Geological Survey (USGS) National Geospatial Program (NGP), and DHS Federal Emergency Management Agency (FEMA).
Geo-spatial Service and Application based on National E-government Network Platform and Cloud
NASA Astrophysics Data System (ADS)
Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.
2014-04-01
With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.
32 CFR 320.7 - Agency review of request for correction or amendment of record.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320... after receipt of a request to amend a record, in whole or in part, the NGA Office of General Counsel, or NGA office having responsibility for maintenance of the record in question, shall correct any portion...
32 CFR 320.7 - Agency review of request for correction or amendment of record.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320... after receipt of a request to amend a record, in whole or in part, the NGA Office of General Counsel, or NGA office having responsibility for maintenance of the record in question, shall correct any portion...
78 FR 43868 - Privacy Act of 1974; System of Records; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... notice altering a Privacy Act System of Records notice (NGA-013, National Geospatial-Intelligence Agency (NGA) Inspector General Investigative and Complaint Files). Subsequent to the publication of that... omission. FOR FURTHER INFORMATION CONTACT: National Geospatial-Intelligence Agency (NGA), ATTN: Security...
The National Map: Benefits at what cost?
Halsing, D.L.; Theissen, K.M.; Bernknopf, R.L.
2004-01-01
The U.S. Geological Survey has conducted a cost-benefit analysis of The National Map, and determined that, during its 30-year projected lifespan, the project will likely bring a net present value of benefits to society of $2.05 billion. Such a survey enhances the United States' ability to access, integrate, and apply geospatial data at global, national, and local scales. This paper gives an overview on the underlying economic model for evaluating program benefits and presents the primary findings as well as a sensitivity analysis assessing the robustness of the results.
2017-02-22
manages operations through guidance, policies, programs, and organizations. The NSG is designed to be a mutually supportive enterprise that...deliberate technical design and deliberate human actions. Geospatial engineer teams (GETs) within the geospatial intelligence cells are the day-to-day...standards working group and are designated by the AGC Geospatial Acquisition Support Directorate as required for interoperability. Applicable standards
A Software Engineering Paradigm for Quick-turnaround Earth Science Data Projects
NASA Astrophysics Data System (ADS)
Moore, K.
2016-12-01
As is generally the case with applied sciences professional and educational programs, the participants of such programs can come from a variety of technical backgrounds. In the NASA DEVELOP National Program, the participants constitute an interdisciplinary set of backgrounds, with varying levels of experience with computer programming. DEVELOP makes use of geographically explicit data sets, and it is necessary to use geographic information systems and geospatial image processing environments. As data sets cover longer time spans and include more complex sets of parameters, automation is becoming an increasingly prevalent feature. Though platforms such as ArcGIS, ERDAS Imagine, and ENVI facilitate the batch-processing of geospatial imagery, these environments are naturally constricting to the user in that they limit him or her to the tools that are available. Users must then turn to "homemade" scripting in more traditional programming languages such as Python, JavaScript, or R, to automate workflows. However, in the context of quick-turnaround projects like those in DEVELOP, the programming learning curve may be prohibitively steep. In this work, we consider how to best design a software development paradigm that addresses two major constants: an arbitrarily experienced programmer and quick-turnaround project timelines.
Integrated Geospatial Education and Technology Training for High School Age Youth (HiGETT)
NASA Astrophysics Data System (ADS)
Allen, J. E.
2012-12-01
The Landsat series of satellites provides high quality, consistent, 30 m resolution data for studies of landscape-scale change over time at no cost to the user. The availability of the Landsat data archive and the effectiveness and ease of its use to solve practical societal problems, particularly integrated with Geographic Information Systems (GIS), has been a key factor in a movement to bring remote sensing education to community colleges (as in the "iGETT" program funded by the National Science Foundation, 2007-2011) and now to younger students of high school age. "Integrated Geospatial Education and Technology Training for High School Age Youth (HiGETT)" was a two-day meeting convened April 4-5, 2011 to explore and articulate effective means of reaching teens with geospatial technology education and career awareness. Participants represented industry, government, academia, and informal education organizations such as 4-H and Girl Scouts. This poster will summarize a report on that meeting.
Pathfinder, v7 n1, Jan/Feb 2009. Making an Intelligence Difference
2009-02-01
ORGANIZATION NAME(S) AND ADDRESS(ES) National Geospatial-Intelligence Agency,Office of Corporate Communications,4600 Sangamore Road ,Bethesda,MD, 20816 ...Published by the National Geospatial-Intelligence Agency Office of Corporate Communications 4600 Sangamore Road, Mail Stop D-54 Bethesda, MD 20816
Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana
NASA Astrophysics Data System (ADS)
Akinyemi, Felicia O.
2018-05-01
Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.
Heidemann, Hans Karl
2012-08-17
In late 2009, a $14.3 million allocation from the American Recovery and Reinvestment Act (ARRA) for new light detection and ranging (lidar) elevation data acquisition prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common minimum specification for all lidar data acquired for The National Map. Released as a working draft in 2010 and formally published in 2012, the USGS–NGP Lidar Base Specification (LBS) was quickly embraced by numerous States, counties, and foreign countries as the foundation for their own lidar specifications.Prompted by a growing appreciation for the wide applicability and inherent value of lidar, a consortium of Federal agencies commissioned the National Enhanced Elevation Assessment (NEEA) study in 2010 to quantify the costs and benefits of a national lidar program. Published in 2012, the NEEA report documented a substantial return on such an investment, defined five quality levels (QL) for elevation data, and recommended an 8-year collection cycle of QL2 lidar data as the optimum balance of benefit and affordability. In response to the study, the USGS–NGP established the 3D Elevation Program (3DEP) in 2013 as the interagency vehicle through which the NEEA recommendations could be realized.Lidar is a quickly evolving technology and much has changed in the industry since the previous version of the Lidar Base Specification (LBS) was published. Lidar data have improved in accuracy and spatial resolution, the American Society for Photogrammetry and Remote Sensing has revised the geospatial accuracy standards, industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the LBS addresses some of those changes and provides continued guidance towards a nationally consistent lidar dataset.
Strategizing Teacher Professional Development for Classroom Uses of Geospatial Data and Tools
ERIC Educational Resources Information Center
Zalles, Daniel R.; Manitakos, James
2016-01-01
Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), a 4.5-year National Science Foundation funded project, explored the strategies that stimulate teacher commitment to the project's driving innovation: having students use geospatial information technology (GIT) to learn about weather, climate,…
Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach.
Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien
2016-01-01
Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness.
32 CFR 320.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.1 Purpose and scope. (a) This part is published... whether the National Geospatial-Intelligence Agency (NGA) maintains or has disclosed a record pertaining..., Headquarters NGA has determined to be exempt from the procedures established by this regulation and from...
32 CFR 320.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.1 Purpose and scope. (a) This part is published... whether the National Geospatial-Intelligence Agency (NGA) maintains or has disclosed a record pertaining..., Headquarters NGA has determined to be exempt from the procedures established by this regulation and from...
78 FR 40764 - Call for Nominations to the National Geospatial Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... DEPARTMENT OF THE INTERIOR Geological Survey Call for Nominations to the National Geospatial Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION: Call for Nominations. SUMMARY: The.... Geological Survey, U.S. Department of the Interior, 909 First Avenue, Suite 800, Seattle, WA 98104...
Dotse-Gborgbortsi, Winfred; Wardrop, Nicola; Adewole, Ademola; Thomas, Mair L H; Wright, Jim
2018-05-23
Commercial geospatial data resources are frequently used to understand healthcare utilisation. Although there is widespread evidence of a digital divide for other digital resources and infra-structure, it is unclear how commercial geospatial data resources are distributed relative to health need. To examine the distribution of commercial geospatial data resources relative to health needs, we assembled coverage and quality metrics for commercial geocoding, neighbourhood characterisation, and travel time calculation resources for 183 countries. We developed a country-level, composite index of commercial geospatial data quality/availability and examined its distribution relative to age-standardised all-cause and cause specific (for three main causes of death) mortality using two inequality metrics, the slope index of inequality and relative concentration index. In two sub-national case studies, we also examined geocoding success rates versus area deprivation by district in Eastern Region, Ghana and Lagos State, Nigeria. Internationally, commercial geospatial data resources were inversely related to all-cause mortality. This relationship was more pronounced when examining mortality due to communicable diseases. Commercial geospatial data resources for calculating patient travel times were more equitably distributed relative to health need than resources for characterising neighbourhoods or geocoding patient addresses. Countries such as South Africa have comparatively high commercial geospatial data availability despite high mortality, whilst countries such as South Korea have comparatively low data availability and low mortality. Sub-nationally, evidence was mixed as to whether geocoding success was lowest in more deprived districts. To our knowledge, this is the first global analysis of commercial geospatial data resources in relation to health outcomes. In countries such as South Africa where there is high mortality but also comparatively rich commercial geospatial data, these data resources are a potential resource for examining healthcare utilisation that requires further evaluation. In countries such as Sierra Leone where there is high mortality but minimal commercial geospatial data, alternative approaches such as open data use are needed in quantifying patient travel times, geocoding patient addresses, and characterising patients' neighbourhoods.
EPA Facility Registry System (FRS): NEPT
This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Environmental Performance Track (NEPT) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs
EPA Facility Registry Service (FRS): NEI
This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the National Emissions Inventory (NEI) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs
32 CFR 320.9 - Disclosure of record to person other than the individual to whom it pertains.
Code of Federal Regulations, 2013 CFR
2013-07-01
... OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA... officer or employee of NGA will disclose any record which is contained in a system of records, by any...; Appendix C to part 310 of this chapter; and/or a NGA Privacy Act system of records notice. (b) Any such...
32 CFR 320.9 - Disclosure of record to person other than the individual to whom it pertains.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA... officer or employee of NGA will disclose any record which is contained in a system of records, by any...; appendix C to part 310 of this chapter; and/or a NGA Privacy Act system of records notice. (b) Any such...
International boundary experiences by the United Nations
NASA Astrophysics Data System (ADS)
Kagawa, A.
2013-12-01
Over the last few decades, the United Nations (UN) has been approached by Security Council and Member States on international boundary issues. The United Nations regards the adequate delimitation and demarcation of international boundaries as a very important element for the maintenance of peace and security in fragile post-conflict situations, establishment of friendly relationships and cross-border cooperation between States. This paper will present the main principles and framework the United Nations applies to support the process of international boundary delimitation and demarcation activities. The United Nations is involved in international boundary issues following the principle of impartiality and neutrality and its role as mediator. Since international boundary issues are multi-faceted, a range of expertise is required and the United Nations Secretariat is in a good position to provide diverse expertise within the multiple departments. Expertise in different departments ranging from legal, political, technical, administrative and logistical are mobilised in different ways to provide support to Member States depending on their specific needs. This presentation aims to highlight some of the international boundary projects that the United Nations Cartographic Section has been involved in order to provide the technical support to different boundary requirements as each international boundary issue requires specific focus and attention whether it be in preparation, delimitation, demarcation or management. Increasingly, the United Nations is leveraging geospatial technology to facilitate boundary delimitation and demarcation process between Member States. Through the presentation of the various case studies ranging from Iraq - Kuwait, Israel - Lebanon (Blue Line), Eritrea - Ethiopia, Cyprus (Green Line), Cameroon - Nigeria, Sudan - South Sudan, it will illustrate how geospatial technology is increasingly used to carry out the support. In having applied a range of geospatial solutions, some of the good practices that have been applied in preceding projects, but there have been challenges and limitations faced. However, these challenges need to be seen as an opportunity to improve the geospatial technology solutions in future international boundary projects. This presentation will also share the aspirations that the United Nations Cartographic Section has in becoming a facilitator in geospatial technical aspects related to international boundary issues as we increasingly develop our geospatial institutional knowledge base and expertise. The presentation will conclude by emphasizing the need for more collaboration between different actors dealing with geospatial technology on borderland issues in order to meet the main goal of the United Nations - to live and work together as "We the Peoples of the United Nations".
NASA Astrophysics Data System (ADS)
Johnson, A.
2010-12-01
Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.
Tiered Internship Model for Undergraduate Students in Geospatial Science and Technology
ERIC Educational Resources Information Center
Kopteva, Irina A.; Arkowski, Donna; Craft, Elaine L.
2015-01-01
This article discusses the development, implementation, and evaluation of a tiered internship program for undergraduate students in geospatial science and technology (TIMSGeoTech). The internship program assists education programs in providing skill development that is relevant and useful, and it aligns graduates and their skills with industry…
Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing
NASA Astrophysics Data System (ADS)
Tang, Jingyin; Matyas, Corene J.
2018-02-01
Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.
A novel web informatics approach for automated surveillance of cancer mortality trends✩
Tourassi, Georgia; Yoon, Hong-Jun; Xu, Songhua
2016-01-01
Cancer surveillance data are collected every year in the United States via the National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer Institute (NCI). General trends are closely monitored to measure the nation's progress against cancer. The objective of this study was to apply a novel web informatics approach for enabling fully automated monitoring of cancer mortality trends. The approach involves automated collection and text mining of online obituaries to derive the age distribution, geospatial, and temporal trends of cancer deaths in the US. Using breast and lung cancer as examples, we mined 23,850 cancer-related and 413,024 general online obituaries spanning the timeframe 2008–2012. There was high correlation between the web-derived mortality trends and the official surveillance statistics reported by NCI with respect to the age distribution (ρ = 0.981 for breast; ρ = 0.994 for lung), the geospatial distribution (ρ = 0.939 for breast; ρ = 0.881 for lung), and the annual rates of cancer deaths (ρ = 0.661 for breast; ρ = 0.839 for lung). Additional experiments investigated the effect of sample size on the consistency of the web-based findings. Overall, our study findings support web informatics as a promising, cost-effective way to dynamically monitor spatiotemporal cancer mortality trends. PMID:27044930
FY 2018 Grant Announcement: FY2018 Support for Geospatial Analysis Support
The U.S. Environmental Protection Agency’s (EPA) Chesapeake Bay Program Office (CBPO) is announcing a Request for Proposals (RFP) for applicants to provide the Chesapeake Bay Program (CBP) partners with a proposal for providing geospatial analysis support
Elmore, Kim; Flanagan, Barry; Jones, Nicholas F; Heitgerd, Janet L
2010-04-01
In 2008, CDC convened an expert panel to gather input on the use of geospatial science in surveillance, research and program activities focused on CDC's Healthy Communities Goal. The panel suggested six priorities: spatially enable and strengthen public health surveillance infrastructure; develop metrics for geospatial categorization of community health and health inequity; evaluate the feasibility and validity of standard metrics of community health and health inequities; support and develop GIScience and geospatial analysis; provide geospatial capacity building, training and education; and, engage non-traditional partners. Following the meeting, the strategies and action items suggested by the expert panel were reviewed by a CDC subcommittee to determine priorities relative to ongoing CDC geospatial activities, recognizing that many activities may need to occur either in parallel, or occur multiple times across phases. Phase A of the action items centers on developing leadership support. Phase B focuses on developing internal and external capacity in both physical (e.g., software and hardware) and intellectual infrastructure. Phase C of the action items plan concerns the development and integration of geospatial methods. In summary, the panel members provided critical input to the development of CDC's strategic thinking on integrating geospatial methods and research issues across program efforts in support of its Healthy Communities Goal.
Wind Maps | Geospatial Data Science | NREL
Wind Maps Wind Maps Wind Prospector This GIS application supports resource assessment and data exploration for wind development. This collection of wind maps and assessments details the wind resource in Geospatial Data Science Team. National Wind Resource Assessment The national wind resource assessment was
NASA Astrophysics Data System (ADS)
Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.
2014-12-01
Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.
SWOT analysis on National Common Geospatial Information Service Platform of China
NASA Astrophysics Data System (ADS)
Zheng, Xinyan; He, Biao
2010-11-01
Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.
Regional Geology Web Map Application Development: Javascript v2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Glenn
This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to themore » SFSWT program.« less
Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach
Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien
2016-01-01
Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness. PMID:27078263
The National 3-D Geospatial Information Web-Based Service of Korea
NASA Astrophysics Data System (ADS)
Lee, D. T.; Kim, C. W.; Kang, I. G.
2013-09-01
3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of spatial information industry of Korea is expected in the near future.
NHDPlus (National Hydrography Dataset Plus)
NHDPlus is a geospatial, hydrologic framework dataset that is intended for use by geospatial analysts and modelers to support water resources related applications. NHDPlus was developed by the USEPA in partnership with the US Geologic Survey
Rea, Alan; Skinner, Kenneth D.
2012-01-01
The U.S. Geological Survey Hawaii StreamStats application uses an integrated suite of raster and vector geospatial datasets to delineate and characterize watersheds. The geospatial datasets used to delineate and characterize watersheds on the StreamStats website, and the methods used to develop the datasets are described in this report. The datasets for Hawaii were derived primarily from 10 meter resolution National Elevation Dataset (NED) elevation models, and the National Hydrography Dataset (NHD), using a set of procedures designed to enforce the drainage pattern from the NHD into the NED, resulting in an integrated suite of elevation-derived datasets. Additional sources of data used for computing basin characteristics include precipitation, land cover, soil permeability, and elevation-derivative datasets. The report also includes links for metadata and downloads of the geospatial datasets.
Region 9 NPDES Facilities - Waste Water Treatment Plants
Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
NASA Astrophysics Data System (ADS)
Huang, W.; Jiang, J.; Zha, Z.; Zhang, H.; Wang, C.; Zhang, J.
2014-04-01
Geospatial data resources are the foundation of the construction of geo portal which is designed to provide online geoinformation services for the government, enterprise and public. It is vital to keep geospatial data fresh, accurate and comprehensive in order to satisfy the requirements of application and development of geographic location, route navigation, geo search and so on. One of the major problems we are facing is data acquisition. For us, integrating multi-sources geospatial data is the mainly means of data acquisition. This paper introduced a practice integration approach of multi-source geospatial data with different data model, structure and format, which provided the construction of National Geospatial Information Service Platform of China (NGISP) with effective technical supports. NGISP is the China's official geo portal which provides online geoinformation services based on internet, e-government network and classified network. Within the NGISP architecture, there are three kinds of nodes: national, provincial and municipal. Therefore, the geospatial data is from these nodes and the different datasets are heterogeneous. According to the results of analysis of the heterogeneous datasets, the first thing we do is to define the basic principles of data fusion, including following aspects: 1. location precision; 2.geometric representation; 3. up-to-date state; 4. attribute values; and 5. spatial relationship. Then the technical procedure is researched and the method that used to process different categories of features such as road, railway, boundary, river, settlement and building is proposed based on the principles. A case study in Jiangsu province demonstrated the applicability of the principle, procedure and method of multi-source geospatial data integration.
Geospatial data for 303(d) Impaired Waters are available as prepackaged national downloads or as GIS web and and data services. EPA provides geospatial data in the formats: GIS compatible shapefiles and geodatabases and ESRI and OGC web mapping.
ERIC Educational Resources Information Center
Dupigny-Giroux, Lesley-Ann; Toolin, Regina; Hogan, Stephen; Fortney, Michael D.
2012-01-01
In July 2008, a new professional development program called Satellites, Weather and Climate (SWAC) began at the University of Vermont. Its goal was to enhance the competency of in-service K-12 science and mathematics Vermont teachers in the atmospheric, climate, and geospatial sciences. The pilot program ran until 2010, during which time 14…
Introduction to geospatial semantics and technology workshop handbook
Varanka, Dalia E.
2012-01-01
The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.
Region 9 NPDES Facilities 2012- Waste Water Treatment Plants
Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.
Geospatial intelligence workforce
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-02-01
A report on the future U.S. workforce for geospatial intelligence, requested by the U.S. National Geospatial-Intelligence Agency (NGA), found that the agency—which hires about 300 scientists and analysts annually—is probably finding sufficient experts to fill the needs in all of its core areas, with the possible exception of geographic information systems (GIS) and remote sensing. The report by the U.S. National Research Council, released on 25 January, noted that competition for GIS applications analysts is strong. While there appear to be enough cartographers, photogrammetrists, and geodesists to meet NGA's current needs in those core areas, the report cautioned that future shortages in these areas seem likely because of a relatively small number of graduates.
Jacquez, Geoffrey M; Essex, Aleksander; Curtis, Andrew; Kohler, Betsy; Sherman, Recinda; Emam, Khaled El; Shi, Chen; Kaufmann, Andy; Beale, Linda; Cusick, Thomas; Goldberg, Daniel; Goovaerts, Pierre
2017-07-01
As the volume, accuracy and precision of digital geographic information have increased, concerns regarding individual privacy and confidentiality have come to the forefront. Not only do these challenge a basic tenet underlying the advancement of science by posing substantial obstacles to the sharing of data to validate research results, but they are obstacles to conducting certain research projects in the first place. Geospatial cryptography involves the specification, design, implementation and application of cryptographic techniques to address privacy, confidentiality and security concerns for geographically referenced data. This article defines geospatial cryptography and demonstrates its application in cancer control and surveillance. Four use cases are considered: (1) national-level de-duplication among state or province-based cancer registries; (2) sharing of confidential data across cancer registries to support case aggregation across administrative geographies; (3) secure data linkage; and (4) cancer cluster investigation and surveillance. A secure multi-party system for geospatial cryptography is developed. Solutions under geospatial cryptography are presented and computation time is calculated. As services provided by cancer registries to the research community, de-duplication, case aggregation across administrative geographies and secure data linkage are often time-consuming and in some instances precluded by confidentiality and security concerns. Geospatial cryptography provides secure solutions that hold significant promise for addressing these concerns and for accelerating the pace of research with human subjects data residing in our nation's cancer registries. Pursuit of the research directions posed herein conceivably would lead to a geospatially encrypted geographic information system (GEGIS) designed specifically to promote the sharing and spatial analysis of confidential data. Geospatial cryptography holds substantial promise for accelerating the pace of research with spatially referenced human subjects data.
Johnson, Samuel Y.; Cochrane, Guy R.; Golden, Nadine; Dartnell, Peter; Hartwell, Stephen; Cochran, Susan; Watt, Janet
2017-01-01
The California Seafloor and Coastal Mapping Program (CSCMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters. CSCMP began in 2007 when the California Ocean Protection Council (OPC) and the National Oceanic and Atmospheric Administration (NOAA) allocated funding for high-resolution bathymetric mapping, largely to support the California Marine Life Protection Act and to update nautical charts. Collaboration and support from the U.S. Geological Survey and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSCMP provides essential science and data for ocean and coastal management, stimulates and enables research, and raises public education and awareness of coastal and ocean issues. Specific applications include:•Delineation and designation of marine protected areas•Characterization and modeling of benthic habitats and ecosystems•Updating nautical charts•Earthquake hazard assessments•Tsunami hazard assessments•Planning offshore infrastructure•Providing baselines for monitoring change•Input to models of sediment transport, coastal erosion, and coastal flooding•Regional sediment management•Understanding coastal aquifers•Providing geospatial data for emergency response
Sieverling, Jennifer B.; Dietterle, Jeffrey
2014-01-01
The U.S. Geological Survey (USGS) is sponsoring the first The National Map Users Conference in conjunction with the eighth biennial Geographic Information Science (GIS) Workshop on May 10-13, 2011, in Lakewood, Colorado. The GIS Workshop will be held at the USGS National Training Center, located on the Denver Federal Center, Lakewood, Colorado, May 10-11. The National Map Users Conference will be held directly after the GIS Workshop at the Denver Marriott West, a convention hotel in the Lakewood, Colorado area, May 12-13. The National Map is designed to serve the Nation by providing geographic data and knowledge for government, industry, and public uses. The goal of The National Map Users Conference is to enhance communications and collaboration among the communities of users of and contributors to The National Map, including USGS, Department of the Interior, and other government GIS specialists and scientists, as well as the broader geospatial community. The USGS National Geospatial Program intends the conference to serve as a forum to engage users and more fully discover and meet their needs for the products and services of The National Map. The goal of the GIS Workshop is to promote advancement of GIS and related technologies and concepts as well as the sharing of GIS knowledge within the USGS GIS community. This collaborative opportunity for multi-disciplinary GIS and associated professionals will allow attendees to present and discuss a wide variety of geospatial-related topics. The Users Conference and Workshop collaboration will bring together scientists, managers, and data users who, through presentations, posters, seminars, workshops, and informal gatherings, will share accomplishments and progress on a variety of geospatial topics. During this joint event, attendees will have the opportunity to present or demonstrate their work; to develop their knowledge by attending hands-on workshops, seminars, and presentations given by professionals from USGS and other Federal Agencies, GIS related companies, and academia; and to network with other professionals to develop collaborative opportunities. Specific conference topics include scientific and modeling applications using The National Map, opportunities for partnerships, and advances in geospatial technologies. The first part of the week will be the GIS Workshop, offered as a pre-conference seminar. It will focus on hands-on GIS training and seminars concerning current topics of geospatial interest. The focus of the USGS GIS Workshop is to showcase specific techniques and concepts for using GIS in support of science. The presentations will be educational and not a marketing endeavor. To promote awareness of and interaction with selected USGS corporate and local science center data products, as well as promoting collaboration, a “GIS Olympics” event will be held Tuesday evening during the GIS Workshop. The second part of the week will feature interactive briefings and discussions on issues and opportunities of The National Map. The focus of the Users Conference will be on the role of The National Map in supporting science initiatives, emergency response, land and wildlife management, and other activities. All presentations at the Users Conference include use or innovations related to a The National Map data theme or application. On Wednesday evening, a poster session is being held as a combined event for all attendees and as a juncture between the events. On Thursday evening, the Henry Gannett Award will be presented. Additionally, poster awards will be presented. Several prominent speakers are featured at plenary sessions at The National Map Users Conference, including Deanna A. Archuleta, Deputy Assistant Secretary for Water and Science, Department of the Interior; Dr. Barbara P. Buttenfield, Professor of Geography at the University of Colorado in Boulder; best-selling author Frederick Reuss; and Dr. Joel Scheraga, Senior Advisor for Climate Adaptation, U.S. Environmental Protection Agency. Additionally, panel discussions have attracted participation from notable experts from government, academia, and the private sector. This Proceedings volume will serve as an activity reference for workshop attendees, as well as an archive of technical abstracts presented at the workshop. Author, co-author, and presenter names, affiliations, and contact information are listed with presentation titles with the abstracts. Some hands-on sessions are offered twice; in these instances, abstracts submitted for publication are presented in the proceedings on both days on which they are offered.
2009-06-08
CRS Report for Congress Prepared for Members and Committees of Congress Geospatial Information and Geographic Information Systems (GIS...Geographic Information Systems (GIS): Current Issues and Future Challenges 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Geospatial Information and Geographic Information Systems (GIS
A novel web informatics approach for automated surveillance of cancer mortality trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia; Yoon, Hong -Jun; Xu, Songhua
Cancer surveillance data are collected every year in the United States via the National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer Institute (NCI). General trends are closely monitored to measure the nation’s progress against cancer. The objective of this study was to apply a novel web informatics approach for enabling fully automated monitoring of cancer mortality trends. The approach involves automated collection and text mining of online obituaries to derive the age distribution, geospatial, and temporal trends of cancer deaths in the US. Using breast and lung cancer asmore » examples, we mined 23,850 cancer-related and 413,024 general online obituaries spanning the timeframe 2008–2012. There was high correlation between the web-derived mortality trends and the official surveillance statistics reported by NCI with respect to the age distribution (ρ = 0.981 for breast; ρ = 0.994 for lung), the geospatial distribution (ρ = 0.939 for breast; ρ = 0.881 for lung), and the annual rates of cancer deaths (ρ = 0.661 for breast; ρ = 0.839 for lung). Additional experiments investigated the effect of sample size on the consistency of the web-based findings. Altogether, our study findings support web informatics as a promising, cost-effective way to dynamically monitor spatiotemporal cancer mortality trends.« less
A novel web informatics approach for automated surveillance of cancer mortality trends
Tourassi, Georgia; Yoon, Hong -Jun; Xu, Songhua
2016-04-01
Cancer surveillance data are collected every year in the United States via the National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer Institute (NCI). General trends are closely monitored to measure the nation’s progress against cancer. The objective of this study was to apply a novel web informatics approach for enabling fully automated monitoring of cancer mortality trends. The approach involves automated collection and text mining of online obituaries to derive the age distribution, geospatial, and temporal trends of cancer deaths in the US. Using breast and lung cancer asmore » examples, we mined 23,850 cancer-related and 413,024 general online obituaries spanning the timeframe 2008–2012. There was high correlation between the web-derived mortality trends and the official surveillance statistics reported by NCI with respect to the age distribution (ρ = 0.981 for breast; ρ = 0.994 for lung), the geospatial distribution (ρ = 0.939 for breast; ρ = 0.881 for lung), and the annual rates of cancer deaths (ρ = 0.661 for breast; ρ = 0.839 for lung). Additional experiments investigated the effect of sample size on the consistency of the web-based findings. Altogether, our study findings support web informatics as a promising, cost-effective way to dynamically monitor spatiotemporal cancer mortality trends.« less
Office of Biological Informatics and Outreach geospatial technology activities
,
1998-01-01
The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.
NASA Astrophysics Data System (ADS)
Jordan, T. R.; Madden, M.; Sharma, J. B.; Panda, S. S.
2012-07-01
In an innovative collaboration between government, university and private industry, researchers at the University of Georgia and Gainesville State College are collaborating with Photo Science, Inc. to acquire, process and quality control check lidar and or-thoimages of forest areas in the Southern Appalachian Mountains of the United States. Funded by the U.S. Geological Survey, this project meets the objectives of the ARRA initiative by creating jobs, preserving jobs and training students for high skill positions in geospatial technology. Leaf-off lidar data were acquired at 1-m resolution of the Tennessee portion of the Great Smoky Mountain National Park (GRSM) and adjacent Foothills Parkway. This 1400-sq. km. area is of high priority for national/global interests due to biodiversity, rare and endangered species and protection of some of the last remaining virgin forest in the U.S. High spatial resolution (30 cm) leaf-off 4-band multispectral orthoimages also were acquired for both the Chattahoochee National Forest in north Georgia and the entire GRSM. The data are intended to augment the National Elevation Dataset and orthoimage database of The National Map with information that can be used by many researchers in applications of LiDAR point clouds, high resolution DEMs and or-thoimage mosaics. Graduate and undergraduate students were involved at every stage of the workflow in order to provide then with high level technical educational and professional experience in preparation for entering the geospatial workforce. This paper will present geospatial workflow strategies, multi-team coordination, distance-learning training and industry-academia partnership.
Capacity Building on the Use of Earth Observation for Bridging the Gaps between Science and Policy
NASA Astrophysics Data System (ADS)
Thapa, R. B.; Bajracharya, B.
2017-12-01
Although the geospatial technologies and Earth observation (EO) data are getting more accessible, lack of skilled human resources and institutional capacities are the major hurdles in the effective applications in Hindu Kush Himalayan (HKH) region. Designing efficient and cost effective capacity building (CB) programs fitting needs by different users on the use of EO information for decision making will provide options in bridging the gaps in the region. This paper presents the strategies adopted by SERVIR-HKH as an attempt to strengthen the capacity of governments and development stakeholders in the region. SERVIR-HKH hub plays vital role in CB on EO applications by bringing together the leading scientists from the Globe and the key national institutions and stakeholders in the region. We conducted country consultation workshops in Afghanistan, Bangladesh, Pakistan, and Nepal to identify national priorities, requirements and the capacity of the institutions to utilize EO information in decision making. The need assessments were focused on four thematic areas of SERVIR where capacity gaps in utilization of EO data in policy decisions were identified in thirteen key service areas. Geospatial capacities in GIT infrastructure, data, and human resources were varied. Linking EO information to policy decision is mostly lacking. Geospatial data sharing provision among the institutions in the region is poor. We developed a capacity building strategy for HKH region which bridges the gaps in a coordinated manner through customized training programs, institutional strengthening, coordination and regional cooperation. Using the strategy, we conducted training on FEWS NET remote sensing products for agro-climatological analysis, which focused on technical interpretation and analysis of the remote sensing and modeled products, eg, CHIRPS, RFE2, CHIRTS, GFS, NDVI, GeoCLIM and GeoGLAM. Scientists from USGS FEWS NET program delivered the training to mid-level managers and decision makers. We also carried out on-the-job trainings on wheat mapping using multi-sensor EO data for co-development of methodologies and implementation on sustainable basis. In this presentation, we will also present the lesson learned from capacity building efforts at SERVIR-HKH and how we envision the best practices for other SERVIR hubs.
NASA Astrophysics Data System (ADS)
Ross, K. W.; Childs-Gleason, L. M.; Favors, J.; Rogers, L.; Ruiz, M. L.; Allsbrook, K. N.
2016-12-01
The NASA DEVELOP National Program seeks to simultaneously build capacity to use Earth observations in early career and transitioning professionals while building capacity with institutional partners to apply Earth observations in conducting operations, making decisions, or informing policy. Engaging professionals in this manner lays the foundation of the NASA DEVELOP experience and provides a fresh perspective into institutional challenges. This energetic engagement of people in the emerging workforce elicits heightened attention and greater openness to new resources and processes from project partners. This presentation will describe how NASA DEVELOP provides over 350 opportunities for individuals to engage with over 140 partners per year. It will discuss how the program employs teaming approaches, logistical support, and access to science expertise to facilitate increased awareness and use of NASA geospatial information. It will conclude with examples of how individual/institutional capacity building synergies have led to useful capacity building outcomes.
78 FR 30328 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... academic organizations, was established to advise the Federal Geographic Data Committee on management of... implementation of Office of Management and Budget (OMB) Circular A- 16. Topics to be addressed at the meeting include: Leadership Dialogue NSDI Strategic Plan Geospatial Platform OMB Circular A-16 Portfolio...
78 FR 49282 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... academic organizations, was established to advise the Federal Geographic Data Committee on management of... implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include: --Leadership Dialogue --Recent FGDC Activities --Geospatial Platform --NSDI Strategic Plan --3D...
77 FR 52053 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... academic organizations, was established to advise the Federal Geographic Data Committee on management of... implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting include: Leadership Dialogue Geospatial Platform Geolocation Privacy FGDC Report COGO Report Card...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR § 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2011 CFR
2011-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
Leveraging the geospatial advantage
Ben Butler; Andrew Bailey
2013-01-01
The Wildland Fire Decision Support System (WFDSS) web-based application leverages geospatial data to inform strategic decisions on wildland fires. A specialized data team, working within the Wildland Fire Management Research Development and Application group (WFM RD&A), assembles authoritative national-level data sets defining values to be protected. The use of...
Ghosh, Smita; Moonan, Patrick K; Cowan, Lauren; Grant, Juliana; Kammerer, Steve; Navin, Thomas R
2012-06-01
Molecular characterization of Mycobacterium tuberculosis complex isolates (genotyping) can be used by public health programs to more readily identify tuberculosis (TB) transmission. The Centers for Disease Control and Prevention's National Tuberculosis Genotyping Service has offered M. tuberculosis genotyping for every culture-confirmed case in the United States since 2004. The TB Genotyping Information Management System (TB GIMS), launched in March 2010, is a secure online database containing genotype results linked with case characteristics from the national TB registry for state and local TB programs to access, manage and analyze these data. As of September 2011, TB GIMS contains genotype results for 89% of all culture-positive TB cases for 2010. Over 400 users can generate local and national reports and maps using TB GIMS. Automated alerts on geospatially concentrated cases with matching genotypes that may represent outbreaks are also generated by TB GIMS. TB genotyping results are available to enhance national TB surveillance and apply genotyping results to conduct TB control activities in the United States. Published by Elsevier B.V.
Point geospatial dataset representing locations of NPDES outfalls/dischargers for facilities which generally represent the site of the discharge. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from treated waste water that is discharged into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more dischargers. The location represents the discharge point of a discrete conveyance such as a pipe or man made ditch.
NASA's Agricultural Program: A USDA/Grower Partnership
NASA Technical Reports Server (NTRS)
McKellip, Rodney; Thomas, Michael
2002-01-01
Ag20/20 is a partnership between USDA, NASA, and four national commodity associations. It is driven by the information needs of U.S. farmers. Ag20/20 is focused on utilization of earth science and remote sensing for decision-making and oriented toward economically viable operational solutions. Its purpose is to accelerate the use of remote sensing and other geospatial technologies on the farm to: 1) Increase the production efficiency of the American farmer; 2) Reduce crop production risks; 3) Improve environmental stewardship tools for agricultural production.
Geospatial Data as a Service: Towards planetary scale real-time analytics
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Larraondo, P. R.; Antony, J.; Richards, C. J.
2017-12-01
The rapid growth of earth systems, environmental and geophysical datasets poses a challenge to both end-users and infrastructure providers. For infrastructure and data providers, tasks like managing, indexing and storing large collections of geospatial data needs to take into consideration the various use cases by which consumers will want to access and use the data. Considerable investment has been made by the Earth Science community to produce suitable real-time analytics platforms for geospatial data. There are currently different interfaces that have been defined to provide data services. Unfortunately, there is considerable difference on the standards, protocols or data models which have been designed to target specific communities or working groups. The Australian National University's National Computational Infrastructure (NCI) is used for a wide range of activities in the geospatial community. Earth observations, climate and weather forecasting are examples of these communities which generate large amounts of geospatial data. The NCI has been carrying out significant effort to develop a data and services model that enables the cross-disciplinary use of data. Recent developments in cloud and distributed computing provide a publicly accessible platform where new infrastructures can be built. One of the key components these technologies offer is the possibility of having "limitless" compute power next to where the data is stored. This model is rapidly transforming data delivery from centralised monolithic services towards ubiquitous distributed services that scale up and down adapting to fluctuations in the demand. NCI has developed GSKY, a scalable, distributed server which presents a new approach for geospatial data discovery and delivery based on OGC standards. We will present the architecture and motivating use-cases that drove GSKY's collaborative design, development and production deployment. We show our approach offers the community valuable exploratory analysis capabilities, for dealing with petabyte-scale geospatial data collections.
NASA Astrophysics Data System (ADS)
Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.
2014-12-01
The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.
NASA Astrophysics Data System (ADS)
Harris, M. S.; Sautter, L.
2017-12-01
The College of Charleston's BEnthic Acoustic Mapping and Survey (BEAMS) Program has just completed its 10th year of operation, and has proven to be remarkably effective at activating and maintaining undergraduate student interest in conducting research using sophisticated software, state-of-the-art instrumentation, enormous datasets, and significant experiential time. BEAMS students conduct research as part of a minimum 3-course sequence of marine geology-based content, marine geospatial software, and seafloor research courses. Over 140 students have completed the program, 56% of the graduated students remain active in the marine geospatial workforce or academic arenas. Forty-eight percent (48%) of those students are female. As undergraduates, students not only conduct independent research projects, but present their work at national conferences each year. Additionally, over 90 % of all "BEAMers" have been provided a 2-3 day at-sea experience on a dedicated BEAMS Program multibeam survey research cruise, and many students also volunteer as survey technicians aboard NOAA research vessels. Critical partnerships have developed with private industry to provide numerous collaborative opportunities and an employment/employer pipeline, as well as provision of software and hardware at many fiscal levels. Ongoing collaboration with the Marine Institute of Ireland and the National and Kapodistrian University of Athens has also provided valuable field opportunities and collaborative experiences. This talk will summarize the program while highlighting some of the key areas and topics investigated by students, including detailed geomorphologic studies of continental margins, submarine canyons, tectonic features and seamounts. Students also work with NOAA investigators to aid in the characterization of fish and deep coral habitats, and with BOEM researchers to study offshore windfield suitability and submerged cultural landscapes. Our sister program at the University of Washington will also be discussed, as will developing relationships with our international and private industry partners.
NASA Astrophysics Data System (ADS)
Kagawa, Ayako; Le Sourd, Guillaume
2018-05-01
United Nations Secretariat activities, mapping began in 1946, and by 1951, the need for maps increased and an office with a team of cartographers was established. Since then, with the development of technologies including internet, remote sensing, unmanned aerial systems, relationship database management and information systems, geospatial information provides an ever-increasing variation of support to the work of the Organization for planning of operations, decision-making and monitoring of crises. However, the need for maps has remained intact. This presentation aims to highlight some of the cartographic representation styles over the decades by reviewing the evolution of selected maps by the office, and noting the changing cognitive and semiotic aspects of cartographic and geographic visualization required by the United Nations. Through presentation and analysis of these maps, the changing dynamics of the Organization in information management can be reflected, with a reminder of the continuing and expanding deconstructionist role of a cartographer, now geospatial information management experts.
Malpeli, Katherine C.; Chirico, Peter G.
2014-01-01
The Central African Republic (CAR), a country with rich diamond deposits and a tumultuous political history, experienced a government takeover by the Seleka rebel coalition in 2013. It is within this context that we developed and implemented a geospatial approach for assessing the lootability of high value-to-weight resource deposits, using the case of diamonds in CAR as an example. According to current definitions of lootability, or the vulnerability of deposits to exploitation, CAR's two major diamond deposits are similarly lootable. However, using this geospatial approach, we demonstrate that the deposits experience differing political geographic, spatial location, and cultural geographic contexts, rendering the eastern deposits more lootable than the western deposits. The patterns identified through this detailed analysis highlight the geographic complexities surrounding the issue of conflict resources and lootability, and speak to the importance of examining these topics at the sub-national scale, rather than relying on national-scale statistics.
Public health, GIS, and the internet.
Croner, Charles M
2003-01-01
Internet access and use of georeferenced public health information for GIS application will be an important and exciting development for the nation's Department of Health and Human Services and other health agencies in this new millennium. Technological progress toward public health geospatial data integration, analysis, and visualization of space-time events using the Web portends eventual robust use of GIS by public health and other sectors of the economy. Increasing Web resources from distributed spatial data portals and global geospatial libraries, and a growing suite of Web integration tools, will provide new opportunities to advance disease surveillance, control, and prevention, and insure public access and community empowerment in public health decision making. Emerging supercomputing, data mining, compression, and transmission technologies will play increasingly critical roles in national emergency, catastrophic planning and response, and risk management. Web-enabled public health GIS will be guided by Federal Geographic Data Committee spatial metadata, OpenGIS Web interoperability, and GML/XML geospatial Web content standards. Public health will become a responsive and integral part of the National Spatial Data Infrastructure.
2007-01-01
software applications and rely on the installations to supply them with the basic I&E geospatial data - sets for those applications. Such...spatial data in geospatially based tools to help track military supplies and materials all over the world. For instance, SDDCTEA developed IRRIS, a...regional offices or individual installations to supply the data and perform QA/QC in the process. The IVT program office worked with the installations and
National Transportation Atlas Databases : 1999
DOT National Transportation Integrated Search
1999-01-01
The National Transportation Atlas Databases -- 1999 (NTAD99) is a set of national : geographic databases of transportation facilities. These databases include geospatial : information for transportation modal networks and intermodal terminals, and re...
National Transportation Atlas Databases : 2001
DOT National Transportation Integrated Search
2001-01-01
The National Transportation Atlas Databases-2001 (NTAD-2001) is a set of national geographic databases of transportation facilities. These databases include geospatial information for transportation modal networks and intermodal terminals and related...
National Transportation Atlas Databases : 1996
DOT National Transportation Integrated Search
1996-01-01
The National Transportation Atlas Databases -- 1996 (NTAD96) is a set of national : geographic databases of transportation facilities. These databases include geospatial : information for transportation modal networks and intermodal terminals, and re...
National Transportation Atlas Databases : 2000
DOT National Transportation Integrated Search
2000-01-01
The National Transportation Atlas Databases-2000 (NTAD-2000) is a set of national geographic databases of transportation facilities. These databases include geospatial information for transportation modal networks and intermodal terminals and related...
National Transportation Atlas Databases : 1997
DOT National Transportation Integrated Search
1997-01-01
The National Transportation Atlas Databases -- 1997 (NTAD97) is a set of national : geographic databases of transportation facilities. These databases include geospatial : information for transportation modal networks and intermodal terminals, and re...
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
Tran, Chinh C; Yanagida, John F; Saksena, Sumeet; Fox, Jefferson
2016-02-06
This study addresses the tradeoff between Vietnam's national poultry vaccination program, which implemented an annual two-round HPAI H5N1 vaccination program for the entire geographical area of the Red River Delta during the period from 2005-2010, and an alternative vaccination program which would involve vaccination for every production cycle at the recommended poultry age in high risk areas within the Delta. The ex ante analysis framework was applied to identify the location of areas with high probability of HPAI H5N1 occurrence for the alternative vaccination program by using boosted regression trees (BRT) models, followed by weighted overlay operations. Cost-effectiveness of the vaccination programs was then estimated to measure the tradeoff between the past national poultry vaccination program and the alternative vaccination program. Ex ante analysis showed that the focus areas for the alternative vaccination program included 1137 communes, corresponding to 50.6% of total communes in the Delta, and located primarily in the coastal areas to the east and south of Hanoi. The cost-effectiveness analysis suggested that the alternative vaccination program would have been more successful in reducing the rate of disease occurrence and the total cost of vaccinations, as compared to the national poultry vaccination program.
Tran, Chinh C.; Yanagida, John F.; Saksena, Sumeet; Fox, Jefferson
2016-01-01
This study addresses the tradeoff between Vietnam’s national poultry vaccination program, which implemented an annual two-round HPAI H5N1 vaccination program for the entire geographical area of the Red River Delta during the period from 2005–2010, and an alternative vaccination program which would involve vaccination for every production cycle at the recommended poultry age in high risk areas within the Delta. The ex ante analysis framework was applied to identify the location of areas with high probability of HPAI H5N1 occurrence for the alternative vaccination program by using boosted regression trees (BRT) models, followed by weighted overlay operations. Cost-effectiveness of the vaccination programs was then estimated to measure the tradeoff between the past national poultry vaccination program and the alternative vaccination program. Ex ante analysis showed that the focus areas for the alternative vaccination program included 1137 communes, corresponding to 50.6% of total communes in the Delta, and located primarily in the coastal areas to the east and south of Hanoi. The cost-effectiveness analysis suggested that the alternative vaccination program would have been more successful in reducing the rate of disease occurrence and the total cost of vaccinations, as compared to the national poultry vaccination program. PMID:29056716
Plug and Play web-based visualization of mobile air monitoring data (Abstract)
EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...
EnviroAtlas is a multi-organization effort led by the US Environmental Protection Agency to develop, host and display a large suite of nation-wide geospatial indicators and indices of ecosystem services. This open access tool allows users to view, analyze, and download a wealth o...
ERIC Educational Resources Information Center
Richards, Meredith P.
2014-01-01
In this study, I employ geospatial techniques to assess the impact of school attendance zone "gerrymandering" on the racial/ethnic segregation of schools, using a large national sample of 15,290 attendance zones in 663 districts. I estimate the effect of gerrymandering on school diversity and school district segregation by comparing the…
2009-04-01
ADDRESS(ES) National Geospatial-Intelligence Agency,4600 Sangamore Rd Mail Stop D-54,Bethesda,MD, 20816 -5003 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil Director Vice Adm. Robert B. Murrett, U.S. Navy Deputy
NASA Astrophysics Data System (ADS)
Arozarena, A.; Villa, G.; Valcárcel, N.; Pérez, B.
2016-06-01
Remote sensing satellites, together with aerial and terrestrial platforms (mobile and fixed), produce nowadays huge amounts of data coming from a wide variety of sensors. These datasets serve as main data sources for the extraction of Geospatial Reference Information (GRI), constituting the "skeleton" of any Spatial Data Infrastructure (SDI). Since very different situations can be found around the world in terms of geographic information production and management, the generation of global GRI datasets seems extremely challenging. Remotely sensed data, due to its wide availability nowadays, is able to provide fundamental sources for any production or management system present in different countries. After several automatic and semiautomatic processes including ancillary data, the extracted geospatial information is ready to become part of the GRI databases. In order to optimize these data flows for the production of high quality geospatial information and to promote its use to address global challenges several initiatives at national, continental and global levels have been put in place, such as European INSPIRE initiative and Copernicus Programme, and global initiatives such as the Group on Earth Observation/Global Earth Observation System of Systems (GEO/GEOSS) and United Nations Global Geospatial Information Management (UN-GGIM). These workflows are established mainly by public organizations, with the adequate institutional arrangements at national, regional or global levels. Other initiatives, such as Volunteered Geographic Information (VGI), on the other hand may contribute to maintain the GRI databases updated. Remotely sensed data hence becomes one of the main pillars underpinning the establishment of a global SDI, as those datasets will be used by public agencies or institutions as well as by volunteers to extract the required spatial information that in turn will feed the GRI databases. This paper intends to provide an example of how institutional arrangements and cooperative production systems can be set up at any territorial level in order to exploit remotely sensed data in the most intensive manner, taking advantage of all its potential.
NASA Technical Reports Server (NTRS)
Schaaf, Michaela M. (Editor); Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery Shelly; Calamaio, Caprice; Carstenson, Larry; Dugan, James; Farr, Lynne; Farritor, Shane
2003-01-01
This 15-year evaluation serves as a summary document highlighting the numerous and complete successes of the Nebraska Space Grant Program. Innovation has been highlighted through significant new endeavors during this 5-year period, such as placement of students and faculty at NASA Centers and the expansion of NSGC Native American Outreach Programs. While the last national program evaluation resulted in Nebraska s ranking as the top Capability Enhancement Consortium, and 5th best overall, Nebraska felt there was room for significant growth and development. This has been validated through the recent competitive attainment of Designated Grant status and has allowed for the exploration of new initiatives, as well as the expansion of already successful programs. A comprehensive strategic planning effort has involved all Nebraska representative entities and has guided Nebraska Space Grant through the evaluation period, providing a basis for continual advancement. Nebraska rigorously employs evaluation techniques to ensure that stated outcomes and metrics are achieved and that weaknesses are identified and corrected. With this coordinated approach, Nebraska expects that the next 5 years will yield new opportunities for significant achievement. Nebraska Space Grant will embrace new national endeavors, including the integration of Pender Public Schools -Nebraska s NASA Explorer School, geospatial initiatives, and the National Student Satellite Program.
A conceptual prototype for the next-generation national elevation dataset
Stoker, Jason M.; Heidemann, Hans Karl; Evans, Gayla A.; Greenlee, Susan K.
2013-01-01
In 2012 the U.S. Geological Survey's (USGS) National Geospatial Program (NGP) funded a study to develop a conceptual prototype for a new National Elevation Dataset (NED) design with expanded capabilities to generate and deliver a suite of bare earth and above ground feature information over the United States. This report details the research on identifying operational requirements based on prior research, evaluation of what is needed for the USGS to meet these requirements, and development of a possible conceptual framework that could potentially deliver the kinds of information that are needed to support NGP's partners and constituents. This report provides an initial proof-of-concept demonstration using an existing dataset, and recommendations for the future, to inform NGP's ongoing and future elevation program planning and management decisions. The demonstration shows that this type of functional process can robustly create derivatives from lidar point cloud data; however, more research needs to be done to see how well it extends to multiple datasets.
A geospatial model of ambient sound pressure levels in the contiguous United States.
Mennitt, Daniel; Sherrill, Kirk; Fristrup, Kurt
2014-05-01
This paper presents a model that predicts measured sound pressure levels using geospatial features such as topography, climate, hydrology, and anthropogenic activity. The model utilizes random forest, a tree-based machine learning algorithm, which does not incorporate a priori knowledge of source characteristics or propagation mechanics. The response data encompasses 270 000 h of acoustical measurements from 190 sites located in National Parks across the contiguous United States. The explanatory variables were derived from national geospatial data layers and cross validation procedures were used to evaluate model performance and identify variables with predictive power. Using the model, the effects of individual explanatory variables on sound pressure level were isolated and quantified to reveal systematic trends across environmental gradients. Model performance varies by the acoustical metric of interest; the seasonal L50 can be predicted with a median absolute deviation of approximately 3 dB. The primary application for this model is to generalize point measurements to maps expressing spatial variation in ambient sound levels. An example of this mapping capability is presented for Zion National Park and Cedar Breaks National Monument in southwestern Utah.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andre M.; Johnson, Gary E.; Borde, Amy B.
Pacific Northwest National Laboratory (PNNL) conducted this project for the U.S. Army Corps of Engineers, Portland District (Corps). The purpose of the project is to develop a geospatial, web-accessible database (called “Oncor”) for action effectiveness and related data from monitoring and research efforts for the Columbia Estuary Ecosystem Restoration Program (CEERP). The intent is for the Oncor database to enable synthesis and evaluation, the results of which can then be applied in subsequent CEERP decision-making. This is the first annual report in what is expected to be a 3- to 4-year project, which commenced on February 14, 2012.
75 FR 10309 - Announcement of National Geospatial Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... Geospatial Advisory Committee (NGAC) will meet on March 24-25, 2010 at the One Washington Circle Hotel, 1... a.m. to 5 p.m. on March 24 and from 8:30 a.m. to 4:30 p.m. on March 25. FOR FURTHER INFORMATION... Guidance/NGAC Action Plan The meeting will include an opportunity for public comment on March 25. Comments...
2006-11-01
29 3.2.4 National Register Information System Model ............................................................... 30 3.3 Summary of...are later based on that information . Despite their general level of power and resolution, Federal data management and accounting tools have not yet...have begun tracking their historic building and structure inven- tories using geographic information systems (GISs). A geospatial-referenced data
Hu, Hao; Hong, Xingchen; Terstriep, Jeff; Liu, Yan; Finn, Michael P.; Rush, Johnathan; Wendel, Jeffrey; Wang, Shaowen
2016-01-01
Geospatial data, often embedded with geographic references, are important to many application and science domains, and represent a major type of big data. The increased volume and diversity of geospatial data have caused serious usability issues for researchers in various scientific domains, which call for innovative cyberGIS solutions. To address these issues, this paper describes a cyberGIS community data service framework to facilitate geospatial big data access, processing, and sharing based on a hybrid supercomputer architecture. Through the collaboration between the CyberGIS Center at the University of Illinois at Urbana-Champaign (UIUC) and the U.S. Geological Survey (USGS), a community data service for accessing, customizing, and sharing digital elevation model (DEM) and its derived datasets from the 10-meter national elevation dataset, namely TopoLens, is created to demonstrate the workflow integration of geospatial big data sources, computation, analysis needed for customizing the original dataset for end user needs, and a friendly online user environment. TopoLens provides online access to precomputed and on-demand computed high-resolution elevation data by exploiting the ROGER supercomputer. The usability of this prototype service has been acknowledged in community evaluation.
NASA Astrophysics Data System (ADS)
Yang, Z.; Han, W.; di, L.
2010-12-01
The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.
Historical Topographic Map Collection bookmark
Fishburn, Kristin A.; Allord, Gregory J.
2017-06-29
The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the historical scanned maps in 2011, is to provide a digital repository of USGS topographic maps, available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of printed topographic maps, and prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic printing process. As the USGS continues the release of a new generation of topographic maps (US Topo) in electronic form, the topographic map remains an indispensable tool for government, science, industry, land management planning, and leisure.
Scanning and georeferencing historical USGS quadrangles
Fishburn, Kristin A.; Davis, Larry R.; Allord, Gregory J.
2017-06-23
The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the Historical Topographic Map Collection in 2011, is to provide access to a digital repository of USGS topographic maps that is available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of traditional topographic maps, and, prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic process. The next generation of topographic maps, US Topo, is being released by the USGS in digital form, and newer technologies make it possible to also deliver historical maps in the same electronic format that is more publicly accessible.
GSKY: A scalable distributed geospatial data server on the cloud
NASA Astrophysics Data System (ADS)
Rozas Larraondo, Pablo; Pringle, Sean; Antony, Joseph; Evans, Ben
2017-04-01
Earth systems, environmental and geophysical datasets are an extremely valuable sources of information about the state and evolution of the Earth. Being able to combine information coming from different geospatial collections is in increasing demand by the scientific community, and requires managing and manipulating data with different formats and performing operations such as map reprojections, resampling and other transformations. Due to the large data volume inherent in these collections, storing multiple copies of them is unfeasible and so such data manipulation must be performed on-the-fly using efficient, high performance techniques. Ideally this should be performed using a trusted data service and common system libraries to ensure wide use and reproducibility. Recent developments in distributed computing based on dynamic access to significant cloud infrastructure opens the door for such new ways of processing geospatial data on demand. The National Computational Infrastructure (NCI), hosted at the Australian National University (ANU), has over 10 Petabytes of nationally significant research data collections. Some of these collections, which comprise a variety of observed and modelled geospatial data, are now made available via a highly distributed geospatial data server, called GSKY (pronounced [jee-skee]). GSKY supports on demand processing of large geospatial data products such as satellite earth observation data as well as numerical weather products, allowing interactive exploration and analysis of the data. It dynamically and efficiently distributes the required computations among cloud nodes providing a scalable analysis framework that can adapt to serve large number of concurrent users. Typical geospatial workflows handling different file formats and data types, or blending data in different coordinate projections and spatio-temporal resolutions, is handled transparently by GSKY. This is achieved by decoupling the data ingestion and indexing process as an independent service. An indexing service crawls data collections either locally or remotely by extracting, storing and indexing all spatio-temporal metadata associated with each individual record. GSKY provides the user with the ability of specifying how ingested data should be aggregated, transformed and presented. It presents an OGC standards-compliant interface, allowing ready accessibility for users of the data via Web Map Services (WMS), Web Processing Services (WPS) or raw data arrays using Web Coverage Services (WCS). The presentation will show some cases where we have used this new capability to provide a significant improvement over previous approaches.
ERIC Educational Resources Information Center
Kerr, Stacey
2016-01-01
Although instruction related to learning management systems and other educational applications in teacher education programs has increased, the potential of geospatial technologies has yet to be widely explored and considered in the teacher education literature, despite its ability to function as an engaging pedagogical tool with teacher…
Commercial observation satellites: broadening the sources of geospatial data
NASA Astrophysics Data System (ADS)
Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.
2002-09-01
Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.
3D geospatial visualizations: Animation and motion effects on spatial objects
NASA Astrophysics Data System (ADS)
Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos
2018-02-01
Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.
Spatial Thinking: Precept for Understanding Operational Environments
2016-06-10
A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18
The Value of Information - Accounting for a New Geospatial Paradigm
NASA Astrophysics Data System (ADS)
Pearlman, J.; Coote, A. M.
2014-12-01
A new frontier in consideration of socio-economic benefit is valuing information as an asset, often referred to as Infonomics. Conventional financial practice does not easily provide a mechanism for valuing information and yet clearly for many of the largest corporations, such as Google and Facebook, it is their principal asset. This is exacerbated for public sector organizations, as those that information-centric rather than information-enabled are relatively few - statistics, archiving and mapping agencies are perhaps the only examples - so it's not at the top of the agenda for Government. However, it is a hugely important issue when valuing Geospatial data and information. Geospatial data allows public institutions to operate, and facilitates the provision of essential services for emergency response and national defense. In this respect, geospatial data is strongly analogous to other types of public infrastructure, such as utilities and roads. The use of Geospatial data is widespread from companies in the transportation or construction sectors to individual planning for daily events. The categorization of geospatial data as infrastructure is critical to decisions related to investment in its management, maintenance and upgrade over time. Geospatial data depreciates in the same way that physical infrastructure depreciates. It needs to be maintained otherwise its functionality and value in use declines. We have coined the term geo-infonomics to encapsulate the concept. This presentation will develop the arguments around its importance and current avenues of research.
Geo-spatial Informatics in International Public Health Nursing Education.
Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany
2016-01-01
This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development.
Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido
2017-01-01
Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.
National hydrography dataset--linear referencing
Simley, Jeffrey; Doumbouya, Ariel
2012-01-01
Geospatial data normally have a certain set of standard attributes, such as an identification number, the type of feature, and name of the feature. These standard attributes are typically embedded into the default attribute table, which is directly linked to the geospatial features. However, it is impractical to embed too much information because it can create a complex, inflexible, and hard to maintain geospatial dataset. Many scientists prefer to create a modular, or relational, data design where the information about the features is stored and maintained separately, then linked to the geospatial data. For example, information about the water chemistry of a lake can be maintained in a separate file and linked to the lake. A Geographic Information System (GIS) can then relate the water chemistry to the lake and analyze it as one piece of information. For example, the GIS can select all lakes more than 50 acres, with turbidity greater than 1.5 milligrams per liter.
Using Crowdsourced Geospatial Data to Aid in Nuclear Proliferation Monitoring
2016-12-01
M. Stephens, and Ronald D. Bonnell, “DAI for Document Retrieval: The MINDS Project,” in Distributed Artificial Intelligence , ed. Michael N. Huhns...Ronald D. Bonnell. “DAI for Document Retrieval: The MINDS Project,” In Distributed Artificial Intelligence , edited by Michael N. Huhns, 249–283...was for the director of National Intelligence to explore ways that crowdsourced geospatial imagery technologies could aid existing governmental
Best Practices for Preparing Interoperable Geospatial Data
NASA Astrophysics Data System (ADS)
Wei, Y.; Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Beaty, T. W.
2010-12-01
Geospatial data is critically important for a wide scope of research and applications: carbon cycle and ecosystem, climate change, land use and urban planning, environmental protecting, etc. Geospatial data is created by different organizations using different methods, from remote sensing observations, field surveys, model simulations, etc., and stored in various formats. So geospatial data is diverse and heterogeneous, which brings a huge barrier for the sharing and using of geospatial data, especially when targeting a broad user community. Many efforts have been taken to address different aspects of using geospatial data by improving its interoperability. For example, the specification for Open Geospatial Consortium (OGC) catalog services defines a standard way for geospatial information discovery; OGC Web Coverage Services (WCS) and OPeNDAP define interoperable protocols for geospatial data access, respectively. But the reality is that only having the standard mechanisms for data discovery and access is not enough. The geospatial data content itself has to be organized in standard, easily understandable, and readily usable formats. The Oak Ridge National Lab Distributed Archived Data Center (ORNL DAAC) archives data and information relevant to biogeochemical dynamics, ecological data, and environmental processes. The Modeling and Synthesis Thematic Data Center (MAST-DC) prepares and distributes both input data and output data of carbon cycle models and provides data support for synthesis and terrestrial model inter-comparison in multi-scales. Both of these NASA-funded data centers compile and distribute a large amount of diverse geospatial data and have broad user communities, including GIS users, Earth science researchers, and ecosystem modeling teams. The ORNL DAAC and MAST-DC address this geospatial data interoperability issue by standardizing the data content and feeding them into a well-designed Spatial Data Infrastructure (SDI) which provides interoperable mechanisms to advertise, visualize, and distribute the standardized geospatial data. In this presentation, we summarize the experiences learned and the best practices for geospatial data standardization. The presentation will describe how diverse and historical data archived in the ORNL DAAC were converted into standard and non-proprietary formats; what tools were used to make the conversion; how the spatial and temporal information are properly captured in a consistent manor; how to name a data file or a variable to make it both human-friendly and semantically interoperable; how NetCDF file format and CF convention can promote the data usage in ecosystem modeling user community; how those standardized geospatial data can be fed into OGC Web Services to support on-demand data visualization and access; and how the metadata should be collected and organized so that they can be discovered through standard catalog services.
The Geoinformatica free and open source software stack
NASA Astrophysics Data System (ADS)
Jolma, A.
2012-04-01
The Geoinformatica free and open source software (FOSS) stack is based mainly on three established FOSS components, namely GDAL, GTK+, and Perl. GDAL provides access to a very large selection of geospatial data formats and data sources, a generic geospatial data model, and a large collection of geospatial analytical and processing functionality. GTK+ and the Cairo graphics library provide generic graphics and graphical user interface capabilities. Perl is a programming language, for which there is a very large set of FOSS modules for a wide range of purposes and which can be used as an integrative tool for building applications. In the Geoinformatica stack, data storages such as FOSS RDBMS PostgreSQL with its geospatial extension PostGIS can be used below the three above mentioned components. The top layer of Geoinformatica consists of a C library and several Perl modules. The C library comprises a general purpose raster algebra library, hydrological terrain analysis functions, and visualization code. The Perl modules define a generic visualized geospatial data layer and subclasses for raster and vector data and graphs. The hydrological terrain functions are already rather old and they suffer for example from the requirement of in-memory rasters. Newer research conducted using the platform include basic geospatial simulation modeling, visualization of ecological data, linking with a Bayesian network engine for spatial risk assessment in coastal areas, and developing standards-based distributed water resources information systems in Internet. The Geoinformatica stack constitutes a platform for geospatial research, which is targeted towards custom analytical tools, prototyping and linking with external libraries. Writing custom analytical tools is supported by the Perl language and the large collection of tools that are available especially in GDAL and Perl modules. Prototyping is supported by the GTK+ library, the GUI tools, and the support for object-oriented programming in Perl. New feature types, geospatial layer classes, and tools as extensions with specific features can be defined, used, and studied. Linking with external libraries is possible using the Perl foreign function interface tools or with generic tools such as Swig. We are interested in implementing and testing linking Geoinformatica with existing or new more specific hydrological FOSS.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... of Marine Recreational Uses and Visitor Attitudes at Dry Tortugas National Park and Biscayne National... Recreational Uses and Visitor Attitudes at Dry Tortugas National Park and Biscayne National Park. Type of... attitudes, perceptions and beliefs concerning marine resources and provide a geospatial assessment of...
2008-12-01
Guide, 3rd ed. (London; Thousand Oaks, Calif: Sage Publications, 1999), 228, http://www.loc.gov/catdir/ toc /fy042/99214121.html; (accessed date 6/25...analysis in the GEOINT context is the Sistema Nacional de Seguridad Pública, SNSP (National System of Public Security) with the implementation of the...named Sistema de Información Geográfica del Atlas Nacional de Riesgos (GIS national risk atlas) that is under the “direction of research” of that
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
NativeView: A Geospatial Curriculum for Native Nation Building
NASA Astrophysics Data System (ADS)
Rattling Leaf, J.
2007-12-01
In the spirit of collaboration and reciprocity, James Rattling Leaf of Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Indian Country. As a thirty-year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. Sinte Gleska University (SGU) has initiated the development of a Geospatial Education Curriculum project. NativeView: A Geospatial Curriculum for Native Nation Building is a two-year project that entails a disciplined approach towards the development of a relevant Geospatial academic curriculum. This project is designed to meet the educational and land management needs of the Rosebud Lakota Tribe through the utilization of Geographic Information Systems (GIS), Remote Sensing (RS) and Global Positioning Systems (GPS). In conjunction with the strategy and progress of this academic project, a formal presentation and demonstration of the SGU based Geospatial software RezMapper software will exemplify an innovative example of state of the art information technology. RezMapper is an interactive CD software package focused toward the 21 Lakota communities on the Rosebud Reservation that utilizes an ingenious concept of multimedia mapping and state of the art data compression and presentation. This ongoing development utilizes geographic data, imagery from space, historical aerial photography and cultural features such as historic Lakota documents, language, song, video and historical photographs in a multimedia fashion. As a tangible product, RezMapper will be a project deliverable tool for use in the classroom and to a broad range of learners.
Growing a Global Perspective: Utilizing Graduate Students as Scientists in the Classroom
NASA Astrophysics Data System (ADS)
Martinez, A.; Prouhet, T.; Kincaid, J.; Williams, N.; Simms, M.; Evans, R.
2006-12-01
Advancing Geospatial Skills in Science and Social Sciences (AGSSS) is a NSF GK12 program designed to produce scientists with an interest in and skills related to education by bringing graduate students (termed Fellows) into science and social science classrooms. The AGSSS program is unique in the GK-12 program because of its emphasis on spatial thinking with and through geospatial technologies. Spatial thinking is defined as the knowledge, skills, and habits of mind to use concepts of space, tools of representation, and processes of reasoning to structure problems, find answers and express solutions to these problems. Working collaboratively, Fellows assist teachers in using technologies (many freely available) such as virtual globes, GIS, GPS, NASA's ISSEarthKAM, and online databases. Fellows also customize existing curricula based on teacher requests to focus on spatial thinking and skill development. Preliminary results of the program reveal that students' use of geospatial technologies in interactive lessons that highlight real world processes and global perspectives encourages the development of higher order thinking skills. Fellows perceive three primary benefits: developing collaboration and communication skills, solidifying their own understandings of spatial thinking and becoming more aware and skilled in working in educational settings.
NASA Astrophysics Data System (ADS)
Une, Hiroshi; Nakano, Takayuki
2018-05-01
Geographic location is one of the most fundamental and indispensable information elements in the field of disaster response and prevention. For example, in the case of the Tohoku Earthquake in 2011, aerial photos taken immediately after the earthquake greatly improved information sharing among different government offices and facilitated rescue and recovery operations, and maps prepared after the disaster assisted in the rapid reconstruction of affected local communities. Thanks to the recent development of geospatial information technology, this information has become more essential for disaster response activities. Advancements in web mapping technology allows us to better understand the situation by overlaying various location-specific data on base maps on the web and specifying the areas on which activities should be focused. Through 3-D modelling technology, we can have a more realistic understanding of the relationship between disaster and topography. Geospatial information technology can sup-port proper preparation and emergency responses against disasters by individuals and local communities through hazard mapping and other information services using mobile devices. Thus, geospatial information technology is playing a more vital role on all stages of disaster risk management and responses. In acknowledging geospatial information's vital role in disaster risk reduction, the Sendai Framework for Disaster Risk Reduction 2015-2030, adopted at the Third United Nations World Conference on Disaster Risk Reduction, repeatedly reveals the importance of utilizing geospatial information technology for disaster risk reduction. This presentation aims to report the recent practical applications of geospatial information technology for disaster risk management and responses.
Information technology developments within the national biological information infrastructure
Cotter, G.; Frame, M.T.
2000-01-01
Looking out an office window or exploring a community park, one can easily see the tremendous challenges that biological information presents the computer science community. Biological information varies in format and content depending whether or not it is information pertaining to a particular species (i.e. Brown Tree Snake), or a specific ecosystem, which often includes multiple species, land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993. The NBII is designed to address these issues on a National scale within the United States, and through international partnerships abroad. This paper discusses current computer science efforts within the National Biological Information Infrastructure Program and future computer science research endeavors that are needed to address the ever-growing issues related to our Nation's biological concerns.
Development of Geospatial Map Based Election Portal
NASA Astrophysics Data System (ADS)
Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.
2014-11-01
The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.
Tree-mendous Timber Evaluation
NASA Technical Reports Server (NTRS)
2004-01-01
Funded and administered by NASA, the Affiliated Research Center (ARC) program transfers geospatial technologies from the Space Agency and participating universities to commercial companies, non-profit and trade organizations, and tribal governments. The origins of the ARC program date back to 1988, when NASA's Stennis Space Center initiated the Visiting Investigator Program to bring industry closer to spatial information technologies. The success of this trial program led to an expansion into the ARC program, whose goal is to enhance competitiveness of U.S. industries through more efficient use of remote sensing and related technologies. NASA's ARC program served as the foundation for the development of International Hardwood Resources, which then grew into Falcon Informatics with the acquisition of a technology from a European software company and a change of business models. Doylestown, Pennsylvania-based Falcon Informatics is now a world-leading information services company that combines in-depth timber industry experience with state-of-the-art software to serve the needs of national governments, international paper companies, and timber-investment management organizations.
The National Aquatic Resource Surveys (NARS) are a series of four statistical surveys conducted by the U.S. Environmental Protection Agency working in collaboration with states, tribal nations and other federal agencies. The surveys are conducted for lakes and reservoirs, streams...
The benefits of improved national elevation data
Snyder, Gregory I.
2013-01-01
This article describes how the National Enhanced Elevation Assessment (NEEA) has identified substantial benefits that could come about if improved elevation data were publicly available for current and emerging applications and business uses such as renewable energy, precision agriculture, and intelligent vehicle navigation and safety. In order to support these diverse needs, new national elevation data with higher resolution and accuracy are needed. The 3D Elevation Program (3DEP) initiative was developed to meet the majority of these needs and it is expected that 3DEP will result in new, unimagined information services that would result in job growth and the transformation of the geospatial community. Private-sector data collection companies are continuously evolving sensors and positioning technologies that are needed to collect improved elevation data. An initiative of this scope might also provide an opportunity for companies to improve their capabilities and produce even higher data quality and consistency at a pace that might not have otherwise occurred.
Geospatial Informational Security Risks and Concerns of the U.S. Air Force GeoBase Program
2007-03-01
multiple governmental directives such as the Government Performance and Results Act (GPRA), Paperwork Reduction Act (PRA), and Office of Management and... governments , non- governmental organizations (NGOs), universities, and commercial sector contractors (Lachman, 2006). One command noted that over...Defense, or the United States Government . AFIT/GEM/ENV/07-M1 GEOSPATIAL INFORMATIONAL SECURITY RISKS AND CONCERNS OF THE UNITED STATES
NASA Astrophysics Data System (ADS)
Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.
2016-12-01
The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM algorithm and the processing system used for the ArcticDEM project, as well as provide notable examples of ArcticDEM products.
NASA Astrophysics Data System (ADS)
Oeldenberger, S.; Khaled, K. B.
2012-07-01
The African Geospatial Sciences Institute (AGSI) is currently being established in Tunisia as a non-profit, non-governmental organization (NGO). Its objective is to accelerate the geospatial capacity development in North-Africa, providing the facilities for geospatial project and management training to regional government employees, university graduates, private individuals and companies. With typical course durations between one and six months, including part-time programs and long-term mentoring, its focus is on practical training, providing actual project execution experience. The AGSI will complement formal university education and will work closely with geospatial certification organizations and the geospatial industry. In the context of closer cooperation between neighboring North Africa and the European Community, the AGSI will be embedded in a network of several participating European and African universities, e. g. the ITC, and international organizations, such as the ISPRS, the ICA and the OGC. Through a close cooperation with African organizations, such as the AARSE, the RCMRD and RECTAS, the network and exchange of ideas, experiences, technology and capabilities will be extended to Saharan and sub-Saharan Africa. A board of trustees will be steering the AGSI operations and will ensure that practical training concepts and contents are certifiable and can be applied within a credit system to graduate and post-graduate education at European and African universities. The geospatial training activities of the AGSI are centered on a facility with approximately 30 part- and full-time general staff and lecturers in Tunis during the first year. The AGSI will operate a small aircraft with a medium-format aerial camera and compact LIDAR instrument for local, community-scale data capture. Surveying training, the photogrammetric processing of aerial images, GIS data capture and remote sensing training will be the main components of the practical training courses offered, to build geospatial capacity and ensure that AGSI graduates will have the appropriate skill-sets required for employment in the geospatial industry. Geospatial management courses and high-level seminars will be targeted at decision makers in government and industry to build awareness for geospatial applications and benefits. Online education will be developed together with international partners and internet-based activities will involve the public to familiarize them with geospatial data and its many applications.
NASA Technical Reports Server (NTRS)
Lyle, Stacey D.
2009-01-01
A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time has been developed. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server. The Geospatial Authentication software has two parts Server and Client. The server software is a virtual private network (VPN) developed in Linux operating system using Perl programming language. The server can be a stand-alone VPN server or can be combined with other applications and services. The client software is a GUI Windows CE software, or Mobile Graphical Software, that allows users to authenticate into a network. The purpose of the client software is to pass the needed satellite information to the server for authentication.
The National Aquatic Resource Surveys (NARS) are four surveys conducted by the U.S. Environmental Protection Agency working in collaboration with states, tribal nations and other federal agencies. The surveys are conducted for lakes and reservoirs, streams, estuaries and intracoa...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Security Agency/Central Security Service records, unless the records are exempt according to 50 U.S.C. 402. (c) Defense Intelligence Agency, National Reconnaissance Office, and National Geospatial-Intelligence Agency records, unless the records are exempt according to 50 U.S.C. 403-5e, 10 U.S.C. 424 and 455...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... applications from State, local, or tribal governments; nonprofit, nongovernmental organizations; and academic institutions to advance the development of The National Map and other national geospatial databases. This... Respondents: State, local, and tribal governments; private and non-profit firms; and academic institutions...
78 FR 25095 - Notice of an Extension of an Information Collection (1028-0092)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... the development of The National Map and other national geospatial databases. In FY 2010, projects for... including elevation, orthoimagery, hydrography and other layers in the national databases may be possible. We will accept applications from State, local or tribal governments and academic institutions to...
NASA Astrophysics Data System (ADS)
Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.
2015-12-01
The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application programming interface (API), which will allow other organizations to build their own custom applications and tools. New features such as finer scale aggregation and an online carbon calculator are being added to the LandCarbon web application to continue to make the site interactive, visually compelling, and useful for a wide range of users.
New Geodetic Infrastructure for Australia: The NCRIS / AuScope Geospatial Component
NASA Astrophysics Data System (ADS)
Tregoning, P.; Watson, C. S.; Coleman, R.; Johnston, G.; Lovell, J.; Dickey, J.; Featherstone, W. E.; Rizos, C.; Higgins, M.; Priebbenow, R.
2009-12-01
In November 2006, the Australian Federal Government announced AUS15.8M in funding for geospatial research infrastructure through the National Collaborative Research Infrastructure Strategy (NCRIS). Funded within a broader capability area titled ‘Structure and Evolution of the Australian Continent’, NCRIS has provided a significant investment across Earth imaging, geochemistry, numerical simulation and modelling, the development of a virtual core library, and geospatial infrastructure. Known collectively as AuScope (www.auscope.org.au), this capability area has brought together Australian’s leading Earth scientists to decide upon the most pressing scientific issues and infrastructure needs for studying Earth systems and their impact on the Australian continent. Importantly and at the same time, the investment in geospatial infrastructure offers the opportunity to raise Australian geodetic science capability to the highest international level into the future. The geospatial component of AuScope builds onto the AUS15.8M of direct funding through the NCRIS process with significant in-kind and co-investment from universities and State/Territory and Federal government departments. The infrastructure to be acquired includes an FG5 absolute gravimeter, three gPhone relative gravimeters, three 12.1 m radio telescopes for geodetic VLBI, a continent-wide network of continuously operating geodetic quality GNSS receivers, a trial of a mobile SLR system and access to updated cluster computing facilities. We present an overview of the AuScope geospatial capability, review the current status of the infrastructure procurement and discuss some examples of the scientific research that will utilise the new geospatial infrastructure.
Mapping a Difference: The Power of Geospatial Visualization
NASA Astrophysics Data System (ADS)
Kolvoord, B.
2015-12-01
Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.
77 FR 19032 - Geological Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...
Development of Geospatial Map Based Portal for New Delhi Municipal Council
NASA Astrophysics Data System (ADS)
Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar
2017-09-01
The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal (GMP) for New Delhi Municipal Council (NDMC) of NCT of Delhi. The GMP has been developed as a map based spatial decision support system (SDSS) for planning and development of NDMC area to the NDMC department and It's heaving the inbuilt information searching tools (identifying of location, nearest utilities locations, distance measurement etc.) for the citizens of NCTD. The GMP is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMP includes Circle, Division, Sub-division boundaries of department pertaining to New Delhi Municipal Council, Parcels of residential, commercial, and government buildings, basic amenities (Police Stations, Hospitals, Schools, Banks, ATMs and Fire Stations etc.), Over-ground and Underground utility network lines, Roads, Railway features. GMP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for development and management of MCD area. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.
Development of Geospatial Map Based Portal for Delimitation of Mcd Wards
NASA Astrophysics Data System (ADS)
Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar
2017-09-01
The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal for Delimitation of MCD Wards (GMPDW) and election of 3 Municipal Corporations of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for delimitation of MCD Wards and draw of peripheral wards boundaries to planning and management of MCD Election process of State Election Commission, and as an MCD election related information searching tools (Polling Station, MCD Wards and Assembly constituency etc.,) for the citizens of NCTD. The GMPDW is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMPDW is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMPDW includes Enumeration Block (EB) and Enumeration Blocks Group (EBG) boundaries of Citizens of Delhi, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMPDW could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of MCD election. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.
NASA Astrophysics Data System (ADS)
Steenhuisen, Frits; Wilson, Simon J.
2015-07-01
Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national (geo-referenced) emission inventories and also to other resources that can be employed when such national inventories are lacking.
Development of a National Digital Geospatial Data Framework
,
1995-01-01
This proposal of a data framework to organize and enhance the activities of the geospatial data community to meet needs for basic themes of data was developed in response to a request in Executive Order 12906, Coordinating Geographic Data Acquisition and Access: The National Spatial Data Infrastructure (U.S. Executive Office of the President, 1994). The request stated: in consultation with State, local, and tribal governments and within 9 months of the date of this order, the FGDC shall submit a plan and schedule to OMB [U.S. Office of Management and Budget] for completing the initial implementation of a national digital geospatial data framework ("framework") by January 2000 and for establishing a process of ongoing data maintenance. The framework shall include geospatial data that are significant, in the determination of the FGDC, to a broad variety of users within any geographic area or nationwide. At a minimum, the plan shall address how the initial transportation, hydrology, and boundary elements of the framework might be completed by January 1998 in order to support the decennial census of 2000. The proposal was developed by representatives of local, regional, State, and Federal agencies under the auspices of the Federal Geographic Data Committee (FGDC). The individuals are listed in the appendix of this report. This Framework Working Group identified the purpose and goals for the framework; identified incentives for participation; defined the information content; developed preliminary technical, operational, and business contexts; specified the institutional roles needed; and developed a strategy for a phased implementation of the framework.Members of the working group presented the concepts of the framework for discussion at several national and regional public meetings. The draft of the report also was provided for public, written review. These discussions and reviews were the source of many improvements to the report.The FGDC approved the report for submission to the Office of Management and Budget on March 31, 1995.
Increasing Diversity in Geosciences: Geospatial Initiatives at North Carolina Central University
NASA Astrophysics Data System (ADS)
Vlahovic, G.; Malhotra, R.; Renslow, M.; Harris, J.; Barnett, A.
2006-12-01
Two new initiatives funded by the NSF-GEO and NSF-HRD directorates have potential to advance the geospatial program at the North Carolina Central University (NCCU). As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU is establishing a GIS Research, Innovative Teaching, and Service (GRITS) Laboratory and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer GIS certification to Geography graduates. This presentation will focus on the role that GRITS and GIS certification will play in attracting students to the geoscience majors, the planned curriculum changes, and the emerging partnership with ASPRS to develop and offer "provisional certification" to NCCU students. In addition, authors would also like to describe plans to promote geospatial education in partnership with other educational institutions. NCCUs high minority enrollment (at the present approximately 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and possible role model for other HBCUs.
Nebraska NativeGEM (Geospatial Extension Model)
NASA Technical Reports Server (NTRS)
Bowen, Brent
2004-01-01
This proposal, Nebraska NativeGEM (Geospatial Extension Model) features a unique diversity component stemming from the exceptional reputation NNSGC has built by delivering geospatial science experiences to Nebraska s Native Americans. For 7 years, NNSGC has partner4 with the 2 tribal colleges and 4 reservation school districts in Nebraska to form the Nebraska Native American Outreach Program (NNAOP), a partnership among tribal community leaders, academia, tribal schools, and industry reaching close to 1,OOO Native American youth, over 1,200 community members (Lehrer & Zendajas, 2001).NativeGEM addresses all three key components of Cooperative State Research, Education, and Extension Service (CSREES) goals for advancing decision support, education, and workforce development through the GES. The existing long term commitments that the NNSGC and the GES have in these areas allow for the pursuit of a broad range of activities. NativeGEM builds upon these existing successful programs and collaborations. Outcomes and metrics for each proposed project are detailed in the Approach section of this document.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
..., nongovernmental organizations; and academic institutions to advance the development of The National Map and other national geospatial databases. This effort will support our need to supplement ongoing data collection.... Description of Respondents: State, local, and tribal governments; private and non-profit firms; and academic...
77 FR 37004 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
...-Intelligence Agency (NGA), ATTN: Security Specialist, Mission Support, MSRS P-12, 7500 GEOINT Drive..., Alternate OSD Federal Register Liaison Officer, Department of Defense. NGA-005 System name: National... maintained at National Geospatial-Intelligence Agency (NGA) Headquarters in Washington, DC metro area...
Joint Agency Commercial Imagery Evaluation (JACIE)
Jucht, Carrie
2010-01-01
Remote sensing data are vital to understanding the physical world and to answering many of its needs and problems. The United States Geological Survey's (USGS) Remote Sensing Technologies (RST) Project, working with its partners, is proud to sponsor the annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop to help understand the quality and usefulness of remote sensing data. The JACIE program was formed in 2001 to leverage U.S. Federal agency resources for the characterization of commercial remote sensing data. These agencies sponsor and co-chair JACIE: U.S. Geological Survey (USGS) National Aeronautics and Space Administration (NASA) National Geospatial-Intelligence Agency (NGA) U.S. Department of Agriculture (USDA) JACIE is an effort to coordinate data assessments between the participating agencies and partners and communicate the knowledge and results of the quality and utility of the remotely sensed data available for government and private use.
A Python Geospatial Language Toolkit
NASA Astrophysics Data System (ADS)
Fillmore, D.; Pletzer, A.; Galloy, M.
2012-12-01
The volume and scope of geospatial data archives, such as collections of satellite remote sensing or climate model products, has been rapidly increasing and will continue to do so in the near future. The recently launched (October 2011) Suomi National Polar-orbiting Partnership satellite (NPP) for instance, is the first of a new generation of Earth observation platforms that will monitor the atmosphere, oceans, and ecosystems, and its suite of instruments will generate several terabytes each day in the form of multi-spectral images and derived datasets. Full exploitation of such data for scientific analysis and decision support applications has become a major computational challenge. Geophysical data exploration and knowledge discovery could benefit, in particular, from intelligent mechanisms for extracting and manipulating subsets of data relevant to the problem of interest. Potential developments include enhanced support for natural language queries and directives to geospatial datasets. The translation of natural language (that is, human spoken or written phrases) into complex but unambiguous objects and actions can be based on a context, or knowledge domain, that represents the underlying geospatial concepts. This poster describes a prototype Python module that maps English phrases onto basic geospatial objects and operations. This module, along with the associated computational geometry methods, enables the resolution of natural language directives that include geographic regions of arbitrary shape and complexity.
EPA Facility Registry Service (FRS): CAMDBS
This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.
NASA Astrophysics Data System (ADS)
Lawhead, Pamela B.; Aten, Michelle L.
2003-04-01
The Center for GeoSpatial Workforce Development is embarking on a new era in education by developing a repository of dynamic online courseware authored by the foremost industry experts within the remote sensing and GIS industries. Virtual classrooms equipped with the most advanced instructions, computations, communications, course evaluation, and management facilities amplify these courses to enhance the learning environment and provide rapid feedback between instructors and students. The launch of this program included the objective development of the Model Curriculum by an independent consortium of remote sensing industry leaders. The Center's research and development focus on recruiting additional industry experts to develop the technical content of the courseware and then utilize state-of-the-art technology to enhance their material with visually stimulating animations, compelling audio clips and entertaining, interactive exercises intended to reach the broadest audience possible by targeting various learning styles. The courseware will be delivered via various media: Internet, CD-ROM, DVD, and compressed video, that translates into anywhere, anytime delivery of GeoSpatial Information Technology education.
The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework
NASA Astrophysics Data System (ADS)
Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.
2016-12-01
The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During the 6th Session of the UN-GGIM in August 2016 the role of DGGS in the context of the GSGF was formally acknowledged. This paper proposes to highlight the synergies and role of DGGS in the Global Statistical Geospatial Framework and to show examples of the use of DGGS to combine geospatial statistics with traditional geoscientific data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 245.102-70.) (1) Mapping, charting, and geodesy property. All Government-furnished mapping, charting, and geodesy (MC&G) property is under the control of the Director, National Geospatial Intelligence...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 245.102-70.) (1) Mapping, charting, and geodesy property. All Government-furnished mapping, charting, and geodesy (MC&G) property is under the control of the Director, National Geospatial Intelligence...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 245.102-70.) (1) Mapping, charting, and geodesy property. All Government-furnished mapping, charting, and geodesy (MC&G) property is under the control of the Director, National Geospatial Intelligence...
User's Guide for MapIMG 2: Map Image Re-projection Software Package
Finn, Michael P.; Trent, Jason R.; Buehler, Robert A.
2006-01-01
BACKGROUND Scientists routinely accomplish small-scale geospatial modeling in the raster domain, using high-resolution datasets for large parts of continents and low-resolution to high-resolution datasets for the entire globe. Direct implementation of point-to-point transformation with appropriate functions yields the variety of projections available in commercial software packages, but implementation with data other than points requires specific adaptation of the transformation equations or prior preparation of the data to allow the transformation to succeed. It seems that some of these packages use the U.S. Geological Survey's (USGS) General Cartographic Transformation Package (GCTP) or similar point transformations without adaptation to the specific characteristics of raster data (Usery and others, 2003a). Usery and others (2003b) compiled and tabulated the accuracy of categorical areas in projected raster datasets of global extent. Based on the shortcomings identified in these studies, geographers and applications programmers at the USGS expanded and evolved a USGS software package, MapIMG, for raster map projection transformation (Finn and Trent, 2004). Daniel R. Steinwand of Science Applications International Corporation, National Center for Earth Resources Observation and Science, originally developed MapIMG for the USGS, basing it on GCTP. Through previous and continuing efforts at the USGS' National Geospatial Technical Operations Center, this program has been transformed from an application based on command line input into a software package based on a graphical user interface for Windows, Linux, and other UNIX machines.
Wetherbee, Gregory A.
2017-01-01
Precipitation samples have been collected by the National Atmospheric Deposition Program's (NADP) National Trends Network (NTN) using the Aerochem Metrics Model 301 (ACM) collector since 1978. Approximately one-third of the NTN ACM collectors have been replaced with N-CON Systems, Inc. Model ADS 00-120 (NCON) collectors. Concurrent data were collected over 6 years at 12 NTN sites using colocated ACM and NCON collectors in various precipitation regimes. Linear regression models of the colocated data were used to adjust for relative bias between the collectors. Replacement of ACM collectors with NCON collectors resulted in shifts in 10-year seasonal precipitation-weighted mean concentration (PWMC) trend slopes for: cations (−0.001 to −0.007 mgL−1yr−1), anions (−0.009 to −0.028 mgL−1yr−1), and hydrogen ion (+0.689 meqL-1yr−1). Larger shifts in NO3− and SO4−2 seasonal PWMC trend slopes were observed in the Midwest and Northeast US, where concentrations are generally higher than in other regions. Geospatial analysis of interpolated concentration rasters indicated regions of accentuated variability introduced by incorporation of NCON collectors into the NTN.
Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.
2014-01-01
The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.
National requirements for improved elevation data
Snyder, Gregory I.; Sugarbaker, Larry J.; Jason, Allyson L.; Maune, David F.
2014-01-01
This report presents the results of surveys, structured interviews, and workshops conducted to identify key national requirements for improved elevation data for the United States and its territories, including coastlines. Organizations also identified and reported the expected economic benefits that would be realized if their requirements for improved elevation were met (appendixes 1–3). This report describes the data collection methodology and summarizes the findings. Participating organizations included 34 Federal agencies, 50 States and two territories, and a sampling of local governments, tribes, and nongovernmental orgnizations. The nongovernmental organizations included The Nature Conservancy and a sampling of private sector businesses. These data were collected in 2010-2011 as part of the National Enhanced Elevation Assessment (NEEA), a study to identify program alternatives for better meeting the Nation’s elevation data needs. NEEA tasks included the collection of national elevation requirements; analysis of the benefits and costs of meeting these requirements; assessment of emerging elevation technologies, lifecycle data management needs, and costs for managing and distributing a national-scale dataset and derived products; and candidate national elevation program alternatives that balance costs and benefits in meeting the Nation’s elevation requirements. The NEEA was sponsored by the National Digital Elevation Program (NDEP), a government coordination body with the U.S. Geological Survey (USGS) as managing partner that includes the National Geospatial-Intelligence Agency (NGA), the Federal Emergency Management Agency (FEMA), the Natural Resources Conservation Service (NRCS), the U.S. Army Corps of Engineers (USACE), and the National Oceanic and Atmospheric Administration (NOAA), among the more than a dozen agencies and organizations. The term enhanced elevation data as used in this report refers broadly to three-dimensional measurements of land or submerged topography, built features, vegetation structure, and other landscape detail. Additional information about NEEA and its later use in the development of a 3D Elevation Program (3DEP) can be found at http://nationalmap.gov/3DEP/index.html.
Solar and Wind Resource Assessments for Afghanistan and Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renne, D. S.; Kelly, M.; Elliott, D.
2007-01-01
The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.
The Australian Geodetic Observing Program. Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Johnston, G.; Dawson, J. H.
2015-12-01
Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.
Marine and Hydrokinetic Maps | Geospatial Data Science | NREL
production. Nonpowered Dams Assessment: An Assessment of Energy Potential at Non-Powered Dams in the United States The Nonpowered Dams Assessment, created by Oak Ridge National Laboratory, assesses non-powered dams across the nation to determine their ability to generate electricity. Non-powered dam electric
The use of National Technical Means (NTM) data and advanced geospatial technologies has an important role in supporting the mission of the Environmental Protection Agency (EPA). EPA's responsibilities have grown beyond pollution compliance monitoring and enforcement to include t...
46 CFR 167.65-45 - Notice to mariners; aids to navigation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... do so is evidence of neglect of duty. It is desirable that nautical school ships navigating oceans... and other marine information affecting the safety of navigation on oceans and coastwise and the Great... coverage) are prepared jointly by the National Geospatial-Intelligence Agency, National Ocean Service, and...
Online Resources to Support Professional Development for Managing and Preserving Geospatial Data
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.
2013-12-01
Improved capabilities of information and communication technologies (ICT) enable the development of new systems and applications for collecting, managing, disseminating, and using scientific data. New knowledge, skills, and techniques are also being developed to leverage these new ICT capabilities and improve scientific data management practices throughout the entire data lifecycle. In light of these developments and in response to increasing recognition of the wider value of scientific data for society, government agencies are requiring plans for the management, stewardship, and public dissemination of data and research products that are created by government-funded studies. Recognizing that data management and dissemination have not been part of traditional science education programs, new educational programs and learning resources are being developed to prepare new and practicing scientists, data scientists, data managers, and other data professionals with skills in data science and data management. Professional development and training programs also are being developed to address the need for scientists and professionals to improve their expertise in using the tools and techniques for managing and preserving scientific data. The Geospatial Data Preservation Resource Center offers an online catalog of various open access publications, open source tools, and freely available information for the management and stewardship of geospatial data and related resources, such as maps, GIS, and remote sensing data. Containing over 500 resources that can be found by type, topic, or search query, the geopreservation.org website enables discovery of various types of resources to improve capabilities for managing and preserving geospatial data. Applications and software tools can be found for use online or for download. Online journal articles, presentations, reports, blogs, and forums are also available through the website. Available education and training materials include tutorials, primers, guides, and online learning modules. The site enables users to find and access standards, real-world examples, and websites of other resources about geospatial data management. Quick links to lists of resources are available for data managers, system developers, and researchers. New resources are featured regularly to highlight current developments in practice and research. A user-centered approach was taken to design and develop the site iteratively, based on a survey of the expectations and needs of community members who have an interest in the management and preservation of geospatial data. Formative and summative evaluation activities have informed design, content, and feature enhancements to enable users to use the website efficiently and effectively. Continuing management and evaluation of the website keeps the content and the infrastructure current with evolving research, practices, and technology. The design, development, evaluation, and use of the website are described along with selected resources and activities that support education and professional development for the management, preservation, and stewardship of geospatial data.
EPA Facility Registry System (FRS): NCES
This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.
The National Map Customer Requirements: Findings from Interviews and Surveys
Sugarbaker, Larry; Coray, Kevin E.; Poore, Barbara
2009-01-01
The purpose of this study was to receive customer feedback and to understand data and information requirements for The National Map. This report provides results and findings from interviews and surveys and will guide policy and operations decisions about data and information requirements leading to the development of a 5-year strategic plan for the National Geospatial Program. These findings are based on feedback from approximately 2,200 customers between February and August 2008. The U.S. Geological Survey (USGS) conducted more than 160 interviews with 200 individuals. The American Society for Photogrammetry and Remote Sensing (ASPRS) and the International Map Trade Association (IMTA) surveyed their memberships and received feedback from over 400 members. The Environmental Systems Research Institute (ESRI) received feedback from over 1,600 of its U.S.-based software users through an online survey sent to customers attending the ESRI International User Conference in the summer of 2008. The results of these surveys were shared with the USGS and have been included in this report.
PANTHER. Pattern ANalytics To support High-performance Exploitation and Reasoning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czuchlewski, Kristina Rodriguez; Hart, William E.
Sandia has approached the analysis of big datasets with an integrated methodology that uses computer science, image processing, and human factors to exploit critical patterns and relationships in large datasets despite the variety and rapidity of information. The work is part of a three-year LDRD Grand Challenge called PANTHER (Pattern ANalytics To support High-performance Exploitation and Reasoning). To maximize data analysis capability, Sandia pursued scientific advances across three key technical domains: (1) geospatial-temporal feature extraction via image segmentation and classification; (2) geospatial-temporal analysis capabilities tailored to identify and process new signatures more efficiently; and (3) domain- relevant models of humanmore » perception and cognition informing the design of analytic systems. Our integrated results include advances in geographical information systems (GIS) in which we discover activity patterns in noisy, spatial-temporal datasets using geospatial-temporal semantic graphs. We employed computational geometry and machine learning to allow us to extract and predict spatial-temporal patterns and outliers from large aircraft and maritime trajectory datasets. We automatically extracted static and ephemeral features from real, noisy synthetic aperture radar imagery for ingestion into a geospatial-temporal semantic graph. We worked with analysts and investigated analytic workflows to (1) determine how experiential knowledge evolves and is deployed in high-demand, high-throughput visual search workflows, and (2) better understand visual search performance and attention. Through PANTHER, Sandia's fundamental rethinking of key aspects of geospatial data analysis permits the extraction of much richer information from large amounts of data. The project results enable analysts to examine mountains of historical and current data that would otherwise go untouched, while also gaining meaningful, measurable, and defensible insights into overlooked relationships and patterns. The capability is directly relevant to the nation's nonproliferation remote-sensing activities and has broad national security applications for military and intelligence- gathering organizations.« less
Making geospatial data in ASF archive readily accessible
NASA Astrophysics Data System (ADS)
Gens, R.; Hogenson, K.; Wolf, V. G.; Drew, L.; Stern, T.; Stoner, M.; Shapran, M.
2015-12-01
The way geospatial data is searched, managed, processed and used has changed significantly in recent years. A data archive such as the one at the Alaska Satellite Facility (ASF), one of NASA's twelve interlinked Distributed Active Archive Centers (DAACs), used to be searched solely via user interfaces that were specifically developed for its particular archive and data sets. ASF then moved to using an application programming interface (API) that defined a set of routines, protocols, and tools for distributing the geospatial information stored in the database in real time. This provided a more flexible access to the geospatial data. Yet, it was up to user to develop the tools to get a more tailored access to the data they needed. We present two new approaches for serving data to users. In response to the recent Nepal earthquake we developed a data feed for distributing ESA's Sentinel data. Users can subscribe to the data feed and are provided with the relevant metadata the moment a new data set is available for download. The second approach was an Open Geospatial Consortium (OGC) web feature service (WFS). The WFS hosts the metadata along with a direct link from which the data can be downloaded. It uses the open-source GeoServer software (Youngblood and Iacovella, 2013) and provides an interface to include the geospatial information in the archive directly into the user's geographic information system (GIS) as an additional data layer. Both services are run on top of a geospatial PostGIS database, an open-source geographic extension for the PostgreSQL object-relational database (Marquez, 2015). Marquez, A., 2015. PostGIS essentials. Packt Publishing, 198 p. Youngblood, B. and Iacovella, S., 2013. GeoServer Beginner's Guide, Packt Publishing, 350 p.
A 30-meter spatial database for the nation's forests
Raymond L. Czaplewski
2002-01-01
The FIA vision for remote sensing originated in 1992 with the Blue Ribbon Panel on FIA, and it has since evolved into an ambitious performance target for 2003. FIA is joining a consortium of Federal agencies to map the Nation's land cover. FIA field data will help produce a seamless, standardized, national geospatial database for forests at the scale of 30-m...
78 FR 53132 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
...: Title, Associated Form and OMB Number: National Geospatial-Intelligence Agency Enterprise Workforce System; OMB Control Number 0704-TBD. Type of Request: New Collection. Number of Respondents: 12,000...
Code of Federal Regulations, 2013 CFR
2013-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.11 Penalties. The Privacy Act of 1974 (5 U.S.C... similar penalties for violations by NGA employees of the Act or regulations established thereunder. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.11 Penalties. The Privacy Act of 1974 (5 U.S.C... similar penalties for violations by NGA employees of the Act or regulations established thereunder. ...
NASA Astrophysics Data System (ADS)
Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.
2007-12-01
The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher/student perceptions of science and scientists. Evidence of the aforementioned changes are provided through external evaluation and results obtained from several assessment tools. The program also utilizes an internal evaluator to monitor participants thoughts and opinions on the previous years' collaboration. Additionally, graduate fellows maintain a reflective journal to provide insight into experiences occurring both in-class and among peers. Finally, student surveys administered prior to and concluding the academic year assess changes in student attitudes and self-perception of spatial thinking skills.
SDI-based business processes: A territorial analysis web information system in Spain
NASA Astrophysics Data System (ADS)
Béjar, Rubén; Latre, Miguel Á.; Lopez-Pellicer, Francisco J.; Nogueras-Iso, Javier; Zarazaga-Soria, F. J.; Muro-Medrano, Pedro R.
2012-09-01
Spatial Data Infrastructures (SDIs) provide access to geospatial data and operations through interoperable Web services. These data and operations can be chained to set up specialized geospatial business processes, and these processes can give support to different applications. End users can benefit from these applications, while experts can integrate the Web services in their own business processes and developments. This paper presents an SDI-based territorial analysis Web information system for Spain, which gives access to land cover, topography and elevation data, as well as to a number of interoperable geospatial operations by means of a Web Processing Service (WPS). Several examples illustrate how different territorial analysis business processes are supported. The system has been established by the Spanish National SDI (Infraestructura de Datos Espaciales de España, IDEE) both as an experimental platform for geoscientists and geoinformation system developers, and as a mechanism to contribute to the Spanish citizens knowledge about their territory.
78 FR 47003 - Draft National Spatial Data Infrastructure Strategic Plan; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... NSDI.'' Executive Order 12906 describes the NSDI as ``the technology, policies, standards, and human resources necessary to acquire, process, store, distribute, and improve utilization of geospatial data...
Development of National Map ontologies for organization and orchestration of hydrologic observations
NASA Astrophysics Data System (ADS)
Lieberman, J. E.
2014-12-01
Feature layers in the National Map program (TNM) are a fundamental context for much of the data collection and analysis conducted by the USGS and other governmental and nongovernmental organizations. Their computational usefulness, though, has been constrained by the lack of formal relationships besides superposition between TNM layers, as well as limited means of representing how TNM datasets relate to additional attributes, datasets, and activities. In the field of Geospatial Information Science, there has been a growing recognition of the value of semantic representation and technology for addressing these limitations, particularly in the face of burgeoning information volume and heterogeneity. Fundamental to this approach is the development of formal ontologies for concepts related to that information that can be processed computationally to enhance creation and discovery of new geospatial knowledge. They offer a means of making much of the presently innate knowledge about relationships in and between TNM features accessible for machine processing and distributed computation.A full and comprehensive ontology of all knowledge represented by TNM features is still impractical. The work reported here involves elaboration and integration of a number of small ontology design patterns (ODP's) that represent limited, discrete, but commonly accepted and broadly applicable physical theories for the behavior of TNM features representing surface water bodies and landscape surfaces and the connections between them. These ontology components are validated through use in applications for discovery and aggregation of water science observational data associated with National Hydrography Data features, features from the National Elevation Dataset (NED) and Water Boundary Dataset (WBD) that constrain water occurrence in the continental US. These applications emphasize workflows which are difficult or impossible to automate using existing data structures. Evaluation of the usefulness of the developed ontology components includes both solicitation of feedback on prototype applications, and provision of a query / mediation service for feature-linked data to facilitate development of additional third-party applications.
2000-12-01
8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...Activities................................................................................ 48 10 . NIMA and Its Suppliers...Agency (DIA), the National Reconnaissance Office (NRO), the Defense Airborne Reconnaissance Office (DARO), and the Central Intelligence Agency” ibid. 10
US Topo - A new national map series
Moore, Laurence R.
2011-01-01
In the second half of the 20th century, the foundation of the U.S. Geological Survey's national map series was the handcrafted 7.5-minute topographic map. Times change, budgets get squeezed and currency expectations become ever more challenging. The USGS's Larry Moore, who oversees data production operations at two National Geospatial Technical Operations Centers, provides an introduction to the new US Topo quadrangle maps.
National Transportation Atlas Databases : 1998
DOT National Transportation Integrated Search
1998-01-01
The North American Transportation Atlas Data - 1998 (NORTAD) is a set of : geographic data sets for transportation facilities in Canada, Mexico, and the United : States. These data sets include geospatial information for transportation modal networks...
Code of Federal Regulations, 2010 CFR
2010-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.2 Definitions. As used in this part: (a... as a finger or voice print or a photograph. (g) Routine use. The disclosure of a record outside the...
Coal and Open-pit surface mining impacts on American Lands (COAL)
NASA Astrophysics Data System (ADS)
Brown, T. A.; McGibbney, L. J.
2017-12-01
Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.
Quantum Leap in Cartography as a requirement of Sustainable Development of the World
NASA Astrophysics Data System (ADS)
Tikunov, Vladimir S.; Tikunova, Iryna N.; Eremchenko, Eugene N.
2018-05-01
Sustainable development is one of the most important challenges for humanity and one of the priorities of the United Nations. Achieving sustainability of the whole World is a main goal of management at all levels - from personal to local to global. Therefore, decision making should be supported by relevant geospatial information system. Nevertheless, classical geospatial products, maps and GIS, violate fundamental demand of `situational awareness' concept, well-known philosophy of decision-making - same representation of situation within a same volume of time and space for all decision-makers. Basic mapping principles like generalization and projections split the universal single model of situation on number of different separate and inconsistent replicas. It leads to wrong understanding of situation and, after all - to incorrect decisions. In another words, quality of the sustainable development depends on effective decision-making support based on universal global scale-independent and projection-independent model. This new way for interacting with geospatial information is a quantum leap in cartography method. It is implemented in the so-called `Digital Earth' paradigm and geospatial services like Google Earth. Com-paring of both methods, as well as possibilities of implementation of Digital Earth in the sustain-able development activities, are discussed.
NASA Astrophysics Data System (ADS)
Dabolt, T. O.
2016-12-01
The proliferation of open data and data services continues to thrive and is creating new challenges on how researchers, policy analysts and other decision makes can quickly discover and use relevant data. While traditional metadata catalog approaches used by applications such as data.gov prove to be useful starting points for data search they can quickly frustrate end users who are seeking ways to quickly find and then use data in machine to machine environs. The Geospatial Platform is overcoming these obstacles and providing end users and applications developers a richer more productive user experience. The Geospatial Platform leverages a collection of open source and commercial technology hosted on Amazon Web Services providing an ecosystem of services delivering trusted, consistent data in open formats to all users as well as a shared infrastructure for federal partners to serve their spatial data assets. It supports a diverse array of communities of practice ranging on topics from the 16 National Geospatial Data Assets Themes, to homeland security and climate adaptation. Come learn how you can contribute your data and leverage others or check it out on your own at https://www.geoplatform.gov/
Task and Progress of Iaeg-Sdgs Wggi in Monitoring Sdgs Through a `GEOGRAPHIC Location' Lens
NASA Astrophysics Data System (ADS)
Geng, W.; Chen, J.; Zhang, H. P.; Xu, K.
2018-04-01
In September 2015, the 193 Member States of the United Nations (UN) unanimously adopted the 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs), aiming to transform the world over the next 15 years (ESDN, 2016). To meet the ambitions and demands of the 2030 Agenda, it is necessary for the global indicator framework to adequately and systematically address the issue of alternative data sources and methodologies, including geospatial information and Earth observations in the context of geographic location (UN-GGIM, 2016). For this purpose, the Inter-Agency and Expert Group on Sustainable Development Goals Indicator (IAEG-SDGs) created the Working Group on Geospatial Information (IAEG-SDGs: WGGI) to give full play to the role of geospatial data in SDGs measurement and monitoring. The Working Group reviewed global indicators through a `geographic location' lens to pick out those which geospatial information can significantly support the production, and analyzed the methodological and measurements issues. This paper has discussed the progress in monitoring SDGs ever since the establishment of IAEG-SDGs: WGGI, as well as the existing problems, appropriate solutions and plans for the next stage of work.
NASA Astrophysics Data System (ADS)
Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.
2017-12-01
The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.
NASA Astrophysics Data System (ADS)
Hamilton, Kelli
Geospatial thinking is a subset of spatial thinking, which has been identified by the National Geography Standards as an essential skill for students to gain through geography instruction (Heffron & Downs, 2013). One tool which has been shown to help students develop their geospatial thinking skills is Geographic Information Systems (GIS) (Kim & Bednraz, 2013; Lee & Bednarz, 2009; Patterson, 2007). Much of the research conducted with GIS has been in the context of social studies classrooms. This study examined the use of GIS with seventh grade students in a science classroom. Results of this study indicate that students who use GIS as part of their science instruction are able to practice geospatial thinking skills. In addition, this study examined how GIS could be used to enhance the instruction of the science practices of investigation and evaluation. The Next Generation Science Standards identify certain science practices which students should experience as part of science instruction (NGSS Lead States, 2013). Among those practices are investigation and evaluation. Students in this study used GIS to investigate and evaluate scientific data. Both the teacher and the students were able to identify ways that GIS enhanced both the investigation and evaluation of data.
NASA Astrophysics Data System (ADS)
Clark, E. P.; Cosgrove, B.; Salas, F.
2016-12-01
As a significant step forward to transform NOAA's water prediction services, NOAA plans to implement a new National Water Model (NWM) Version 1.0 in August 2016. A continental scale water resources model, the NWM is an evolution of the WRF-Hydro architecture developed by the National Center for Atmospheric Research (NCAR). The NWM will provide analyses and forecasts of flow for the 2.7 million stream reaches nationwide in the National Hydrography Dataset Plus v2 (NHDPlusV2) jointly developed by the USGS and EPA. The NWM also produces high-resolution water budget variables of snow, soil moisture, and evapotranspiration on a 1-km grid. NOAA's stakeholders require additional decision support application to be built on these data. The Geo-intelligence division of the Office of Water Prediction is building new products and services that integrate output from the NWM with geospatial datasets such as infrastructure and demographics to better estimate the impacts dynamic water resource states on community resiliency. This presentation will detail the methods and underlying information to produce prototypes water resources intelligence that is timely, actionable and credible. Moreover, it will to explore the NWM capability to support sector-specific decision support services.
Frame, M.T.; Cotter, G.; Zolly, L.; Little, J.
2002-01-01
Whether your vantage point is that of an office window or a national park, your view undoubtedly encompasses a rich diversity of life forms, all carefully studied or managed by some scientist, resource manager, or planner. A few simple calculations - the number of species, their interrelationships, and the many researchers studying them - and you can easily see the tremendous challenges that the resulting biological data presents to the information and computer science communities. Biological information varies in format and content: it may pertain to a particular species or an entire ecosystem; it can contain land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents, the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993 on the recommendation of the National Research Council (National Research Council 1993). The NBII is designed to address these issues on a national scale, and through international partnerships. This paper discusses current information and computer science efforts within the National Biological Information Infrastructure Program, and future computer science research endeavors that are needed to address the ever-growing issues related to our nation's biological concerns. ?? 2003 by The Haworth Press, Inc. All rights reserved.
Using Participatory Approach to Improve Availability of Spatial Data for Local Government
NASA Astrophysics Data System (ADS)
Kliment, T.; Cetl, V.; Tomič, H.; Lisiak, J.; Kliment, M.
2016-09-01
Nowadays, the availability of authoritative geospatial features of various data themes is becoming wider on global, regional and national levels. The reason is existence of legislative frameworks for public sector information and related spatial data infrastructure implementations, emergence of support for initiatives as open data, big data ensuring that online geospatial information are made available to digital single market, entrepreneurs and public bodies on both national and local level. However, the availability of authoritative reference spatial data linking the geographic representation of the properties and their owners are still missing in an appropriate quantity and quality level, even though this data represent fundamental input for local governments regarding the register of buildings used for property tax calculations, identification of illegal buildings, etc. We propose a methodology to improve this situation by applying the principles of participatory GIS and VGI used to collect observations, update authoritative datasets and verify the newly developed datasets of areas of buildings used to calculate property tax rates issued to their owners. The case study was performed within the district of the City of Požega in eastern Croatia in the summer 2015 and resulted in a total number of 16072 updated and newly identified objects made available online for quality verification by citizens using open source geospatial technologies.
Creating a Coastal National Elevation Database (CoNED) for science and conservation applications
Thatcher, Cindy A.; Brock, John C.; Danielson, Jeffrey J.; Poppenga, Sandra K.; Gesch, Dean B.; Palaseanu-Lovejoy, Monica; Barras, John; Evans, Gayla A.; Gibbs, Ann
2016-01-01
The U.S. Geological Survey is creating the Coastal National Elevation Database, an expanding set of topobathymetric elevation models that extend seamlessly across coastal regions of high societal or ecological significance in the United States that are undergoing rapid change or are threatened by inundation hazards. Topobathymetric elevation models are raster datasets useful for inundation prediction and other earth science applications, such as the development of sediment-transport and storm surge models. These topobathymetric elevation models are being constructed by the broad regional assimilation of numerous topographic and bathymetric datasets, and are intended to fulfill the pressing needs of decision makers establishing policies for hazard mitigation and emergency preparedness, coastal managers tasked with coastal planning compatible with predictions of inundation due to sea-level rise, and scientists investigating processes of coastal geomorphic change. A key priority of this coastal elevation mapping effort is to foster collaborative lidar acquisitions that meet the standards of the USGS National Geospatial Program's 3D Elevation Program, a nationwide initiative to systematically collect high-quality elevation data. The focus regions are located in highly dynamic environments, for example in areas subject to shoreline change, rapid wetland loss, hurricane impacts such as overwash and wave scouring, and/or human-induced changes to coastal topography.
Unmanned aircraft systems for transportation decision support.
DOT National Transportation Integrated Search
2016-11-30
Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Executive Defense Logistics Agency—The Special Assistant for Contracting Integrity National Geospatial... suspend contractors located within the official's geographic area of responsibility under any delegation... Logistics Agency Special Assistant for Contracting Integrity is the exclusive representative of the...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Executive Defense Logistics Agency—The Special Assistant for Contracting Integrity National Geospatial... suspend contractors located within the official's geographic area of responsibility under any delegation... Logistics Agency Special Assistant for Contracting Integrity is the exclusive representative of the...
Development of the AuScope Australian Earth Observing System
NASA Astrophysics Data System (ADS)
Rawling, T.
2017-12-01
Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four-dimensional Earth Model for the Australian Continent and its immediate environs.
Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery
Bonnie Ruefenacht; Mark D. Nelson; Mark Finco
2009-01-01
Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...
Importance of the spatial data and the sensor web in the ubiquitous computing area
NASA Astrophysics Data System (ADS)
Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.
2014-08-01
Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.
Making Room: Integrating Geo-Technologies into Teacher Education
ERIC Educational Resources Information Center
Gatrell, Jay D.
2004-01-01
Geo-educators focus on content standards, particularly the 1994 "Geography for Life" standards, as the primary rationale for integrating geo-spatial technologies into preservice teacher education programs. In this paper, an alternative framework is proposed to infuse GIS and GIScience into existing teacher education programs. Specifically, the…
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
77 FR 67634 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
... coastal observation systems for coastal protection and restoration programs and surge and inundation models to protect coastal populations; and (3) use of geospatial services and spatial reference systems...
Digital orthoimagery base specification V1.0
Rufe, Philip P.
2014-01-01
The resolution requirement for orthoimagery in support of the The National Map of the U.S. Geological Survey (USGS) is 1 meter. However, as the Office of Management and Budget A-16 designated Federal agency responsible for base orthoimagery, the USGS National Geospatial Program (NGP) has developed this base specification to include higher resolution orthoimagery. Many Federal, State, and local programs use high-resolution orthoimagery for various purposes including critical infrastructure management, vector data updates, land-use analysis, natural resource inventory, and extraction of data. The complex nature of large-area orthoimagery datasets, combined with the broad interest in orthoimagery, which is of consistent quality and spatial accuracy, requires high-resolution orthoimagery to meet or exceed the format and content outlined in this specification. The USGS intends to use this specification primarily to create consistency across all NGP funded and managed orthoimagery collections, in particular, collections in support of the National Digital Orthoimagery Program (NDOP). In the absence of other comprehensive specifications or standards, the USGS intends that this specification will, to the highest degree practical, be adopted by other USGS programs and mission areas, and by other Federal agencies. This base specification, defining minimum parameters for orthoimagery data collection. Local conditions in any given project area, specialized applications for the data, or the preferences of cooperators, may mandate more stringent requirements. The USGS fully supports the acquisition of more detailed, accurate, or value-added data that exceed the base specification outlined herein. A partial list of common “buy-up” options is provided in appendix 1 for those areas and projects that require more stringent or expanded specifications.
Bartelt, Paul E.; Gallant, Alisa L.; Klaver, Robert W.; Wright, Christopher K.; Patla, Debra A.; Peterson, Charles R.
2011-01-01
The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probabililty, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from 1) field survey site data only, 2) field data combined with data from geospatial models, and 3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 - 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative for areas that could be protected for each species, including 6828-10 764 ha for tiger salamanders; 971-3017 ha for western toads; 4732-16 696 ha for boreal chorus frogs; 4940-19 690 hectares for Columbia spotted frogs.
Bartelt, Paul E.; Gallant, Alisa L.; Klaver, Robert W.; Wright, C.K.; Patla, Debra A.; Peterson, Charles R.
2011-01-01
The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probability, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from (1) field survey site data only, (2) field data combined with data from geospatial models, and (3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 to 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative areas that could be protected for each species, including 6828-10 764 ha for tiger salamanders, 971-3017 ha for western toads, 4732-16 696 ha for boreal chorus frogs, and 4940-19 690 ha for Columbia spotted frogs. ?? 2011 by the Ecological Society of America.
Bartelt, Paul E; Gallant, Alisa L; Klaver, Robert W; Wright, Chris K; Patla, Debra A; Peterson, Charles R
2011-10-01
The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probability, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from (1) field survey site data only, (2) field data combined with data from geospatial models, and (3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 to 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative areas that could be protected for each species, including 6828-10 764 ha for tiger salamanders, 971-3017 ha for western toads, 4732-16 696 ha for boreal chorus frogs, and 4940-19 690 ha for Columbia spotted frogs.
Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E
2015-01-01
Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.
Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.
2015-01-01
Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.
MyGeoHub: A Collaborative Geospatial Research and Education Platform
NASA Astrophysics Data System (ADS)
Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.
2017-12-01
Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.
Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael
2018-04-27
Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.
EPA Facility Registry Service (FRS): ICIS
This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Integrated Compliance Information System (ICIS). When complete, ICIS will provide a database that will contain integrated enforcement and compliance information across most of EPA's programs. The vision for ICIS is to replace EPA's independent databases that contain enforcement data with a single repository for that information. Currently, ICIS contains all Federal Administrative and Judicial enforcement actions and a subset of the Permit Compliance System (PCS), which supports the National Pollutant Discharge Elimination System (NPDES). ICIS exchanges non-sensitive enforcement/compliance activities, non-sensitive formal enforcement actions and NPDES information with FRS. This web feature service contains the enforcement/compliance activities and formal enforcement action related facilities; the NPDES facilities are contained in the PCS_NPDES web feature service. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on f
Extending the Reach of National Assessments: Addressing Local and Regional Needs
NASA Astrophysics Data System (ADS)
Lewis, K.; Carter, T.
2016-12-01
While climate change is global in scope, many impacts of greatest societal concern (and accompanying response decisions) occur on local to regional scales. The U.S. Global Change Research Program (USGCRP) is tasked with conducting quadrennial national climate assessments, and efforts for the fourth such assessment (NCA4) are underway. Recognizing that there is a growing appetite for climate information on more local scales, however, USGCRP is actively pursuing higher-resolution scientific information, while also seeking engagement with local and regional entities to ensure that NCA4 is well-positioned to address users' needs across geospatial scales. Effectively meeting user needs at regional scales requires robust observations and projections at sub-national scales, as well as a widespread network of agencies and organizations. We discuss our efforts to leverage existing relationships to identify potential users and their needs early in the assessment process. We also discuss plans for future mechanisms to engage additional regional stakeholders from resource managers to policy makers and scientists not only for quadrennial assessment but as part of a sustained process.
Raster Data Partitioning for Supporting Distributed GIS Processing
NASA Astrophysics Data System (ADS)
Nguyen Thai, B.; Olasz, A.
2015-08-01
In the geospatial sector big data concept also has already impact. Several studies facing originally computer science techniques applied in GIS processing of huge amount of geospatial data. In other research studies geospatial data is considered as it were always been big data (Lee and Kang, 2015). Nevertheless, we can prove data acquisition methods have been improved substantially not only the amount, but the resolution of raw data in spectral, spatial and temporal aspects as well. A significant portion of big data is geospatial data, and the size of such data is growing rapidly at least by 20% every year (Dasgupta, 2013). The produced increasing volume of raw data, in different format, representation and purpose the wealth of information derived from this data sets represents only valuable results. However, the computing capability and processing speed rather tackle with limitations, even if semi-automatic or automatic procedures are aimed on complex geospatial data (Kristóf et al., 2014). In late times, distributed computing has reached many interdisciplinary areas of computer science inclusive of remote sensing and geographic information processing approaches. Cloud computing even more requires appropriate processing algorithms to be distributed and handle geospatial big data. Map-Reduce programming model and distributed file systems have proven their capabilities to process non GIS big data. But sometimes it's inconvenient or inefficient to rewrite existing algorithms to Map-Reduce programming model, also GIS data can not be partitioned as text-based data by line or by bytes. Hence, we would like to find an alternative solution for data partitioning, data distribution and execution of existing algorithms without rewriting or with only minor modifications. This paper focuses on technical overview of currently available distributed computing environments, as well as GIS data (raster data) partitioning, distribution and distributed processing of GIS algorithms. A proof of concept implementation have been made for raster data partitioning, distribution and processing. The first results on performance have been compared against commercial software ERDAS IMAGINE 2011 and 2014. Partitioning methods heavily depend on application areas, therefore we may consider data partitioning as a preprocessing step before applying processing services on data. As a proof of concept we have implemented a simple tile-based partitioning method splitting an image into smaller grids (NxM tiles) and comparing the processing time to existing methods by NDVI calculation. The concept is demonstrated using own development open source processing framework.
A cost-benefit analysis of The National Map
Halsing, David L.; Theissen, Kevin; Bernknopf, Richard
2003-01-01
The Geography Discipline of the U.S. Geological Survey (USGS) has conducted this cost-benefit analysis (CBA) of The National Map. This analysis is an evaluation of the proposed Geography Discipline initiative to provide the Nation with a mechanism to access current and consistent digital geospatial data. This CBA is a supporting document to accompany the Exhibit 300 Capital Asset Plan and Business Case of The National Map Reengineering Program. The framework for estimating the benefits is based on expected improvements in processing information to perform any of the possible applications of spatial data. This analysis does not attempt to determine the benefits and costs of performing geospatial-data applications. Rather, it estimates the change in the differences between those benefits and costs with The National Map and the current situation without it. The estimates of total costs and benefits of The National Map were based on the projected implementation time, development and maintenance costs, rates of data inclusion and integration, expected usage levels over time, and a benefits estimation model. The National Map provides data that are current, integrated, consistent, complete, and more accessible in order to decrease the cost of implementing spatial-data applications and (or) improve the outcome of those applications. The efficiency gains in per-application improvements are greater than the cost to develop and maintain The National Map, meaning that the program would bring a positive net benefit to the Nation. The average improvement in the net benefit of performing a spatial data application was multiplied by a simulated number of application implementations across the country. The numbers of users, existing applications, and rates of application implementation increase over time as The National Map is developed and accessed by spatial data users around the country. Results from the 'most likely' estimates of model parameters and data inputs indicate that, over its 30-year projected lifespan, The National Map will bring a net present value (NPV) of benefits of $2.05 billion in 2001 dollars. The average time until the initial investments (the break-even period) are recovered is 14 years. Table ES-1 shows a running total of NPV in each year of the simulation model. In year 14, The National Map first shows a positive NPV, and so the table is highlighted in gray after that point. Figure ES-1 is a graph of the total benefit and total cost curves of a single model run over time. The curves cross in year 14, when the project breaks even. A sensitivity analysis of the input variables illustrated that these results of the NPV of The National Map are quite robust. Figure ES-2 plots the mean NPV results from 60 different scenarios, each consisting of fifty 30-year runs. The error bars represent a two-standard-deviation range around each mean. The analysis that follows contains the details of the cost-benefit analysis, the framework for evaluating economic benefits, a computational simulation tool, and a sensitivity analysis of model variables and values.
A View from Above Without Leaving the Ground
NASA Technical Reports Server (NTRS)
2004-01-01
In order to deliver accurate geospatial data and imagery to the remote sensing community, NASA is constantly developing new image-processing algorithms while refining existing ones for technical improvement. For 8 years, the NASA Regional Applications Center at Florida International University has served as a test bed for implementing and validating many of these algorithms, helping the Space Program to fulfill its strategic and educational goals in the area of remote sensing. The algorithms in return have helped the NASA Regional Applications Center develop comprehensive semantic database systems for data management, as well as new tools for disseminating geospatial information via the Internet.
AmericaView Geospatial Imagery Mapping Program Act
Sen. Johnson, Tim [D-SD
2009-05-19
Senate - 12/14/2010 Placed on Senate Legislative Calendar under General Orders. Calendar No. 695. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
A study on state of Geospatial courses in Indian Universities
NASA Astrophysics Data System (ADS)
Shekhar, S.
2014-12-01
Today the world is dominated by three technologies such as Nano technology, Bio technology and Geospatial technology. This increases the huge demand for experts in the respective field for disseminating the knowledge as well as for an innovative research. Therefore, the prime need is to train the existing fraternity to gain progressive knowledge in these technologies and impart the same to student community. The geospatial technology faces some peculiar problem than other two technologies because of its interdisciplinary, multi-disciplinary nature. It attracts students and mid career professionals from various disciplines including Physics, Computer science, Engineering, Geography, Geology, Agriculture, Forestry, Town Planning and so on. Hence there is always competition to crab and stabilize their position. The students of Master's degree in Geospatial science are facing two types of problem. The first one is no unique identity in the academic field. Neither they are exempted for National eligibility Test for Lecturer ship nor given an opportunity to have the exam in geospatial science. The second one is differential treatment by the industrial world. The students are either given low grade jobs or poorly paid for their job. Thus, it is a serious issue about the future of this course in the Universities and its recognition in the academic and industrial world. The universities should make this course towards more job oriented in consultation with the Industries and Industries should come forward to share their demands and requirements to the Universities, so that necessary changes in the curriculum can be made to meet the industrial requirements.
NASA Astrophysics Data System (ADS)
Yang, C.; Wong, D. W.; Phillips, T.; Wright, R. A.; Lindsey, S.; Kafatos, M.
2005-12-01
As a teamed partnership of the Center for Earth Observing and Space Research (CEOSR) at George Mason University (GMU), Virginia Department of Transportation (VDOT), Bureau of Transportation Statistics at the Department of Transportation (BTS/DOT), and Intergraph, we established Transportation Framework Data Services using Open Geospatial Consortium (OGC)'s Web Feature Service (WFS) Specification to enable the sharing of transportation data among the federal level with data from BTS/DOT, the state level through VDOT, the industries through Intergraph. CEOSR develops WFS solutions using Intergraph software. Relevant technical documents are also developed and disseminated through the partners. The WFS is integrated with operational geospatial systems at CEOSR and VDOT. CEOSR works with Intergraph on developing WFS solutions and technical documents. GeoMedia WebMap WFS toolkit is used with software and technical support from Intergraph. ESRI ArcIMS WFS connector is used with GMU's campus license of ESRI products. Tested solutions are integrated with framework data service operational systems, including 1) CEOSR's interoperable geospatial information services, FGDC clearinghouse Node, Geospatial One Stop (GOS) portal, and WMS services, 2) VDOT's state transportation data and GIS infrastructure, and 3)BTS/DOT's national transportation data. The project presents: 1) develop and deploy an operational OGC WFS 1.1 interfaces at CEOSR for registering with FGDC/GOS Portal and responding to Web ``POST'' requests for transportation Framework data as listed in Table 1; 2) build the WFS service that can return the data that conform to the drafted ANSI/INCITS L1 Standard (when available) for each identified theme in the format given by OGC Geography Markup Language (GML) Version 3.0 or higher; 3) integrate the OGC WFS with CEOSR's clearinghouse nodes, 4) establish a formal partnership to develop and share WFS-based geospatial interoperability technology among GMU, VDOT, BTS/DOT, and Intergraph; and 5) develop WFS-based solutions and technical documents using the GeoMedia WebMap WFS toolkit. Geospatial Web Feature Service is demonstrated to be more efficient in sharing vector data and supports direct Internet access transportation data. Developed WFS solutions also enhanced the interoperable service provided by CEOSR through the FGDC clearinghouse node and the GOS Portal.
NASA Astrophysics Data System (ADS)
Neale, A. C.
2016-12-01
EnviroAtlas is a multi-organization effort led by the US Environmental Protection Agency to develop, host and display a large suite of nation-wide geospatial indicators and indices of ecosystem services. This open access tool allows users to view, analyze, and download a wealth of geospatial data and other resources related to ecosystem goods and services. More than 160 national indicators of ecosystem service supply, demand, and drivers of change provide a framework to inform decisions and policies at multiple spatial scales, educate a range of audiences, and supply data for research. A higher resolution component is also available, providing over 100 data layers for finer-scale analyses for selected communities across the US. The ecosystem goods and services data are organized into seven general ecosystem benefit categories: clean and plentiful water; natural hazard mitigation; food, fuel, and materials; climate stabilization; clean air; biodiversity conservation; and recreation, culture, and aesthetics. Each indicator is described in terms of how it is important to human health or well-being. EnviroAtlas includes data describing existing ecosystem markets for water quality and quantity, biodiversity, wetland mitigation, and carbon credits. This presentation will briefly describe the EnviroAtlas data and tools and how they are being developed and used in ongoing research studies and in decision-making contexts.
EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.12 Exemptions. Link to an amendment published... intelligence agencies which may be exempt from certain provisions of the Privacy Act. However, NGA does not... in this system, including law enforcement counterterrorism, investigatory and intelligence records...
AuScope research infrastructure - supporting Australian mineral discovery
NASA Astrophysics Data System (ADS)
McInnes, B.; Rawling, T.
2016-12-01
Earth and geospatial scientists are heavy users of data products. When industry geologists access spatial data from the field and the exploration office they require data products that are discoverable, searchable, interoperable and attributed with robust metadata. Over the last decade AuScope has utilised NCRIS funding to provide a variety of data products including geophysical data (reflection and passive seismic, magnetotellurics and gravity), GIS layers from state and national geological survey organisations, hyperspectral core logging (National Virtual Core Library) and time-series geospatial data from GNSS and VLBI instruments - all delivered using AuScope GRID technologies based on the Spatial Information Services Stack (SiSS). Perhaps one of the best examples of collaboration to deliver data products to industry users is the National Mineral Library. Working with researchers at Curtin Universities John de Laeter Centre and ANDS, AuScope has also supported the development of a Laboratory Information Management System (LIMS). The project has produced an entirely new workflow, based around a TESCAN TIMA field emission scanning electron microscope, that allows metadata to be collected and recorded from the sample collection and preparation right through to data delivery and publication. This process has facilitated the scanning of a large stockpile of mineral samples from across Western Australia that will produce a state-wide Mineral Library, allowing mineral explorers to better understand the composition of critical rock outcrop samples from all over the state. This new NCRIS supported initiative provides a dataset that underpins both academic and applied research programs and is important for the economic future of Australia. Mining companies do a lot of heavy mineral analysis in research and development but, because there isn't a baseline for mineralogy across each state, it is difficult to have full confidence in the heavy mineral data. This creates an issue for pinpointing where the next major mineral deposits are. Having solid baseline data will help improve targeting, which in turn reduces the costs associated with exploration and supports new discovery.
Collaboration Among Institutions to Bring Geospatial Technology to an Underserved Rural Region
NASA Astrophysics Data System (ADS)
Johnson, T.
2012-12-01
The University of Maine at Machias and Washington County Community College, the two smallest and most remote public institutions in Maine, provide important education and workforce development services in a rural and economically-challenged region. Through an innovative collaboration supported by the National Science Foundation, the two institutions have developed geospatial technology (GST) programs designed to meet the specific workforce needs of the region, affording students with the opportunity to pursue degrees, certificates and minors. Prior to this effort, neither school had the resources to maintain a GST laboratory or to offer courses consistently. The region had almost no GST capacity with which to manage critical environmental resources and grapple with economic, public safety, and public health challenges. Several statewide studies had shown a growing need for more GST technicians and training for incumbent workers. The new programs are designed to produce a small number of specialist technicians with associate's degrees and a large number of ancillary users with significant GST expertise from courses, certificates or minors. Course content is shaped by workforce research in Maine and elsewhere, and all courses are offered in either blended, online or short-term intensive formats to provide access to incumbent workers and extend the geographic reach of the programs. Through the university's Geographic Information Systems (GIS) Service Center, students from both institutions engage in real-world projects, and are linked with employers via internships. This has the added plus of providing low-cost and no-cost GIS services to area clients, generating demand. Many of these projects and internships lead to work for graduates, even through the economic downturn. By creating courses that serve multiple audiences, each contributing a small number to the total enrollment, the programs constitute a sustainable model that serves the growing needs of the region without creating competing programs at the two institutions. Even so, enrollment remains a challenge, especially in advanced courses. Future efforts will focus on raising awareness about GST among employers and students in area schools to boost enrollment.
Venture Capital and Strategic Investment for Developing Government Mission Capabilities
2014-01-01
JIEDDO Joint Improvised Explosive Device Defeat Organization NASA National Aeronautics and Space Administration NGA National Geospatial-Intelligence... USDA Investments at Risk Due to Corporation’s Mismanagement, U.S. Department of Agriculture press release, December 2, 1999. 16 V en tu re C ap...2000 agriculture Independent within USDa Limited terminated for lack of effective internal control structure, limited effectiveness In-Q-tel 1999
Region 9 Tribal Grant Program - Project Officer and Tribal Contact Information Map Service
This compilation of geospatial data is for the purpose of managing and communicating information about current EPA project officers, tribal contacts, and tribal grants, both internally and with external stakeholders.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.12 Exemptions. (a) Exempt systems of record. All systems of records maintained by the NGA and its components shall be exempt from the requirements... the investigation or prosecutable interest by the NGA or other agencies. This could seriously...
Promoting Ecohealth through Geography and Governmental Partnerships
Ecohealth is truly interdisciplinary and now includes the relatively new field of exposure science. In 2012, the National Research Council released Exposure Science in the 21st Century: A Vision and a Strategy, in which application of geospatial knowledge and technology such as r...
DOT National Transportation Integrated Search
2015-12-01
This study used the National EMS Information System (NEMSIS) South Dakota data to develop datadriven performance metrics for EMS. Researchers used the data for three tasks: geospatial analysis of EMS events, optimization of station locations, and ser...
2008-03-01
ASTER imagery used in this investigation were obtained through the National Geospatial- Intelligence Agency via the Commercial Satellite Imagery...Naval Postgraduate School, CA, 5-10, 143-152. Wehrli, C., 1985: Extraterrestrial Solar Spectrum – Publ. 615. Physical Meteorological
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Bauman; S. Burian; M. Deo
The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987more » technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.« less
NASA Astrophysics Data System (ADS)
Kayi, A.; Erdogan, M.; Yilmaz, A.
2014-11-01
An earthquake occurred at Van City on 23 October 2011 at 13:41 local time. The magnitude, moment magnitude and depth of earthquake were respectively MI:6.7, Mw:7.0 and 19.07 km. Van city centre and its surrounding villages were affected from this destructive earthquake. Many buildings were ruined and approximately 600 people died. Acquisition and use of geospatial data is very important and crucial for the management of such kind of natural disasters. In this paper, the role of national and international geospatial data in the management of Van earthquake is investigated.. With an international collaboration with Charter, pre and post-earthquake satellite images were acquired in 24 hours following the Earthquake. Also General Command of Mapping (GCM), the national mapping agency of Turkey, produced the high resolution multispectral orthophotos of the region. Charter presented the orthophotos through 26-28 October 2012. Just after the earthquake with a quick reaction, GCM made the flight planning of the 1296 km2 disaster area to acquire aerial photos. The aerial photos were acquired on 24 October 2012 (one day after the earthquake) by UltraCamX large format digital aerial camera. 152 images were taken with 30 cm ground sample distance (GSD) by %30 sidelap and %60 overlap. In the evening of same flight day, orthophotos were produced without ground control points by direct georeferencing and GCM supplied the orthophotos to the disaster management authorities. Also 45 cm GSD archive orthophotos, acquired in 2010, were used as a reference in order to find out the effects of the disaster. The subjects written here do not represent the ideas of Turkish Armed Forces.
Geospatial Data Science Modeling | Geospatial Data Science | NREL
Geospatial Data Science Modeling Geospatial Data Science Modeling NREL uses geospatial data science modeling to develop innovative models and tools for energy professionals, project developers, and consumers . Photo of researchers inspecting maps on a large display. Geospatial modeling at NREL often produces the
Butler, Stephen F; Budman, Simon H; Licari, Andrea; Cassidy, Theresa A; Lioy, Katherine; Dickinson, James; Brownstein, John S; Benneyan, James C; Green, Traci Craig; Katz, Nathaniel
2008-12-01
The National Addictions Vigilance Intervention and Prevention Program (NAVIPPRO) is a scientific, comprehensive risk management program for scheduled therapeutics. NAVIPPRO provides post-marketing surveillance, signal detection, signal verification and prevention and intervention programs. Here we focus on one component of NAVIPPRO surveillance, the Addiction Severity Index-Multimedia Version (ASI-MV) Connect, a continuous, real-time, national data stream that assesses pharmaceutical abuse by patients entering substance abuse treatment by collecting product-specific, geographically-detailed information. We evaluate population characteristics for data collected through the ASI-MV Connect in 2007 and 2008 and assess the representativeness, geographic coverage, and timeliness of report of the data. Analyses based on 41,923 admissions to 265 treatment centers in 29 states were conducted on product-specific opioid abuse rates, source of drug, and route of administration. ASI-MV Connect data revealed that 11.5% of patients reported abuse of at least one opioid analgesic product in the 30 days prior to entering substance abuse treatment; differences were observed among sub-populations of prescription opioid abusers, among products, and also within various geographic locations. The ASI-MV Connect component of NAVIPPRO represents a potentially valuable data stream for post-marketing surveillance of prescription drugs. Analyses conducted with data obtained from the ASI-MV Connect allow for the characterization of product-specific and geospatial differences for drug abuse and can serve as a tool to monitor responses of the abuse population to newly developed "abuse deterrent" drug formulations. Additional data, evaluation, and comparison to other systems are important next steps in establishing NAVIPPRO as a comprehensive, post-marketing surveillance system for prescription drugs. Copyright (c) 2008 John Wiley & Sons, Ltd.
School Mapping and Geospatial Analysis of the Schools in Jasra Development Block of India
NASA Astrophysics Data System (ADS)
Agrawal, S.; Gupta, R. D.
2016-06-01
GIS is a collection of tools and techniques that works on the geospatial data and is used in the analysis and decision making. Education is an inherent part of any civil society. Proper educational facilities generate the high quality human resource for any nation. Therefore, government needs an efficient system that can help in analysing the current state of education and its progress. Government also needs a system that can support in decision making and policy framing. GIS can serve the mentioned requirements not only for government but also for the general public. In order to meet the standards of human development, it is necessary for the government and decision makers to have a close watch on the existing education policy and its implementation condition. School mapping plays an important role in this aspect. School mapping consists of building the geospatial database of schools that supports in the infrastructure development, policy analysis and decision making. The present research work is an attempt for supporting Right to Education (RTE) and Sarv Sikha Abhiyaan (SSA) programmes run by Government of India through the use of GIS. School mapping of the study area is performed which is followed by the geospatial analysis. This research work will help in assessing the present status of educational infrastructure in Jasra block of Allahabad district, India.
Large Scale Analysis of Geospatial Data with Dask and XArray
NASA Astrophysics Data System (ADS)
Zender, C. S.; Hamman, J.; Abernathey, R.; Evans, K. J.; Rocklin, M.; Zender, C. S.; Rocklin, M.
2017-12-01
The analysis of geospatial data with high level languages has acceleratedinnovation and the impact of existing data resources. However, as datasetsgrow beyond single-machine memory, data structures within these high levellanguages can become a bottleneck. New libraries like Dask and XArray resolve some of these scalability issues,providing interactive workflows that are both familiar tohigh-level-language researchers while also scaling out to much largerdatasets. This broadens the access of researchers to larger datasets on highperformance computers and, through interactive development, reducestime-to-insight when compared to traditional parallel programming techniques(MPI). This talk describes Dask, a distributed dynamic task scheduler, Dask.array, amulti-dimensional array that copies the popular NumPy interface, and XArray,a library that wraps NumPy/Dask.array with labeled and indexes axes,implementing the CF conventions. We discuss both the basic design of theselibraries and how they change interactive analysis of geospatial data, and alsorecent benefits and challenges of distributed computing on clusters ofmachines.
Quantifying Spatially Integrated Floodplain and Wetland Systems for the Conterminous US
NASA Astrophysics Data System (ADS)
Lane, C.; D'Amico, E.; Wing, O.; Bates, P. D.
2017-12-01
Wetlands interact with other waters across a variable connectivity continuum, from permanent to transient, from fast to slow, and from primarily surface water to exclusively groundwater flows. Floodplain wetlands typically experience fast and frequent surface and near-surface groundwater interactions with their river networks, leading to an increasing effort to tailor management strategies for these wetlands. Management of floodplain wetlands is contingent on accurate floodplain delineation, and though this has proven challenging, multiple efforts are being made to alleviate this data gap at the conterminous scale using spatial, physical, and hydrological floodplain proxies. In this study, we derived and contrasted floodplain extents using the following nationally available approaches: 1) a geospatial-buffer floodplain proxy (Lane and D'Amico 2016, JAWRA 52(3):705-722, 2) a regionalized flood frequency analysis coupled to a 30m resolution continental-scale hydraulic model (RFFA; Smith et al. 2015, WRR 51:539-553), and 3) a soils-based floodplain analysis (Sangwan and Merwade 2015, JAWRA 51(5):1286-1304). The geospatial approach uses National Wetlands Inventory and buffered National Hydrography Datasets. RFFA estimates extreme flows based on catchment size, regional climatology and upstream annual rainfall and routes these flows through a hydraulic model built with data from USGS HydroSHEDS, NOAA, and the National Elevation Dataset. Soil-based analyses define floodplains based on attributes within the USDA soil-survey data (SSURGO). Nearly 30% (by count) of U.S. freshwater wetlands are located within floodplains with geospatial analyses, contrasted with 37% (soils-based), and 53% (RFFA-based). The dichotomies between approaches are mainly a function of input data-layer resolution, accuracy, coverage, and extent, further discussed in this presentation. Ultimately, these spatial analyses and findings will improve floodplain and integrated wetland system extent assessment. This will lead to better management of the physically, chemically, and biologically integrated floodplain wetlands affecting the integrity of downstream waterbodies at multiple scales.
NASA Astrophysics Data System (ADS)
Rosinski, A.; Beilin, P.; Colwell, J.; Hornick, M.; Glasscoe, M. T.; Morentz, J.; Smorodinsky, S.; Millington, A.; Hudnut, K. W.; Penn, P.; Ortiz, M.; Kennedy, M.; Long, K.; Miller, K.; Stromberg, M.
2015-12-01
The Clearinghouse provides emergency management and response professionals, scientific and engineering communities with prompt information on ground failure, structural damage, and other consequences from significant seismic events such as earthquakes or tsunamis. Clearinghouse activations include participation from Federal, State and local government, law enforcement, fire, EMS, emergency management, public health, environmental protection, the military, public and non-governmental organizations, and private sector. For the August 24, 2014 S. Napa earthquake, over 100 people from 40 different organizations participated during the 3-day Clearinghouse activation. Every organization has its own role and responsibility in disaster response; however all require authoritative data about the disaster for rapid hazard assessment and situational awareness. The Clearinghouse has been proactive in fostering collaboration and sharing Essential Elements of Information across disciplines. The Clearinghouse-led collaborative promotes the use of standard formats and protocols to allow existing technology to transform data into meaningful incident-related content and to enable data to be used by the largest number of participating Clearinghouse partners, thus providing responding personnel with enhanced real-time situational awareness, rapid hazard assessment, and more informed decision-making in support of response and recovery. The Clearinghouse efforts address national priorities outlined in USGS Circular 1242, Plan to Coordinate NEHRP post-earthquake investigations and S. 740-Geospatial Data Act of 2015, Sen. Orrin Hatch (R-UT), to streamline and coordinate geospatial data infrastructure, maximizing geospatial data in support of the Robert T. Stafford Act. Finally, the US Dept. of Homeland Security, Geospatial Management Office, recognized Clearinghouse's data sharing efforts as a Best Practice to be included in the forthcoming 2015 HLS Geospatial Concept of Operations.
78 FR 57455 - Pipeline Safety: Information Collection Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-18
... ``. . . system-specific information, including pipe diameter, operating pressure, product transported, and...) must provide contact information and geospatial data on their pipeline system. This information should... Mapping System (NPMS) to support various regulatory programs, pipeline inspections, and authorized...
NASA Astrophysics Data System (ADS)
Kouziokas, Georgios N.
2016-09-01
It is generally agreed that the governmental authorities should actively encourage the development of an efficient framework of information and communication technology initiatives so as to advance and promote sustainable development and planning strategies. This paper presents a prototype Information System for public administration which was designed to facilitate public management and decision making for sustainable development and planning. The system was developed by using several programming languages and programming tools and also a Database Management System (DBMS) for storing and managing urban data of many kinds. Furthermore, geographic information systems were incorporated into the system in order to make possible to the authorities to deal with issues of spatial nature such as spatial planning. The developed system provides a technology based management of geospatial information, environmental and crime data of urban environment aiming at improving public decision making and also at contributing to a more efficient sustainable development and planning.
Kalukin, Andrew; Endo, Satashi
2016-08-30
Test the feasibility of incorporating atmospheric models to improve simulation algorithms of image collection, developed at NGA. Various calibration objects will be used to compare simulated image products with real image products.
Collecting Data to Construct an Isoline Map
ERIC Educational Resources Information Center
Lohrengel, C. Frederick, II.; Larson, Paul R.
2017-01-01
National Geography Standard 1 requires that students learn:"How to use maps and other geographic representations, geospatial technologies, and spatial thinking to understand and communicate information" (Heffron and Downs 2012). These concepts have real-world applicability. For example, elevation contour maps are common in many…
Biodegradability Of Lingering Oil 19 Years After The EVOS Spill
In 2001 and 2004, scientists from the National Oceanic and Atmospheric Administration (NOAA) conducted geospatial surveys of lingering oil in Prince William Sound (PWS) and found that about 11 hectares of shoreline remain contaminated with nearly 56,000 kg of subsurface oil from ...
78 FR 10214 - Records Schedules; Availability and Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... related to grants, land surveys, and engineering, geospatial, and road construction projects. 3... Management Services (ACNR) using one of the following means: Mail: NARA (ACNR), 8601 Adelphi Road, College...), National Archives and Records Administration, 8601 Adelphi Road, College Park, MD 20740-6001. Telephone...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Peng; Gong, Jianya; Di, Liping
Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information andmore » discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.« less
A GEO Initiative to Support the Sustainable Development Goals
NASA Astrophysics Data System (ADS)
Friedl, L.
2016-12-01
The United Nations Agenda 2030 serves as a global development agenda for progress on economic, social and environmental sustainability. These Sustainable Development Goals (SDG) have a specific provision for the use of Earth observations and geospatial information to support progress. The international Group on Earth Observations, GEO, has a dedicated initiative focused on the SDGs. This initiative supports efforts to integrate Earth observations and geospatial information into national development and monitoring frameworks for the SDGs. It helps enables countries and stakeholders to leverage Earth observations to support the implementation, planning, measuring, monitoring, reporting, and evaluation of the SDGs. This paper will present an overview of the GEO initiative and ways that Earth observations support the development goals. It will address how information and knowledge can be shared on effective methods to apply Earth observations to the SDGs and their associated targets and indicators. It will also highlight some existing information sources and tools on the SDGs, which can help identify key approaches for developing a knowledge base.
Establishing Accurate and Sustainable Geospatial Reference Layers in Developing Countries
NASA Astrophysics Data System (ADS)
Seaman, V. Y.
2017-12-01
Accurate geospatial reference layers (settlement names & locations, administrative boundaries, and population) are not readily available for most developing countries. This critical information gap makes it challenging for governments to efficiently plan, allocate resources, and provide basic services. It also hampers international agencies' response to natural disasters, humanitarian crises, and other emergencies. The current work involves a recent successful effort, led by the Bill & Melinda Gates Foundation and the Government of Nigeria, to obtain such data. The data collection began in 2013, with local teams collecting names, coordinates, and administrative attributes for over 100,000 settlements using ODK-enabled smartphones. A settlement feature layer extracted from satellite imagery was used to ensure all settlements were included. Administrative boundaries (Ward, LGA) were created using the settlement attributes. These "new" boundary layers were much more accurate than existing shapefiles used by the government and international organizations. The resulting data sets helped Nigeria eradicate polio from all areas except in the extreme northeast, where security issues limited access and vaccination activities. In addition to the settlement and boundary layers, a GIS-based population model was developed, in partnership with Oak Ridge National Laboratories and Flowminder), that used the extracted settlement areas and characteristics, along with targeted microcensus data. This model provides population and demographics estimates independent of census or other administrative data, at a resolution of 90 meters. These robust geospatial data layers found many other uses, including establishing catchment area settlements and populations for health facilities, validating denominators for population-based surveys, and applications across a variety of government sectors. Based on the success of the Nigeria effort, a partnership between DfID and the Bill & Melinda Gates Foundation was formed in 2017 to help other developing countries collect these geospatial reference layers, and to build capacity within the host governments to manage, use, and sustain them. This work will support, wherever possible, a national geo-referenced census, from which the reference layers can be extracted.
Bonnie Ruefenacht; Robert Benton; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley
2015-01-01
A tree canopy cover (TCC) layer is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...
Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma
Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.
2013-01-01
This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.
NASA Technical Reports Server (NTRS)
2002-01-01
This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing transportation infrastructure assets, operation, and inspection, and integrates CRSGT advances for achieving infrastructure security. The Traffic Flow Consortium (NCRST-F) provides leadership to develop new tools for regional traffic flow management including heavy vehicles and intermodal flow of freight, and integrates CRSGT advances for complementing and extending the reach of ITS user services. The Safety, Hazards and Disasters (NCRST-H) provides leadership for deploying remote sensing technology to locate transportation hazards and improve disaster recovery, and integrates CRSGT advances for application to protect transportation systems from terrorism. The DOT-NASA team is proud to present this report of accomplishments on products and results emerging from the joint program for application to transportation practice.
Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web
NASA Astrophysics Data System (ADS)
Huang, Hong; Gong, Jianya
2008-12-01
GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.
NASA Astrophysics Data System (ADS)
Rousi, A. M.; Branch, B. D.; Kong, N.; Fosmire, M.
2013-12-01
In their Finnish National Spatial Strategy 2010-2015 the Finland's Ministry of Agriculture and Forestry delineated e.g. that spatial data skills should support citizens everyday activities and facilitate decision-making and participation of citizens. Studies also predict that open data, particularly open spatial data, would create, when fully realizing their potential, a 15% increase into the turnovers of Finnish private sector companies. Finnish libraries have a long tradition of serving at the heart of Finnish information society. However, with the emerging possibilities of educating their users on open spatial data a very few initiatives have been made. The National Survey of Finland opened its data in 2012. Finnish technology university libraries, such as Aalto University Library, are open environments for all citizens, and seem suitable of being the first thriving entities in educating citizens on open geospatial data. There are however many obstacles to overcome, such as lack of knowledge about policies, lack of understanding of geospatial data services and insufficient know-how of GIS software among the personnel. This framework examines the benefits derived from an international collaboration between Purdue University Libraries and Aalto University Library to create local strategies in implementing open spatial data education initiatives in Aalto University Library's context. The results of this international collaboration are explicated for the benefit of the field as a whole.
NASA Astrophysics Data System (ADS)
Lykiardopoulos, A.; Iona, A.; Lakes, V.; Batis, A.; Balopoulos, E.
2009-04-01
The development of new technologies for the aim of enhancing Web Applications with Dynamically data access was the starting point for Geospatial Web Applications to developed at the same time as well. By the means of these technologies the Web Applications embed the capability of presenting Geographical representations of the Geo Information. The induction in nowadays, of the state of the art technologies known as Web Services, enforce the Web Applications to have interoperability among them i.e. to be able to process requests from each other via a network. In particular throughout the Oceanographic Community, modern Geographical Information systems based on Geospatial Web Services are now developed or will be developed shortly in the near future, with capabilities of managing the information itself fully through Web Based Geographical Interfaces. The exploitation of HNODC Data Base, through a Web Based Application enhanced with Web Services by the use of open source tolls may be consider as an ideal case of such implementation. Hellenic National Oceanographic Data Center (HNODC) as a National Public Oceanographic Data provider and at the same time a member of the International Net of Oceanographic Data Centers( IOC/IODE), owns a very big volume of Data and Relevant information about the Marine Ecosystem. For the efficient management and exploitation of these Data, a relational Data Base has been constructed with a storage of over 300.000 station data concerning, physical, chemical and biological Oceanographic information. The development of a modern Web Application for the End User worldwide to be able to explore and navigate throughout HNODC data via the use of an interface with the capability of presenting Geographical representations of the Geo Information, is today a fact. The application is constituted with State of the art software components and tools such as: • Geospatial and no Spatial Web Services mechanisms • Geospatial open source tools for the creation of Dynamic Geographical Representations. • Communication protocols (messaging mechanisms) in all Layers such as XML and GML together with SOAP protocol via Apache/Axis. At the same time the application may interact with any other SOA application either in sending or receiving Geospatial Data through Geographical Layers, since it inherits the big advantage of interoperability between Web Services systems. Roughly the Architecture can denoted as follows: • At the back End Open source PostgreSQL DBMS stands as the data storage mechanism with more than one Data Base Schemas cause of the separation of the Geospatial Data and the non Geospatial Data. • UMN Map Server and Geoserver are the mechanisms for: Represent Geospatial Data via Web Map Service (WMS) Querying and Navigating in Geospatial and Meta Data Information via Web Feature Service (WFS) oAnd in the near future Transacting and processing new or existing Geospatial Data via Web Processing Service (WPS) • Map Bender, a geospatial portal site management software for OGC and OWS architectures acts as the integration module between the Geospatial Mechanisms. Mapbender comes with an embedded data model capable to manage interfaces for displaying, navigating and querying OGC compliant web map and feature services (WMS and transactional WFS). • Apache and Tomcat stand again as the Web Service middle Layers • Apache Axis with it's embedded implementation of the SOAP protocol ("Simple Object Access Protocol") acts as the No spatial data Mechanism of Web Services. These modules of the platform are still under development but their implementation will be fulfilled in the near future. • And a new Web user Interface for the end user based on enhanced and customized version of a MapBender GUI, a powerful Web Services client. For HNODC the interoperability of Web Services is the big advantage of the developed platform since it is capable to act in the future as provider and consumer of Web Services in both ways: • Either as data products provider for external SOA platforms. • Or as consumer of data products from external SOA platforms for new applications to be developed or for existing applications to be enhanced. A great paradigm of Data Managenet integration and dissemination via the use of such technologies is the European's Union Research Project Seadatanet, with the main objective to develop a standardized distributed system for managing and disseminating the large and diverse data sets and to enhance the currently existing infrastructures with Web Services Further more and when the technology of Web Processing Service (WPS), will be mature enough and applicable for development, the derived data products will be able to have any kind of GIS functionality for consumers across the network. From this point of view HNODC, joins the global scientific community by providing and consuming application Independent data products.
An Environmental Decision Support System for Spatial Assessment and Selective Remediation
Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates environmental assessment tools for effective problem-solving. The software integrates modules for GIS, visualization, geospatial analysis, statistical analysis, human health and ecolog...
Modeled De Facto Reuse and Contaminants of Emerging Concern in Drinking Water Source Waters
De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial wat...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... DEPARTMENT OF JUSTICE [OMB Number 1121--NEW] Agency Information Collection Activities; Proposed... Justice (DOJ), National Institute of Justice (NIJ), will be submitting the following information collection request to the Office of Management and Budget (OMB) for review and approval in accordance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... DEPARTMENT OF JUSTICE [OMB Number 1121-NEW] Agency Information Collection Activities: Proposed... Justice (DOJ), National Institute of Justice (NIJ), will be submitting the following information collection request to the Office of Management and Budget (OMB) for review and approval in accordance with...
Around the World with Geospatial Technologies
ERIC Educational Resources Information Center
Milson, Andrew J.; Kerski, Joseph J.
2012-01-01
The recent National Assessment of Educational Progress in Geography revealed that few American students can identify locations of current events, the scale of those events, or why those events are important. Social studies educators have found that by incorporating emerging technologies into their classroom--such as Geographic Information Systems…
Matthew G. Rollins; Robert E. Keane; Zhiliang Zhu
2006-01-01
Geospatial data describing wildland fuel and current as well as historical vegetation conditions are essential for planning, implementing, and monitoring projects supported by the National Fire Plan and the Healthy Forests Restoration Act. Scientifically credible, consistent, and standardized spatial data allow fire and land managers to accurately identify the amount...
Donato, David I.; Shapiro, Jason L.
2016-12-13
An effort to build a unified collection of geospatial data for use in land-change modeling (LCM) led to new insights into the requirements and challenges of building an LCM data infrastructure. A case study of data compilation and unification for the Richmond, Va., Metropolitan Statistical Area (MSA) delineated the problems of combining and unifying heterogeneous data from many independent localities such as counties and cities. The study also produced conclusions and recommendations for use by the national LCM community, emphasizing the critical need for simple, practical data standards and conventions for use by localities. This report contributes an uncopyrighted core glossary and a much needed operational definition of data unification.
NASA Astrophysics Data System (ADS)
Branch, B. D.; Wegner, K.; Smith, S.; Schulze, D. G.; Merwade, V.; Jung, J.; Bessenbacher, A.
2013-12-01
It has been the tradition of the libraries to support literacy. Now in the realm of Executive Order, Making Open and Machine Readable the New Default for Government Information, May 9, 2013, the library has the responsibility to support geospatial data, big data, earth science data or cyber infrastructure data that may support STEM for educational pipeline stimulation. (Such information can be found at http://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-.) Provided is an Educational Data Curation Framework (EDCF) that has been initiated in Purdue research, geospatial data service engagement and outreach endeavors for future consideration and application to augment such data science and climate literacy needs of future global citizens. In addition, this endorsement of this framework by the GLOBE program may facilitate further EDCF implementations, discussion points and prototypes for libraries. In addition, the ECDF will support teacher-led, placed-based and large scale climate or earth science learning systems where such knowledge transfer of climate or earth science data is effectively transferred from higher education research of cyberinfrastructure use such as, NOAA or NASA, to K-12 teachers and school systems. The purpose of this effort is to establish best practices for sustainable K-12 data science delivery system or GLOBE-provided system (http://vis.globe.gov/GLOBE/) where libraries manage the data curation and data appropriateness as data reference experts for such digital data. Here, the Purdue University Libraries' GIS department works to support soils, LIDAR and water science data experiences to support teacher training for an EDCF development effort. Lastly, it should be noted that the interdisciplinary collaboration and demonstration of library supported outreach partners and national organizations such the GLOBE program may best foster EDCF development. This trend in data science where library roles may emerge is consistent with NASA's wavelength program at http://nasawavelength.org. Mr. Steven Smith, an outreach coordinator, led this Purdue University outreach activity involving the GLOBE program with support by the Purdue University Libraries GIS department.
NASA Astrophysics Data System (ADS)
Jha, Praveen
Deforestation and degradation of forest areas, including those in the Protected Areas (PAs), are major concerns in India. There were 2 broad objectives of the study: the technological objective pertained to the development of state-of-art programs that could serve as Decision Support Systems while finalizing plans and policy interventions, while the other objective aimed at generating geo-spatial data in 2 PAs. A part of the Eastern Himalaya biodiversity hotspot, Manas Tiger Reserve (MTR), Assam, India having an area of 2837.12 sq km and an important part of Rajaji-Corbett Tiger Conservation Unit, Rajaji National Park (RNP), Uttarakhand, India, having an area of 820.42 sq km, were taken for the assessment of land use and land cover (LULC) change during 1990--2004. Simulation was undertaken in a smaller area of 1.2 km * 1.2 km right on the fringe of RNP. Three advanced geo-spatial programs---Multi-Algorithm Automation Program (MAAP), Data Automatic Modification Program (DAMP) and Multi-Stage Simulation Program (MUSSIP)---developed by the author were used extensively. Based on the satellite data, MAAP was used for the rapid assessments of LULC of 2004 and 1990; DAMP was used for the spectral modification of the satellite data of the adjacent scenes of 2004 and of 1990; and MUSSIP was used to simulate LULC maps for the future periods (till 2018). These programs produced very high accuracy levels: 91.12% in 2004 and 89.67% in 1990 were obtained for MTR; and 94.87% in 2004 and 94.10% in 1990 were obtained for RNP; 93.40% pixel-to-pixel accuracy and 0.7904 for kappa were achieved for simulation. The annual rate of loss of forests (0.41% in MTR and 1.20% in RNP) and loss of water (1.79% in MTR and 1.69% in RNP) during 1990-2004 is a matter of serious concern. The scenario analysis in the study area for simulation revealed that the deforestation rate of 1.27% per year during 2004--2018 would increase to 2.04% if the human population growth rate is enhanced by 10%. Hence these PAs need urgent restoration measures and effective conservation planning to address the problems of deforestation, severe degradation and immense loss of water.
Frank J. Krist
2010-01-01
The Forest Health Technology Enterprise Team (FHTET) of the U.S. Forest Service is leading an effort to produce the next version of the National Insect and Disease Risk Map (NIDRM) for targeted release in 2011. The goal of this effort is to update spatial depictions of risk of tree mortality based on: (1) newly derived 240-m geospatial information depicting the...
Grid Enabled Geospatial Catalogue Web Service
NASA Technical Reports Server (NTRS)
Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush
2004-01-01
Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.
Planning Quality for Successful International Environmental Monitoring
George M. Brilis; John G. Lyon; Jeffery C. Worthington
2006-01-01
Federal, State, and municipal government entities are increasingly depending on geospatial data for a myriad of purposes. This trend is expected to continue. Information sharing and interoperability are in line with the Federal Executive Order 12906 (Clinton, 1994) which calls for the establishment of the National Spatial Data Infrastructure (NSDI). If other...
75 FR 34634 - Privacy Act; Implementation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... DEPARTMENT OF DEFENSE National Geospatial-Intelligence Agency 32 CFR Part 320 Privacy Act; Implementation CFR Correction In Title 32 of the Code of Federal Regulations, Parts 191 to 399, revised as of...-INTELLIGENCE AGENCY (NGA) PRIVACY [FR Doc. 2010-14884 Filed 6-17-10; 8:45 am] BILLING CODE 1505-01-D ...
NREL: International Activities - Philippines Wind Resource Maps and Data
Philippines Wind Resource Maps and Data In 2014, under the Enhancing Capacity for Low Emission National Wind Technology Center and Geospatial Data Science Team applied modern approaches to update previous estimates to support the development of wind energy potential in the Philippines. The new
Pathfinder, v6 n3, May/Jun 2008. Unifying the Intelligence Profession
2008-06-01
ADDRESS(ES) National Geospatial-Intelligence Agency,Office of Corporate Communications,4600 Sangamore Road ,Bethesda,MD, 20816 -5003 8. PERFORMING...Sangamore Road, Mail Stop D-54 Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail: pathfinder@nga.mil Director Vice Adm. Robert
Marine and Hydrokinetic Data | Geospatial Data Science | NREL
. wave energy resource using a 51-month Wavewatch III hindcast database developed by the National Database The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides information database includes wave, tidal, current, and ocean thermal energy and contains information about energy
Code of Federal Regulations, 2013 CFR
2013-07-01
... NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) PRIVACY § 320.12 Exemptions. Link to an amendment published... NGA and its components shall be exempt from the requirements of 5 U.S.C. 552a(d) pursuant to 5 U.S.C... or prosecutable interest by the NGA or other agencies. This could seriously compromise case...
This work has been published to demonstrate an application that the authors made of the geospatial National Hydrography Dataset (NHDPlus) that was developed by Horizon Systems Corporation for the US EPA. NHDPlus was produced to enhance hydrological maps of the United States for ...
78 FR 77663 - Threat Reduction Advisory Committee; Notice of Federal Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
..., Technology and Logistics), DoD. ACTION: Federal Advisory Committee meeting notice. SUMMARY: The Department of...: National Geospatial-Intelligence Agency, Springfield, Virginia on January 28 and CENTRA Technology Inc... related to the Committee's mission to advise on technology security, Combating Weapons of Mass Destruction...
Development of Mobile Measurement Method Series OTM 33
Starting in 2006, the United States Environmental Protection Agency has explored use of mobile instrumented vehicles for a variety of air quality assessment applications under its Geospatial Measurement of Air Pollution (GMAP) program. GMAP systems utilize next generation, fast-r...
NBII-SAIN Data Management Toolkit
Burley, Thomas E.; Peine, John D.
2009-01-01
The Strategic Plan for the U.S. Geological Survey Biological Informatics Program (2005-2009) recognizes the need for effective data management: Though the Federal government invests more than $600 million per year in biological data collection, it is difficult to address these issues because of limited accessibility and lack of standards for data and information...variable quality, sources, methods, and formats (for example observations in the field, museum specimens, and satellite images) present additional challenges. This is further complicated by the fast-moving target of emerging and changing technologies such as GPS and GIS. Even though these technologies offer new solutions, they also create new informatics challenges (Ruggiero and others, 2005). The USGS National Biological Information Infrastructure program, hereafter referred to as NBII, is charged with the mission to improve the way data and information are gathered, documented, stored, and accessed. The central objective of this project is a direct reflection of the purpose of NBII as described by John Mosesso, Program Manager of the U.S. Geological Survey-Biological Informatics Program-GAP Analysis: At the outset, the reason for bringing about NBII was that there were significant amounts of data and information scattered all over the U.S., not accessible, in incompatible formats, and that NBII was tasked with addressing this problem...NBII's focus is to pull data together that truly matters to someone or communities. Essentially, the core questions are: 1) what are the issues, 2) where is the data, and 3) how can we make it usable and accessible (John Mosesso, U.S. Geological Survey, oral commun., 2006). Redundancy in data collection can be a major issue when multiple stakeholders are involved with a common effort. In 2001 the U.S. General Accounting Office (USGAO) estimated that about 50 percent of the Federal government's geospatial data at the time was redundant. In addition, approximately 80 percent of the cost of a spatial information system is associated with spatial data collection and management (U.S. General Accounting Office, 2003). These figures indicate that the resources (time, personnel, money) of many agencies and organizations could be used more efficiently and effectively. Dedicated and conscientious data management coordination and documentation is critical for reducing such redundancy. Substantial cost savings and increased efficiency are direct results of a pro-active data management approach. In addition, details of projects as well as data and information are frequently lost as a result of real-world occurrences such as the passing of time, job turnover, and equipment changes and failure. A standardized, well documented database allows resource managers to identify issues, analyze options, and ultimately make better decisions in the context of adaptive management (National Land and Water Resources Audit and the Australia New Zealand Land Information Council on behalf of the Australian National Government, 2003). Many environmentally focused, scientific, or natural resource management organizations collect and create both spatial and non-spatial data in some form. Data management appropriate for those data will be contingent upon the project goal(s) and objectives and thus will vary on a case-by-case basis. This project and the resulting Data Management Toolkit, hereafter referred to as the Toolkit, is therefore not intended to be comprehensive in terms of addressing all of the data management needs of all projects that contain biological, geospatial, and other types of data. The Toolkit emphasizes the idea of connecting a project's data and the related management needs to the defined project goals and objectives from the outset. In that context, the Toolkit presents and describes the fundamental components of sound data and information management that are common to projects involving biological, geospatial, and other related data
Crowdsourcing The National Map
McCartney, Elizabeth; Craun, Kari J.; Korris, Erin M.; Brostuen, David A.; Moore, Laurence R.
2015-01-01
Using crowdsourcing techniques, the US Geological Survey’s (USGS) Volunteered Geographic Information (VGI) project known as “The National Map Corps (TNMCorps)” encourages citizen scientists to collect and edit data about man-made structures in an effort to provide accurate and authoritative map data for the USGS National Geospatial Program’s web-based The National Map. VGI is not new to the USGS, but past efforts have been hampered by available technologies. Building on lessons learned, TNMCorps volunteers are successfully editing 10 different structure types in all 50 states as well as Puerto Rico and the US Virgin Islands.
Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics
NASA Astrophysics Data System (ADS)
Singh, R.; Bermudez, L. E.
2013-12-01
Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web, they can easily share this information with colleagues or friends via an email that includes URLs (links to web resources) and attachments (inline data). In the case of geospatial information, a user would like to share a map created from different OGC sources, which may include for example, WMS and WFS links, and GML and KML annotations. The emerging OGC file format is called the OGC Web Services Context Document (OWS Context), which allows clients to reproduce a map previously created by someone else. Context sharing is important in a variety of domains, from emergency response, where fire, police and emergency medical personnel need to work off a common map, to multi-national military operations, where coalition forces need to share common data sources, but have cartographic displays in different languages and symbology sets. OWS Contexts can be written in XML (building upon the Atom Syndication Format) or JSON. This presentation will provide an introduction of GeoPackage and OWS Context and how they can be used to advance sharing of Earth and Space Science information.
Partnerships - Working Together to Build The National Map
,
2004-01-01
Through The National Map, the U.S. Geological Survey (USGS) is working with partners to ensure that current, accurate, and complete base geographic information is available for the Nation. Designed as a network of online digital databases, it provides a consistent geographic data framework for the country and serves as a foundation for integrating, sharing, and using data easily and reliably. It provides public access to high quality geospatial data and information from multiple partners to help inform decisionmaking by resource managers and the public, and to support intergovernmental homeland security and emergency management requirements.
Considerations on Geospatial Big Data
NASA Astrophysics Data System (ADS)
LIU, Zhen; GUO, Huadong; WANG, Changlin
2016-11-01
Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.
Global polar geospatial information service retrieval based on search engine and ontology reasoning
Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang
2007-01-01
In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.
Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India
NASA Astrophysics Data System (ADS)
Mohan, M.
2016-06-01
In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.
The Future of Geospatial Standards
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Simonis, I.
2016-12-01
The OGC is an international not-for-profit standards development organization (SDO) committed to making quality standards for the geospatial community. A community of more than 500 member organizations with more than 6,000 people registered at the OGC communication platform drives the development of standards that are freely available for anyone to use and to improve sharing of the world's geospatial data. OGC standards are applied in a variety of application domains including Environment, Defense and Intelligence, Smart Cities, Aviation, Disaster Management, Agriculture, Business Development and Decision Support, and Meteorology. Profiles help to apply information models to different communities, thus adapting to particular needs of that community while ensuring interoperability by using common base models and appropriate support services. Other standards address orthogonal aspects such as handling of Big Data, Crowd-sourced information, Geosemantics, or container for offline data usage. Like most SDOs, the OGC develops and maintains standards through a formal consensus process under the OGC Standards Program (OGC-SP) wherein requirements and use cases are discussed in forums generally open to the public (Domain Working Groups, or DWGs), and Standards Working Groups (SWGs) are established to create standards. However, OGC is unique among SDOs in that it also operates the OGC Interoperability Program (OGC-IP) to provide real-world testing of existing and proposed standards. The OGC-IP is considered the experimental playground, where new technologies are researched and developed in a user-driven process. Its goal is to prototype, test, demonstrate, and promote OGC Standards in a structured environment. Results from the OGC-IP often become requirements for new OGC standards or identify deficiencies in existing OGC standards that can be addressed. This presentation will provide an analysis of the work advanced in the OGC consortium including standards and testbeds, where we can extract a trend for the future of geospatial standards. We see a number of key elements in focus, but simultaneously a broadening of standards to address particular communities' needs.
The Role of NOAA's National Data Centers in the Earth and Space Science Infrastructure
NASA Astrophysics Data System (ADS)
Fox, C. G.
2008-12-01
NOAA's National Data Centers (NNDC) provide access to long-term archives of environmental data from NOAA and other sources. The NNDCs face significant challenges in the volume and complexity of modern data sets. Data volume challenges are being addressed using more capable data archive systems such as the Comprehensive Large Array-Data Stewardship System (CLASS). Challenges in assuring data quality and stewardship are in many ways more challenging. In the past, scientists at the Data Centers could provide reasonable stewardship of data sets in their area of expertise. As staff levels have decreased and data complexity has increased, Data Centers depend on their data providers and user communities to provide high-quality metadata, feedback on data problems and improvements. This relationship requires strong partnerships between the NNDCs and academic, commercial, and international partners, as well as advanced data management and access tools that conform to established international standards when available. The NNDCs are looking to geospatial databases, interactive mapping, web services, and other Application Program Interface approaches to help preserve NNDC data and information and to make it easily available to the scientific community.
NASA Astrophysics Data System (ADS)
McGowan, A. E.; Postlethwaite, V. R.; Pellatt, M. G.; Kohfeld, K. E.; Robinson, C.; Yakimishyn, J.; Chastain, S. G.
2016-12-01
Across the globe seagrass habits are recognized as highly productive systems, and have recently been characterized by their ability to store and sequester substantial amounts of organic carbon, known as `blue carbon.' Unfortunately, seagrasses are among the most rapidly disappearing ecosystems on Earth due to anthropogenic activities and development. Given the paucity of geospatial information on the global abundance of blue carbon environments, the rate of seagrass habitat loss is uncertain. Recent studies indicate that the consequences of coastal ecosystem conversion are larger than predicted, particularly on Canada's Pacific coastline where agricultural, forestry, and commercial developments have destroyed substantial amounts of seagrass habitat. This lack of knowledge hinders coastal habitat and blue carbon conservation planning and inhibits comprehensive policy development regarding coastal carbon management. This research quantitatively assesses various measures of above and below ground biomass and eelgrass shoot density as well as incorporates geospatial data collected from remote sensing technologies from three seagrass meadows on the Pacific coast of British Columbia. Using ArcGIS software, the distribution, extent, and density of seagrass located in the Pacific Rim National Park Reserve and southern Clayoquot Sound will be used to contribute to the first set of continental maps of blue carbon habitats within North America led by the Commission for Environmental Cooperation. Further, these results will be integrated into a geospatial database on the carbon accumulation rates in seagrass meadows on the Pacific coast of North America, providing a baseline for determining the role blue carbon habitats play in carbon mitigation on coastal British Columbia.
Modelling surface-water depression storage in a Prairie Pothole Region
Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie
2018-01-01
In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.
Gamification and geospatial health management
NASA Astrophysics Data System (ADS)
Wortley, David
2014-06-01
Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity.
Challenges in sharing of geospatial data by data custodians in South Africa
NASA Astrophysics Data System (ADS)
Kay, Sissiel E.
2018-05-01
As most development planning and rendering of public services happens at a place or in a space, geospatial data is required. This geospatial data is best managed through a spatial data infrastructure, which has as a key objective to share geospatial data. The collection and maintenance of geospatial data is expensive and time consuming and so the principle of "collect once - use many times" should apply. It is best to obtain the geospatial data from the authoritative source - the appointed data custodian. In South Africa the South African Spatial Data Infrastructure (SASDI) is the means to achieve the requirement for geospatial data sharing. This requires geospatial data sharing to take place between the data custodian and the user. All data custodians are expected to comply with the Spatial Data Infrastructure Act (SDI Act) in terms of geo-spatial data sharing. Currently data custodians are experiencing challenges with regard to the sharing of geospatial data. This research is based on the current ten data themes selected by the Committee for Spatial Information and the organisations identified as the data custodians for these ten data themes. The objectives are to determine whether the identified data custodians comply with the SDI Act with respect to geospatial data sharing, and if not what are the reasons for this. Through an international comparative assessment it then determines if the compliance with the SDI Act is not too onerous on the data custodians. The research concludes that there are challenges with geospatial data sharing in South Africa and that the data custodians only partially comply with the SDI Act in terms of geospatial data sharing. However, it is shown that the South African legislation is not too onerous on the data custodians.
Zahn, Stephen G.
2015-07-13
LANDFIRE data products are primarily designed and developed to be used at the landscape level to facilitate national and regional strategic planning and reporting of wild land fire and other natural resource management activities. However, LANDFIRE’s spatially comprehensive dataset can also be adapted to support a variety of local management applications that need current and comprehensive geospatial data.
USGS Emergency Response Resources
Bewley, Robert D.
2011-01-01
Every day, emergency responders are confronted with worldwide natural and manmade disasters, including earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, wildfires, terrorist attacks, and accidental oil spills.The U.S. Geological Survey (USGS) is ready to coordinate the provisioning and deployment of USGS staff, equipment, geospatial data, products, and services in support of national emergency response requirements.
Pathfinder, v6 n4 Jul/Aug 2008. Our Compact with the Warfighter -- Maintaining a Sacred Trust
2008-08-01
NAME(S) AND ADDRESS(ES) National Geospatial-Intelligence Agency,Office of Corporate Communications,4600 Sangamore Road ,Bethesda,MD, 20816 -5003 8...Office of Corporate Communications 4600 Sangamore Road, Mail Stop D-54 Bethesda, MD 20816 -5003 Telephone: (301) 227-7388, DSN 287-7388 E-mail
The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for Clean Water Act applications in coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to suppo...
NASA Astrophysics Data System (ADS)
Iiames, J. S.; Riegel, J.; Lunetta, R.
2013-12-01
Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.
NASA Astrophysics Data System (ADS)
Santoro, E.
2017-05-01
The crisis management of a disaster, whether caused naturally or by human action, requires a thorough knowledge of the territory involved, with regard to both its terrain and its developed areas. Therefore, it is essential that the National Mapping and Cadastral Agencies (NMCAs) and all other public and scientific institutions responsible for the production of geospatial information closely co-operate in making their data in that field available. This crucial sharing of geographic information is a top-level priority, not only in a disaster emergency situation, but also for effective urban and environmental planning and Cultural Heritage protection and preservation. Geospatial data-sharing, responding to the needs of all institutions involved in disaster surveying operations, is fundamental, as a priority, to the task of avoiding loss of human lives. However, no less important is the acquisition, dissemination and use of this data, in addition to direct, "in-the-field" operations of specialists in geomatics, in order to preserve the Cultural Heritage located in the crisis area. It is in this context that an NMCA such as the Italian Military Geographic Institute (IGMI) plays a key role.
WebGL Visualisation of 3D Environmental Models Based on Finnish Open Geospatial Data Sets
NASA Astrophysics Data System (ADS)
Krooks, A.; Kahkonen, J.; Lehto, L.; Latvala, P.; Karjalainen, M.; Honkavaara, E.
2014-08-01
Recent developments in spatial data infrastructures have enabled real time GIS analysis and visualization using open input data sources and service interfaces. In this study we present a new concept where metric point clouds derived from national open airborne laser scanning (ALS) and photogrammetric image data are processed, analyzed, finally visualised a through open service interfaces to produce user-driven analysis products from targeted areas. The concept is demonstrated in three environmental applications: assessment of forest storm damages, assessment of volumetric changes in open pit mine and 3D city model visualization. One of the main objectives was to study the usability and requirements of national level photogrammetric imagery in these applications. The results demonstrated that user driven 3D geospatial analyses were possible with the proposed approach and current technology, for instance, the landowner could assess the amount of fallen trees within his property borders after a storm easily using any web browser. On the other hand, our study indicated that there are still many uncertainties especially due to the insufficient standardization of photogrammetric products and processes and their quality indicators.
SDGs and Geospatial Frameworks: Data Integration in the United States
NASA Astrophysics Data System (ADS)
Trainor, T.
2016-12-01
Responding to the need to monitor a nation's progress towards meeting the Sustainable Development Goals (SDG) outlined in the 2030 U.N. Agenda requires the integration of earth observations with statistical information. The urban agenda proposed in SDG 11 challenges the global community to find a geospatial approach to monitor and measure inclusive, safe, resilient, and sustainable cities and communities. Target 11.7 identifies public safety, accessibility to green and public spaces, and the most vulnerable populations (i.e., women and children, older persons, and persons with disabilities) as the most important priorities of this goal. A challenge for both national statistical organizations and earth observation agencies in addressing SDG 11 is the requirement for detailed statistics at a sufficient spatial resolution to provide the basis for meaningful analysis of the urban population and city environments. Using an example for the city of Pittsburgh, this presentation proposes data and methods to illustrate how earth science and statistical data can be integrated to respond to Target 11.7. Finally, a preliminary series of data initiatives are proposed for extending this method to other global cities.
Development of a flexible higher education curriculum framework for geographic information science
NASA Astrophysics Data System (ADS)
Veenendaal, B.
2014-04-01
A wide range of geographic information science (GIScience) educational programs currently exist, the oldest now over 25 years. Offerings vary from those specifically focussed on geographic information science, to those that utilise geographic information systems in various applications and disciplines. Over the past two decades, there have been a number of initiatives to design curricula for GIScience, including the NCGIA Core Curriculum, GIS&T Body of Knowledge and the Geospatial Technology Competency Model developments. The rapid developments in geospatial technology, applications and organisations means that curricula need to constantly be updated and developed to maintain currency and relevance. This paper reviews the curriculum initiatives and outlines a new and flexible GIScience higher education curriculum framework which complements and utilises existing curricula. This new framework was applied to the GIScience programs at Curtin University in Perth, Australia which has surpassed 25 years of GIScience education. Some of the results of applying this framework are outlined and discussed.
Nelson, Janice S.
2010-01-01
The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To communicate with us, or for more information about EROS, contact: Communications and Outreach, USGS EROS Center, 47914 252nd Street, Sioux Falls, South Dakota 57198, jsnelson@usgs.gov, http://eros.usgs.gov/.
Geospatial Data Science Research Staff | Geospatial Data Science | NREL
Oliveira, Ricardo Researcher II-Geospatial Science Ricardo.Oliveira@nrel.gov 303-275-3272 Gilroy, Nicholas Specialist Pamela.Gray.hann@nrel.gov 303-275-4626 Grue, Nicholas Researcher III-Geospatial Science Nick.Grue
PLANNING QUALITY IN GEOSPATIAL PROJECTS
This presentation will briefly review some legal drivers and present a structure for the writing of geospatial Quality Assurance Projects Plans. In addition, the Geospatial Quality Council geospatial information life-cycle and sources of error flowchart will be reviewed.
Automatic geospatial information Web service composition based on ontology interface matching
NASA Astrophysics Data System (ADS)
Xu, Xianbin; Wu, Qunyong; Wang, Qinmin
2008-10-01
With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.
NASA Astrophysics Data System (ADS)
Schoessow, F. S.; Li, Y.; Howe, P. D.
2016-12-01
Extreme heat events are the deadliest natural hazard in the United States and are expected to increase in both severity and frequency in the coming years due to the effects of climate change. The risks of climate change and weather-related events such as heat waves to a population can be more comprehensively assessed by coupling the traditional examination of natural hazards using remote sensing and geospatial analysis techniques with human vulnerability factors and individual perceptions of hazards. By analyzing remote-sensed and empirical survey data alongside national hazards advisories, this study endeavors to establish a nationally-representative baseline quantifying the spatiotemporal variation of individual heat vulnerabilities at multiple scales and between disparate population groups affected by their unique socioenvironmental factors. This is of immediate academic interest because the study of heat waves risk perceptions remains relatively unexplored - despite the intensification of extreme heat events. The use of "human sensors", georeferenced & timestamped individual response data, provides invaluable contextualized data at a high spatial resolution, which will enable policy-makers to more effectively implement targeted strategies for risk prevention, mitigation, and communication. As climate change risks are further defined, this cognizance will help identify vulnerable populations and enhance national hazard preparedness and recovery frameworks.
NCI's Distributed Geospatial Data Server
NASA Astrophysics Data System (ADS)
Larraondo, P. R.; Evans, B. J. K.; Antony, J.
2016-12-01
Earth systems, environmental and geophysics datasets are an extremely valuable source of information about the state and evolution of the Earth. However, different disciplines and applications require this data to be post-processed in different ways before it can be used. For researchers experimenting with algorithms across large datasets or combining multiple data sets, the traditional approach to batch data processing and storing all the output for later analysis rapidly becomes unfeasible, and often requires additional work to publish for others to use. Recent developments on distributed computing using interactive access to significant cloud infrastructure opens the door for new ways of processing data on demand, hence alleviating the need for storage space for each individual copy of each product. The Australian National Computational Infrastructure (NCI) has developed a highly distributed geospatial data server which supports interactive processing of large geospatial data products, including satellite Earth Observation data and global model data, using flexible user-defined functions. This system dynamically and efficiently distributes the required computations among cloud nodes and thus provides a scalable analysis capability. In many cases this completely alleviates the need to preprocess and store the data as products. This system presents a standards-compliant interface, allowing ready accessibility for users of the data. Typical data wrangling problems such as handling different file formats and data types, or harmonising the coordinate projections or temporal and spatial resolutions, can now be handled automatically by this service. The geospatial data server exposes functionality for specifying how the data should be aggregated and transformed. The resulting products can be served using several standards such as the Open Geospatial Consortium's (OGC) Web Map Service (WMS) or Web Feature Service (WFS), Open Street Map tiles, or raw binary arrays under different conventions. We will show some cases where we have used this new capability to provide a significant improvement over previous approaches.
GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wei; Minnick, Matthew; Geza, Mengistu
2012-09-30
The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings frommore » the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.« less
GIS applications for military operations in coastal zones
Fleming, S.; Jordan, T.; Madden, M.; Usery, E.L.; Welch, R.
2009-01-01
In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations. ?? 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
GIS applications for military operations in coastal zones
NASA Astrophysics Data System (ADS)
Fleming, S.; Jordan, T.; Madden, M.; Usery, E. L.; Welch, R.
In order to successfully support current and future US military operations in coastal zones, geospatial information must be rapidly integrated and analyzed to meet ongoing force structure evolution and new mission directives. Coastal zones in a military-operational environment are complex regions that include sea, land and air features that demand high-volume databases of extreme detail within relatively narrow geographic corridors. Static products in the form of analog maps at varying scales traditionally have been used by military commanders and their operational planners. The rapidly changing battlefield of 21st Century warfare, however, demands dynamic mapping solutions. Commercial geographic information system (GIS) software for military-specific applications is now being developed and employed with digital databases to provide customized digital maps of variable scale, content and symbolization tailored to unique demands of military units. Research conducted by the Center for Remote Sensing and Mapping Science at the University of Georgia demonstrated the utility of GIS-based analysis and digital map creation when developing large-scale (1:10,000) products from littoral warfare databases. The methodology employed-selection of data sources (including high resolution commercial images and Lidar), establishment of analysis/modeling parameters, conduct of vehicle mobility analysis, development of models and generation of products (such as a continuous sea-land DEM and geo-visualization of changing shorelines with tidal levels)-is discussed. Based on observations and identified needs from the National Geospatial-Intelligence Agency, formerly the National Imagery and Mapping Agency, and the Department of Defense, prototype GIS models for military operations in sea, land and air environments were created from multiple data sets of a study area at US Marine Corps Base Camp Lejeune, North Carolina. Results of these models, along with methodologies for developing large-scale littoral warfare databases, aid the National Geospatial-Intelligence Agency in meeting littoral warfare analysis, modeling and map generation requirements for US military organizations.
Building asynchronous geospatial processing workflows with web services
NASA Astrophysics Data System (ADS)
Zhao, Peisheng; Di, Liping; Yu, Genong
2012-02-01
Geoscience research and applications often involve a geospatial processing workflow. This workflow includes a sequence of operations that use a variety of tools to collect, translate, and analyze distributed heterogeneous geospatial data. Asynchronous mechanisms, by which clients initiate a request and then resume their processing without waiting for a response, are very useful for complicated workflows that take a long time to run. Geospatial contents and capabilities are increasingly becoming available online as interoperable Web services. This online availability significantly enhances the ability to use Web service chains to build distributed geospatial processing workflows. This paper focuses on how to orchestrate Web services for implementing asynchronous geospatial processing workflows. The theoretical bases for asynchronous Web services and workflows, including asynchrony patterns and message transmission, are examined to explore different asynchronous approaches to and architecture of workflow code for the support of asynchronous behavior. A sample geospatial processing workflow, issued by the Open Geospatial Consortium (OGC) Web Service, Phase 6 (OWS-6), is provided to illustrate the implementation of asynchronous geospatial processing workflows and the challenges in using Web Services Business Process Execution Language (WS-BPEL) to develop them.
Geospatial Data Management Platform for Urban Groundwater
NASA Astrophysics Data System (ADS)
Gaitanaru, D.; Priceputu, A.; Gogu, C. R.
2012-04-01
Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis tools) and a front-end geoportal service. The SIMPA platform makes use of mark-up transfer standards to provide a user-friendly application that can be accessed through internet to query, analyse, and visualise geospatial data related to urban groundwater. The platform holds the information within the local groundwater geospatial databases and the user is able to access this data through a geoportal service. The database architecture allows storing accurate and very detailed geological, hydrogeological, and infrastructure information that can be straightforwardly generalized and further upscaled. The geoportal service offers the possibility of querying a dataset from the spatial database. The query is coded in a standard mark-up language, and sent to the server through a standard Hyper Text Transfer Protocol (http) to be processed by the local application. After the validation of the query, the results are sent back to the user to be displayed by the geoportal application. The main advantage of the SIMPA platform is that it offers to the user the possibility to make a primary multi-criteria query, which results in a smaller set of data to be analysed afterwards. This improves both the transfer process parameters and the user's means of creating the desired query.
National Hydropower Plant Dataset, Version 1 (Update FY18Q2)
Samu, Nicole; Kao, Shih-Chieh; O'Connor, Patrick; Johnson, Megan; Uria-Martinez, Rocio; McManamay, Ryan
2016-09-30
The National Hydropower Plant Dataset, Version 1, Update FY18Q2, includes geospatial point-level locations and key characteristics of existing hydropower plants in the United States that are currently online. These data are a subset extracted from NHAAP’s Existing Hydropower Assets (EHA) dataset, which is a cornerstone of NHAAP’s EHA effort that has supported multiple U.S. hydropower R&D research initiatives related to market acceleration, environmental impact reduction, technology-to-market activities, and climate change impact assessment.
Implementing Extreme Value Analysis in a Geospatial Workflow for Storm Surge Hazard Assessment
NASA Astrophysics Data System (ADS)
Catelli, J.; Nong, S.
2014-12-01
Gridded data of 100-yr (1%) and 500-yr (0.2%) storm surge flood elevations for the United States, Gulf of Mexico, and East Coast are critical to understanding this natural hazard. Storm surge heights were calculated across the study area utilizing SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model data for thousands of synthetic US landfalling hurricanes. Based on the results derived from SLOSH, a series of interpolations were performed using spatial analysis in a geographic information system (GIS) at both the SLOSH basin and the synthetic event levels. The result was a single grid of maximum flood elevations for each synthetic event. This project addresses the need to utilize extreme value theory in a geospatial environment to analyze coincident cells across multiple synthetic events. The results are 100-yr (1%) and 500-yr (0.2%) values for each grid cell in the study area. This talk details a geospatial approach to move raster data to SciPy's NumPy Array structure using the Python programming language. The data are then connected through a Python library to an outside statistical package like R to fit cell values to extreme value theory distributions and return values for specified recurrence intervals. While this is not a new process, the value behind this work is the ability to keep this process in a single geospatial environment and be able to easily replicate this process for other natural hazard applications and extreme event modeling.
Geospatial Service Platform for Education and Research
NASA Astrophysics Data System (ADS)
Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.
2014-04-01
We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.
NASA Astrophysics Data System (ADS)
Hudspeth, W. B.; Barrett, H.; Diller, S.; Valentin, G.
2016-12-01
Energize is New Mexico's Experimental Program to Stimulate Competitive Research (NM EPSCoR), funded by the NSF with a focus on building capacity to conduct scientific research. Energize New Mexico leverages the work of faculty and students from NM universities and colleges to provide the tools necessary to a quantitative, science-driven discussion of the state's water policy options and to realize New Mexico's potential for sustainable energy development. This presentation discusses the architectural details of NM EPSCoR's collaborative data management system, GSToRE, and how New Mexico researchers use it to share and analyze diverse research data, with the goal of attaining sustainable energy development in the state.The Earth Data Analysis Center (EDAC) at The University of New Mexico leads the development of computational interoperability capacity that allows the wide use and sharing of energy-related data among NM EPSCoR researchers. Data from a variety of research disciplines is stored and maintained in EDAC's Geographic Storage, Transformation and Retrieval Engine (GSToRE), a distributed platform for large-scale vector and raster data discovery, subsetting, and delivery via Web services that are based on Open Geospatial Consortium (OGC) and REST Web-service standards. Researchers upload and register scientific datasets using a front-end client that collects the critical metadata. In addition, researchers have the option to register their datasets with DataONE, a national, community-driven project that provides access to data across multiple member repositories. The GSToRE platform maintains a searchable, core collection of metadata elements that can be used to deliver metadata in multiple formats, including ISO 19115-2/19139 and FGDC CSDGM. Stored metadata elements also permit the platform to automate the registration of Energize datasets into DataONE, once the datasets are approved for release to the public.
EPA GEOSPATIAL QUALITY COUNCIL
The EPA Geospatial Quality Council (previously known as the EPA GIS-QA Team - EPA/600/R-00/009 was created to fill the gap between the EPA Quality Assurance (QA) and Geospatial communities. All EPA Offices and Regions were invited to participate. Currently, the EPA Geospatial Q...
Geospatial Thinking of Information Professionals
ERIC Educational Resources Information Center
Bishop, Bradley Wade; Johnston, Melissa P.
2013-01-01
Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…
EPA Geospatial Quality Council Strategic and Implementation Plan 2010 to 2015
The EPA Geospatial Quality Council (GQC) was created to promote and provide Quality Assurance guidance for the development, use, and products of geospatial science. The GQC was created when the gap between the EPA Quality Assurance (QA) and Geospatial communities was recognized. ...
US EPA GEOSPATIAL QUALITY COUNCIL: ENSURING QUALITY GEOSPATIAL SOLUTIONS
This presentation will discuss the history, strategy, products, and future plans of the EPA Geospatial Quality Council (GQC). A topical review of GQC products will be presented including:
o Guidance for Geospatial Data Quality Assurance Project Plans.
o GPS - Tec...
Integrated national-scale assessment of wildfire risk to human and ecological values
Matthew P. Thompson; David E. Calkin; Mark A. Finney; Alan A. Ager; Julie W. Gilbertson-Day
2011-01-01
The spatial, temporal, and social dimensions of wildfire risk are challenging U.S. federal land management agencies to meet societal needs while maintaining the health of the lands they manage. In this paper we present a quantitative, geospatial wildfire risk assessment tool, developed in response to demands for improved risk-based decision frameworks. The methodology...
ERIC Educational Resources Information Center
National Council for Geographic Education (NJ1), 2006
2006-01-01
This report examines the outcomes of a workshop held at the National Science Foundation on August 15-16, 2005. Forty-six participants, representing academia, industry, government agencies, professional associations, and special projects met to: (1) discuss how geospatial technology training at two-year colleges can address workforce needs; and…
78 FR 39163 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... publication in the Federal Register. III. Background and Purpose Each year, the printed edition of Title 33 of... Mapping Agency changed its name to the National Geospatial- Intelligence Agency. This rule removes the references to printed versions of the LNM in Sec. 72.01-10(c). In place of paragraph (c) is an updated link...
NASA Astrophysics Data System (ADS)
McCreedy, Frank P.; Sample, John T.; Ladd, William P.; Thomas, Michael L.; Shaw, Kevin B.
2005-05-01
The Naval Research Laboratory"s Geospatial Information Database (GIDBTM) Portal System has been extended to now include an extensive geospatial search functionality. The GIDB Portal System interconnects over 600 distributed geospatial data sources via the Internet with a thick client, thin client and a PDA client. As the GIDB Portal System has rapidly grown over the last two years (adding hundreds of geospatial sources), the obvious requirement has arisen to more effectively mine the interconnected sources in near real-time. How the GIDB Search addresses this issue is the prime focus of this paper.
An Integrated Field-Based Approach to Building Teachers' Geoscience Skills
ERIC Educational Resources Information Center
Almquist, Heather; Stanley, George; Blank, Lisa; Hendrix, Marc; Rosenblatt, Megan; Hanfling, Seymour; Crews, Jeffrey
2011-01-01
The Paleo Exploration Project was a professional development program for K-12 teachers from rural eastern Montana. The curriculum was designed to incorporate geospatial technologies, including Global Positioning Systems (GPS), Geographic Information Systems (GIS), and total station laser surveying, with authentic field experiences in geology and…
The Southwest Regional Gap Analysis project (SWReGAP) is a 5-state (Arizona, Colorado, Nevada, New Mexico, and Utah) inter-agency program that maps the distribution of plant communities and selected animal species and compares these distributions with land stewardship to identify...
Spatially Locating FIA Plots from Pixel Values
Greg C. Liknes; Geoffrey R. Holden; Mark D. Nelson; Ronald E. McRoberts
2005-01-01
The USDA Forest Service Forest Inventory and Analysis (FIA) program is required to ensure the confidentiality of the geographic locations of plots. To accommodate user requests for data without releasing actual plot coordinates, FIA creates overlays of plot locations on various geospatial data, including satellite imagery. Methods for reporting pixel values associated...
NASA Astrophysics Data System (ADS)
Gomez, R.; Gentle, J.
2015-12-01
Modern data pipelines and computational processes require that meticulous methodologies be applied in order to insure that the source data, algorithms, and results are properly curated, managed and retained while remaining discoverable, accessible, and reproducible. Given the complexity of understanding the scientific problem domain being researched, combined with the overhead of learning to use advanced computing technologies, it becomes paramount that the next generation of scientists and researchers learn to embrace best-practices. The Integrative Computational Education and Research Traineeship (ICERT) is a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at the Texas Advanced Computing Center (TACC). During Summer 2015, two ICERT interns joined the 3DDY project. 3DDY converts geospatial datasets into file types that can take advantage of new formats, such as natural user interfaces, interactive visualization, and 3D printing. Mentored by TACC researchers for ten weeks, students with no previous background in computational science learned to use scripts to build the first prototype of the 3DDY application, and leveraged Wrangler, the newest high performance computing (HPC) resource at TACC. Test datasets for quadrangles in central Texas were used to assemble the 3DDY workflow and code. Test files were successfully converted into a stereo lithographic (STL) format, which is amenable for use with a 3D printers. Test files and the scripts were documented and shared using the Figshare site while metadata was documented for the 3DDY application using OntoSoft. These efforts validated a straightforward set of workflows to transform geospatial data and established the first prototype version of 3DDY. Adding the data and software management procedures helped students realize a broader set of tangible results (e.g. Figshare entries), better document their progress and the final state of their work for the research group and community, helped students and researchers follow a clear set of formats and fill in the necessary details that may be lost otherwise, and exposed the students to the next generation workflows and practices for digital scholarship and scientific inquiry for converting geospatial data into formats that are easy to reuse.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Galu, G.; Funk, C. C.; Verdin, J. P.; Rowland, J.
2014-12-01
The Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) is a multi-organizational project aimed at mainstreaming climate-resilient development planning and program implementation into the East African Community (EAC). The Famine Early Warning Systems Network (FEWS NET) has partnered with the PREPARED project to address three key development challenges for the EAC; 1) increasing resiliency to climate change, 2) managing trans-boundary freshwater biodiversity and conservation and 3) improving access to drinking water supply and sanitation services. USGS FEWS NET has been instrumental in the development of gridded climate data sets that are the fundamental building blocks for climate change adaptation studies in the region. Tools such as the Geospatial Climate Tool (GeoCLIM) have been developed to interpolate time-series grids of precipitation and temperature values from station observations and associated satellite imagery, elevation data, and other spatially continuous fields. The GeoCLIM tool also allows the identification of anomalies and assessments of both their frequency of occurrence and directional trends. A major effort has been put forth to build the capacities of local and regional institutions to use GeoCLIM to integrate their station data (which is not typically available to the public) into improved national and regional gridded climate data sets. In addition to the improvements and capacity building activities related to geospatial analysis tools, FEWS NET will assist in two other areas; 1) downscaling of climate change scenarios and 2) vulnerability impact assessments. FEWS NET will provide expertise in statistical downscaling of Global Climate Model output fields and work with regional institutions to assess results of other downscaling methods. Completion of a vulnerability impact assessment (VIA) involves the examination of sectoral consequences in identified climate "hot spots". FEWS NET will lead the VIA for the agriculture and food security sector, but will also provide key geospatial layers needed by multiple sectors in the areas of exposure, sensitivity, and adaptive capacity. Project implementation will strengthen regional coordination in policy-making, planning, and response to climate change issues.
The Geospatial Web and Local Geographical Education
ERIC Educational Resources Information Center
Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.
2010-01-01
Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Clifford, T. J.; Guertin, D. P.; Sheppard, B. S.; Barlow, J. E.; Korgaonkar, Y.; Burns, I. S.; Unkrich, C. C.
2016-12-01
Wildfires disasters are common throughout the western US. While many feel fire suppression is the largest cost of wildfires, case studies note rehabilitation costs often equal or greatly exceed suppression costs. Using geospatial data sets, and post-fire burn severity products, coupled with the Automated Geospatial Watershed Assessment tool (AGWA - www.tucson.ars.ag.gov/agwa), the Dept. of Interior, Burned Area Emergency Response (BAER) teams can rapidly analyze and identify at-risk areas to target rehabilitation efforts. AGWA employs nationally available geospatial elevation, soils, and land cover data to parameterize the KINEROS2 hydrology and erosion model. A pre-fire watershed simulation can be done prior to BAER deployment using design storms. As soon as the satellite-derived Burned Area Reflectance Classification (BARC) map is obtained, a post-fire watershed simulation using the same storm is conducted. The pre- and post-fire simulations can be spatially differenced in the GIS for rapid identification of high at-risk areas of erosion or flooding. This difference map is used by BAER teams to prioritize field observations and in-turn produce a final burn severity map that is used in AGWA/KINEROS2 simulations to provide report ready results. The 2013 Elk Wildfire Complex that burned over 52,600 ha east of Boise, Idaho provides a tangible example of how BAER experts combined AGWA and geospatial data that resulted in substantial rehabilitation cost savings. The BAER team initially, they identified approximately 6,500 burned ha for rehabilitation. The team then used the AGWA pre- and post-fire watershed simulation results, accessibility constraints, and land slope conditions in an interactive process to locate burned areas that posed the greatest threat to downstream values-at-risk. The group combined the treatable area, field observations, and the spatial results from AGWA to target seed and mulch treatments that most effectively reduced the threats. Using this process, the BAER Team reduced the treatable acres from the original 16,000 ha to between 800 and 1,600 ha depending on the selected alternative. The final awarded contract amounted to about 1,480/ha, therefore, a total savings of 7.2 - $8.4 million was realized for mulch treatment alone.
a Public Platform for Geospatial Data Sharing for Disaster Risk Management
NASA Astrophysics Data System (ADS)
Balbo, S.; Boccardo, P.; Dalmasso, S.; Pasquali, P.
2013-01-01
Several studies have been conducted in Africa to assist local governments in addressing the risk situation related to natural hazards. Geospatial data containing information on vulnerability, impacts, climate change, disaster risk reduction is usually part of the output of such studies and is valuable to national and international organizations to reduce the risks and mitigate the impacts of disasters. Nevertheless this data isn't efficiently widely distributed and often resides in remote storage solutions hardly reachable. Spatial Data Infrastructures are technical solutions capable to solve this issue, by storing geospatial data and making them widely available through the internet. Among these solutions, GeoNode, an open source online platform for geospatial data sharing, has been developed in recent years. GeoNode is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode data management tools allow for integrated creation of data, metadata, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains (http://geonode.org/). This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several other-disasters related information. Moreover this platform will help to ensure that the data created by a number of past or ongoing projects is maintained and that this information remains accessible and useful. An Integrated Flood Risk Management Plan for a river basin has already been included in the platform and other data from future disaster risk management projects will be added as well.
A Decade of Annual National Land Cover Products - the Cropland Data Layer
NASA Astrophysics Data System (ADS)
Mueller, R.; Johnson, D. M.; Sandborn, A.; Willis, P.; Ebinger, L.; Yang, Z.; Seffrin, R.; Boryan, C. G.; Hardin, R.
2017-12-01
The Cropland Data Layer (CDL) is a national land cover product produced by the US Department of Agriculture/National Agricultural Statistics Service (NASS) to assess planted crop acreage on an annual basis. The 2017 CDL product serves as the decadal anniversary for the mapping of conterminous US agriculture. The CDL is a supervised land cover classification derived from medium resolution Earth observing satellites that capture crop phenology throughout the growing season, leveraging confidentially held ground reference information from the USDA Farm Service Agency (FSA) as training data. The CDL currently uses ancillary geospatial data from the US Geological Survey's National Land Cover Database (NLCD), and Imperviousness and Forest Canopy layers as well as the National Elevation Dataset as training for the non-agricultural domain. Accuracy assessments are documented and released annually with metadata publication. NASS is currently reprocessing the 2008 and 2009 CDL products to 30m resolution. They were originally processed and released at 56m based on the Resourcesat-1 AWiFS sensor. Additionally, best practices learned from processing the FSA ground reference data were applied to the historical training set, providing an enhanced classification at 30m. The release of these reprocessed products in the fall of 2017, along with the 2017 CDL annual product will be discussed and will complete a decade's worth of annual 30m products. Discussions of change and trend analytics as well as partnerships with key industry stakeholders will be displayed on the evolution and improvements made to this decadal geospatial crop specific land cover product.
Global Fiducials Program Imagery: New Opportunities for Geospatial Research, Outreach, and Education
NASA Astrophysics Data System (ADS)
Price, S. D.
2012-12-01
MOLNIA, Bruce F., PRICE, Susan D. and, KING, Stephen E., U.S. Geological Survey (USGS), 562 National Center, Reston, VA 20192, sprice@usgs.gov The Civil Applications Committee (CAC), operated by the U.S. Geological Survey (USGS), is the Federal interagency committee that facilitates Federal civil agency access to U.S. National Systems space-based electro-optical (EO) imagery for natural disaster response; global change investigations; ecosystem monitoring; mapping, charting, and geodesy; and related topics. The CAC's Global Fiducials Program (GFP) has overseen the systematic collection of high-resolution imagery to provide geospatial data time series spanning a decade or more at carefully selected sites to study and monitor changes, and to facilitate a comprehensive understanding of dynamic and sensitive areas of our planet. Since 2008, more than 4,500 one-meter resolution EO images which comprise time series from 85 GFP sites have been released for unrestricted public use. Initial site selections were made by Federal and academic scientists based on each site's unique history, susceptibility, or environmental value. For each site, collection strategies were carefully defined to maximize information extraction capabilities. This consistency enhances our ability to understand Earth's dynamic processes and long-term trends. Individual time series focus on Arctic sea ice change; temperate glacier behavior; mid-continent wetland dynamics; barrier island response to hurricanes; coastline evolution; wildland fire recovery; Long-Term Ecological Resource (LTER) site processes; and many other topics. The images are available from a USGS website at no cost, in an orthorectified GeoTIFF format with supporting metadata, making them ideal for use in Earth science education and GIS projects. New on-line tools provide enhanced analysis of these time-series imagery. For additional information go to http://gfp.usgs.gov or http://gfl.usgs.gov.Bering Glacier is the largest and longest glacier in continental North America, with a length of 190 km, a width of 40 km, and an area of about 5,000 km2. In the nine years between the 1996 image and the 2005 image, parts of the terminus retreated by more than 5 km and thinned by as much as 100 m. Long-term monitoring of Bering Glacier will enable scientists to better understand the dynamics of surging glaciers as well as how changing Alaska climate is affecting temperate glacier environments.
Strategic planning of INA-CORS development for public service and tectonic deformation study
NASA Astrophysics Data System (ADS)
Syetiawan, Agung; Gaol, Yustisi Ardhitasari Lumban; Safi'i, Ayu Nur
2017-07-01
GPS technology can be applied for surveying, mapping and research purposes. The simplicity of GPS technology for positioning make it become the first choice for survey compared with another positioning method. GPS can measure a position with various accuracy level based on the measurement method. In order to facilitate the GPS positioning, many organizations are establishing permanent GPS station. National Geodetic Survey (NGS) called it as Continuously Operating Reference Stations (CORS). Those devices continuously collect and record GPS data to be used by users. CORS has been built by several government agencies for particular purposes and scattered throughout Indonesia. Geospatial Information Agency (BIG) as a geospatial information providers begin to compile a grand design of Indonesia CORS (INA-CORS) that can be used for public service such as Real Time Kinematic (RTK), RINEX data request, or post-processing service and for tectonic deformation study to determine the deformation models of Indonesia and to evaluate the national geospatial reference system. This study aims to review the ideal location to develop CORS network distribution. The method was used is to perform spatial analysis on the data distribution of BIG and BPN CORS overlayed with Seismotectonic Map of Indonesia and land cover. The ideal condition to be achieved is that CORS will be available on each radius of 50 km. The result showed that CORS distribution in Java and Nusa Tenggara are already tight while on Sumatra, Celebes and Moluccas are still need to be more tighten. Meanwhile, the development of CORS in Papua will encounter obstacles toward road access and networking. This analysis result can be used as consideration for determining the priorities of CORS development in Indonesia.
Carpenter, Janet S; Laine, Tei; Harrison, Blake; LePage, Meghan; Pierce, Taran; Hoteling, Nathan; Börner, Katy
2017-10-01
We sought to depict the topical, geospatial, and temporal diffusion of the 2015 North American Menopause Society position statement on the nonhormonal management of menopause-associated vasomotor symptoms released on September 21, 2015, and its associated press release from September 23, 2015. Three data sources were used: online news articles, National Public Radio, and Twitter. For topical diffusion, we compared keywords and their frequencies among the position statement, press release, and online news articles. We also created a network figure depicting relationships across key content categories or nodes. For geospatial diffusion within the United States, we compared locations of the 109 National Public Radio (NPR) stations covering the statement to 775 NPR stations not covering the statement. For temporal diffusion, we normalized and segmented Twitter data into periods before and after the press release (September 12, 2015 to September 22, 2015 vs September 23, 2015 to October 3, 2015) and conducted a burst analysis to identify changes in tweets from before to after. Topical information diffused across sources was similar with the exception of the more scientific terms "vasomotor symptoms" or "vms" versus the more colloquial term "hot flashes." Online news articles indicated media coverage of the statement was mainly concentrated in the United States. NPR station data showed similar proportions of stations airing the story across the four census regions (Northeast, Midwest, south, west; P = 0.649). Release of the statement coincided with bursts in the menopause conversation on Twitter. The findings of this study may be useful for directing the development and dissemination of future North American Menopause Society position statements and/or press releases.
Turner, Kevin W.; Hunter, Fiona F.
2018-01-01
The purpose of this study was to establish geospatial and seasonal distributions of West Nile virus vectors in southern Ontario, Canada using historical surveillance data from 2002 to 2014. We set out to produce mosquito abundance prediction surfaces for each of Ontario’s thirteen West Nile virus vectors. We also set out to determine whether elevation and proximity to conservation areas and provincial parks, wetlands, and population centres could be used to improve our model. Our results indicated that the data sets for Anopheles quadrimaculatus, Anopheles punctipennis, Anopheles walkeri, Culex salinarius, Culex tarsalis, Ochlerotatus stimulans, and Ochlerotatus triseriatus were not suitable for geospatial modelling because they are randomly distributed throughout Ontario. Spatial prediction surfaces were created for Aedes japonicus and proximity to wetlands, Aedes vexans and proximity to population centres, Culex pipiens/restuans and proximity to population centres, Ochlerotatus canadensis and elevation, and Ochlerotatus trivittatus and proximity to population centres using kriging. Seasonal distributions are presented for all thirteen species. We have identified both when and where vector species are most abundant in southern Ontario. These data have the potential to contribute to a more efficient and focused larvicide program and West Nile virus awareness campaigns. PMID:29597256
Crowdsourced Contributions to the Nation's Geodetic Elevation Infrastructure
NASA Astrophysics Data System (ADS)
Stone, W. A.
2014-12-01
NOAA's National Geodetic Survey (NGS), a United States Department of Commerce agency, is engaged in providing the nation's fundamental positioning infrastructure - the National Spatial Reference System (NSRS) - which includes the framework for latitude, longitude, and elevation determination as well as various geodetic models, tools, and data. Capitalizing on Global Navigation Satellite System (GNSS) technology for improved access to the nation's precise geodetic elevation infrastructure requires use of a geoid model, which relates GNSS-derived heights (ellipsoid heights) with traditional elevations (orthometric heights). NGS is facilitating the use of crowdsourced GNSS observations collected at published elevation control stations by the professional surveying, geospatial, and scientific communities to help improve NGS' geoid modeling capability. This collocation of published elevation data and newly collected GNSS data integrates together the two height systems. This effort in turn supports enhanced access to accurate elevation information across the nation, thereby benefiting all users of geospatial data. By partnering with the public in this collaborative effort, NGS is not only helping facilitate improvements to the elevation infrastructure for all users but also empowering users of NSRS with the capability to do their own high-accuracy positioning. The educational outreach facet of this effort helps inform the public, including the scientific community, about the utility of various NGS tools, including the widely used Online Positioning User Service (OPUS). OPUS plays a key role in providing user-friendly and high accuracy access to NSRS, with optional sharing of results with NGS and the public. All who are interested in helping evolve and improve the nationwide elevation determination capability are invited to participate in this nationwide partnership and to learn more about the geodetic infrastructure which is a vital component of viable spatial data for many disciplines, including the geosciences.
Geospatial Technology Applications and Infrastructure in the Biological Resources Division
D'Erchia, Frank; Getter, James; D'Erchia, Terry D.; Root, Ralph; Stitt, Susan; White, Barbara
1998-01-01
Executive Summary -- Automated spatial processing technology such as geographic information systems (GIS), telemetry, and satellite-based remote sensing are some of the more recent developments in the long history of geographic inquiry. For millennia, humankind has endeavored to map the Earth's surface and identify spatial relationships. But the precision with which we can locate geographic features has increased exponentially with satellite positioning systems. Remote sensing, GIS, thematic mapping, telemetry, and satellite positioning systems such as the Global Positioning System (GPS) are tools that greatly enhance the quality and rapidity of analysis of biological resources. These technologies allow researchers, planners, and managers to more quickly and accurately determine appropriate strategies and actions. Researchers and managers can view information from new and varying perspectives using GIS and remote sensing, and GPS receivers allow the researcher or manager to identify the exact location of interest. These geospatial technologies support the mission of the U.S. Geological Survey (USGS) Biological Resources Division (BRD) and the Strategic Science Plan (BRD 1996) by providing a cost-effective and efficient method for collection, analysis, and display of information. The BRD mission is 'to work with others to provide the scientific understanding and technologies needed to support the sound management and conservation of our Nation's biological resources.' A major responsibility of the BRD is to develop and employ advanced technologies needed to synthesize, analyze, and disseminate biological and ecological information. As the Strategic Science Plan (BRD 1996) states, 'fulfilling this mission depends on effectively balancing the immediate need for information to guide management of biological resources with the need for technical assistance and long-range, strategic information to understand and predict emerging patterns and trends in ecological systems.' Information sharing plays a key role in nearly everything BRD does. The Strategic Science Plan discusses the need to (1) develop tools and standards for information transfer, (2) disseminate information, and (3) facilitate effective use of information. This effort centers around the National Biological Information Infrastructure (NBII) and the National Spatial Data Infrastructure (NSDI), components of the National Information Infrastructure. The NBII and NSDI are distributed electronic networks of biological and geographical data and information, as well as tools to help users around the world easily find and retrieve the biological and geographical data and information they need. The BRD is responsible for developing scientifically and statistically reliable methods and protocols to assess the status and trends of the Nation's biological resources. Scientists also conduct important inventory and monitoring studies to maintain baseline information on these same resources. Research on those species for which the Department of the Interior (DOI) has trust responsibilities (including endangered species and migratory species) involves laboratory and field studies of individual animals and the environments in which they live. Researchboth tactical and strategicis conducted at the BRD's 17 science centers and 81 field stations, 54 Cooperative Fish and Wildlife Research Units in 40 states, and at 11 former Cooperative Park Study Units. Studies encompass fish, birds, mammals, and plants, as well as their ecosystems and the surrounding landscape. Biological Resources Division researchers use a variety of scientific tools in their endeavors to understand the causes of biological and ecological trends. Research results are used by managers to predict environmental changes and to help them take appropriate measures to manage resources effectively. The BRD Geospatial Technology Program facilitates the collection, analysis, and dissemination of data and informat
Infrastructure for the Geospatial Web
NASA Astrophysics Data System (ADS)
Lake, Ron; Farley, Jim
Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.
ERIC Educational Resources Information Center
Hogrebe, Mark C.; Tate, William F., IV
2012-01-01
In this chapter, "geospatial" refers to geographic space that includes location, distance, and the relative position of things on the earth's surface. Geospatial perspective calls for the addition of a geographic lens that focuses on place and space as important contextual variables. A geospatial view increases one's understanding of…
Geospatial Data Curation at the University of Idaho
ERIC Educational Resources Information Center
Kenyon, Jeremy; Godfrey, Bruce; Eckwright, Gail Z.
2012-01-01
The management and curation of digital geospatial data has become a central concern for many academic libraries. Geospatial data is a complex type of data critical to many different disciplines, and its use has become more expansive in the past decade. The University of Idaho Library maintains a geospatial data repository called the Interactive…
NASA Astrophysics Data System (ADS)
Čepický, Jáchym; Moreira de Sousa, Luís
2016-06-01
The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates publishing of geospatial processes and client discovery of processes and and binding to those processes into workflows. Data required by a WPS can be delivered across a network or they can be available at a server. PyWPS was one of the first implementations of OGC WPS on the server side. It is written in the Python programming language and it tries to connect to all existing tools for geospatial data analysis, available on the Python platform. During the last two years, the PyWPS development team has written a new version (called PyWPS-4) completely from scratch. The analysis of large raster datasets poses several technical issues in implementing the WPS standard. The data format has to be defined and validated on the server side and binary data have to be encoded using some numeric representation. Pulling raster data from remote servers introduces security risks, in addition, running several processes in parallel has to be possible, so that system resources are used efficiently while preserving security. Here we discuss these topics and illustrate some of the solutions adopted within the PyWPS implementation.
NASA Astrophysics Data System (ADS)
Tsai, F.; Chen, L.-C.
2014-04-01
During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.
Geospatial Information System Analysis of Healthcare Need and Telemedicine Delivery in California.
Kaufman, Taylor; Geraghty, Estella M; Dullet, Navjit; King, Jesse; Kissee, Jamie; Marcin, James P
2017-05-01
Geospatial Information Systems (GIS) superimpose data on geographical maps to provide visual representations of data by region. Few studies have used GIS data to investigate if telemedicine services are preferentially provided to communities of greatest need. This study compared the healthcare needs of communities with and without telemedicine services from a university-based telemedicine program. Originating sites for all telemedicine consultations between July 1996 and December 2013 were geocoded using ArcGIS software. ZIP Code Tabulation Areas (ZCTAs) were extracted from the 2010 U.S. Census Bureau's Topologically Integrated Geographic Encoding and Referencing file and assigned a community needs index (CNI) score to reflect the ZCTA community's healthcare needs based on evidence-based barriers to healthcare access. CNI scores were compared across communities with and without active telemedicine services. One hundred ninety-four originating telemedicine clinic sites in California were evaluated. The mean CNI score for ZCTAs with at least one telemedicine clinic was significantly higher (3.32 ± 0.84) than those without a telemedicine site (2.95 ± 0.99) and higher than the mean ZCTAs for all of California (2.99 ± 1.01). Of the 194 telemedicine clinics, 71.4% were located in communities with above average need and 33.2% were located in communities with very high needs. Originating sites receiving telemedicine services from a university-based telemedicine program were located in regions with significantly higher community healthcare needs. Leveraging a geospatial information system to understand community healthcare needs provides an opportunity for payers, hospitals, and patients to be strategic in the allocation of telemedicine services.
NASA Astrophysics Data System (ADS)
Coote, A. M.; Whiteman, B.; Carver, J.; Balakrishnan, A.
2013-12-01
The disastrous earthquake in Christchurch city centre and surrounding parts of the Canterbury region of New Zealand in February 2011 which resulted in over 120 fatalities, highlighted a number of deficiencies in the information systems available to those involved in first response and in the subsequent rebuild. The lack of interoperability of geospatial information systems in particular was highlighted within the Royal Commission report on the disaster. As a result of this high level 'something must be done' call to action, Land Information New Zealand (LINZ), the lead public agency in national geospatial data management, were asked to scope a programme of work to accelerate the creation of a Spatial Data Infrastructure (SDI) for the area. This paper will outline the work undertaken to scope and prioritise a programme addressing the most pressing information infrastructure issues and then prepare the business case setting out the benefit-cost justification for the investment required. The resulting programme encompasses many of the emerging opportunities in the geospatial field including 3D GIS, crowd sourcing and open data leading to challenges in how to evaluate the benefits of innovative and 'ground breaking' solutions. It also considers how to track benefits realisation in a rapidly changing environment requiring an agile approach to programme management.
a Framework for AN Open Source Geospatial Certification Model
NASA Astrophysics Data System (ADS)
Khan, T. U. R.; Davis, P.; Behr, F.-J.
2016-06-01
The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105 respondents worldwide. 15 interviews (face-to-face or by telephone) with experts in different countries provided additional insights into Open Source usage and certification. The findings led to the development of a certification framework of three main categories with in total eleven sub-categories, i.e., "Certified Open Source Geospatial Data Associate / Professional", "Certified Open Source Geospatial Analyst Remote Sensing & GIS", "Certified Open Source Geospatial Cartographer", "Certified Open Source Geospatial Expert", "Certified Open Source Geospatial Associate Developer / Professional Developer", "Certified Open Source Geospatial Architect". Each certification is described by pre-conditions, scope and objectives, course content, recommended software packages, target group, expected benefits, and the methods of examination. Examinations can be flanked by proofs of professional career paths and achievements which need a peer qualification evaluation. After a couple of years a recertification is required. The concept seeks the accreditation by the OSGeo Foundation (and other bodies) and international support by a group of geospatial scientific institutions to achieve wide and international acceptance for this Open Source geospatial certification model. A business case for Open Source certification and a corresponding SWOT model is examined to support the goals of the Geo-For-All initiative of the ICA-OSGeo pact.
Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.
2013-12-01
Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.
NASA Astrophysics Data System (ADS)
Olasz, A.; Nguyen Thai, B.; Kristóf, D.
2016-06-01
Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer. Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data types (often in binary formats) are also strongly required. This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept (https://github.com/posseidon/IQLib/) developed in the frame of the IQmulus EU FP7 research and development project (http://www.iqmulus.eu). The data distribution framework has no limitations on programming language environment and can execute scripts (and workflows) written in different development frameworks (e.g. Python, R or C#). It is capable of processing raster, vector and point cloud data. The above-mentioned prototype is presented through a case study dealing with country-wide processing of raster imagery. Further investigations on algorithmic and implementation details are in focus for the near future.
Improving the Slum Planning Through Geospatial Decision Support System
NASA Astrophysics Data System (ADS)
Shekhar, S.
2014-11-01
In India, a number of schemes and programmes have been launched from time to time in order to promote integrated city development and to enable the slum dwellers to gain access to the basic services. Despite the use of geospatial technologies in planning, the local, state and central governments have only been partially successful in dealing with these problems. The study on existing policies and programmes also proved that when the government is the sole provider or mediator, GIS can become a tool of coercion rather than participatory decision-making. It has also been observed that local level administrators who have adopted Geospatial technology for local planning continue to base decision-making on existing political processes. In this juncture, geospatial decision support system (GSDSS) can provide a framework for integrating database management systems with analytical models, graphical display, tabular reporting capabilities and the expert knowledge of decision makers. This assists decision-makers to generate and evaluate alternative solutions to spatial problems. During this process, decision-makers undertake a process of decision research - producing a large number of possible decision alternatives and provide opportunities to involve the community in decision making. The objective is to help decision makers and planners to find solutions through a quantitative spatial evaluation and verification process. The study investigates the options for slum development in a formal framework of RAY (Rajiv Awas Yojana), an ambitious program of Indian Government for slum development. The software modules for realizing the GSDSS were developed using the ArcGIS and Community -VIZ software for Gulbarga city.
Blowing in the wind: evaluating wind energy projects on the national forests
Kerry Schlichting; Evan Mercer
2011-01-01
The 650 million ac of federal lands are facing increased scrutiny for wind energy development. As a result, the US Forest Service has been directed to develop policies and procedures for siting wind energy projects. We incorporate geospatial site suitability analysis with applicable policy and management principles to illustrate the use of a Spatial Decision Support...
RE Data Explorer: Informing Variable Renewable Energy Grid Integration for Low Emission Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L
The RE Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based analysis tool that utilizes geospatial and spatiotemporal renewable energy data to visualize, execute, and support analysis of renewable energy potential under various user-defined scenarios. This analysis can inform high-level prospecting, integrated planning, and policy making to enable low emission development.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
...), Including the Replacement of the North American Datum of 1983 (NAD 83) and the North American Vertical Datum... Datum of 1983 (NAD 83), the North American Vertical Datum of 1988 (NAVD 88), and other state and... effort to support these rapid changes in positioning technologies, NGS has adopted a plan to replace NAD...
Assessing Intelligence Operation/Fusion/Coordination Centers for Efficiency Opportunities
2013-02-28
intelligence ], HUMINT [human intelligence ], GEOINT [geospatial intelligence ], or even open source information into the NIC-C. There is no...centers have and continue to be stood up to improve the collaboration across intelligence organizatons addressing national security threats. Open ... source review of journals and books describing changes in the intelligence community organizational structure since September 2001, were reviewed to
Forest inventory and analysis in the United States: remote sensing and geospatial activities
Mark Nelson; Gretchen Moisen; Mark Finco
2007-01-01
Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...
Forest Inventory and Analysis in the United States: Remote sensing and geospatial activities
Mark Nelson; Gretchen Moisen; Mark Finco
2007-01-01
Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...
The AmericaView Project - Putting the Earth into Your Hands
,
2005-01-01
The U.S. Geological Survey (USGS) is a leader in collecting, archiving, and distributing geospatial data and information about the Earth. Providing quick, reliable access to remotely sensed images and geospatial data is the driving principle behind the AmericaView Project. A national not-for-profit organization, AmericaView, Inc. was established and is supported by the USGS to coordinate the activities of a national network of university-led consortia with the primary objective of the advancement of the science of remote sensing. Individual consortia members include academic institutions, as well as state, local, and tribal government agencies. AmericaView's focus is to expand the understanding and use of remote sensing through education and outreach efforts and to provide affordable, integrated remote sensing information access and delivery to the American public. USGS's Landsat and NASA's Earth Observing System (EOS) satellite data are downlinked from satellites or transferred from other facilities to the USGS Center for Earth Resources Observation and Science (EROS) ground receiving station in Sioux Falls, South Dakota. The data can then be transferred over high-speed networks to consortium members, where it is archived and made available for public use.
Uncertainty Exposed: A Field Lab Exercise Where GIS Meets the Real World
ERIC Educational Resources Information Center
Prisley, Stephen P.; Luebbering, Candice
2011-01-01
Students in natural resources programs commonly take courses in geospatial technologies. An awareness of the uncertainty of spatial data and algorithms can be an important outcome of such courses. This article describes a laboratory exercise in a graduate geographic information system (GIS) class that involves collection of data for the assessment…
Learning about Urban Ecology through the Use of Visualization and Geospatial Technologies
ERIC Educational Resources Information Center
Barnett, Michael; Houle, Meredith; Mark, Sheron; Strauss, Eric; Hoffman, Emily
2010-01-01
During the past three years we have been designing and implementing a technology enhanced urban ecology program using geographic information systems (GIS) coupled with technology. Our initial work focused on professional development for in-service teachers and implementation in K-12 classrooms. However, upon reflection and analysis of the…
Geospatial Technology in Geography Education
ERIC Educational Resources Information Center
DeMers, Michael N.
2016-01-01
Depending on how you determine the starting point for the technology driving geographic information systems (GIS) and remote sensing, it is well over fifty years old now. During the first years of its existence in the early 1960s, the new technology benefited relatively few students who attended the handful of college programs that were actually…
RacerGISOnline: Enhancing Learning in Marketing Classes with Web-Based Business GIS
ERIC Educational Resources Information Center
Miller, Fred L.; Mangold, W. Glynn; Roach, Joy; Brockway, Gary; Johnston, Timothy; Linnhoff, Stefan; McNeely, Sam; Smith, Kathy; Holmes, Terence
2014-01-01
Geographic Information Systems (GIS) offer geospatial analytical tools with great potential for applications in marketing decision making. However, for various reasons, the rate of adoption of these tools in academic marketing programs has lagged behind that of marketing practitioners. RacerGISOnline is an innovative approach to integrating these…
USDA-ARS?s Scientific Manuscript database
Aedes (Stegomyia) albopictus (Skuse), the Asian tiger mosquito, is an introduced invasive species in the U.S. responsible for a significant proportion of service requests to local mosquito control programs. This container-utilizing mosquito is refractory to standard mosquito abatement measures in th...
Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.
2011-01-01
The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, coastal habitats, artificial reefs, shipwrecks, dumping grounds, and harbor obstructions. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.
Creating of Central Geospatial Database of the Slovak Republic and Procedures of its Revision
NASA Astrophysics Data System (ADS)
Miškolci, M.; Šafář, V.; Šrámková, R.
2016-06-01
The article describes the creation of initial three dimensional geodatabase from planning and designing through the determination of technological and manufacturing processes to practical using of Central Geospatial Database (CGD - official name in Slovak language is Centrálna Priestorová Databáza - CPD) and shortly describes procedures of its revision. CGD ensures proper collection, processing, storing, transferring and displaying of digital geospatial information. CGD is used by Ministry of Defense (MoD) for defense and crisis management tasks and by Integrated rescue system. For military personnel CGD is run on MoD intranet, and for other users outside of MoD is transmutated to ZbGIS (Primary Geodatabase of Slovak Republic) and is run on public web site. CGD is a global set of geo-spatial information. CGD is a vector computer model which completely covers entire territory of Slovakia. Seamless CGD is created by digitizing of real world using of photogrammetric stereoscopic methods and measurements of objects properties. Basic vector model of CGD (from photogrammetric processing) is then taken out to the field for inspection and additional gathering of objects properties in the whole area of mapping. Finally real-world objects are spatially modeled as a entities of three-dimensional database. CGD gives us opportunity, to get know the territory complexly in all the three spatial dimensions. Every entity in CGD has recorded the time of collection, which allows the individual to assess the timeliness of information. CGD can be utilized for the purposes of geographical analysis, geo-referencing, cartographic purposes as well as various special-purpose mapping and has the ambition to cover the needs not only the MoD, but to become a reference model for the national geographical infrastructure.
The national elevation data set
Gesch, Dean B.; Oimoen, Michael J.; Greenlee, Susan K.; Nelson, Charles A.; Steuck, Michael J.; Tyler, Dean J.
2002-01-01
The NED is a seamless raster dataset from the USGS that fulfills many of the concepts of framework geospatial data as envisioned for the NSDI, allowing users to focus on analysis rather than data preparation. It is regularly maintained and updated, and it provides basic elevation data for many GIS applications. The NED is one of several seamless datasets that the USGS is making available through the Web. The techniques and approaches developed for producing, maintaining, and distributing the NED are the type that will be used for implementing the USGS National Map (http://nationalmap.usgs.gov/).
EPA Office of Water (OW): 2002 Impaired Waters Baseline NHDPlus Indexed Dataset
This dataset consists of geospatial and attribute data identifying the spatial extent of state-reported impaired waters (EPA's Integrated Reporting categories 4a, 4b, 4c and 5)* available in EPA's Reach Address Database (RAD) at the time of extraction. For the 2002 baseline reporting year, EPA compiled state-submitted GIS data to create a seamless and nationally consistent picture of the Nation's impaired waters for measuring progress. EPA's Assessment and TMDL Tracking and Implementation System (ATTAINS) is a national compilation of states' 303(d) listings and TMDL development information, spanning several years of tracking over 40,000 impaired waters.
A geospatial search engine for discovering multi-format geospatial data across the web
Christopher Bone; Alan Ager; Ken Bunzel; Lauren Tierney
2014-01-01
The volume of publically available geospatial data on the web is rapidly increasing due to advances in server-based technologies and the ease at which data can now be created. However, challenges remain with connecting individuals searching for geospatial data with servers and websites where such data exist. The objective of this paper is to present a publically...
ERIC Educational Resources Information Center
Hedley, Mikell Lynne; Templin, Mark A.; Czaljkowski, Kevin; Czerniak, Charlene
2013-01-01
Many 21st century careers rely on geospatial skills; yet, curricula and professional development lag behind in incorporating these skills. As a result, many teachers have limited experience or preparation for teaching geospatial skills. One strategy for overcoming such problems is the creation of a student/teacher/scientist (STS) partnership…
Bridging the Gap Between Surveyors and the Geo-Spatial Society
NASA Astrophysics Data System (ADS)
Müller, H.
2016-06-01
For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.
Development of Rural Emergency Medical System (REMS) with Geospatial Technology in Malaysia
NASA Astrophysics Data System (ADS)
Ooi, W. H.; Shahrizal, I. M.; Noordin, A.; Nurulain, M. I.; Norhan, M. Y.
2014-02-01
Emergency medical services are dedicated services in providing out-of-hospital transport to definitive care or patients with illnesses and injuries. In this service the response time and the preparedness of medical services is of prime importance. The application of space and geospatial technology such as satellite navigation system and Geographical Information System (GIS) was proven to improve the emergency operation in many developed countries. In collaboration with a medical service NGO, the National Space Agency (ANGKASA) has developed a prototype Rural Emergency Medical System (REMS), focusing on providing medical services to rural areas and incorporating satellite based tracking module integrated with GIS and patience database to improve the response time of the paramedic team during emergency. With the aim to benefit the grassroots community by exploiting space technology, the project was able to prove the system concept which will be addressed in this paper.
NASA Astrophysics Data System (ADS)
Karnatak, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.; Srivastav, S. K.; Gupta, P. K.
2014-11-01
IIRS has initiated its interactive distance education based capacity building under IIRS outreach programme in year 2007 where more than 15000+ students were trained in the field of geospatial technology using Satellite based interactive terminals and internet based learning using A-View software. During last decade the utilization of Internet technology by different user groups in the society is emerged as a technological revaluation which has directly affect the life of human being. The Internet is used extensively in India for various purposes right from entrainment to critical decision making in government machinery. The role of internet technology is very important for capacity building in any discipline which can satisfy the needs of maximum users in minimum time. Further to enhance the outreach of geospatial science and technology, IIRS has initiated e-learning based certificate courses of different durations. The contents for e-learning based capacity building programme are developed for various target user groups including mid-career professionals, researchers, academia, fresh graduates, and user department professionals from different States and Central Government ministries. The official website of IIRS e-learning is hosted at http://elearning.iirs.gov.in. The contents of IIRS e-learning programme are flexible for anytime, anywhere learning keeping in mind the demands of geographically dispersed audience and their requirements. The program is comprehensive with variety of online delivery modes with interactive, easy to learn and having a proper blend of concepts and practical to elicit students' full potential. The course content of this programme includes Image Statistics, Basics of Remote Sensing, Photogrammetry and Cartography, Digital Image Processing, Geographical Information System, Global Positioning System, Customization of Geospatial tools and Applications of Geospatial Technologies. The syllabus of the courses is as per latest developments and trends in geo-spatial science and technologies with specific focus on Indian case studies for geo-spatial applications. The learning is made available through interactive 2D and 3D animations, audio, video for practical demonstrations, software operations with free data applications. The learning methods are implemented to make it more interactive and learner centric application with practical examples of real world problems.
Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabian, Frank V
2012-08-14
This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previouslymore » used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated infrastructure. The digital globes also provide highly accurate terrain mapping for better geospatial context and allow detailed 3-D perspectives of all sites or areas of interest. 3-D modeling software (i.e., Google's SketchUp6 newly available in 2007) when used in conjunction with these digital globes can significantly enhance individual building characterization and visualization (including interiors), allowing for better assessments including walk-arounds or fly-arounds and perhaps better decision making on multiple levels (e.g., the best placement for International Atomic Energy Agency (IAEA) video monitoring cameras).« less
Automated geospatial Web Services composition based on geodata quality requirements
NASA Astrophysics Data System (ADS)
Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael
2012-10-01
Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.
Economic assessment of the use value of geospatial information
Bernknopf, Richard L.; Shapiro, Carl D.
2015-01-01
Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI) contained in geospatial data is the difference between the net benefits (in present value terms) of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1) a retrospective model about environmental regulation of agrochemicals; (2) a prospective model about the impact and mitigation of earthquakes in urban areas; and (3) a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.
Towards the Geospatial Web: Media Platforms for Managing Geotagged Knowledge Repositories
NASA Astrophysics Data System (ADS)
Scharl, Arno
International media have recognized the visual appeal of geo-browsers such as NASA World Wind and Google Earth, for example, when Web and television coverage on Hurricane Katrina used interactive geospatial projections to illustrate its path and the scale of destruction in August 2005. Yet these early applications only hint at the true potential of geospatial technology to build and maintain virtual communities and to revolutionize the production, distribution and consumption of media products. This chapter investigates this potential by reviewing the literature and discussing the integration of geospatial and semantic reference systems, with an emphasis on extracting geospatial context from unstructured text. A content analysis of news coverage based on a suite of text mining tools (webLyzard) sheds light on the popularity and adoption of geospatial platforms.
Anthony, Michelle L.; Klaver, Jacqueline M.; Quenzer, Robert
1998-01-01
The US Geological Survey and US Agency for International Development are enhancing the geographic information infrastructure of the Western Hemisphere by establishing the Inter-American Geospatial Data Network (IGDN). In its efforts to strengthen the Western Hemisphere's information infrastructure, the IGDN is consistent with the goals of the Plan of Action that emerged from the 1994 Summit of the Americas. The IGDN is an on-line cooperative, or clearinghouse, of geospatial data. Internet technology is used to facilitate the discovery and access of Western Hemisphere geospatial data. It was established by using the standards and guidelines of the Federal Geographic Data Committee to provide a consistent data discovery mechanism that will help minimize geospatial data duplication, promote data availability, and coordinate data collection and research activities.
Flexible Environmental Modeling with Python and Open - GIS
NASA Astrophysics Data System (ADS)
Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann
2015-04-01
Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.
Victor, Bart; Blevins, Meridith; Green, Ann F; Ndatimana, Elisée; González-Calvo, Lázaro; Fischer, Edward F; Vergara, Alfredo E; Vermund, Sten H; Olupona, Omo; Moon, Troy D
2014-01-01
Poverty is a multidimensional phenomenon and unidimensional measurements have proven inadequate to the challenge of assessing its dynamics. Dynamics between poverty and public health intervention is among the most difficult yet important problems faced in development. We sought to demonstrate how multidimensional poverty measures can be utilized in the evaluation of public health interventions; and to create geospatial maps of poverty deprivation to aid implementers in prioritizing program planning. Survey teams interviewed a representative sample of 3,749 female heads of household in 259 enumeration areas across Zambézia in August-September 2010. We estimated a multidimensional poverty index, which can be disaggregated into context-specific indicators. We produced an MPI comprised of 3 dimensions and 11 weighted indicators selected from the survey. Households were identified as "poor" if were deprived in >33% of indicators. Our MPI is an adjusted headcount, calculated by multiplying the proportion identified as poor (headcount) and the poverty gap (average deprivation). Geospatial visualizations of poverty deprivation were created as a contextual baseline for future evaluation. In our rural (96%) and urban (4%) interviewees, the 33% deprivation cut-off suggested 58.2% of households were poor (29.3% of urban vs. 59.5% of rural). Among the poor, households experienced an average deprivation of 46%; thus the MPI/adjusted headcount is 0.27 ( = 0.58×0.46). Of households where a local language was the primary language, 58.6% were considered poor versus Portuguese-speaking households where 73.5% were considered non-poor. Living standard is the dominant deprivation, followed by health, and then education. Multidimensional poverty measurement can be integrated into program design for public health interventions, and geospatial visualization helps examine the impact of intervention deployment within the context of distinct poverty conditions. Both permit program implementers to focus resources and critically explore linkages between poverty and its social determinants, thus deriving useful findings for evidence-based planning.
Victor, Bart; Blevins, Meridith; Green, Ann F.; Ndatimana, Elisée; González-Calvo, Lázaro; Fischer, Edward F.; Vergara, Alfredo E.; Vermund, Sten H.; Olupona, Omo; Moon, Troy D.
2014-01-01
Background Poverty is a multidimensional phenomenon and unidimensional measurements have proven inadequate to the challenge of assessing its dynamics. Dynamics between poverty and public health intervention is among the most difficult yet important problems faced in development. We sought to demonstrate how multidimensional poverty measures can be utilized in the evaluation of public health interventions; and to create geospatial maps of poverty deprivation to aid implementers in prioritizing program planning. Methods Survey teams interviewed a representative sample of 3,749 female heads of household in 259 enumeration areas across Zambézia in August-September 2010. We estimated a multidimensional poverty index, which can be disaggregated into context-specific indicators. We produced an MPI comprised of 3 dimensions and 11 weighted indicators selected from the survey. Households were identified as “poor” if were deprived in >33% of indicators. Our MPI is an adjusted headcount, calculated by multiplying the proportion identified as poor (headcount) and the poverty gap (average deprivation). Geospatial visualizations of poverty deprivation were created as a contextual baseline for future evaluation. Results In our rural (96%) and urban (4%) interviewees, the 33% deprivation cut-off suggested 58.2% of households were poor (29.3% of urban vs. 59.5% of rural). Among the poor, households experienced an average deprivation of 46%; thus the MPI/adjusted headcount is 0.27 ( = 0.58×0.46). Of households where a local language was the primary language, 58.6% were considered poor versus Portuguese-speaking households where 73.5% were considered non-poor. Living standard is the dominant deprivation, followed by health, and then education. Conclusions Multidimensional poverty measurement can be integrated into program design for public health interventions, and geospatial visualization helps examine the impact of intervention deployment within the context of distinct poverty conditions. Both permit program implementers to focus resources and critically explore linkages between poverty and its social determinants, thus deriving useful findings for evidence-based planning. PMID:25268951
EPA has developed many applications that allow users to explore and interact with geospatial data. This page highlights some of the flagship geospatial web applications but these represent only a fraction of the total.
Geospatial Science is increasingly becoming an important tool in making Agency decisions. Quality Control and Quality Assurance are required to be integrated during the planning, implementation and assessment of geospatial databases, processes and products. In order to ensure Age...
The geospatial data quality REST API for primary biodiversity data
Otegui, Javier; Guralnick, Robert P.
2016-01-01
Summary: We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. Availability and implementation: The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial. Contact: javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26833340
The geospatial data quality REST API for primary biodiversity data.
Otegui, Javier; Guralnick, Robert P
2016-06-01
We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
A Spatial Data Infrastructure to Share Earth and Space Science Data
NASA Astrophysics Data System (ADS)
Nativi, S.; Mazzetti, P.; Bigagli, L.; Cuomo, V.
2006-05-01
Spatial Data Infrastructure:SDI (also known as Geospatial Data Infrastructure) is fundamentally a mechanism to facilitate the sharing and exchange of geospatial data. SDI is a scheme necessary for the effective collection, management, access, delivery and utilization of geospatial data; it is important for: objective decision making and sound land based policy, support economic development and encourage socially and environmentally sustainable development. As far as data model and semantics are concerned, a valuable and effective SDI should be able to cross the boundaries between the Geographic Information System/Science (GIS) and Earth and Space Science (ESS) communities. Hence, SDI should be able to discover, access and share information and data produced and managed by both GIS and ESS communities, in an integrated way. In other terms, SDI must be built on a conceptual and technological framework which abstracts the nature and structure of shared dataset: feature-based data or Imagery, Gridded and Coverage Data (IGCD). ISO TC211 and the Open Geospatial Consortium provided important artifacts to build up this framework. In particular, the OGC Web Services (OWS) initiatives and several Interoperability Experiment (e.g. the GALEON IE) are extremely useful for this purpose. We present a SDI solution which is able to manage both GIS and ESS datasets. It is based on OWS and other well-accepted or promising technologies, such as: UNIDATA netCDF and CDM, ncML and ncML-GML. Moreover, it uses a specific technology to implement a distributed and federated system of catalogues: the GI-Cat. This technology performs data model mediation and protocol adaptation tasks. It is used to work out a metadata clearinghouse service, implementing a common (federal) catalogue model which is based on the ISO 19115 core metadata for geo-dataset. Nevertheless, other well- accepted or standard catalogue data models can be easily implemented as common view (e.g. OGC CS-W, the next coming INSPIRE discovery metadata model, etc.). The proposed solution has been conceived and developed for building up the "Lucan SDI". This is the SDI of the Italian Basilicata Region. It aims to connect the following data providers and users: the National River Basin Authority of Basilicata, the Regional Environmental Agency, the Land Management & Cadastre Regional Authorities, the Prefecture, the Regional Civil Protection Centers, the National Research Council Institutes in Basilicata, the Academia, several SMEs.
NASA Astrophysics Data System (ADS)
Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara
2014-08-01
A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p < .001. Teacher enactment factors, including adherence to implementing the critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.
Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites
NASA Technical Reports Server (NTRS)
Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng
2007-01-01
This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.
Matthew G. Rollins; Christine K. Frame
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, began in April of 2002 and ended in April of 2005. The project was funded by the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior. The objectives of the LANDFIRE Prototype Project were to develop the methods, tools, and protocols...
Tactical Satellite (TacSat) Feasibility Study: A Scenario Driven Approach
2006-09-01
Mobile User Objective System NAFCOM NASA /Air Force Cost Model NAVNETWARCOM Naval Network Warfare Command NGA National Geospatial Intelligence...by providing frequent imagery updates as they search for disaster survivors and trek into regions where all terrain has been destroyed and altered to...Kwajalein Atoll; Wallops Island; NASA . Assets will be located in adjacent to launch sites. 4) Launch schedule- Launch schedule will enable full
ERIC Educational Resources Information Center
Flynn, K. Colton; Popp, Jennie
2016-01-01
Many educators have suggested that spatial awareness is vital in the foundation of geography curricula, as well as the ability to utilize geospatial technologies (National Research Council 2006; Kerski 2008; Lee and Bednarz 2009; Favier and Van der Schee 2014). The purpose of this research was to identify a low-cost and effective method to improve…
Mapping Collective Identity: Territories and Boundaries of Human Terrain
2011-06-10
Line MAP-HT Mapping the Human Terrain NDVI Normalized Difference Vegetation Index NGA National Geospatial-Intelligence Agency xi OBIA Object-Based...The Normalized Difference Vegetation Index ( NDVI ) uses the red band to represent the low reflectance from vegetation and the expanded near infrared...spectrum to provide greater delineation of agricultural areas. This layer highlights different fields, crops, and their boundaries. NDVI layers are
Matthew P. Thompson; Joe Scott; Paul G. Langowski; Julie W. Gilbertson-Day; Jessica R. Haas; Elise M. Bowne
2013-01-01
Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to...
NASA Astrophysics Data System (ADS)
Chen, J.; Wang, D.; Zhao, R. L.; Zhang, H.; Liao, A.; Jiu, J.
2014-04-01
Geospatial databases are irreplaceable national treasure of immense importance. Their up-to-dateness referring to its consistency with respect to the real world plays a critical role in its value and applications. The continuous updating of map databases at 1:50,000 scales is a massive and difficult task for larger countries of the size of more than several million's kilometer squares. This paper presents the research and technological development to support the national map updating at 1:50,000 scales in China, including the development of updating models and methods, production tools and systems for large-scale and rapid updating, as well as the design and implementation of the continuous updating workflow. The use of many data sources and the integration of these data to form a high accuracy, quality checked product were required. It had in turn required up to date techniques of image matching, semantic integration, generalization, data base management and conflict resolution. Design and develop specific software tools and packages to support the large-scale updating production with high resolution imagery and large-scale data generalization, such as map generalization, GIS-supported change interpretation from imagery, DEM interpolation, image matching-based orthophoto generation, data control at different levels. A national 1:50,000 databases updating strategy and its production workflow were designed, including a full coverage updating pattern characterized by all element topographic data modeling, change detection in all related areas, and whole process data quality controlling, a series of technical production specifications, and a network of updating production units in different geographic places in the country.
Hartwell, Stephen R.; Wingfield, Dana K.; Allwardt, Alan O.; Wong, Florence L.; Lightsom, Frances L.
2013-01-01
A shapefile of 492 Coastal Zone Management Program counties of the United States and its territories, current for the ground condition in 2009, has been extracted from the U.S. Census Bureau MAF/TIGER database. Geospatial information systems with the capability to search user-defined, polygonal geographic areas will be able to utilize this shapefile or secondary products derived from it, such as well-known text representations of the individual polygons within the shapefile.
NASA Astrophysics Data System (ADS)
Cole, M.; Alameh, N.; Bambacus, M.
2006-05-01
The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.
NASA Astrophysics Data System (ADS)
Bambacus, M.; Alameh, N.; Cole, M.
2006-12-01
The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.
Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials
ERIC Educational Resources Information Center
Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe
2009-01-01
The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…
Adding uncertainty to forest inventory plot locations: effects on analyses using geospatial data
Alexia A. Sabor; Volker C. Radeloff; Ronald E. McRoberts; Murray Clayton; Susan I. Stewart
2007-01-01
The Forest Inventory and Analysis (FIA) program of the USDA Forest Service alters plot locations before releasing data to the public to ensure landowner confidentiality and sample integrity, but using data with altered plot locations in conjunction with other spatially explicit data layers produces analytical results with unknown amounts of error. We calculated the...
Geospatial Science is increasingly becoming an important tool in making Agency decisions. QualIty Control and Quality Assurance are required to be integrated during the planning, implementation and assessment of geospatial databases, processes and products. In order to ensure Age...
Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc
NASA Astrophysics Data System (ADS)
Percivall, George; Simonis, Ingo
2016-06-01
The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.
Smith, Dianna; Mathur, Rohini; Robson, John; Greenhalgh, Trisha
2012-01-01
Objective To explore the feasibility of producing small-area geospatial maps of chronic disease risk for use by clinical commissioning groups and public health teams. Study design Cross-sectional geospatial analysis using routinely collected general practitioner electronic record data. Sample and setting Tower Hamlets, an inner-city district of London, UK, characterised by high socioeconomic and ethnic diversity and high prevalence of non-communicable diseases. Methods The authors used type 2 diabetes as an example. The data set was drawn from electronic general practice records on all non-diabetic individuals aged 25–79 years in the district (n=163 275). The authors used a validated instrument, QDScore, to calculate 10-year risk of developing type 2 diabetes. Using specialist mapping software (ArcGIS), the authors produced visualisations of how these data varied by lower and middle super output area across the district. The authors enhanced these maps with information on examples of locality-based social determinants of health (population density, fast food outlets and green spaces). Data were piloted as three types of geospatial map (basic, heat and ring). The authors noted practical, technical and information governance challenges involved in producing the maps. Results Usable data were obtained on 96.2% of all records. One in 11 adults in our cohort was at ‘high risk’ of developing type 2 diabetes with a 20% or more 10-year risk. Small-area geospatial mapping illustrated ‘hot spots’ where up to 17.3% of all adults were at high risk of developing type 2 diabetes. Ring maps allowed visualisation of high risk for type 2 diabetes by locality alongside putative social determinants in the same locality. The task of downloading, cleaning and mapping data from electronic general practice records posed some technical challenges, and judgement was required to group data at an appropriate geographical level. Information governance issues were time consuming and required local and national consultation and agreement. Conclusions Producing small-area geospatial maps of diabetes risk calculated from general practice electronic record data across a district-wide population was feasible but not straightforward. Geovisualisation of epidemiological and environmental data, made possible by interdisciplinary links between public health clinicians and human geographers, allows presentation of findings in a way that is both accessible and engaging, hence potentially of value to commissioners and policymakers. Impact studies are needed of how maps of chronic disease risk might be used in public health and urban planning. PMID:22337817
Sources and Implications of Bias and Uncertainty in a Century of US Wildfire Activity Data
NASA Astrophysics Data System (ADS)
Short, K.
2013-12-01
The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). Wildfire activity data have been collected in the US for over a century. Yet, to this day, no single unified system of wildfire record-keeping exists. Data for analysis are generally harvested from archival summary reports from federal or interagency fire organizations; incident-level wildfire reporting systems of the federal, state, and local fire services; and, increasingly, remote-sensing programs. It is typical for research into wildfire activity patterns for all or part of the last century to require data from several of these sources and perhaps others. That work is complicated by the disunity of the various datasets and potentially compromised by inherent reporting biases, discussed here. The availability of wildfire records with the information content and geospatial precision generally sought for increasingly popular climatological analyses and the modeling of contemporary wildfire risk is limited to recent decades. We explain how the disunity and idiosyncrasies of US wildfire reporting have largely precluded true interagency, or all-lands, analyses of even recent wildfire activity and hamstrung some early risk modeling efforts. We then describe our efforts to acquire, standardize, error-check, compile, scrub, and evaluate the completeness of US federal, state, and local wildfire records from 1992-2011 for the national interagency Fire Program Analysis (FPA) application. The resulting FPA Fire-Occurrence Database (FPA FOD) includes nearly 1.6 million records from the 20-year period, with values for at least the following core data elements: location at least as precise as a Public Land Survey System section (2.6-km2 grid), discovery date, and final fire size. The FPA FOD is publicly available from the Research Data Archive of the US Department of Agriculture, Forest Service (http://dx.doi.org/10.2737/RDS-2013-0009). While necessarily incomplete in some aspects, the database is intended to facilitate fairly high-resolution geospatial analysis of wildfire activity over the past two decades, based on available information from the authoritative systems of record. Formal non-federal wildfire reporting has been on the rise over the past several decades, and users of national datasets like the FPA FOD must beware of state and local reporting biases to avoid drawing spurious conclusions when analysing the data. Apparent trends in the numbers and area burned by wildfires, for example, may be the result of multiple factors, including changes in climate, fuels, demographics (e.g. population density), fire-management policies, and - as we underscore here - levels of reporting.
GABBs: Cyberinfrastructure for Self-Service Geospatial Data Exploration, Computation, and Sharing
NASA Astrophysics Data System (ADS)
Song, C. X.; Zhao, L.; Biehl, L. L.; Merwade, V.; Villoria, N.
2016-12-01
Geospatial data are present everywhere today with the proliferation of location-aware computing devices. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. In addressing these needs, the Geospatial data Analysis Building Blocks (GABBs) project aims at building geospatial modeling, data analysis and visualization capabilities in an open source web platform, HUBzero. Funded by NSF's Data Infrastructure Building Blocks initiative, GABBs is creating a geospatial data architecture that integrates spatial data management, mapping and visualization, and interfaces in the HUBzero platform for scientific collaborations. The geo-rendering enabled Rappture toolkit, a generic Python mapping library, geospatial data exploration and publication tools, and an integrated online geospatial data management solution are among the software building blocks from the project. The GABBS software will be available through Amazon's AWS Marketplace VM images and open source. Hosting services are also available to the user community. The outcome of the project will enable researchers and educators to self-manage their scientific data, rapidly create GIS-enable tools, share geospatial data and tools on the web, and build dynamic workflows connecting data and tools, all without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the GABBs architecture, toolkits and libraries, and showcase the scientific use cases that utilize GABBs capabilities, as well as the challenges and solutions for GABBs to interoperate with other cyberinfrastructure platforms.
Designing a two-rank acceptance sampling plan for quality inspection of geospatial data products
NASA Astrophysics Data System (ADS)
Tong, Xiaohua; Wang, Zhenhua; Xie, Huan; Liang, Dan; Jiang, Zuoqin; Li, Jinchao; Li, Jun
2011-10-01
To address the disadvantages of classical sampling plans designed for traditional industrial products, we originally propose a two-rank acceptance sampling plan (TRASP) for the inspection of geospatial data outputs based on the acceptance quality level (AQL). The first rank sampling plan is to inspect the lot consisting of map sheets, and the second is to inspect the lot consisting of features in an individual map sheet. The TRASP design is formulated as an optimization problem with respect to sample size and acceptance number, which covers two lot size cases. The first case is for a small lot size with nonconformities being modeled by a hypergeometric distribution function, and the second is for a larger lot size with nonconformities being modeled by a Poisson distribution function. The proposed TRASP is illustrated through two empirical case studies. Our analysis demonstrates that: (1) the proposed TRASP provides a general approach for quality inspection of geospatial data outputs consisting of non-uniform items and (2) the proposed acceptance sampling plan based on TRASP performs better than other classical sampling plans. It overcomes the drawbacks of percent sampling, i.e., "strictness for large lot size, toleration for small lot size," and those of a national standard used specifically for industrial outputs, i.e., "lots with different sizes corresponding to the same sampling plan."
Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics
Pervez, Md Shahriar; Brown, Jesslyn F.
2010-01-01
Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.