Sample records for national grassland colorado

  1. 78 FR 19444 - Pawnee National Grassland, Colorado; Oil and Gas Leasing Analysis Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... horizontal drilling and hydraulic fracturing technologies to improve the ability to access and recover oil... National Grassland, Colorado; Oil and Gas Leasing Analysis Environmental Impact Statement AGENCY: Forest... (ROD) for the Revision of the Land and Resource Management Plan (LRMP), which included the Oil and Gas...

  2. 78 FR 29318 - Pike and San Isabel National Forests and Cimarron and Comanche National Grasslands, Colorado and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    .../ grasslands plan amendments to the 1984 PSICC Land and Resource Management Plan (Forest Plan) may be needed to... areas in Colorado. The scope of the analysis is Forest and Grassland-wide. DATES: Comments concerning the scope of this analysis should be received by June 19, 2013. The draft environmental impact...

  3. Energy Development in Colorado's Pawnee National Grasslands: Mapping and Measuring the Disturbance Footprint of Renewables and Non-Renewables.

    PubMed

    Baynard, Chris W; Mjachina, Ksenya; Richardson, Robert D; Schupp, Robert W; Lambert, J David; Chibilyev, Alexander A

    2017-06-01

    This paper examines the pattern and extent of energy development in steppe landscapes of northeast Colorado, United States. We compare the landscape disturbance created by oil and gas production to that of wind energy inside the Pawnee National Grasslands eastern side. This high-steppe landscape consists of a mosaic of federal, state, and private lands where dominant economic activities include ranching, agriculture, tourism, oil and gas extraction, and wind energy generation. Utilizing field surveys, remote sensing data and geographic information systems techniques, we quantify and map the footprint of energy development at the landscape level. Findings suggest that while oil and gas and wind energy development have resulted in a relatively small amount of habitat loss within the study area, the footprint stretches across the entire zone, fragmenting this mostly grassland habitat. Futhermore, a third feature of this landscape, the non-energy transportation network, was also found to have a significant impact. Combined, these three features fragment the entire Pawnee National Grasslands eastern side, leaving very few large intact core, or roadless areas. The primary objective of this ongoing work is to create a series of quantifiable and replicable surface disturbance indicators linked to energy production in semi-arid grassland environments. Based on these, and future results, we aim to work with industry and regulators to shape energy policy as it relates to environmental performance, with the aim of reducing the footprint and thus increasing the sustainability of these extractive activities.

  4. Energy Development in Colorado's Pawnee National Grasslands: Mapping and Measuring the Disturbance Footprint of Renewables and Non-Renewables

    NASA Astrophysics Data System (ADS)

    Baynard, Chris W.; Mjachina, Ksenya; Richardson, Robert D.; Schupp, Robert W.; Lambert, J. David; Chibilyev, Alexander A.

    2017-06-01

    This paper examines the pattern and extent of energy development in steppe landscapes of northeast Colorado, United States. We compare the landscape disturbance created by oil and gas production to that of wind energy inside the Pawnee National Grasslands eastern side. This high-steppe landscape consists of a mosaic of federal, state, and private lands where dominant economic activities include ranching, agriculture, tourism, oil and gas extraction, and wind energy generation. Utilizing field surveys, remote sensing data and geographic information systems techniques, we quantify and map the footprint of energy development at the landscape level. Findings suggest that while oil and gas and wind energy development have resulted in a relatively small amount of habitat loss within the study area, the footprint stretches across the entire zone, fragmenting this mostly grassland habitat. Futhermore, a third feature of this landscape, the non-energy transportation network, was also found to have a significant impact. Combined, these three features fragment the entire Pawnee National Grasslands eastern side, leaving very few large intact core, or roadless areas. The primary objective of this ongoing work is to create a series of quantifiable and replicable surface disturbance indicators linked to energy production in semi-arid grassland environments. Based on these, and future results, we aim to work with industry and regulators to shape energy policy as it relates to environmental performance, with the aim of reducing the footprint and thus increasing the sustainability of these extractive activities.

  5. Vascular plant species of the Pawnee National Grassland

    Treesearch

    Donald L. Hazlett

    1998-01-01

    This report briefly describes the main vegetation types and lists the vascular plant species that are known to occur in and near the Pawnee National Grassland, Weld County, Colorado. A checklist includes the scientific and common names for 521 species. Of these, 115 plant species (22 percent) are not native to this region. The life forms, habitats, and geographic...

  6. Vascular plant species of the Comanche National Grassland in southeastern Colorado

    Treesearch

    Donald L. Hazlett

    2004-01-01

    This checklist has 785 species and 801 taxa (for taxa, the varieties and subspecies are included in the count) in 90 plant families. The most common plant families are the grasses (Poaceae) and the sunflower family (Asteraceae). Of this total, 513 taxa are definitely known to occur on the Comanche National Grassland. The remaining 288 taxa occur in nearby areas of...

  7. 36 CFR 222.52 - National Grasslands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false National Grasslands. 222.52 Section 222.52 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE RANGE MANAGEMENT Grazing Fees § 222.52 National Grasslands. Grazing fees for National Grasslands will be...

  8. 36 CFR 222.52 - National Grasslands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false National Grasslands. 222.52 Section 222.52 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE RANGE MANAGEMENT Grazing Fees § 222.52 National Grasslands. Grazing fees for National Grasslands will be...

  9. NPDES Permit for Colorado National Monument in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO0034975, the National Park Service is directed to have no discharge from the wastewater treatment lagoons at the Colorado National Monument in Mesa County, Colorado.

  10. Birds of Cimarron National Grassland

    Treesearch

    Ted T. Cable; Scott Seltman; Kevin J. Cook

    1996-01-01

    Bird records for the Cimarron National Grassland were collected from literature searches and unpublished field notes submitted by cooperators. Almost 14,000 bird records were compiled in a data file. Based on these data, the status of each bird species reported to have occurred on the Cimarron National Grassland was established. In addition to the species accounts, the...

  11. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will... Basin National Grassland Prairie Dog Amendment. The Open House/ Presentation meetings will be held on...

  12. National forests on the edge: development pressures on America's national forests and grasslands.

    Treesearch

    Ralph J. Alig; Eric M. White; Sara J. Comas; Mary Carr; Mike Eley; Kelly Elverum; Mike O' Donnell; David M. Theobald; Ken Cordell; Jonathan Haber; Theodore W. Beauvais

    2007-01-01

    Many of America’s national forests and grasslands—collectively called the National Forest System—face increased risks and alterations from escalating housing development on private rural lands along their boundaries. National forests and grasslands provide critical social, ecological, and economic benefits to the American public. This study projects future housing...

  13. Charadrius montanus: Montane, grassland, or bare-ground plover?

    USGS Publications Warehouse

    Knopf, Fritz L.; Miller, B.

    1994-01-01

    The Mountain Plover (Charadrius montanus) is an aridland member of the Charadriidae. This plover is generally considered an associate of the North American shortgrass prairie, which is dominated by blue grama (Bouteloua gracilis) and buffalo grass (Buchloe dactyloides; Graul 1975). The species breeds at many locations across the western Great Plains plus at isolated locales in western Colorado, Wyoming and New Mexico (Leachman and Osmundson 1990) and recently in eastern Utah (K.S. Day pers.comm.). Continental populations of the Mountain Plover declined 63% from 1966 to 1991 (Knopf 1994), with the historic and current breeding stronghold being the Pawnee National Grassland in Weld County, Colorado (Graul and Webster 1976). Currently, a second major breeding population of Mountain Plovers is on the Charles M. Russell National Wildlife Refuge, Phillips County, Montana. Unlike when found on the grassland landscape of Weld County, Mountain Plovers in Phillips County selectively nest in prairie dog (Cynomys spp.) towns (Knowles et al., 1982, Olson and Edge 1985) in vegetative settings that include prickly pear (Opunitia polyacantha), fringed sagewort (Arteminisia frigida), big sagebrush (A. tridentata), western wheatgrass (Agropyron smithii), and blue grama, Collectively, Weld and Phillips counties provide nesting habitat for approximately one-half of the continental population of Mountain Plovers,

  14. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment AGENCY: Forest Service... 2009 Prairie Dog Management Strategy. The amendment is being proposed to address continuing concerns regarding prairie dog management, raised by the [[Page 56651

  15. The Geologic Story of Colorado National Monument

    USGS Publications Warehouse

    Lohman, Stanley William

    1981-01-01

    From 1946 until about 1956 I carried out fieldwork intermittently on the geology and artesian water supply of the Grand Junction area, Colorado, the results of which have been published. The area mapped geologically contains about 332 square miles in the west-central part of Mesa County and includes all of Colorado National Monument. During the field work several successive custodians or superintendents and several park naturalists urged that upon completion of my professional paper I prepare a brief account of the geology of the Monument in terms understandable by laymen, and which could be sold at the Visitor Center. This I was happy to do and there resulted 'The geologic story of Colorado National Monument', published by the Colorado and Black Canyon Natural History Association in cooperation with the National Park Service. This report contained colored sketches by John R. Stacy and a colored cover, but the photographs and many of the drawings were reproduced in black and white.

  16. EPA versus Colorado: national unity versus state flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.

    When the Environmental Protection Agency (EPA) reviewed Colorado's National Pollutant Discharge Elimination System (NPDES) permit program under the federal Clean Water Act, it found a conflict between federal and state perspectives on how much flexibility from national norms is allowable for state peculiarities. Colorado's hydrology and geography seemed to justify a water quality program providing for various opportunities to review water quality decisions before requiring advanced waste treatment (AWT), and to avoid AWT when justified. Conflict arose because few streams in Colorado provide mixing zones or dilution that Eastern streams enjoy. The author reviews the legal developments as EPA arguedmore » for national uniformity and Colorado for flexibility. States might be tempted to return permitting programs to EPA if they cannot retain enough flexibility in the law to protect their interests.« less

  17. 76 FR 72437 - Minor Boundary Revision at Colorado National Monument

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...Notice is hereby given that, pursuant to 16 U.S.C. 460l- 9(c)(1), the boundary of Colorado National Monument is modified to include an additional two and forty-five hundredths (2.45) acres of land identified as Tract 01-140, tax parcel number 2697-343-04-009. The land is located in Mesa County, Colorado, immediately adjacent to the current eastern boundary of Colorado National Monument. The boundary revision is depicted on Map No. 119/106,532 dated January 2011. The map is available for inspection at the following locations: National Park Service, Intermountain Land Resources Program Center, 12795 W. Alameda Parkway, Lakewood, CO 80225-0287 and National Park Service, Department of the Interior, Washington, DC 20240.

  18. Studying the effects of land use on sediment loads, Little Missouri National Grasslands, North Dakota

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2002-01-01

    The Little Missouri National Grasslands in North Dakota were established in 1960 and are publicly owned lands administered by the U.S. Department of Agriculture (USDA) Forest Service. The grasslands are not solid blocks of National Forest Systems lands but are lands intermingled with other Federal, State, and privately-owned lands. The mixed-ownership pattern creates a unique environmental management arrangement within each grasslands area.The USDA Forest Service needs to determine how changes in land use affect loss of sediment from the grasslands, especially during periods of high runoff or after a grassland fire. Excessive sediment loss has the potential to destabilize hillslopes and channels by increasing runoff potential, by prohibiting natural revegetation, by changing animal habitation patterns, and by impacting areas farther downslope and downstream of affected areas.On October 31, 1999, two major grass-land fires occurred in the Little Missouri National Grasslands area. The Squaw Gap Fire affected 51,627 acres and the Rough Creek Fire affected 7,979 acres. Runoff caused substantial erosion when many road ditches and culverts were filled with sediment and some roads were washed out. In order to implement the best management practices within the Little Missouri National Grasslands, the USDA Forest Service will need sediment information related to land-use changes such as burned and unburned areas and grazed and ungrazed areas.The Little Missouri National Grasslands are located along the Little Missouri River in western North Dakota. The Grasslands are comprised of 1,028,000 acres predominantly in an area of rolling hills, sparsely covered buttes, coulees, woody draws, and badlands. Most of the area is used as rangeland; but, some of the area is cultivated or used for oil and gas development. The Grasslands have semiarid climate with short, warm summers and long, cold winters. The Grasslands receive an average annual precipitation of about 13 to 15 inches

  19. Grassland and shrubland birds of Gettysburg National Military Park and Eisenhower National Historic Site: Current status and management recommendations

    USGS Publications Warehouse

    Peterjohn, Bruce G.

    2007-01-01

    Gettysburg National Military Park (NMP) and Eisenhower National Historic Site (NHS) were surveyed for grassland birds during the 2005 breeding season. These parks currently maintain a total of approximately 1,220 ha (3,015 ac) of grassland habitats within a mosaic of cultivated fields and woodlands. The grasslands are hayfields managed through agricultural leases and fields maintained by the National Park Service (NPS). Most grasslands are composed of introduced cool-season grasses, but Gettysburg NMP maintains a few fields dominated by switchgrass (Panicum virgatum) and is creating additional warm-season grasslands. Hayfields managed through agricultural leases support few grassland birds. The most numerous grassland bird communities are found between Seminary and Cemetery ridges in fields managed by the NPS. The parks discourage hay harvesting before July in all fields in an effort to improve the reproductive success of grassland birds.Shrub-dominated habitats were scarce in both parks. A few areas that were harvested recently for timber supported early successional communities in Gettysburg NMP. Other shrublands were limited to narrow corridors (<10 m [32 ft]) bordering fields and drainages. No shrublands were present on Eisenhower NHS, but an abandoned pasture along Willoughby Run was reverting into a mesic shrubland.Four species of obligate grassland birds were recorded during the 2005 surveys. A population of approximately 130 bobolinks (Dolichonyx oryzivorus) was primarily restricted to grasslands between Seminary and Cemetery ridges maintained by the NPS and a hayfield on Eisenhower NHS. This population is large for southeastern Pennsylvania and the surrounding region. Eastern meadowlarks (Sturnella magna) were most numerous in the same fields occupied by bobolinks but smaller numbers were scattered in other grasslands. Grasshopper sparrows (Ammodramus savannarum) were locally distributed in Conservation Reserve Program fields and other grasslands with more

  20. Proceedings of the second biennial conference on research in Colorado Plateau National Parks

    USGS Publications Warehouse

    van Riper, Charles

    1995-01-01

    On 25-28 October 1993 in Flagstaff, Arizona, the National Biological Service Colorado Plateau Research Station (formerly National Park Service Cooperative Park Studies Unit) and Northern Arizona University hosted the Second Biennial Conference of Research on the Colorado Plateau. The conference theme focused on research, inventory, and monitoring on the federal, state, and private lands in the Colorado Plateau biogeographic province.

  1. Grassland Sustainability

    Treesearch

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  2. Planning for population viability on Northern Great Plains national grasslands

    USGS Publications Warehouse

    Samson, F.B.; Knopf, F.L.; McCarthy, C.W.; Noon, B.R.; Ostlie, W.R.; Rinehart, S.M.; Larson, S.; Plumb, G.E.; Schenbeck, G.L.; Svingen, D.N.; Byer, T.W.

    2003-01-01

    Broad-scale information in concert with conservation of individual species must be used to develop conservation priorities and a more integrated ecosystem protection strategy. In 1999 the United States Forest Service initiated an approach for the 1.2× 106 ha of national grasslands in the Northern Great Plains to fulfill the requirement to maintain viable populations of all native and desirable introduced vertebrate and plant species. The challenge was threefold: 1) develop basic building blocks in the conservation planning approach, 2) apply the approach to national grasslands, and 3) overcome differences that may exist in agency-specific legal and policy requirements. Key assessment components in the approach included a bioregional assessment, coarse-filter analysis, and fine-filter analysis aimed at species considered at-risk. A science team of agency, conservation organization, and university personnel was established to develop the guidelines and standards and other formal procedures for implementation of conservation strategies. Conservation strategies included coarse-filter recommendations to restore the tallgrass, mixed, and shortgrass prairies to conditions that approximate historical ecological processes and landscape patterns, and fine-filter recommendations to address viability needs of individual and multiple species of native animals and plants. Results include a cost-effective approach to conservation planning and recommendations for addressing population viability and biodiversity concerns on national grasslands in the Northern Great Plains.

  3. A neotropical migratory bird prioritization for National Forests and Grasslands

    Treesearch

    Dick Roth; Richard Peterson

    1997-01-01

    The Rocky Mountain Region of the USDA Forest Service provides nesting habitat for 146 species of neotropical migratory birds. Interactive, prioritization databases were developed for each National Forest and National Grassland in the Region to assist land managers in making informed decisions about resource allocations. The data was processed using Paradox software....

  4. NPDES Permit for Leadville National Fish Hatchery in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-0000582, the U.S. Department of the Interior, Fish and Wildlife Service is authorized to discharge from its Leadville National Fish Hatchery wastewater treatment facility in Colorado.

  5. Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau.

    PubMed

    Yeager, Chris M; Gallegos-Graves, La Verne; Dunbar, John; Hesse, Cedar N; Daligault, Hajnalka; Kuske, Cheryl R

    2017-03-15

    Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae , Pseudonocardiaceae , Micromonosporaceae , and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae ). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae ) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils. IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in

  6. Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau

    PubMed Central

    Gallegos-Graves, La Verne; Dunbar, John; Hesse, Cedar N.; Daligault, Hajnalka; Kuske, Cheryl R.

    2017-01-01

    ABSTRACT Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils. IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa

  7. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands

    Treesearch

    Donald L. Hazlett; Michael H. Schiebout; Paulette L. Ford

    2009-01-01

    Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of...

  8. Greater prairie chicken nesting habitat, Sheyenne National Grassland, North Dakota

    Treesearch

    Clinton McCarthy; Tim Pella; Greg Link; Mark A. Rumble

    1997-01-01

    Greater prairie chicken (Tympanuchus cupido pinnatus) populations and habitats have declined dramatically in the Great Plains. The Sheyenne National Grassland (SNG) has the largest population of greater prairie chickens in North Dakota, but this population has declined over the past 15 years. Lack of nesting habitat has been identified as a...

  9. Installation Restoration Program (IRP). Phase 2. Confirmation/Quantification. Stage 1. Buckley Air National Guard Base, Colorado.

    DTIC Science & Technology

    1986-03-21

    Firm hazardous waste contamination investigations in Utah and Colorado . o Conducted ground and surface water sampling for Durango S UMTRAP (Uranium...BASE COLORADO DAMES & MOORE 1550 NORTHWEST HIGHWAY PARK RIDGE, ILLINOIS 60068 MARCH 21, 1986 FINAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...FOR BUCKIEY AIR NATIONAL GUARD BASE COLORADO HEADQUARTERS AIR NATIONAL GUARD COMMAND SURGEON’S OFFICE (ANGSC/SGB) BIOENVIRONMENTAL ENGINEERING

  10. Diets of greater prairie chickens on the Sheyenne National Grasslands

    Treesearch

    Mark A. Rumble; Jay A. Newell; John E. Toepfer

    1988-01-01

    Diets of greater prairie chickens on the Sheyenne National Grassland of North Dakota were examined. During the winter months agricultural crops (primarily corn) were the predominant food items. Green vegetation was consumed in greater quantities as spring progressed. Dandelion flowers and alfalfa/sweetclover were the major vegetative food items through the summer. Both...

  11. Proceedings of the first biennial conference of research in Colorado Plateau National Parks

    USGS Publications Warehouse

    Rowlands, Peter G.; van Riper, Charles; Sogge, Mark K.

    1993-01-01

    The 19 papers in this volume were selected from the 46 presentations given at the First Biennial Conference on Research in Colorado Plateau National Parks. The overall theme for this meeting was research, inventory, and monitoring in National Park Service units on the Colorado Plateau. The conference, held in Flagstaff Arizona, on 22-25 July 1991, was sponsored by the National Park Service Cooperative Park Studies Unit, Northern Arizona University, and the Petrified Forest, Zion, and Grand Canyon natural history associations.

  12. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... National Grassland, Wyoming; Teckla-Osage-Rapid City Transmission 230 kV Project AGENCY: Forest Service... (BHP) to construct and operate a 230 kilovolt (kV) transmission line between the Teckla and Osage... Management (BLM) is a cooperating agency on this EIS. The Teckla-Osage-Rapid City Transmission 230 kV Project...

  13. NPDES Permit for Hotchkiss National Fish Hatchery in Colorado

    EPA Pesticide Factsheets

    The U.S. Department of the Interior, Fish and Wildlife Service is authorized to discharge from outfalls at its Hotchkiss National Fish Hatchery wastewater treatment facility to the North Fork of the Gunnison River in Delta County, Colorado.

  14. 78 FR 72060 - Chimney Rock National Monument Management Plan; San Juan National Forest; Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ..., as well as objects of deep cultural and educational value. The plan will also provide for continued... Ranger District office in Pagosa Springs, Colorado, and on the San Juan National Forest Web site at www..., direct mailings, emails, and will be posted on the San Juan National Forest Web site. It is important...

  15. 76 FR 78234 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County, WY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... the road construction, the final easement would be acquired by Campbell County, and this road will be... National Grassland, Campbell County, WY; Mackey Road Relocation AGENCY: Forest Service, USDA. ACTION... authorize Peabody Powder River Mining, LLC to vacate and relocate portions of Campbell County Road 69...

  16. 36 CFR 213.1 - Designation, administration, and development of National Grasslands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tenant Act. (c) The National Grasslands shall be administered under sound and progressive principles of...-yield management of the forage, fish and wildlife, timber, water and recreational resources in the areas... and practical principles of land use for the areas in which they are located. The Chief of the Forest...

  17. 76 FR 28071 - Notice of Inventory Completion: Colorado Historical Society (History Colorado), Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ...: Colorado Historical Society (History Colorado), Denver, CO AGENCY: National Park Service, Interior. ACTION... control of the Colorado Historical Society (History Colorado), Denver, CO. The human remains were removed.... A detailed assessment of the human remains was made by the Colorado Historical Society (History...

  18. 76 FR 17444 - Notice of Inventory Completion: Colorado Historical Society (History Colorado), Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ...: Colorado Historical Society (History Colorado), Denver, CO AGENCY: National Park Service, Interior. ACTION... control of the Colorado Historical Society (History Colorado), Denver, CO. The human remains were removed... (History Colorado) professional staff in consultation with representatives of the Hopi Tribe of Arizona...

  19. The science of decisionmaking: applications for sustainable forest and grassland management in the National Forest System

    Treesearch

    Matthew P. Thompson; Bruce G. Marcot; Frank R. Thompson; Steven McNulty; Larry A. Fisher; Michael C. Runge; David Cleaves; Monica Tomosy

    2013-01-01

    Sustainable management of national forests and grasslands within the National Forest System (NFS) often requires managers to make tough decisions under considerable uncertainty, complexity, and potential conflict. Resource decisionmakers must weigh a variety of risks, stressors, and challenges to sustainable management, including climate change, wildland fire, invasive...

  20. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    NASA Astrophysics Data System (ADS)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  1. 78 FR 19296 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado, formerly... culturally affiliated with the human remains may contact History Colorado. Disposition of the human remains...

  2. 78 FR 72700 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado has completed... remains should submit a written request to History Colorado. If no additional requestors come forward...

  3. Grassland Assessment Categories and Extent

    Treesearch

    Wayne A. Robbie

    2004-01-01

    This chapter establishes a general framework for describing the various kinds of grasslands outlined in subsequent chapters. This framework outlines the major categories or classes of grasslands that occur as part of Southwestern terrestrial ecosystems within National Forest System lands and provides an ecological and environmental context in regards to how they differ...

  4. Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.

    2001-01-01

    New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower

  5. Mammal inventories for eight National Parks in the Southern Colorado Plateau Network

    USGS Publications Warehouse

    Bogan, Michael A.; Geluso, Keith; Haymond, Shauna; Valdez, Ernest W.

    2007-01-01

    Historically, the Colorado Plateau has been the subject of many geological and biological explorations. J. W. Powell explored and mapped the canyon country of the Colorado River in 1869 (Powell 1961). C. H. Merriam, V. Bailey, M. Cary, and other employees of the Bureau of Biological Survey conducted biological explorations of the area in the late 1800s. In recent times, researchers such as S. D. Durrant (1952), Durrant and Robinson (1962), D. M. Armstrong (1972), J. S. Findley et al. (1975), D. F. Hoff meister (1986), and J. Fitzgerald et al. (1994) have made considerable contributions to our understanding of the fauna of the Colorado Plateau. Despite earlier efforts, biological details on many regions of the plateau have remained insufficiently explored. In an effort to gather valuable biological information, the National Park Service (NPS) initiated a nationwide program to inventory vascular plants and vertebrates on NPS lands (Stuart 2000). The U.S. Geological Survey, Fort Collins Science Center, Arid Lands Field Station became a cooperator on this effort in 2001, when we began mammalian inventories on five parks within the NPS Southern Colorado Plateau Network (SCPN): Aztec Ruins National Monument (AZRU), El Morro National Monument (ELMO), Petroglyph National Monument (PETR), Salinas Pueblo Missions National Monument (SAPU), and Yucca House National Monument (YUHO). Existing baseline data on mammalian occurrences in these parks varied from very sparse to moderate, with little information available for most parks. In most cases, information was insufficient to assess the status of species of local concern. A final report on inventory efforts on these five parks was submitted in February 2004 (Bogan et al. 2004). In 2003, biologists from the Arid Lands Field Station began work on three additional parks in the SCPN: Bandelier National Monument (BAND), Chaco Culture National Historical Park (CHCU), and El Malpaís National Monument (ELMA). The primary emphasis at

  6. Soil chemical factors and grassland species density in Emas National Park (central Brazil).

    PubMed

    Amorim, P K; Batalha, M A

    2008-05-01

    Studies of grasslands on specific soil types suggest that different nutrients can limit biomass production and, hence, species composition and number. The Brazilian cerrado is the major savanna region in America and once covered about 2 million km(2), mainly in the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter. In view of the importance of soil chemical factors in the distribution of the vegetation forms within the Cerrado domain and which may influence the number of species, we analyzed some soil characteristics in three herbaceous vegetation forms -- hyperseasonal cerrado, seasonal cerrado, and wet grassland -- in Emas National Park, a core cerrado site, to investigate the relationship between number of species and soil characteristics. We collected vegetation and soil samples in these three vegetation forms and submitted the obtained data to multiple linear regression. We found out that aluminum and pH were the best predictors of species density, the former positively related to species density and the latter negatively related. Since the predictable variation in species density is important in determining areas of conservation, we can postulate that these two soil factors are indicators of high species density areas in tropical grasslands, which could be used in selecting priority sites for conservation.

  7. 75 FR 54085 - Divide Ranger District, Rio Grande National Forest; Colorado; Big Moose Vegetation Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... DEPARTMENT OF AGRICULTURE Forest Service Divide Ranger District, Rio Grande National Forest; Colorado; Big Moose Vegetation Management Project AGENCY: Forest Service, Rio Grande National Forest, USDA. ACTION: Corrected Notice of Intent to prepare an environmental impact statement. DATES: The draft...

  8. Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Webb, R.H.; Pringle, P.T.; Rink, G.R.

    1987-01-01

    A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content < 40% by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows have reached the Colorado River on an average of once every 20 to 30 yr in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 yr in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 yr, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cu ft/sec. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cu ft/sec. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cu ft/sec. Debris flows in the Grand Canyon generally are composed of 10 to 40% sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek

  9. The Colorado River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Moderate-resolution Imaging Spectroradiometer (MODIS) true-color image shows the passage of the Colorado River through several southwestern states. The river begins, in this image, in Utah at the far upper right, where Lake Powell is visible as dark pixels surrounded by the salmon-colored rocks of the Colorado Plateau. The Colorado flows southwest through Glen Canyon, to the Glen Canyon Dam, on the Utah-Arizona border. From there it flows south into Arizona, and then turns sharply west where the Grand Canyon of the Colorado cuts through the mountains. The Colorado flows west to the Arizona-Nevada (upper left) border, where it is dammed again, this time by the Hoover Dam. The dark-colored pixels surrounding the bend in the river are Lake Mead. The river flows south along the border of first Nevada and Arizona and then California and Arizona. The Colorado River, which begins in Rocky Mountain National Park in Colorado, empties into the Gulf of California, seen at the bottom center of this image.

  10. Winter ecology of the greater prairie chicken on the Sheyenne National Grasslands, North Dakota

    Treesearch

    John E. Toepfer; Robert L. Eng

    1988-01-01

    Twenty radio-tagged prairie-chickens (6 cocks, 14 hens) were followed during the winter of 1984-85 on the Sheyenne National Grasslands in North Dakota. A total of 3,945 (2,879 day and 1,066 night) locations were obtained from 9 December to 15 March. Winter survival was high at 58.8%. Mean winter home range was 8.4 km2 and slightly larger for hens...

  11. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009

    USGS Publications Warehouse

    Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.

    2017-03-23

    Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.

  12. Colorado Plateaus Ecoregion: Chapter 21 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Stier, Michael P.

    2012-01-01

    The Colorado Plateaus Ecoregion covers approximately 129,617 km2 (50,045 mi2) within southern and eastern Utah, western Colorado, and the extreme northern part of Arizona (fig. 1). The terrain of this ecoregion is characterized by broad plateaus, ancient volcanoes, and deeply dissected canyons (Booth and others, 1999; fig. 2). The ecoregion is bounded on the east by the Wyoming Basin and Southern Rockies Ecoregions in Colorado and on the northwest by the Wasatch and Uinta Mountains Ecoregion in northern and central Utah. To the south, the ecoregion borders the Arizona/New Mexico Plateau Ecoregion, which has a higher elevation and more grasslands than the Colorado Plateaus Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997).

  13. 36 CFR 213.2 - Authority for Chief, Forest Service, to group, define, and name national grasslands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Authority for Chief, Forest Service, to group, define, and name national grasslands. 213.2 Section 213.2 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE ADMINISTRATION OF LANDS UNDER TITLE III OF THE BANKHEAD...

  14. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate

    Treesearch

    Kai Duan; Ge Sun; Shanlei Sun; Peter V. Caldwell; Erika Cohen Mack; Steve McNulty; Heather D. Aldridge; Yang Zhang

    2016-01-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent...

  15. Paths more traveled: Predicting future recreation pressures on America’s national forests and grasslands - a Forests on the Edge report

    Treesearch

    Donald B. K. English; Pam Froemke; Kathleen Hawkos

    2014-01-01

    Populations near many national forests and grasslands are rising and are outpacing growth elsewhere in the United States. We used National Visitor Use Monitoring (NVUM) data and U.S. census data to examine growth in population and locally based recreation visits within 50 and 100 miles of National Forest System (NFS) boundaries. From 1990 to 2010, the population living...

  16. Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Pringle, Patrick T.; Rink, Glenn R.

    1989-01-01

    A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content of less than about 40 percent by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows also occur in the Cambrian Muav Limestone and underlying Bright Angel Shale and the Quaternary basalts in the western Grand Canyon. Debris-flow frequency and magnitude were studied in detail in the Lava-Chuar Creek drainage at Colorado River mile 65.5; in the Monument Creek drainage at mile 93.5; and in the Crystal Creek drainage at mile 98.2. Debris flows have reached the Colorado River on an average of once every 20 to 30 years in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 years in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 years, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cubic feet per second. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cubic feet per

  17. Conceptual ecological model for management of breeding grassland birds in the Mid-Atlantic Region

    USGS Publications Warehouse

    Peterjohn, Bruce G.

    2006-01-01

    The status of grassland birds has become an increasingly important conservation issue. These species exhibit the most consistent population declines of any group of North American birds during the past 40 years. Anecdotal evidence suggests these declines have been occurring for nearly a century (Peterjohn and Sauer 1999). While the widespread conversion of grasslands into other habitats contributed to these declining populations, other factors such as habitat fragmentation and mowing regimes are also implicated (Vickery et al. 1999a). This plight of grassland birds has heightened awareness of the need for concerted conservation actions to reverse these seriously declining population trends. The National Park Service (NPS) is positioned to potentially contribute to grassland bird conservation in the Mid-Atlantic Region. The NPS maintains a number of historic sites and former battlefields that are managed for their cultural significance but also support wildlife populations. Many of these “cultural parks” maintain open landscapes to recreate land use patterns that existed at the times of the historical events. These open landscapes are primarily managed grasslands which could be maintained to benefit grassland birds. In 2005, the NPS initiated a project exploring the potential of “cultural parks” to support significant breeding grassland bird communities. This project involved parks within three NPS Inventory and Monitoring Program (I&M) networks, Mid-Atlantic, National Capital, and Eastern Rivers and Mountains. Five parks were selected for the initial focus of this study, all of which maintain open landscapes for interpretation of historic events. Most parks were selected because they represent the most extensive grassland habitats within their networks, with the rationale that if these parks cannot support significant breeding grassland bird communities, then parks with smaller acreages cannot support these communities either. The five parks included in

  18. Colorado statewide historic bridge inventory.

    DOT National Transportation Integrated Search

    2011-05-01

    The purpose of the Colorado statewide historic bridge inventory was to document and evaluate the National : Register of Historic Places eligibility all on-system highway bridges and grade separation structures built in : Colorado between 1959 and 196...

  19. Lead in mule deer forage in Rocky Mountain National Park, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, P.D.; Dyer, M.I.

    1984-01-01

    Mule deer (Odocoileus hemionus) forage collected from roadsides in Rocky Mountain National Park, Colorado, contained lead (Pb) concentrations ranging from 0.8 to >50 ..mu..g/g. Concentrations were inversely correlated with distance from the roadway. Equations developed to estimate deer absorption of Pb from contaminated roadside vegetation indicate that deer in some age-classes need only to consume 1.4% of their daily intake of forage from roadsides before consuming excessive amounts of Pb.

  20. 76 FR 77245 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX..., TX 77434; phone: (979) 234-3021; fax: (979) 234-3278. SUPPLEMENTARY INFORMATION: Introduction With... elements conduct research on of hog movement corridors; impacts of red depending on results of imported...

  1. AmeriFlux US-Seg Sevilleta grassland

    DOE Data Explorer

    Litvak, Marcy [University of New Mexico

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Seg Sevilleta grassland. Site Description - The Sevilleta Desert Grassland site is located within the McKenzie Flats area of the Sevilleta National Wildlife Refuge (NWR), central New Mexico. Historically, this area has been used for livestock grazing; however, the McKenzie Flats have not been grazed since 1973 and the effects of this previous grazing are considered negligible for the purposes of this study. As the name suggests, McKenzie Flats is an extensive (~130 km2), nearly flat, mixed-species desert grassland bounded on the east by Los Pinos Mountains and on the west by the Rio Grande.

  2. Considering Forest and Grassland Carbon in Land Management

    Treesearch

    M. Janowiak; W.J. Connelly; K. Dante-Wood; G.M. Domke; C. Giardina; Z. Kayler; K. Marcinkowski; T. Ontl; C. Rodriguez-Franco; C. Swanston; C.W. Woodall; M. Buford

    2017-01-01

    Forest and grassland ecosystems in the United States play a critical role in the global carbon cycle, and land management activities influence their ability to absorb and sequester carbon. These ecosystems provide a critical regulating function, offsetting about 12 to 19 percent of the Nation's annual greenhouse gas emissions. Forests and grasslands are managed...

  3. Grassland bird use of Conservation Reserve Program fields in the Great Plains

    USGS Publications Warehouse

    Johnson, Douglas H.; Haufler, Jonathan B.

    2005-01-01

    An enormous area in the Great Plains is currently enrolled in the Conservation Reserve Program (CRP): 19.5 million acres (nearly 8 million ha) in Montana, North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, and Texas. This change in land use from cropland to grassland since 1985 has markedly influenced grassland bird populations. Many, but certainly not all, grassland species do well in CRP fields. The responses by birds to the program differ not only by species but also by region, year, the vegetation composition in a field, and whether or not a field has been hayed or grazed. The large scale and extent of the program has allowed researchers to address important conservation questions, such as the effect of the size of habitat patch and the influence of landscape features on bird use. However, most studies on nongame bird use of CRP in or near the Great Plains have been short-lived; 83% lasted only 1-3 years. Further, attention to the topic seems to have waned in recent years; the number of active studies peaked in the early 1990s and dramatically declined after 1995. Because breeding-bird use of CRP fields varies dramatically in response both to vegetational succession and to climatic variation, long-term studies are important. What was learned about CRP in its early stages may no longer be applicable. Finally, although the CRP provisions of the Farm Bill have been beneficial to many grassland birds, it is critical that gains in grassland habitat produced by the program not be off set by losses of native prairie.

  4. Biology and ecology of sickleweed (Falcaria vulgaris) in the Fort Pierre National Grassland of South Dakota

    Treesearch

    Brian L. Korman

    2011-01-01

    In the last two decades the exotic plant sickleweed (Falcaria vulgaris Bernh., Apiaceae) has invaded, and come to dominate, large areas of the Fort Pierre National Grassland (FPNG) in central South Dakota, USA. Currently sickleweed is estimated to infest over 3200 ha of FPNG. The purpose of this study was to examine several of the biological and ecological traits that...

  5. Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications

    Treesearch

    Shanlei Sun; Ge Sun; Peter Caldwell; Steve McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang

    2015-01-01

    The 781,000 km2 (193 million acre) United States National Forests and Grasslands system (NF) provides important ecosystem services such as clean water supply, timber production, wildlife habitat, and recreation opportunities to the American public. Quantifying the historical impacts of climate change and drought on ecosystem functions at the national scale is essential...

  6. Education for a Productive Society. Remarks to the National Commission on Excellence in Education. (Public Hearing, Denver, Colorado, September 16, 1982).

    ERIC Educational Resources Information Center

    Schwartz, Donald

    The link between education and work and the situation at the University of Colorado at Colorado Springs are discussed by the university chancellor in testimony to the National Commission on Excellence in Education. Characteristics of this urban, commuter university and its students are described, along with historical changes in the role of the…

  7. Effects of leafy spurge infestation on grassland birds

    USGS Publications Warehouse

    Scheiman, D.M.; Bollinger, E.K.; Johnson, D.H.

    2003-01-01

    Grassland bird populations are declining. Invasive plant species may be contributing to these declines by altering habitat quality. However, the effects of invasive plants on grassland birds are largely unknown. Leafy spurge (Euphorbia esula) is an exotic, invasive weed in the northern Great Plains. We examined the effects of leafy spurge infestation on densities of breeding birds, nest-site selection, and nest success in grasslands on the Sheyenne National Grassland (SNG), North Dakota, USA, 1999-2000. We categorized spurge-infested grasslands into 3 groups (low, medium, high), based on the area covered by spurge patches. We surveyed 75 100-m-radius circular points (25 in each group), and searched for nests in 6 16-ha plots (2 in each group). Grasshopper sparrow (Ammodramus savannarum) and savannah sparrow (Passerculus sandwichensis) densities were lower on high-spurge points than on low- and medium-spurge points. Bobolink (Dolichonyx oryzivorus) and western meadowlark (Sturnella neglecta) densities were not significantly different among spurge cover groups. Spurge cover did not appear to be an important factor in nest-site selection. However, western meadowlark nest success was positively associated with spurge cover. Vegetation structure is an important indicator of habitat quality and resource availability for grassland birds. Changes in vegetation structure caused by introduced plant species, such as spurge, can alter resource availability and hence affect bird community composition. Managers of spurge-infested grasslands should continue current spurge control measures to help prevent further declines in grassland habitat quality and grassland bird populations.

  8. Colorado School Finance Partnership: Report and Recommendations. Financing Colorado's Future: Assessing Our School Finance System

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2012

    2012-01-01

    Over the last decade, Colorado has emerged as a national leader in crafting innovative solutions for challenges facing its public school system. From implementing the Colorado Student Assessment Program (CSAP) and No Child Left Behind (NCLB) reforms to more recent legislation including standards and assessments for a preschool-through-college…

  9. Prairie chickens on the Sheyenne National Grasslands: September 18, 1987; Crookston, Minnesota

    Treesearch

    Ardell J. Bjugstad

    1988-01-01

    Prairie chickens (Tympanuchus cupido pinnatus) were first censused on the Sheyenne Grasslands in 1961. The population was extremely low in the 1960's, gradually increased in the 1970's, and reached a peak of 410 in 1980. Sufficient evidence exists to link the increase in numbers of prairie chickens on the grasslands from 1961 through 1987...

  10. A collaborative characterization of North American grasslands and rangelands: climate, ecohydrology and carbon sink-source dynamics

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.

    2013-12-01

    Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.

  11. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    PubMed

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  12. Grassland degradation

    USDA-ARS?s Scientific Manuscript database

    There are approximately 1.5 million square kilometers of prairie communities (grasslands)in North America, a majority of which are native grasslands. Grasslands serve ecological functions that cannot be replaced by other land uses. Examples of ecological benefits and services include the third lar...

  13. 75 FR 18877 - Notice of Final Supplementary Rules for Public Lands in Colorado: Gunnison Gorge National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLCOS05400-L17110000 PA000 LXSIGGCA0000] Notice of Final Supplementary Rules for Public Lands in Colorado: Gunnison Gorge National Conservation Area (GGNCA) and Adjacent Public Lands Administered by the Bureau of Land Management Uncompahgre Field...

  14. USGS Colorado Water Science Center bookmark

    USGS Publications Warehouse

    ,

    2016-12-05

    The U.S. Geological Survey Colorado Water Science Center conducts its water-resources activities primarily in Colorado in cooperation with more than 125 different entities. These activities include extensive data-collection efforts and studies of streamflow, water quality, and groundwater to address many specific issues of concern to Colorado water-management entities and citizens. The collected data are provided in the National Water Information System, and study results are documented in reports and information served on the Internet.

  15. 36 CFR 294.49 - List of designated Colorado Roadless Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false List of designated Colorado... AGRICULTURE SPECIAL AREAS Colorado Roadless Area Management § 294.49 List of designated Colorado Roadless Areas. All National Forest System lands within the State of Colorado listed in this section are hereby...

  16. 36 CFR 294.49 - List of designated Colorado Roadless Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false List of designated Colorado... AGRICULTURE SPECIAL AREAS Colorado Roadless Area Management § 294.49 List of designated Colorado Roadless Areas. All National Forest System lands within the State of Colorado listed in this section are hereby...

  17. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  18. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    USGS Publications Warehouse

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  19. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.

    1981-06-01

    The Durango Quadrangle (2/sup 0/), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions ofmore » the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access.« less

  20. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    USGS Publications Warehouse

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  1. Comparing Chitin And Organic Substrates On The National Tunnel Waters In BlackHawk, Colorado For Manganese Removal

    EPA Science Inventory

    The National Tunnel is a part of the Central City/Idaho Springs Superfund site. Because passive treatment is an important possibility for removal of contaminants from the water, the USEPA and the Colorado Division of Public Health and Environment (CDPHE) have been sponsoring a ...

  2. Estimation of Nitrous Oxide Emissions from US Grasslands.

    PubMed

    Mummey; Smith; Bluhm

    2000-02-01

    / Nitrous oxide (N(2)O) emissions from temperate grasslands are poorly quantified and may be an important part of the atmospheric N(2)O budget. In this study N(2)O emissions were simulated for 1052 grassland sites in the United States using the NGAS model of Parton and others (1996) coupled with an organic matter decomposition model. N(2)O flux was calculated for each site using soil and land use data obtained from the National Resource Inventory (NRI) database and weather data obtained from NASA. The estimates were regionalized based upon temperature and moisture isotherms. Annual N(2)O emissions for each region were based on the grassland area of each region and the mean estimated annual N(2)O flux from NRI grassland sites in the region. The regional fluxes ranged from 0.18 to 1.02 kg N(2)O N/ha/yr with the mean flux for all regions being 0.28 kg N(2)O N/ha/yr. Even though fluxes from the western regions were relatively low, these regions made the largest contribution to total emissions due to their large grassland area. Total US grassland N(2)O emissions were estimated to be about 67 Gg N(2)O N/yr. Emissions from the Great Plains states, which contain the largest expanse of natural grassland in the United States, were estimated to average 0.24 kg N(2)O N/ha/yr. Using the annual flux estimate for the temperate Great Plains, we estimate that temperate grasslands worldwide may potentially produce 0.27 Tg N(2)O N/yr. Even though our estimate for global temperate grassland N(2)O emissions is less than published estimates for other major temperate and tropical biomes, our results indicate that temperate grasslands are a significant part of both United States and global atmospheric N(2)O budgets. This study demonstrates the utility of models for regional N(2)O flux estimation although additional data from carefully designed field studies is needed to further validate model results.

  3. ECOREGIONS OF COLORADO

    EPA Science Inventory

    The ecoregions of Colorado have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecor...

  4. Summary appraisals of the Nation's ground-water resources; Upper Colorado region

    USGS Publications Warehouse

    Price, Don; Arnow, Ted

    1974-01-01

    Options available for use of ground water in water-resources management·in the·region include conjunctive use with surface water or development of ground water as an independent supply. The latter option could be for & perennial supply or for a time-limited supply (mining ground water), depending on the need and the existing ground-water conditions. All options can be carried out so as to meet the requirements of the Colorado River Compact. The options could be implemented to optimally develop the Upper Colorado River Basin's allocation of Colorado River water while meeting the Compact commitments to the Lower Basin.

  5. 77 FR 13627 - Notice of Inventory Completion: History Colorado, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...: History Colorado, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History... funerary objects may contact History Colorado. Disposition of the human remains and associated funerary... contact History Colorado at the address below by April 6, 2012. ADDRESSES: Sheila Goff, NAGPRA Liaison...

  6. Comparing Chitin And Organic Substrates On The National Tunnel Waters In BlackHawk, Colorado For Manganese Removal - (Presentation)

    EPA Science Inventory

    The National Tunnel is a part of the Central City/Idaho Springs Superfund site. Because passive treatment is an important possibility for removal of contaminants from the water, the USEPA and the Colorado Division of Public Health and Environment (CDPHE) have been sponsoring a ...

  7. Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Roberts, Lauara N.R.; Biewick, Laura

    2000-01-01

    This CD-ROM set contains a geologic assessment of coal deposits of the Colorado Plateau region and new resource estimates for selected assessment units within the Colorado Plateau. Original resource estimates (in-place resources before production) for the 12 priority assessment units of the Colorado Plateau exceed one half trillion short tons of coal in beds greater than 1 ft thick and under less than 6,000 ft of overburden. The coal is high quality and low sulfur, and a portion of these resources will provide future energy production for the Nation. Disc 1, in Portable Document Format, contains results of the assessment in summary and (or) technical reports for 12 priority coal assessment units in the Colorado Plateau and also contains an ArcView Data Publisher project, which is an interactive geographic information system of digital data collected during the assessment. Disc 2 contains stratigraphic data bases for seven of the priority coal assessment areas within the Colorado Plateau region and an ArcView project identical to the ArcView Data Publisher project on disc 1 except that it retains some of the functionality that is disabled in the ArcView Data Publisher program.

  8. 77 FR 11573 - Notice of Inventory Completion: History Colorado, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ...: History Colorado, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History... contact History Colorado. Disposition of the human remains to the Indian tribes stated below may occur if... a cultural affiliation with the human remains should contact History Colorado at the address below...

  9. 77 FR 13629 - Notice of Inventory Completion: History Colorado, Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...: History Colorado, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History... human remains may contact History Colorado. Disposition of the human remains to the Indian tribes stated... believes it has a cultural affiliation with the human remains should contact History Colorado at the...

  10. Characterization of Petroleum Residue in the Entrada Sandstone, Colorado National Monument

    USGS Publications Warehouse

    Lillis, Paul G.; King, J. David

    2007-01-01

    Introduction As part of the U.S. Geological Survey's (USGS) petroleum resource assessment of the Uinta-Piceance Province, Colorado and Utah, in 2000 (USGS Uinta-Piceance Assessment Team, 2003), some 170 oils, oil stains, and oil seeps were geochemically characterized and divided into genetic types (Lillis and others, 2003). Recognized oil types include Minturn, Phosphoria, Grassy Trail Creek, Mancos, Mesaverde, and Green River. Subsequent to that study, the existence and general locality of petroleum residue in the Middle Jurassic Entrada Sandstone in Colorado National Monument (CNM) was brought to the attention of the authors (Scott and others, 2001). Because the analysis of such non-commercial petroleum deposits commonly yields valuable regional resource-trend information, we collected and characterized the reported CNM petroleum residue and compared the results with identified oil types in the Uinta-Piceance Province. Three samples of Entrada Sandstone with petroleum residue were collected near Little Park Road along the south edge of the CNM in sec.20, T.12S., R.101W. The approximate extent of the petroleum staining was determined by field testing with solvent, and the stains appear to be restricted to the upper part of the 'board beds' unit (informal name, Scott and others, 2001) of the Entrada Sandstone between the two fault traces of the Glade Park fault.

  11. Remotely Sensed Thermal Anomalies in Western Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2o, and areas with temperature equal to 1o to 2o, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively. Note: 'o' is used in this description to represent lowercase sigma.

  12. Introduction to Grassland Management. Instructor Guide, Student Reference [and] Crop and Grassland Plant Identification Manual.

    ERIC Educational Resources Information Center

    Suits, Susie

    This packet contains an Instructor guide and student reference for a course in introduction to grassland management, as well as a crop and grassland plant identification manual. The three-unit curriculum contains the following 11 lessons: (unit I, grasslands and grassland plants): (1) an introduction to grasslands; (2) plant classification; (3)…

  13. Ecology of porcupines (Erethizon dorsatum) and Colorado Tick fever virus in Rocky Mountain National Park, 1975-1977.

    Treesearch

    R.G. McLean; A.B. Carey; L.J. Kirk; D.B. Francy

    1993-01-01

    The involvement of porcupines, Erethizon dorsatum (L.), in the ecology of Colorado tick fever (CTF) virus in Rocky Mountain National Park was investigated from 1975 to 1977. Porcupine dens and feeding activity were found mostly on rocky knolls or on south-facing slopes within open stands of the montane coniferous forest, and 20 adult porcupines...

  14. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought

    USGS Publications Warehouse

    Bowling, David R.; Bethers-Marchetti, S.; Lunch, C.K.; Grote, E.E.; Belnap, J.

    2010-01-01

    The net exchanges of carbon dioxide, water vapor, and energy were examined in a perennial Colorado Plateau grassland for 5 years. The study began within a multiyear drought and continued as the drought ended. The grassland is located near the northern boundary of the influence of the North American monsoon, a major climatic feature bringing summer rain. Following rain, evapotranspiration peaked above 8 mm d-1 but was usually much smaller (2-4 mm d-1). Net productivity of the grassland was low compared to other ecosystems, with peak hourly net CO2 uptake in the spring of 4 (mu or u)mol m-2 s-1 and springtime carbon gain in the range of 42 + or - 11 g C m-2 (based on fluxes) to 72 + or - 55 g C m-2 (based on carbon stocks; annual carbon gain was not quantified). Drought decreased gross ecosystem productivity (GEP) and total ecosystem respiration, with a much larger GEP decrease. Monsoon rains led to respiratory pulses, lasting a few days at most, and only rarely resulted in net CO2 gain, despite the fact that C4 grasses dominated plant cover. Minor CO2 uptake was observed in fall following rain. Spring CO2 uptake was regulated by deep soil moisture, which depended on precipitation in the prior fall and winter. The lack of CO2 uptake during the monsoon and the dependence of GEP on deep soil moisture are in contrast with arid grasslands of the warm deserts. Cold desert grasslands are most likely to be impacted by future changes in winter and not summer precipitation.

  15. Colorado River campsite monitoring, Grand Canyon National Park, Arizona, 1998-2012

    USGS Publications Warehouse

    Kaplinski, Matt; Hazel, Joe; Parnell, Rod; Hadley, Daniel R.; Grams, Paul

    2014-01-01

    River rafting trips and hikers use sandbars along the Colorado River in Marble and Grand Canyons as campsites. The U.S. Geological Survey evaluated the effects of Glen Canyon Dam operations on campsite areas on sandbars along the Colorado River in Grand Canyon National Park. Campsite area was measured annually from 1998 to 2012 at 37 study sites between Lees Ferry and Diamond Creek, Arizona. The primary purpose of this report is to present the methods and results of the project. Campsite area surveys were conducted using total station survey methods to outline the perimeter of camping area at each study site. Campsite area is defined as any region of smooth substrate (most commonly sand) with no more than an 8 degree slope and little or no vegetation. We used this definition, but relaxed the slope criteria to include steeper areas near boat mooring locations where campers typically establish their kitchens. The results show that campsite area decreased over the course of the study period, but at a rate that varied by elevation zone and by survey period. Time-series plots show that from 1998 to 2012, high stage-elevation (greater than the 25,000 ft3/s stage-elevation) campsite area decreased significantly, although there was no significant trend in low stage-elevation (15,000–20,000 ft3/s) campsite area. High stage-elevation campsite area increased after the 2004 and 2008 high flows, but decreased in the intervals between high flows. Although no overall trend was detected for low stage-elevation campsite areas, they did increase after high-volume dam releases equal to or greater than about 20,000 ft3/s. We conclude that dam operations have not met the management objectives of the Glen Canyon Adaptive Management program to increase the size of camping beaches in critical and non-critical reaches of the Colorado River between Glen Canyon Dam and Lake Mead.

  16. Water resources of Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1976-01-01

    Dinosaur National Monument, partly in the Rocky Mountain System and partly in the Colorado Plateaus physiographic province, covers an area of 322 square miles (834 square kilometres) in northwestern Colorado and northeastern Utah. The climate is generally cool and pleasant in May, early June, September, and October; winters are cold. Normal annual precipitation ranges from less than 8 to more than 16 inches (203 to 406 millimetres).Geologic formations in the monument range in age from upper Precambrian to Holocene, but not all ages are represented. The monument is on the south limb of the east-trending regional fold representing the Uinta Mountains. Faults and subsidary folds on the south slope of the Uinta Mountains complicate the geology and hydrology of the area.None of the surface streams in the monument are diverted for public supply, but the Green and Yampa Rivers are a recreational resource for boaters. The flow of the Green River is regulated by Flaming Gorge Reservoir; however, flood potentials are estimated for the Yampa River and three smaller streams. Facilities in the monument are not endangered by probable mean annual floods, but may sustain some damage to facilities by the 25- or 50-year floods.Major aquifers in the monument are sandstone and limestone formations, but these formations are drained in the higher areas. Alluvium along the major stream channels yields small amounts of water to wells, but some of the water is not of suitable chemical quality for public supply. All public water supplies in 1971 were obtained from wells, and the use of water during 1970 was estimated to be 15 million gallons (46 acre-feet or 0.057 cubic hectometres). Most of the ground water obtained from sandstone and limestone is of suitable chemical quality for public supply.

  17. Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains

    USGS Publications Warehouse

    Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.; Stohlgren, T.J.

    1999-01-01

    Evidence from both meteorological stations and vegetational successional studies suggests that summer temperatures are decreasing in the mountain-plain system in northeast Colorado, particularly since the early 1980s. These trends are coincident with large changes in regional land cover. Trends in global, Northern Hemisphere and continental surface temperatures over the same period are insignificant. These observations suggest that changes in the climate of this mountain-plain system may be, in some part, a result of localized forcing mechanisms. In this study the effects of land use change on the northern Colorado plains, where large regions of grasslands have been transformed into both dry and irrigated agricultural lands, on regional weather is examined in an effort to understand this local deviation from larger-scale trends. We find with high-resolution numerical simulations of a 3-day summer period using a regional atmospheric-land surface model that replacing grasslands with irrigated and dry farmland can have impacts on regional weather and therefore climate which are not limited to regions of direct forcing. Higher elevations remote from regions of land use change are affected as well. Specifically, cases with altered landcover had cooler, moister boundary layers, and diminished low-level upslope winds over portions of the plains. At higher elevations, temperatures also were lower as was low-level convergence. Precipitation and cloud cover were substantially affected in mountain regions. We advance the hypothesis that observed land use changes may have already had a role in explaining part of the observed climate record in the northern Colorado mountain-plain system. Copyright 1999 by the American Geophysical Union.

  18. Abundance of diurnal raptors on open space grasslands in an urbanized landscape

    USGS Publications Warehouse

    Berry, M.E.; Bock, C.E.; Haire, S.L.

    1998-01-01

    We conducted point counts of diurnal raptors on Boulder, Colorado, grasslands for three winters and summers, and compared results to landscape features of the count areas. Four wintering species were scarce on plots that included significant amounts of urban habitat, with a critical landscape threshold at about 5-7% urbanization: Bald Eagle (Haliaeetus leucocephalus), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (B. lagopus), and Prairie Falcon (Falco mexicanus). Counts of the first three species also were positively correlated with proximity of the count plots to the nearest colony of black-tailed prairie dogs (Cynomys ludovicianus). Two breeding species, the Red-tailed Hawk (B. jamaicensis) and Swainson's Hawk (B. swainsoni), were more abundant on plots dominated by lowland hayfields and tallgrass prairies, as opposed to upland mixed and shortgrass prairies. They, along with the ubiquitous American Kestrel (Falco sparverius), were not sensitive to the amounts of urbanization (up to 30%) that occurred in the landscapes sampled. Results of this study suggest that urban open space grasslands can support sizable populations of most diurnal raptors, as long as prey populations persist, but that some species are highly sensitive to landscape urbanization.

  19. Songbird abundance in native and planted grassland varies with type and amount of grassland in the surrounding landscape

    USGS Publications Warehouse

    Davis, Stephen K.; Fisher, Ryan; Skinner, Susan; Shaffer, Terry L.; Brigham, R. Mark

    2013-01-01

    Agriculture and wildlife conservation programs have converted vast amounts of cropland into grasslands planted with exotic species. Understanding how landscape context influences avian use of native and planted grasslands is essential for developing effective conservation strategies in agricultural landscapes. Our primary objective was to determine the extent to which the amount and type of grassland in the surrounding landscape influences the abundance of grassland songbird species on native and planted grassland parcels in southern Saskatchewan and Alberta, Canada. Bird abundance was more strongly influenced by the amount and type of grassland within 400 m of breeding parcels than at larger spatial scales. Grassland specialists responded similarly to habitat and landscape type over both years and provinces. Sprague's pipit (Anthus spragueii) and Baird's sparrow (Ammodramus bairdii) were most common in native grassland parcels surrounded by native grassland and were more likely to occur in planted grasslands surrounded by native grassland. Bobolinks (Dolichonyx oryzivorus) were most common in planted grassland parcels, but their abundance increased with the amount of native grassland surrounding these parcels. Our findings indicate that the suitability of planted grasslands for these species is influenced by their proximity to native grassland. Grassland generalists showed mixed responses to habitat and landscape type over the 2 years (Le Conte's sparrow [Ammodramus leconteii]) and between provinces (Savannah sparrow [Passerculus sandwichensis] and western meadowlark [Sturnella neglecta]). Management to benefit grassland specialists should therefore consider the landscape context when seeding cultivated land to non-native grassland and conserve extant native grassland.

  20. Algal Data from Selected Sites in the Upper Colorado River Basin, Colorado, Water Years 1996-97

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2001-01-01

    Algal community samples were collected at 15 sites in the Upper Colorado River Basin in Colorado as part of the National Water-Quality Assessment Program during water years 1996-97. Sites sampled were located in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateaus, and represented agricultural, mining, urban, and mixed land uses and background conditions. Algal samples were collected once per year during low-flow conditions. Quantitative algal samples were collected within two targeted instream habitat types including a taxonomically richest-targeted habitat and a depositional-targeted habitat. This report presents the algal community data collected at the fixed sites in the Upper Colorado River Basin study unit. Algal data include densities (abundance of cells per square centimeter of substrate) and biovolumes (cubic micrometers of cells per square centimeter of substrate) for the two habitat types. Quality-assurance and quality-control results for algal samples indicate that the largest sampling variability tends to occur in samples from small streams.

  1. Grassland Management and Conversion into Grassland: Effects on Soil Carbon

    DOE Data Explorer

    Conant, Richard T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Paustian, Keith [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Elliott, Edward T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA)

    2003-01-01

    Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 y after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 to 3.04 Mg C · ha–1 y–1, with a mean of 0.54 Mg C · ha –1 · y–1, and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.

  2. 76 FR 43715 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...: University of Colorado Museum, Boulder, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Colorado Museum has completed an inventory of human remains and associated funerary... associated funerary objects may contact the University of Colorado Museum. [[Page 43716

  3. Modeling Wood Encroachment in Abandoned Grasslands in the Eifel National Park – Model Description and Testing

    PubMed Central

    Hudjetz, Silvana; Lennartz, Gottfried; Krämer, Klara; Roß-Nickoll, Martina; Gergs, André; Preuss, Thomas G.

    2014-01-01

    The degradation of natural and semi-natural landscapes has become a matter of global concern. In Germany, semi-natural grasslands belong to the most species-rich habitat types but have suffered heavily from changes in land use. After abandonment, the course of succession at a specific site is often difficult to predict because many processes interact. In order to support decision making when managing semi-natural grasslands in the Eifel National Park, we built the WoodS-Model (Woodland Succession Model). A multimodeling approach was used to integrate vegetation dynamics in both the herbaceous and shrub/tree layer. The cover of grasses and herbs was simulated in a compartment model, whereas bushes and trees were modelled in an individual-based manner. Both models worked and interacted in a spatially explicit, raster-based landscape. We present here the model description, parameterization and testing. We show highly detailed projections of the succession of a semi-natural grassland including the influence of initial vegetation composition, neighborhood interactions and ungulate browsing. We carefully weighted the single processes against each other and their relevance for landscape development under different scenarios, while explicitly considering specific site conditions. Model evaluation revealed that the model is able to emulate successional patterns as observed in the field as well as plausible results for different population densities of red deer. Important neighborhood interactions such as seed dispersal, the protection of seedlings from browsing ungulates by thorny bushes, and the inhibition of wood encroachment by the herbaceous layer, have been successfully reproduced. Therefore, not only a detailed model but also detailed initialization turned out to be important for spatially explicit projections of a given site. The advantage of the WoodS-Model is that it integrates these many mutually interacting processes of succession. PMID:25494057

  4. Habitat usage by prairie grouse on the Sheyenne National Grasslands

    Treesearch

    Llewellyn L. Manske; William T. Barker

    1988-01-01

    Prairie grouse habitat usage was observed for six years. Spring and summer habitat usage was primarily in the upland and midland grassland habitat types. Habitat usage shifted during the fall and winter to cropland and associated tree shelterbelts. The switchgrass plant community was the primary concealment cover for nesting and roosting. Cropland and associated tree...

  5. 76 FR 14063 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...: University of Colorado Museum, Boulder, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Colorado Museum has completed an inventory of human remains and associated funerary... contact the University of Colorado Museum. Disposition of the human remains and associated funerary...

  6. 76 FR 43713 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...: University of Colorado Museum, Boulder, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Colorado Museum has completed an inventory of human remains and an associated... human remains and associated funerary object may contact the University of Colorado Museum. Disposition...

  7. Using natural range of variation to set decision thresholds: a case study for great plains grasslands

    USGS Publications Warehouse

    Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.

    2014-01-01

    Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which

  8. Modeling the convective transport of pollutants from eastern Colorado, USA into Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Pina, A.; Schumacher, R. S.; Denning, S.

    2015-12-01

    Rocky Mountain National Park (RMNP) is a Class I Airshed designated under the Clean Air Act. Atmospheric nitrogen (N) deposition in the Park has been a known problem since weekly measurements of wet deposition of inorganic N began in the 1980s by the National Atmospheric Deposition Program (NADP). The addition of N from urban and agriculture emissions along the Colorado Front Range to montane ecosystems degrades air quality/visibility, water quality, and soil pH levels. Based on NADP data during summers 1994-2014, wet N deposition at Beaver Meadows in RMNP exhibited a bimodal gamma distribution. In this study, we identified meteorological transport mechanisms for 3 high wet-N deposition events (all events were within the secondary peak of the gamma distribution) using the North American Regional Reanalysis (NARR) and the Weather Research and Forecasting (WRF) model. The NARR was used to identify synoptic-scale influences on the transport; the WRF model was used to analyze the convective transport of pollutants from a concentrated animal feeding operation near Greeley, Colorado, USA. The WRF simulation included a passive tracer from the feeding operation and a convection-permitting horizontal spacing of 4/3 km. The three cases suggest (a) synoptic-scale moisture and flow patterns are important for priming summer transport events and (b) convection plays a vital role in the transport of Front Range pollutants into RMNP.

  9. Water-resources investigations in Dinosaur National Monument, Utah-Colorado, fiscal year 1970

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    Water-resources data were acquired during fiscal year 1970 by the U.S. Geological Survey at Dinosaur National Monument, Utah-Colorado, for the U.S. National Park Service as part of a continuing project. The data provide a basis for planning the development, management, and use of the available water resources to provide adequate water supplies. Thirty-one springs, 19 in relatively inaccessible areas, were evaluated as sources of water supplies. Seven potential well sites were evaluated for drilling depths in specific aquifers. A well drilled in Echo Park near the confluence of the Green and Yampa Rivers was tested. The pumping test showed the well to yield 130 gallons per minute with a drawdown of 1.96 feet; specific capacity of the well at 130 gallons per minute is 66 gallons per minute per foot. Water samples for chemical analysis were - collected from nine springs and one well; all except that from Disappointment Spring, were of good chemical quality.

  10. Inventory of Amphibians and Reptiles in Southern Colorado Plateau National Parks

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    In fiscal year 2000, the National Park Service (NPS) initiated a nationwide program to inventory vertebrates andvascular plants within the National Parks, and an inventory plan was developed for the 19 park units in the Southern Colorado Plateau Inventory & Monitoring Network. We surveyed 12 parks in this network for reptiles and amphibians between 2001 and 2003. The overall goals of our herpetofaunal inventories were to document 90% of the species present, identify park-specific species of special concern, and, based on the inventory results, make recommendations for the development of an effective monitoring program. We used the following standardized herpetological methods to complete the inventories: time-area constrained searches, visual encounter ('general') surveys, and nighttime road cruising. We also recorded incidental species sightings and surveyed existing literature and museum specimen databases. We found 50 amphibian and reptile species during fieldwork. These included 1 salamander, 11 anurans, 21 lizards, and 17 snakes. Literature reviews, museum specimen data records, and personal communications with NPS staff added an additional eight species, including one salamander, one turtle, one lizard, and five snakes. It was necessary to use a variety of methods to detect all species in each park. Randomly-generated 1-ha time-area constrained searches and night drives produced the fewest species and individuals of all the methods, while general surveys and randomly-generated 10-ha time-areas constrained searches produced the most. Inventory completeness was likely compromised by a severe drought across the region during our surveys. In most parks we did not come close to the goal of detecting 90% of the expected species present; however, we did document several species range extensions. Effective monitoring programs for herpetofauna on the Colorado Plateau should use a variety of methods to detect species, and focus on taxa-specific methods. Randomly

  11. 76 FR 43719 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...: University of Colorado Museum, Boulder, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Colorado Museum has completed an inventory of human remains, in consultation with... to be culturally affiliated with the human remains may contact the University of Colorado Museum...

  12. Colorado Disciplinary Practices, 2008-2010: Disciplinary Actions, Student Behaviors, Race, and Gender

    ERIC Educational Resources Information Center

    Pfleger, Ryan; Wiley, Kathryn

    2012-01-01

    The Colorado legislature has recently taken school discipline policies under review, pursuant to SB 11-133. To inform the discussion in Colorado as well as a national discussion about discipline, this report presents an analysis of the most complete set of Colorado discipline data. It adds to and reinforces existing studies, documenting some…

  13. The influence of fire on the assemblage structure of foraging birds in grasslands of the Serra da Canastra National Park, Brazil.

    PubMed

    Reis, Matheus G; Fieker, Carolline Z; Dias, Manoel M

    2016-05-13

    Grasslands are the most threatened physiognomies of the Cerrado biome (Brazilian savanna), a biodiversity hotspot with conservation as a priority. The Serra da Canastra National Park protects the most important remnants of the Cerrado's southern grasslands, which are under strong anthropogenic pressure. The present study describes the structure of bird assemblages that directly use food resources in burned areas, comparing areas affected by natural fire to the areas where controlled fires were set (a management strategy to combat arson). The tested null hypothesis was that different bird assemblages are structured in a similar manner, regardless of the post-fire period or assessed area. Between December/2012 and January/2015, 92 species were recorded foraging in the study areas. The results indicate that both types of burnings triggered profound and immediate changes in bird assemblages, increasing the number of species and individuals. Natural fires exhibited a more significant influence on the structure (diversity and dominance) than prescribed burnings. Nevertheless, all the differences were no longer noticeable after a relatively short time interval of 2-3 months after prescribed burnings and 3-4 after natural fires. The findings may help the understanding of prescribed burnings as a management strategy for bird conservation in grasslands.

  14. Weather radar data correlate to hail-induced mortality in grassland birds

    USGS Publications Warehouse

    Carver, Amber; Ross, Jeremy D.; Augustine, David J.; Skagen, Susan K.; Dwyer, Angela M.; Tomback, Diana F.; Wunder, Michael B.

    2017-01-01

    Small-bodied terrestrial animals such as songbirds (Order Passeriformes) are especially vulnerable to hail-induced mortality; yet, hail events are challenging to predict, and they often occur in locations where populations are not being studied. Focusing on nesting grassland songbirds, we demonstrate a novel approach to estimate hail-induced mortality. We quantify the relationship between the probability of nests destroyed by hail and measured Level-III Next Generation Radar (NEXRAD) data, including atmospheric base reflectivity, maximum estimated size of hail and maximum estimated azimuthal wind shear. On 22 June 2014, a hailstorm in northern Colorado destroyed 102 out of 203 known nests within our research site. Lark bunting (Calamospiza melanocorys) nests comprised most of the sample (n = 186). Destroyed nests were more likely to be found in areas of higher storm intensity, and distributions of NEXRAD variables differed between failed and surviving nests. For 133 ground nests where nest-site vegetation was measured, we examined the ameliorative influence of woody vegetation, nest cover and vegetation density by comparing results for 13 different logistic regression models incorporating the independent and additive effects of weather and vegetation variables. The most parsimonious model used only the interactive effect of hail size and wind shear to predict the probability of nest survival, and the data provided no support for any of the models without this predictor. We conclude that vegetation structure may not mitigate mortality from severe hailstorms and that weather radar products can be used remotely to estimate potential for hail mortality of nesting grassland birds. These insights will improve the efficacy of grassland bird population models under predicted climate change scenarios.

  15. Grassland futures in Great Britain - Productivity assessment and scenarios for land use change opportunities.

    PubMed

    Qi, Aiming; Holland, Robert A; Taylor, Gail; Richter, Goetz M

    2018-09-01

    To optimise trade-offs provided by future changes in grassland use intensity, spatially and temporally explicit estimates of respective grassland productivities are required at the systems level. Here, we benchmark the potential national availability of grassland biomass, identify optimal strategies for its management, and investigate the relative importance of intensification over reversion (prioritising productivity versus environmental ecosystem services). Process-conservative meta-models for different grasslands were used to calculate the baseline dry matter yields (DMY; 1961-1990) at 1km 2 resolution for the whole UK. The effects of climate change, rising atmospheric [CO 2 ] and technological progress on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and medium CO 2 emission scenarios of UKCP09. UK benchmark productivities of 12.5, 8.7 and 2.8t/ha on temporary, permanent and rough-grazing grassland, respectively, accounted for productivity gains by 2010. By 2050, productivities under medium emission scenario are predicted to increase to 15.5 and 9.8t/ha on temporary and permanent grassland, respectively, but not on rough grassland. Based on surveyed grassland distributions for Great Britain in 2010 the annual availability of grassland biomass is likely to rise from 64 to 72milliontonnes by 2050. Assuming optimal N application could close existing productivity gaps of ca. 40% a range of management options could deliver additional 21∗10 6 tonnes of biomass available for bioenergy. Scenarios of changes in grassland use intensity demonstrated considerable scope for maintaining or further increasing grassland production and sparing some grassland for the provision of environmental ecosystem services. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Assessment of total nitrogen and total phosphorus in selected surface water of the National Park Service Northern Colorado Plateau Network, Colorado, Utah, and Wyoming, from 1972 through 2007

    USGS Publications Warehouse

    Brown, Juliane B.; Thoma, David P.

    2012-01-01

    Nutrients are a nationally recognized concern for water quality of streams, rivers, groundwater, and water bodies. Nutrient impairment is documented by the U.S. Environmental Protection Agency as a primary cause of degradation in lakes and reservoirs, and nutrients are related to organic enrichment and oxygen depletion, which is an important cause of degradation in streams. Recently (2011), an effort to develop State-based numeric nutrient criteria has resulted in renewed emphasis on nutrients in surface water throughout the Nation. In response to this renewed emphasis and to investigate nutrient water quality for Northern Colorado Plateau Network streams, the U.S. Geological Survey, in cooperation with the National Park Service, assessed total nitrogen and total phosphorus concentration data for 93 sites in or near 14 National Park units for the time period 1972 through 2007.

  17. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: San Juan National Forest - Dolores Ranger District, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, Alicen J.; Kiatreungwattana, Kosol

    This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the San Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.

  18. Nearshore thermal gradients of the Colorado River near the Little Colorado River confluence, Grand Canyon National Park, Arizona, 2010

    USGS Publications Warehouse

    Ross, Rob; Grams, Paul E.

    2013-01-01

    Construction and operation of Glen Canyon Dam has dramatically impacted the flow of the Colorado River through Glen, Marble, and Grand Canyons. Extremes in both streamflow and water temperature have been suppressed by controlled releases from the dam. Trapping of sediment in Lake Powell, the reservoir formed by Glen Canyon Dam, has also dramatically reduced the supply of suspended sediment entering the system. These changes have altered the riverine ecosystem and the habitat of native species, including fish such as the endangered humpback chub (Gila cypha). Most native fish are adapted to seasonally warm water, and the continuous relatively cold water released by the dam is one of the factors that is believed to limit humpback chub growth and survival. While average mainstem temperatures in the Colorado River are well documented, there is limited understanding of temperatures in the nearshore environments that fish typically occupy. Four nearshore geomorphic unit types were studied between the confluence of the Colorado and Little Colorado Rivers and Lava Canyon in the summer and fall of 2010, for study periods of 10 to 27 days. Five to seven sites were studied during each interval. Persistent thermal gradients greater than the 0.2 °C accuracy of the instruments were not observed in any of the sampled shoreline environments. Temperature gradients between the shoreline and mainstem on the order of 4 °C, believed to be important to the habitat-seeking behavior of native or nonnative fishes, were not detected.

  19. National Commission on Libraries and Information Science, Mountain Plains Regional Hearing, September 18, 1974, Denver, Colorado. Volume Three; Written Testimony.

    ERIC Educational Resources Information Center

    National Commission on Libraries and Information Science, Washington, DC.

    Many librarians, library students, and other concerned citizens accepted the opportunity to write to the National Commission on Libraries and Information Science on the occasion of the Mountain Plains Regional Hearing, September 18, 1974 in Denver, Colorado. There were communications on countless facets of library and information services. Some…

  20. 75 FR 42771 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... University of Colorado Museum professional staff in consultation with representatives of the Apache Tribe of... Colorado Museum, Boulder, CO AGENCY: National Park Service, Interior. ACTION: Notice. [[Page 42772

  1. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    USGS Publications Warehouse

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  2. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming.

    PubMed

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L; Cully, Jack F

    2008-07-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  3. Viability of male gametes in common carp (Cyprinus carpio) along the Lower Colorado River from the Cibola National Wildlife Refuge (NWR), Havasu NWR, and Lake Mohave of Lake Mead National Recreation Area

    USGS Publications Warehouse

    Jenkins, Jill A.; Goodbred, Steven L.

    2005-01-01

    To contribute to an investigation on possible endocrine impacts in three sites along the lower Colorado River in Arizona, especially in male fishes, this study addressed the null hypothesis that aquatic species in southern sites did not exhibit evidence of endocrine disruption as compared with those in nonimpacted sites. The results presented are intended to provide managers with science-based information and interpretations about the reproductive condition of biota in their habitat along the lower Colorado River to minimize any potential adverse effects to trust fish and wildlife resources and to identify water resources of acceptable quality. In particular, these data can inform decision making about wastewater discharges into the Colorado River that directly supplies water to Arizona refuges located along the river. These data are integral to the USFWS proposal entitled 'AZ - Endocrine Disruption in Razorback Sucker and Common Carp on National Wildlife Refuges along the Lower Colorado River' that was proposed to assess evidence of endocrine disruption in carp and razorback suckers downstream of Hoover Dam.

  4. 75 FR 58426 - Notice of Inventory Completion: The Colorado College, Colorado Springs, CO; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Counsel, The Colorado College c/o Jan Bernstein, President, Bernstein & Associates - NAGPRA Consultants... responsible for notifying the Hopi Tribe of Arizona; Navajo Nation, Arizona, New Mexico & Utah; Ohkay Owingeh, New Mexico; Pueblo of Acoma, New Mexico; Pueblo of Cochiti, New Mexico; Pueblo of Isleta, New Mexico...

  5. Evaluating channel morphologic changes and bed-material transport using airborne lidar, upper Colorado River, Rocky Mountain National Park, Colorado

    NASA Astrophysics Data System (ADS)

    Mangano, Joseph F.

    A debris flow associated with the 2003 breach of Grand Ditch in Rocky Mountain National Park, Colorado provided an opportunity to determine controls on channel geomorphic responses following a large sedimentation event. Due to the remote site location and high spatial and temporal variability of processes controlling channel response, repeat airborne lidar surveys in 2004 and 2012 were used to capture conditions along the upper Colorado River and tributary Lulu Creek i) one year following the initial debris flow, and ii) following two bankfull flows (2009 and 2010) and a record-breaking long duration, high intensity snowmelt runoff season (2011). Locations and volumes of aggradation and degradation were determined using lidar differencing. Channel and valley metrics measured from the lidar surveys included water surface slope, valley slope, changes in bankfull width, sinuosity, braiding index, channel migration, valley confinement, height above the water surface along the floodplain, and longitudinal profiles. Reaches of aggradation and degradation along the upper Colorado River are influenced by valley confinement and local controls. Aggradational reaches occurred predominantly in locations where the valley was unconfined and valley slope remained constant through the length of the reach. Channel avulsions, migration, and changes in sinuosity were common in all unconfined reaches, whether aggradational or degradational. Bankfull width in both aggradational and degradational reaches showed greater changes closer to the sediment source, with the magnitude of change decreasing downstream. Local variations in channel morphology, site specific channel conditions, and the distance from the sediment source influence the balance of transport supply and capacity and, therefore, locations of aggradation, degradation, and associated morphologic changes. Additionally, a complex response initially seen in repeat cross-sections is broadly supported by lidar differencing

  6. Workforce Brief: Colorado

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    Employment in Colorado (including hourly and salaried jobs and self-employment) is projected to grow by 23 percent from 2002 to 2012, adding some 551,630 new jobs to the state's economy and growing the workforce from 2,355,290 to 2,906,920. The rate of growth is much higher than the 15 percent increase projected for the nation as a whole.…

  7. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Treesearch

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  8. Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands.

    PubMed

    Henry, Jason; Aherne, Julian

    2014-02-01

    High resolution nitrogen (N) deposition maps were developed to assess the exceedance of empirical critical loads of nutrient N for grasslands in Ireland. Nitrogen emissions have remained relatively constant during the past 20 yrs and are projected to remain constant under current legislation. Total N deposition (estimated as wet nitrate [NO3(-)] and ammonium [NH4(+)] plus dry NO× and NH3) ranged from 2 to 22 kg Nha(-1)yr(-1) (mean=12 kg Nha(-1)yr(-1)) to grasslands. Empirical critical loads for nutrient N were set at 15 kg Nha(-1)yr(-1) for both acid and calcareous grasslands; exceedance was observed for ~35% (~2,311 km(2)) of mapped acid grasslands. In contrast, only ~9% of calcareous grasslands (~35 km(2)) received N deposition in excess of the critical load. Reduced N deposition (primarily dry NH3) represented the dominant form to grasslands (range 55-90%) owing to significant emissions associated with livestock (primarily cattle). The extent of exceedance in acid grasslands suggests that N deposition to this habitat type may lead to adverse impacts such as a decline in plant species diversity and soil acidification. Further, given that elevated N deposition was dominated by NH3 associated with agricultural emissions rather than long-range transboundary sources, future improvements in air quality need to be driven by national policies. © 2013.

  9. Changes in grassland management and plant diversity in a marginal region of the Carpathian Mts. in 1999-2015.

    PubMed

    Halada, Ľuboš; David, Stanislav; Hreško, Juraj; Klimantová, Alexandra; Bača, Andrej; Rusňák, Tomáš; Buraľ, Miroslav; Vadel, Ľuboš

    2017-12-31

    The political change from socialism to democracy in countries of Central and Eastern Europe at the end of the 20th century induced broad changes in agriculture mostly due to land ownership changes and strong reduction of subsidies to agriculture. This resulted in agricultural decline, including grassland abandonment, which influenced grassland biodiversity and conservation. Between 1999 and 2015 we studied the grasslands in the area depopulated in the early 1980's in the Poloniny National Park (NE Slovakia, Carpathian Mts.). The aim of the study was to examine influence of environmental factors and grassland management driven by the Common Agricultural Policy (CAP) to plant community structure and taxonomical diversity. We identified altitude and soil properties as the main environmental factors: altitude determines climate gradient and probably also management intensity gradient and soil properties express soil fertility via A-horizon depth. We identified remarkable increase of proportion of managed grasslands from only 8% in 1999 to 40% in 2012-2015; other 7% of sampled grasslands were recently restored and prepared for future management. The average species richness in grasslands managed in 2012-2015 increased from 47.5 species per record in 1999 to 54.2 species in 2012-2015, the increase was found statistically significant. In 2012-2015, we observed statistically significant difference in the average species richness between managed (54.2) and abandoned grasslands (46.3). The agricultural subsidies of the CAP drive the grassland management in the study area. Therefore, we conclude that CAP enabled grassland biodiversity maintenance in significant part of the Poloniny National Park following start of its application in 2004 and above provided figures can be considered as indicators of the CAP effectiveness in our study area. However, the conservation of mountain meadows remains a challenge because of their poor accessibility. Copyright © 2017 Elsevier B.V. All

  10. 78 FR 58344 - Proposed Information Collection: Colorado River Total Value Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ....YP0000] Proposed Information Collection: Colorado River Total Value Survey AGENCY: National Park Service... generations. This collection will provide park managers and NPS partners with information about the values U.S...: None. This is a new collection. Title: Colorado River Total Value Survey. Type of Request: New...

  11. The northeastern area's objectives and beliefs toward national forests and grasslands

    Treesearch

    Lori B. Shelby; Deborah J. Shields; Brian M. Kent

    2008-01-01

    The Northeastern Area, an organizational unit of the State and Private Forestry branch of the U.S. Forest Service, serves the Northeastern and Midwestern United States. For this study, residents of the Northeastern Area were asked about their objectives for the management, use, and conservation of forests and grasslands and beliefs about the role the Forest Service...

  12. Estimated historical distribution of grassland communities of the Southern Great Plains

    USGS Publications Warehouse

    Reese, Gordon C.; Manier, Daniel J.; Carr, Natasha B.; Callan, Ramana; Leinwand, Ian I.F.; Assal, Timothy J.; Burris, Lucy; Ignizio, Drew A.

    2016-12-07

    The purpose of this project was to map the estimated distribution of grassland communities of the Southern Great Plains prior to Euro-American settlement. The Southern Great Plains Rapid Ecoregional Assessment (REA), under the direction of the Bureau of Land Management and the Great Plains Landscape Conservation Cooperative, includes four ecoregions: the High Plains, Central Great Plains, Southwestern Tablelands, and the Nebraska Sand Hills. The REA advisors and stakeholders determined that the mapping accuracy of available national land-cover maps was insufficient in many areas to adequately address management questions for the REA. Based on the recommendation of the REA stakeholders, we estimated the potential historical distribution of 10 grassland communities within the Southern Great Plains project area using data on soils, climate, and vegetation from the Natural Resources Conservation Service (NRCS) including the Soil Survey Geographic Database (SSURGO) and Ecological Site Information System (ESIS). The dominant grassland communities of the Southern Great Plains addressed as conservation elements for the REA area are shortgrass, mixed-grass, and sand prairies. We also mapped tall-grass, mid-grass, northwest mixed-grass, and cool season bunchgrass prairies, saline and foothill grasslands, and semi-desert grassland and steppe. Grassland communities were primarily defined using the annual productivity of dominant species in the ESIS data. The historical grassland community classification was linked to the SSURGO data using vegetation types associated with the predominant component of mapped soil units as defined in the ESIS data. We augmented NRCS data with Landscape Fire and Resource Management Planning Tools (LANDFIRE) Biophysical Settings classifications 1) where NRCS data were unavailable and 2) where fifth-level watersheds intersected the boundary of the High Plains ecoregion in Wyoming. Spatial data representing the estimated historical distribution of

  13. Southwestern Grassland Ecology

    Treesearch

    Paulette L. Ford; Deborah U. Potter; Rosemary Pendleton; Burton Pendleton; Wayne A. Robbie; Gerald J. Gottfried

    2004-01-01

    This chapter provides a brief overview, and selected in-depth coverage, of the factors and processes that have formed, and continue to shape, our Southwestern grasslands. In general, this chapter looks at how distributions of grasslands are regulated by soils and climate, and modified by disturbance (natural and/or anthropogenic). The attendant ecological components of...

  14. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern US

    USGS Publications Warehouse

    Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.

    2015-01-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and

  15. On the brink of change: plant responses to climate on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Schelz, Charles D.; Moran, Mary; Carolin, Tara W.

    2011-01-01

    The intensification of aridity due to anthropogenic climate change in the southwestern U.S. is likely to have a large impact on the growth and survival of plant species that may already be vulnerable to water stress. To make accurate predictions of plant responses to climate change, it is essential to determine the long-term dynamics of plant species associated with past climate conditions. Here we show how the plant species and functional types across a wide range of environmental conditions in Colorado Plateau national parks have changed with climate variability over the last twenty years. During this time, regional mean annual temperature increased by 0.18°C per year from 1989–1995, 0.06°C per year from 1995–2003, declined by 0.14°C from 2003–2008, and there was high interannual variability in precipitation. Non-metric multidimensional scaling of plant species at long-term monitoring sites indicated five distinct plant communities. In many of the communities, canopy cover of perennial plants was sensitive to mean annual temperature occurring in the previous year, whereas canopy cover of annual plants responded to cool season precipitation. In the perennial grasslands, there was an overall decline of C3 perennial grasses, no change of C4 perennial grasses, and an increase of shrubs with increasing temperature. In the shrublands, shrubs generally showed no change or slightly increased with increasing temperature. However, certain shrub species declined where soil and physical characteristics of a site limited water availability. In the higher elevation woodlands, Juniperus osteosperma and shrub canopy cover increased with increasing temperature, while Pinus edulis at the highest elevation sites was unresponsive to interannual temperature variability. These results from well-protected national parks highlight the importance of temperature to plant responses in a water-limited region and suggest that projected increases in aridity are likely to promote

  16. Land and federal mineral ownership coverage for northwestern Colorado

    USGS Publications Warehouse

    Biewick, L.H.; Mercier, T.J.; Levitt, Pam; Deikman, Doug; Vlahos, Bob

    1999-01-01

    This Arc/Info coverage contains land status and Federal mineral ownership for approximately 26,800 square miles in northwestern Colorado. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and three Colorado State Bureau of Land Management (BLM) former district offices at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.

  17. Birds of Southwestern grasslands: Status, conservation, and management

    Treesearch

    Michele Merola-Zwartjes

    2005-01-01

    In the Southwestern United States, the grassland avifauna is collectively composed of a mixture of species found primarily in desert grasslands, shortgrass steppe, wet meadows, and alpine tundra (as used here, desert grasslands incorporate both arid grasslands and desert shrub grasslands). Of these habitats, desert grasslands and shortgrass steppe are the most...

  18. 78 FR 73886 - Atmel Corporation, Colorado Springs, Colorado; Amended Certification Regarding Eligibility To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ..., Colorado Springs, Colorado; Amended Certification Regarding Eligibility To Apply for Worker Adjustment..., 2013, applicable to workers of Atmel Corporation, Colorado Springs, Colorado. The Department's notice..., Colorado Springs, Colorado were engaged in activities related to production of semiconductor wafers and...

  19. Faunal isotope records reveal trophic and nutrient dynamics in twentieth century Yellowstone grasslands.

    PubMed

    Fox-Dobbs, Kena; Nelson, Abigail A; Koch, Paul L; Leonard, Jennifer A

    2012-10-23

    Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ(13)C and δ(15)N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ(15)N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes.

  20. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    USGS Publications Warehouse

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  1. Bats of Mesa Verde National Park, Colorado: composition, reproduction, and roosting habits.

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Snider, E. Apple; Valdez, Ernest W.; Ellison, Laura E.; Neubaum, Daniel J.

    2011-01-01

    We determined the bat fauna at Mesa Verde National Park (Mesa Verde) in 2006 and 2007, characterized bat elevational distribution and reproduction, and investigated roosting habits of selected species. We captured 1996 bats of 15 species in mist nets set over water during 120 nights of sampling and recorded echolocation calls of an additional species. The bat fauna at Mesa Verde included every species of bat known west of the Great Plains in Colorado, except the little brown bat (Myotis lucifugus). Some species showed skewed sex ratios, primarily due to a preponderance of males. Thirteen species of bats reproduced at Mesa Verde. Major differences in spring precipitation between the 2 years of our study were associated with differences in reproductive rates and, in some species, with numbers of juveniles captured. Reduced reproductive effort during spring drought will have a greater impact on bat populations with the forecasted increase in aridity in much of western North America by models of global climate change. We radiotracked 46 bats of 5 species to roosts and describe the first-known maternity colonies of spotted bats (Euderma maculatum) in Colorado. All 5 species that we tracked to diurnal roosts relied almost exclusively on rock crevices rather than trees or snags, despite the presence of mature forests at Mesa Verde and the use of trees for roosts in similar forests elsewhere by some of these species. Comparisons with past bat surveys at Mesa Verde and in surrounding areas suggest no dramatic evidence for effects of recent stand-replacing fires on the composition of the bat community.

  2. Dissolved constituents including selenium in waters in the vicinity of Kesterson National Wildlife Refuge and the west grassland, Fresno and Merced Counties, California

    USGS Publications Warehouse

    Presser, T.S.; Barnes, Ivan

    1985-01-01

    Analyses were made for dissolved constituents including selenium (Se) in waters associated with subsurface agricultural drainage from the western San Joaquin Valley of California. In the vicinity of Kesterson National Wildlife Refuge and the Grassland wetlands area Se was found to be mobilized in water. As a consequence of this mobility and bioaccumulation in the aquatic food chain, Se occurred in waterfowl at levels toxic enough to cause deformities and deaths. Se concentrations in sumps that collect subsurface agricultural drainage water and inflows to drains sampled, ultimately leading into Kesterson National Wildlife Refuge and the Grassland, ranged from 84 to 4200 microgram/L (ug/L) Se. Levels of Se were reduced in the San Luis Drain flowing into Kesterson National Wildlife Refute to approximately 300 ug/L Se and in three of the drains sampled flowing into the Grassland to approximately 50 ug/L Se. Serious effects on water fowl habitat were caused by both these levels. Se contents of algal mats and salt crusts from evaporation ponds of the San Luis Drain contained up to parts per million Se. Total ecosystem assessment of Se may be necessary for the evaluation of the toxicity of Se to the environment. No other trace element reported exceeded the various criteria for water at the level of magnitude of Se. Other dissolved constituents and the isotopic ratios of oxygen and hydrogen were analyzed to elucidate water types, reaction states of the aqueous solution with respect to minerals, and the origin of mixed waters. These data will be used later to evaluate the geologic source of Se. Methods used for collection and analysis are described and documented. Hydrologic effects were found to be complex. Preliminary indications from wells are also given. A historical sequence is adhered to and other data from the study area which serve as a guide to the toxicity of Se are included. (Author 's abstract)

  3. Exploring the Views of Rural Colorado High School Students about College

    ERIC Educational Resources Information Center

    Klug, Kathleen McMahon

    2009-01-01

    Exploring the views of rural high school students about college has significant implications for the question: "Why are Colorado's kids not choosing college in greater numbers?" Since the State of Colorado has one of the most highly educated adult populations in the nation, yet consistently underperforms in sending its high school…

  4. A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park

    USGS Publications Warehouse

    Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.

    2010-01-01

    Thirty-eight dated packrat middens were collected from upper desert (930–1357 m) elevations within Joshua Tree National Park near the ecotone between the Mojave Desert and Colorado Desert, providing a 30 ka record of vegetation change with remarkably even coverage for the last 15 ka. This record indicates that vegetation was relatively stable, which may reflect the lack of invasion by extralocal species during the late glacial and the early establishment and persistence of many desert scrub elements. Many of the species found in the modern vegetation assemblages were present by the early Holocene, as indicated by increasing Sørenson's Similarity Index values. C4 grasses and summer-flowering annuals arrived later at Joshua Tree National Park in the early Holocene, suggesting a delayed onset of warm-season monsoonal precipitation compared to other Sonoran Desert and Chihuahuan Desert localities to the east, where summer rains and C4 grasses persisted through the last glacial–interglacial cycle. This would suggest that contemporary flow of monsoonal moisture into eastern California is secondary to the core processes of the North American Monsoon, which remained intact throughout the late Quaternary. In the Holocene, northward displacement of the jet stream, in both summer and winter, allowed migration of the subtropical ridge as far north as southern Idaho and the advection of monsoonal moisture both westward into eastern California and northward into the southern Great Basin and Colorado Plateau.

  5. Streamflow characteristics for selected stations in and near the Grand Mesa, Uncompahgre, and Gunnison National Forests, southwestern Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    2002-01-01

    The U.S Geological Survey, in cooperation with the Grand Mesa, Uncompahgre, and Gunnison National Forests, began a study in 2000 to develop selected streamflow characteristics for 60 streamflow-gaging stations in and near the Grand Mesa, Uncompahgre, and Gunnison National Forests. The study area is located in southwestern Colorado within the Gunnison River, Dolores River, and Plateau Creek Basins, which are tributaries of the Colorado River. In addition to presenting the compiled daily, monthly, and annual discharge data for the 60 stations, the report presents tabular and graphical results for the following computed streamflow characteristics: (1) Instantaneous peak-flow frequency; (2) flow duration for daily mean discharges on an annual (water year) basis and on a monthly basis, and flow duration for the annual and monthly mean discharges; (3) low-flow and high-flow frequency of daily mean discharges for periods of 1, 3, 7, 15, 30, 60, 120, and 183 consecutive days; and (4) annual and monthly mean and median discharges for each year and month of record, and frequency of the annual and monthly mean and median discharges. All discharge data and results from the streamflow-characteristics analyses are presented in Microsoft Excel workbooks on the enclosed CD-ROM.

  6. Integrated grassland observation sites and integrated cropland observation sites at El Reno, Oklahoma

    USDA-ARS?s Scientific Manuscript database

    With the financial support from the National Science Foundation and the USDA National Institute of Food and Agriculture, a team of researchers from the University of Oklahoma and the USDA ARS Grazinglands Research Laboratory have worked together and established two Integrated Grassland Observation s...

  7. Satellite-based assessment of grassland yields

    NASA Astrophysics Data System (ADS)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  8. 76 FR 53400 - Black Hills National Forest, SD; Thunder Basin National Grassland, WY; Teckla-Osage-Rapid City...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Grassland, WY; Teckla-Osage-Rapid City Transmission 230 kV Project AGENCY: Forest Service, USDA. ACTION... operate a 230 kilovolt (kV) transmission line between the Teckla and Osage Substations in northeastern... cooperating agency on this EIS. The Teckla-Osage-Rapid City Transmission 230 kV Project would be approximately...

  9. The effects of mesquite invasion on a southeastern Arizona grassland bird community

    USGS Publications Warehouse

    Lloyd, J.; Mannan, R.W.; DeStefano, S.; Kirkpatrick, C.

    1998-01-01

    We determined which vegetal features influenced the distribution and abundance of grassland birds at the Buenos Aires National Wildlife Refuge, Arizona. The density and distribution of mesquite (Prosopis velutina) exerted the strongest influence on the grassland bird community. Abundances of Pyrrhuloxia (Cardinalis sinuatus; r2 = 0.363, P = 0.025) and Lucy's Warbler (Vermivora luciae; r2 = 0.348, P = 0.04), and total abundance of birds (r2 = 0.358, P = 0.04) were positively correlated with increasing density of mesquite (Prosopis velutina), whereas abundance of Cactus Wren (Campylorhynchus brunneicapillus; r2 = 0.452, P = 0.02) was negatively correlated with increasing mesquite density. Abundance of Loggerhead Shrike (Lanius ludovicianus; r2 = 0.693, P < 0.001) was positively correlated with an increasing patchiness of mesquite. Shrub-dependent bird species dominated the community, accounting for 12 of the 18 species and 557 of the 815 individuals detected. Species relying on extensive areas of open grassland were largely absent from the study area, perhaps a result of the recent invasion of mesquite into this semi-desert grassland.

  10. Faunal isotope records reveal trophic and nutrient dynamics in twentieth century Yellowstone grasslands

    PubMed Central

    Fox-Dobbs, Kena; Nelson, Abigail A.; Koch, Paul L.; Leonard, Jennifer A.

    2012-01-01

    Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ13C and δ15N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ15N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes. PMID:22675135

  11. Investigation of water quality in the Great Sand Dunes National Monument and Preserve, Saguache County, Colorado, February 1999 through September 2000: Qualifying for outstanding waters designation

    USGS Publications Warehouse

    Ferguson, Sheryl A.

    2003-01-01

    Great Sand Dunes National Monument and Preserve is located on the eastern side of the San Luis Valley in south-central Colorado. The monument covers 60.4 square miles in Saguache and Alamosa Counties and lies at the base of the Sangre de Cristo Mountains, where a unique combination of climate, topography, and hydrology has created and maintained the Nation?s tallest inland sand dunes. The Sangre de Cristo Mountains, which rise to more than 14,000 feet to the north and east of the dunes, are the source of several streams that flow around the dunes and eventually recharge the aquifer beneath the valley. Sand Creek and Medano Creeks are the largest of the streams in the monument that originate in the Sangre de Cristo Mountains; several ephemeral streams flow into Sand Creek and Medano Creek. Maintaining the high surface-water quality in the Great Sand Dunes National Monument and Preserve is identified as a critical issue by the National Park Service. Additionally, the National Park Service has indicated a desire to pursue an Outstanding Waters Designation, which offers the highest level of water-quality protection available under the Clean Water Act and Colorado regulations. This designation is designed to prevent any degradation from existing conditions (Chatman and others, 1997). Assessment is needed to evaluate whether the water quality of the streams in the monument meets the requirements for an Outstanding Waters Designation. Historically, prospecting and mining activities have occurred in the watersheds of Sand and Medano Creeks; currently, however, there is no mining activity in those watersheds. In addition, the camping and recreation that occur upstream from the monument on national preserve lands and water activities that occur in Medano Creek during the summer are a potential source of human-waste contamination. Figure 1. Location of study area, sampling sites, and indication of sites that meet or exceed instream standards. The U.S. Geological Survey (USGS

  12. Workshop proceedings: management of western forests and grasslands for nongame birds

    Treesearch

    USDA Forest Service

    1980-01-01

    Contains proceedings of the fourth and last regional workshop sponsored by the National Nongame Bird Steering Committee. The workshop, held in Salt Lake City, Utah, February 11-14, 1980, presented information on management of western forests and grasslands for nongame birds.

  13. Inventory of forest and rangeland and detection of forest stress. [Manitou, Colorado, Atlanta, Georgia, and Black Hills test sites

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Eucalyptus tree stands killed by low temperatures in December 1972 were outlined by image enhancement of two separate dates of ERTS-1 images (January 22, 1973-I.D. 1183-18175 and April 22, 1973-I.D. 1273-18183). Three stands larger than 500 meters in size were detected very accurately. In Colorado, range and grassland communities were analyzed by visual interpretation of color composite scene I.D. 1028-17135. It was found that mixtures of plant litter, amount and kind of bare soil, and plant foliage cover made classification of grasslands very difficult. Changes in forest land use were detected on areas as small as 5 acres when ERTS-1 color composite scene 1264-15445 (April 13, 1973) was compared with 1966 ASCS index mosaics (scale 1:60,000). Verification of the changes were made from RB-57 underflight CIR transparencies (scale 1:120,000).

  14. Den-site characteristics of black bears in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2008-01-01

    We compared historic (1985-1992) and contemporary (2003-2006) black bear (Ursus americanus) den locations in Rocky Mountain National Park (RMNP), Colorado, USA, for habitat and physiographic attributes of den sites and used maximum entropy modeling to determine which factors were most influential in predicting den-site locations. We observed variability in the relationship between den locations and distance to trails and elevation over rime. Locations of historic den sites were most associated with slope, elevation, and covertype, whereas contemporary sites were associated with slope, distance to roads, aspect, and canopy height. Although relationships to covariates differed between historic and contemporary periods, preferred den-site characteristics consistently included steep slopes and factors associated with greater snow depth. Distribution of den locations shifted toward areas closer to human developments, indicating little negative influence of this factor on den-site selection by black bears in RMNP.

  15. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    PubMed

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  16. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-04

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas ofmore » national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.« less

  17. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    PubMed Central

    Blank, Peter J.; Sample, David W.; Williams, Carol L.; Turner, Monica G.

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes. PMID:25299593

  18. Riparian ecosystem consequences of water redistribution along the Colorado Front Range

    Treesearch

    John D. Wiener; Kathleen A. Dwire; Susan K. Skagen; Robert R. Crifasi; David Yates

    2008-01-01

    Water has shaped the American West. Nowhere is this more evident than along the Front Range of Colorado. At the west end of the famous Great Plains rainfall gradient, the Front Range extends most of the length of Colorado and is one of the fastest growing metropolitan regions in the nation. Annual precipitation along the Front Range averages about 16 inches, and...

  19. Colorado

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An early-season snowfall accents the Rocky Mountains through western and central Colorado. This true-color image made from data collected by MODIS on October 26, 2001, highlights the contrast between various irrigated areas and the otherwise dry environment at the foothills of the Rockies. One such example is the city of Denver and its outlying suburbs, which can be seen best in the high-resolution image. In areas that would normally harbor drought-tolerant grasses, shrubs and trees, humans are living, watering their lawns, and farming; those watered, green areas differ substantially from the surrounding hues of brown. Numerous National Parks and Monuments dot the Southwestern U.S. The Great Sand Dunes National Monument is one such park. Running along the western base the Sangre de Cristo Range(just below the image's center), a subsection of the Rockies, the monument possesses some of the highest inland sand dunes in the U.S., with crests reaching over 700 feet.

  20. Childhood Obesity in Colorado: A Growing Problem--The Impact of the Epidemic and Recommendations for Solutions

    ERIC Educational Resources Information Center

    Trujillo, Tara

    2007-01-01

    Colorado traditionally has ranked as one of the healthiest states in the nation, a claim that reinforces a culture of activity, community and well-being. Though Colorado is ahead of the curve in this area, Coloradans aren't immune to the growing trends that threaten the health of people across the nation. One of the most concerning elements of…

  1. Semi-arid grassland bird responses to patch-burn grazing and drought

    USGS Publications Warehouse

    Skagen, Susan K.; Augustine, David J.; Derner, Justin D.

    2018-01-01

    As grassland birds of central North America experience steep population declines with changes in land use, management of remaining tracts becomes increasingly important for population viability. The integrated use of fire and grazing may enhance vegetation heterogeneity and diversity in breeding birds, but the subsequent effects on reproduction are unknown. We examined the influence of patch-burn grazing management in shortgrass steppe in eastern Colorado on habitat use and reproductive success of 3 grassland bird species, horned lark (Eremophila alpestris), lark bunting (Calamospiza melanocorys), and McCown’s longspur (Rhynchophanes mccownii), at several spatial scales during 2011 and 2012. Although no simple direct relationship to patch-burn grazing treatment existed, habitat selection depended on precipitation- and management-induced vegetation conditions and spatial scale. All species selected taller-than-expected vegetation at the nest site, whereas at the territory scale, horned larks and McCown’s longspurs selected areas with low vegetation height and sparse cover of tall plants (taller than the dominant shortgrasses). Buntings nested primarily in unburned grassland under average rainfall. Larks and longspurs shifted activity from patch burns during average precipitation (2011) to unburned pastures during drought (2012). Daily survival rate (DSR) of nests varied with time in season, species, weather, and vegetation structure. Daily survival rate of McCown’s longspur nests did not vary with foliar cover of relatively tall vegetation at the nest under average precipitation but declined with increasing cover during drought. At the 200-m scale, increasing cover of shortgrasses, rather than taller plant species, improved DSR of larks and longspurs. These birds experience tradeoffs in the selection of habitat at different spatial scales: tall structure at nests may reduce visual detection by predators and provide protection from sun, wind, and rain, yet

  2. Proximate and landscape factors influence grassland bird distributions

    USGS Publications Warehouse

    Cunningham, M.A.; Johnson, D.H.

    2006-01-01

    Ecologists increasingly recognize that birds can respond to features well beyond their normal areas of activity, but little is known about the relative importance of landscapes and proximate factors or about the scales of landscapes that influence bird distributions. We examined the influences of tree cover at both proximate and landscape scales on grassland birds, a group of birds of high conservation concern, in the Sheyenne National Grassland in North Dakota, USA. The Grassland contains a diverse array of grassland and woodland habitats. We surveyed breeding birds on 2015 100 m long transect segments during 2002 and 2003. We modeled the occurrence of 19 species in relation to habitat features (percentages of grassland, woodland, shrubland, and wetland) within each 100-m segment and to tree cover within 200-1600 m of the segment. We used information-theoretic statistical methods to compare models and variables. At the proximate scales, tree cover was the most important variable, having negative influences on 13 species and positive influences on two species. In a comparison of multiple scales, models with only proximate variables were adequate for some species, but models combining proximate with landscape information were best for 17 of 19 species. Landscape-only models were rarely competitive. Combined models at the largest scales (800-1600 m) were best for 12 of 19 species. Seven species had best models including 1600-m landscapes plus proximate factors in at least one year. These were Wilson's Phalarope (Phalaropus tricolor), Sedge Wren (Cistothorus platensis), Field Sparrow (Spizella pusilla), Grasshopper Sparrow (Ammodramus savannarum), Bobolink (Dolychonix oryzivorus), Red-winged Blackbird (Agelaius phoeniceus), and Brown-headed Cowbird (Molothrus ater). These seven are small-bodied species; thus larger-bodied species do not necessarily respond most to the largest landscapes. Our findings suggest that birds respond to habitat features at a variety of

  3. Costs and savings associated with community water fluoridation programs in Colorado.

    PubMed

    O'Connell, Joan M; Brunson, Diane; Anselmo, Theresa; Sullivan, Patrick W

    2005-11-01

    Local, state, and national health policy makers require information on the economic burden of oral disease and the cost-effectiveness of oral health programs to set policies and allocate resources. In this study, we estimate the cost savings associated with community water fluoridation programs (CWFPs) in Colorado and potential cost savings if Colorado communities without fluoridation programs or naturally high fluoride levels were to implement CWFPs. We developed an economic model to compare the costs associated with CWFPs with treatment savings achieved through averted tooth decay. Treatment savings included those associated with direct medical costs and indirect nonmedical costs (i.e., patient time spent on dental visit). We estimated program costs and treatment savings for each water system in Colorado in 2003 dollars. We obtained parameter estimates from published studies, national surveys, and other sources. We calculated net costs for Colorado water systems with existing CWFPs and potential net costs for systems without CWFPs. The analysis includes data for 172 public water systems in Colorado that serve populations of 1000 individuals or more. We used second-order Monte Carlo simulations to evaluate the inherent uncertainty of the model assumptions on the results and report the 95% credible range from the simulation model. We estimated that Colorado CWFPs were associated with annual savings of 148.9 million dollars (credible range, 115.1 million dollars to 187.2 million dollars) in 2003, or an average of 60.78 dollars per person (credible range, 46.97 dollars dollars to 76.41 dollars). We estimated that Colorado would save an additional 46.6 million dollars (credible range, 36.0 dollars to 58.6 dollars million) annually if CWFPs were implemented in the 52 water systems without such programs and for which fluoridation is recommended. Colorado realizes significant annual savings from CWFPs; additional savings and reductions in morbidity could be achieved if

  4. Review of Available Water-Quality Data for the Southern Colorado Plateau Network and Characterization of Water Quality in Five Selected Park Units in Arizona, Colorado, New Mexico, and Utah, 1925 to 2004

    USGS Publications Warehouse

    Brown, Juliane B.

    2008-01-01

    Historical water-quality data in the National Park Service Southern Colorado Plateau Network have been collected irregularly and with little followup interpretation, restricting the value of the data. To help address these issues, to inform future water-quality monitoring planning efforts, and to address relevant National Park Service Inventory and Monitoring Program objectives, the U.S. Geological Survey, in cooperation with the National Park Service, compiled, reviewed, and summarized available historical water-quality data for 19 park units in the Southern Colorado Plateau Network. The data are described in terms of availability by major water-quality classes, park unit, site type, and selected identified water sources. The report also describes the geology, water resources, water-quality issues, data gaps, and water-quality standard exceedances identified in five of the park units determined to be of high priority. The five park units are Bandelier National Monument in New Mexico, Canyon de Chelly National Monument in Arizona, Chaco Culture National Historical Park in New Mexico, Glen Canyon National Recreation Area in Arizona and Utah, and Mesa Verde National Park in Colorado. Statistical summaries of water-quality characteristics are presented and considerations for future water-quality monitoring are provided for these five park units.

  5. The Colorado Plateau III: integrating research and resources management for effective conservation

    USGS Publications Warehouse

    Sogge, Mark K.; van Riper, Charles

    2008-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers an area of 130,000 square miles. The relatively high semi-arid province boasts nine national parks, sixteen national monuments, many state parks, and dozens of wilderness areas. With the highest concentration of parklands in North America and unique geological and ecological features, the area is of particular interest to researchers. Derived from the Eighth Biennial Conference of Research on the Colorado Plateau, this third volume in a series of research on the Colorado Plateau expands upon the previous two books. This volume focuses on the integration of science into resource management issues, summarizes what criteria make a successful collaborative effort, outlines land management concerns about drought, provides summaries of current biological, sociological, and archaeological research, and highlights current environmental issues in the Four Corner States of Arizona, New Mexico, Colorado, and Utah. With broad coverage that touches on topics as diverse as historical aspects of pronghorn antelope movement patterns through calculating watershed prescriptions to the role of wind-blown sand in preserving archaeological sites on the Colorado River, this volume stands as a compendium of cuttingedge management-oriented research on the Colorado Plateau. The book also introduces, for the first time, tools that can be used to assist with collaboration efforts among landowners and managers who wish to work together toward preserving resources on the Colorado Plateau and offers a wealth of insights into land management questions for many readers, especially people interested in the natural history, biology, anthropology, wildlife, and cultural management issues of the region.

  6. 76 FR 43803 - Prevailing Rate Systems; Redefinition of the Northeastern Arizona and Southern Colorado...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Colorado appropriated fund Federal Wage System (FWS) wage areas. The final rule redefines Dolores, Montrose... Personnel Management (OPM) issued a proposed rule (76 FR 9694) to redefine Dolores, Montrose, Ouray, San... Application. Survey area plus: Colorado: Dolores Gunnison (Only includes the Curecanti National Recreation...

  7. East Peak Fire Burn Scar, Colorado [annotated

    NASA Image and Video Library

    2017-12-08

    On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Lightning ignited the blaze on June 19, 2013. By June 25, it had burned nearly 13,500 acres (5,500 hectares). NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland. Instrument: Landsat 8 - OLI More images from this event: 1.usa.gov/14DesQC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Research on the Mechanism of Cross Regional Grassland Ecological Compensation

    NASA Astrophysics Data System (ADS)

    Yang, Ran; Ma, Jun

    2018-01-01

    In recent years, grassland environmental damage has become serious, and grassland resources protection task has become heavy, grassland ecological compensation has become an effective way to solve this problem; but the current grassland ecological compensation standards were low, the effect is poor. The fundamental reason is the model of administrative division destroys the integrity of grassland. Based on the analysis of the status quo of grassland compensation, this paper tries to protect the grassland integrity, breaks the administrative division restriction, implements the space regulation, constructs the framework of cross-regional grassland ecological compensation mechanism, describes its operation process. It provides new way to realize the sustainable development of the grassland environment.

  9. Estimated use of water in Colorado, 1985

    USGS Publications Warehouse

    Litke, D.W.; Appel, C.L.

    1989-01-01

    Water-use data was collected for the State of Colorado as part of the U.S. Geological Survey 's National Water-Use Information Program. An estimated 20,800 million gal/day of water were used in Colorado during 1985. 89% came from surface water sources and 11% came from groundwater sources. Public supply systems provided 4% of all water used in Colorado during 1985, but provided 80% of all commercial, domestic, and industrial water used. An estimated 4,840 million gal/day of water were consumed during 1985; return flows amounted to 16,000 million gallons per day. Of all water used, 60% was used for irrigation, 35% for hydroelectric power generation, and the remaining 5% for commercial, domestic, industrial, livestock, mining, and other uses. The most water was used in Montrose (3,260 million gal/day), Mesa (1,950 million gal/day), and Gunnison (1,520 million gal/day) Counties. The predominant water uses in these counties were hydroelectric power and irrigation. (USGS)

  10. Some insights on grassland health assessment based on remote sensing.

    PubMed

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  11. Some Insights on Grassland Health Assessment Based on Remote Sensing

    PubMed Central

    Xu, Dandan; Guo, Xulin

    2015-01-01

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment. PMID:25643060

  12. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    USGS Publications Warehouse

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  13. Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado

    USGS Publications Warehouse

    Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.

    2003-01-01

    Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it

  14. Grassland responses to precipitation extremes

    USDA-ARS?s Scientific Manuscript database

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  15. Impacts of all terrain vehicles (ATV) on National Forest lands and grasslands [Abstract

    Treesearch

    Randy B. Foltz; Kristina A. Yanosek

    2005-01-01

    The US Forest Service has identified unmanaged all terrain vehicle (ATV) use as a threat to forested lands and grasslands. Some undesirable impacts include severely eroded soils, usercreated unplanned roads, disrupted wetland ecosystems, as well as general habitat destruction and degraded water quality throughout forested lands. More insight on how ATV use affects...

  16. Use of the Cropland Data Layer to monitor grassland conversion in the U.S. Western Corn Belt (Invited)

    NASA Astrophysics Data System (ADS)

    Wright, C.; Wimberly, M. C.

    2013-12-01

    The U.S. Department of Agriculture's Cropland Data Layer (CDL) provides new opportunities for monitoring land cover/land use change (LCLUC) related to U.S. agricultural policy, bioenergy development, and recent commodity price increases. We used the CDL to assess the conversion of grasslands to corn/soy cultivation along the western periphery of the U.S. Corn Belt. Here, we find rapid grassland conversion (1-5% annually) as the Corn Belt expands westward and northward into North Dakota and South Dakota. This LCLUC is occurring in close proximity to wetlands in the Prairie Pothole Region. In most counties in the eastern Dakotas, grassland conversion exceeds declines in land area enrolled in the Conservation Reserve Program (CRP). Within the core corn/soy growing area in Iowa and southern Minnesota, LCLUC is occurring on marginal lands characterized by high erosion potential and less-productive soils. In Minnesota, particularly, corn/soy production is increasing on lands previously too wet to farm without an expansion of agricultural drainage practices. Over the period 2006-2011, we estimate a net greenhouse gas impact of grassland conversion in the Western Corn Belt of approximately 4*106 metric tons CO2-equivalent. Although not designed for monitoring grasslands, we suggest that the CDL can be used judiciously to identify grassland conversion at farm- to sub-county scales, and, in conjunction with other national-level datasets (e.g., the National Wetlands Inventory and SSURGO database), to provide timely feedback to policymakers and the public on likely environmental impacts of U.S. agricultural policies and shifting market forces.

  17. Development of a grazing monitoring program for Great Sand Dunes National Park, Colorado

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Schoenecker, Kathryn A.

    2015-08-07

    National parks in the United States face the difficult task of managing natural resources within park boundaries that are influenced to a large degree by historical land uses or by forces outside of the park’s protection and mandate. Among the many challenges faced by parks is management of wildlife populations that occupy larger landscapes than individual park units but that concentrate within park lands both seasonally and opportunistically. Great Sand Dunes National Park and Preserve in south-central Colorado is currently developing an Ungulate Management Plan to address management of elk and bison populations within the park. Execution of the Ungulate Management Plan will require monitoring and assessment of habitat conditions in areas that appear sensitive to ungulate use or heavily used by elk and bison. Several sources of information on the various habitats within the park and their use and response to foraging elk and bison exist from recent and on-going research in Great Sand Dunes National Park and Preserve as well as from studies in other regions of the Intermountain West. All of this data can be used to inform the planning process. This report provides background on vegetation types that make up the primary bison and elk ranges in Great Sand Dunes National Park and Preserve and on the potential effects of ungulate grazing and browsing in these specific vegetation communities (both locally and regionally). The report also provides a review of the elements necessary to develop a long-term monitoring program for Great Sand Dunes National Park and Preserve that addresses both the responses to ungulate herbivory seen in important habitats in the park and the amount and patterns of ungulate habitat use.

  18. North American Grasslands & Biogeographic Regions

    USDA-ARS?s Scientific Manuscript database

    North American grasslands are the product of a long interaction among land, people, and animals. Covering over one billion hectares across Canada, the United States, and Mexico, a defining trait of the realm is its vast surface area. From subtropical grasslands interspersed with wetlands in the sout...

  19. Air quality and human health impacts of grasslands and shrublands in the United States

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.

    2018-06-01

    Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.

  20. USDA-ARS Colorado maize water productivity data set

    USDA-ARS?s Scientific Manuscript database

    The USDA-Agricultural Research Service conducted a water productivity field trial for irrigated maize in northeastern Colorado in 2008 through 2011. The dataset, which is available online from the USDA National Agricultural Library, includes measurements of irrigation, precipitation, soil water sto...

  1. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    PubMed

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  2. Media Advisory -- Director of National Science Foundation to Visit Colorado

    Science.gov Websites

    Mines Green Center located 924 16th Street, Golden. Media may also join Dr. Lane at any of the following faculty and federal laboratory scientists, Colorado School of Mines Green Center, Metals Hall (180A School of Mines Green Center, Ted Adams Room (270), Golden. Maps and parking information are available

  3. Avian assemblages on altered grasslands

    USGS Publications Warehouse

    Knopf, Fritz L.

    1994-01-01

    Grasslands comprise 17% of the North American landscape but provide primary habitat for only 5% of native bird species. On the Great Plains, grasslands include an eastern component of tall grasses and a western component of short grasses, both of which have been regionally altered by removing native grazers, plowing sod, draining wetlands, and encouraging woody vegetation. As a group, populations of endemic bird species of the grasslands have declined more than others (including neotropical migrants) in the last quarter century. Individually, populations of the Upland Sandpiper and McCown’s Longspur have increased; the wetlands-associated Marbled Godwit and Wilson’s Phalarope appear stable; breeding ranges are shifting for the Ferruginous Hawk, Mississippi Kite, Short-eared Owl, Upland Sandpiper, Horned Lark, Vesper, Savannah, and Henslow’s sparrows, and Western Meadowlark; breeding habitats are disappearing locally for Franklin’s Gull, Dickcissel, Henslow’s and Grasshopper sparrows. Lark Bunting, and Eastern Meadowlark; and populations are declining throughout the breeding ranges for Mountain Plover, and Cassin’s and Clay-colored sparrows. Declines of these latter three species, and also the Franklin’s Gull, presumably are due to ecological phenomena on their respective wintering areas. Unlike forest species that winter in the neotropics, most birds that breed in the North American grasslands also winter on the continent and problems driving declines in grassland species are associated almost entirely with North American processes. Contemporary programs and initiatives hold promise for the conservation of breeding habitats for these birds. Ecological ignorance of wintering habits and habitats clouds the future of the endemic birds of grasslands, especially those currently experiencing widespread declines across breeding locales.

  4. The Public Health Framework of Legalized Marijuana in Colorado.

    PubMed

    Ghosh, Tista; Van Dyke, Mike; Maffey, Ali; Whitley, Elizabeth; Gillim-Ross, Laura; Wolk, Larry

    2016-01-01

    On January 1, 2014, Colorado became the first state in the nation to sell legal recreational marijuana for adult use. As a result, Colorado has had to carefully examine potential population health and safety impacts as well as the role of public health in response to legalization. We have discussed an emerging public health framework for legalized recreational marijuana. We have outlined this framework according to the core public health functions of assessment, policy development, and assurance. In addition, we have discussed challenges to implementing this framework that other states considering legalization may face.

  5. School Health Education in Colorado: 1988 Colorado School Health Education Survey.

    ERIC Educational Resources Information Center

    Myers, Mary Lou; Doyen, Mary A., Ed.

    The goals of the 1988 Colorado Health Education Survey were: (1) to document the status of health education in Colorado schools by surveying all school districts in the state as well as by sampling teachers; and (2) to make recommendations based upon study findings available for consideration by the Colorado Department of Education. Part 1, the…

  6. Habitat associations of migrating and overwintering grassland birds in southern Texas

    USGS Publications Warehouse

    Igl, L.D.; Ballard, B.M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  7. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    USGS Publications Warehouse

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  8. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.

    PubMed

    Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C

    2015-11-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict

  9. Assessment of Historical Water-Quality Data for National Park Units in the Rocky Mountain Network, Colorado and Montana, through 2004

    USGS Publications Warehouse

    Mast, M. Alisa

    2007-01-01

    This report summarizes historical water-quality data for six National Park units that compose the Rocky Mountain Network. The park units in Colorado are Florissant Fossil Beds National Monument, Great Sand Dunes National Park and Preserve, and Rocky Mountain National Park; and in Montana, they are Glacier National Park, Grant-Kohrs Ranch National Historic Site, and Little Bighorn Battlefield National Monument. This study was conducted in cooperation with the Inventory and Monitoring Program of the National Park Service to aid in the design of an effective and efficient water-quality monitoring plan for each park. Data were retrieved from a number of sources for the period of record through 2004 and compiled into a relational database. Descriptions of the environmental setting of each park and an overview of the park's water resources are presented. Statistical summaries of water-quality constituents are presented and compared to aquatic-life and drinking-water standards. Spatial, seasonal, and temporal patterns in constituent concentrations also are described and suggestions for future water-quality monitoring are provided.

  10. Colorado transit resource directory

    DOT National Transportation Integrated Search

    2003-11-01

    The Colorado Transit Resource Directory is a joint publication of the Colorado Association of Transit Agencies (CASTA), the Colorado Department of Transportation (CDOT) and the Federal Transit Administration (FTA). It is intended as a resource and ha...

  11. NPDES Permit for Transit Waste's Bondad Landfill in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-R050005, Transit Waste, LLC is authorized to discharge from the Bondad Landfill facility in La Plata County, Colorado, to an unnamed tributary of the Animas River.

  12. UNCOMPAHGRE PRIMITIVE AREA, COLORADO.

    USGS Publications Warehouse

    Luedke, R.G.; Sheridan, M.J.

    1984-01-01

    A mineral-resource study was made of that part of the Uncompahgre National Forest, Colorado constituting the officially designated primitive area. Because the primitive area and its southern border zone contained operating mines producing gold, silver, copper, lead, zinc, and minor amounts of a few other metals, and had been a part of a highly productive mining region, the area was concluded to have large segments of both probable and substantiated mineral-resource potential. No energy resources were identified in the study.

  13. Habitat and landscape effects on abundance of Missouri's grassland birds

    USGS Publications Warehouse

    Jacobs, R.B.; Thompson, F.R.; Koford, Rolf R.; La Sorte, F.A.; Woodward, H.D.; Fitzgerald, J.A.

    2012-01-01

    Of 6 million ha of prairie that once covered northern and western Missouri, <36,500 ha remain, with planted, managed, and restored grasslands comprising most contemporary grasslands. Most grasslands are used as pasture or hayfields. Native grasses largely have been replaced by fescue (Festuca spp.) on most private lands (almost 7 million ha). Previously cropped fields set aside under the Conservation Reserve Program (CRP) varied from a mix of cool-season grasses and forbs, or mix of native warm-season grasses and forbs, to simple tall-grass monocultures. We used generalized linear mixed models and distance sampling to assess abundance of 8 species of breeding grassland birds on 6 grassland types commonly associated with farm practices in Missouri and located in landscapes managed for grassland-bird conservation. We selected Bird Conservation Areas (BCAs) for their high percentage of grasslands and grassland-bird species, and for <5% forest cover. We used an information-theoretic approach to assess the relationship between bird abundance and 6 grassland types, 3 measures of vegetative structure, and 2 landscape variables (% grassland and edge density within a 1-km radius). We found support for all 3 levels of model parameters, although there was less support for landscape than vegetation structure effects likely because we studied high-percentage-grassland landscapes (BCAs). Henslow's sparrow (Ammodramus henslowii) counts increased with greater percentage of grassland, vegetation height-density, litter depth, and shrub cover and lower edge density. Henslow's sparrow counts were greatest in hayed native prairie. Dickcissel (Spiza americana) counts increased with greater vegetation height-density and were greatest in planted CRP grasslands. Grasshopper sparrow (A. savannarum) counts increased with lower vegetation height, litter depth, and shrub cover. Based on distance modeling, breeding densities of Henslow's sparrow, dickcissel, and grasshopper sparrow in the 6

  14. Habitat and landscape effects on abundance of Missouri's grassland birds

    USGS Publications Warehouse

    Jacobson, Robert B.; Thompson, Frank R.; Koford, Rolf R.; La Sorte, Frank A.; Woodward, Hope D.; Fitzgerald, Jane A.

    2012-01-01

    Of 6 million ha of prairie that once covered northern and western Missouri, <36,500 ha remain, with planted, managed, and restored grasslands comprising most contemporary grasslands. Most grasslands are used as pasture or hayfields. Native grasses largely have been replaced by fescue (Festuca spp.) on most private lands (almost 7 million ha). Previously cropped fields set aside under the Conservation Reserve Program (CRP) varied from a mix of cool-season grasses and forbs, or mix of native warm-season grasses and forbs, to simple tall-grass monocultures. We used generalized linear mixed models and distance sampling to assess abundance of 8 species of breeding grassland birds on 6 grassland types commonly associated with farm practices in Missouri and located in landscapes managed for grassland-bird conservation. We selected Bird Conservation Areas (BCAs) for their high percentage of grasslands and grassland-bird species, and for <5% forest cover. We used an information-theoretic approach to assess the relationship between bird abundance and 6 grassland types, 3 measures of vegetative structure, and 2 landscape variables (% grassland and edge density within a 1-km radius). We found support for all 3 levels of model parameters, although there was less support for landscape than vegetation structure effects likely because we studied high-percentage-grassland landscapes (BCAs). Henslow's sparrow (Ammodramus henslowii) counts increased with greater percentage of grassland, vegetation height-density, litter depth, and shrub cover and lower edge density. Henslow's sparrow counts were greatest in hayed native prairie. Dickcissel (Spiza americana) counts increased with greater vegetation height-density and were greatest in planted CRP grasslands. Grasshopper sparrow (A. savannarum) counts increased with lower vegetation height, litter depth, and shrub cover. Based on distance modeling, breeding densities of Henslow's sparrow, dickcissel, and grasshopper sparrow in the 6

  15. Grassland agriculture

    USDA-ARS?s Scientific Manuscript database

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  16. NPDES Permit for Crossfire-Bonds Gravel Pit in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-0035024, the Crossfire-Bonds Gravel Pit is authorized to discharge from its wastewater treatement facility in Plata County, Colorado, to Deer Canyon, a tributary of the Animas River.

  17. East Peak Fire Burn Scar, Colorado [high res

    NASA Image and Video Library

    2017-12-08

    On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Lightning ignited the blaze on June 19, 2013. By June 25, it had burned nearly 13,500 acres (5,500 hectares). NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland. Instrument: Landsat 8 - OLI More images from this event: 1.usa.gov/14DesQC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Importance and functions of European grasslands.

    PubMed

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  19. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Treesearch

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  20. Effects of all-terrain vehicles on forested lands and grasslands

    Treesearch

    Dexter Meadows; Randy Foltz; Nancy Geehan

    2008-01-01

    As the United States population has grown, so has all-terrain-vehicle (ATV) use on national forests and grasslands and other public lands. Annual sales of ATVs have increased over 272 percent since 1994 to an estimated 876,000 units in 2005 (Specialty Vehicle Institute of America - Special Report Summer 2006). ATVs are a popular choice for outdoor recreation. According...

  1. Negative global phosphorus budgets challenge sustainable intensification of grasslands

    PubMed Central

    Sattari, S. Z.; Bouwman, A. F.; Martinez Rodríguez, R.; Beusen, A. H. W.; van Ittersum, M. K.

    2016-01-01

    Grasslands provide grass and fodder to sustain the growing need for ruminant meat and milk. Soil nutrients in grasslands are removed through withdrawal in these livestock products and through animal manure that originates from grasslands and is spread in croplands. This leads to loss of soil fertility, because globally most grasslands receive no mineral fertilizer. Here we show that phosphorus (P) inputs (mineral and organic) in global grasslands will have to increase more than fourfold in 2050 relative to 2005 to achieve an anticipated 80% increase in grass production (for milk and meat), while maintaining the soil P status. Combined with requirements for cropland, we estimate that mineral P fertilizer use must double by 2050 to sustain future crop and grassland production. Our findings point to the need to better understand the role of grasslands and their soil P status and their importance for global food security. PMID:26882144

  2. NASA Helps Build Colorado Economy

    NASA Image and Video Library

    2010-12-13

    Colorado Association for Manufacturing and Technology (CAMT) CEO Elaine Thorndike, seated left, and NASA Deputy Administrator Lori Garver, seated right, sign an agreement at the Colorado State Capitol in Denver on Monday, Dec. 13, 2010, that created a Technology Acceleration Program and Regional Innovation Cluster for Aerospace and Clean Energy. Looking on from left, Executive Director, Colorado Office of Economic Development and International Trade Don Marostica, Colorado State Representative Su Ryden, Colorado State Senate President Brandon Schaffer, Representative from U.S. Senator Udall's office Jimmy Haugue, NIST/MEP Director Roger Kilmer and Colorado State Governor Bill Ritter. A manufacturing park focused on rapid new product development and production will be developed to assist growing Colorado businesses while promoting the commercialization of technology developed for the space program. Photo Credit: (NASA/Bill Ingalls)

  3. Grassland birds: An overview of threats and recommended management strategies

    USGS Publications Warehouse

    Vickery, P.D.; Herkert, J.R.; Knopf, F.L.; Ruth, J.; Keller, C.E.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Grassland ecosystems are dependent on periodic disturbance for habitat maintenance. Historically, grazing by native herbivores and prairie fires were the agents principally responsible for maintaining grassland areas. However, elimination of native herbivores, wide-spread fire suppression, and conversion for agriculture have greatly altered grasslands in the United States and Canada. Because of these landscape changes, many grassland birds are increasingly dependent on land managers for habitat creation, maintenance, and health. Grazing, prescribed burning, and mowing/haying are the most frequently used, and versatile, grassland management techniques. Grassland birds prefer a wide range of grass heights and densities, with some species preferring short sparse vegetation, and others preferring taller, more dense vegetation. Due to differences in species habitat preferences and regional differences in soils and floristics, the responses of individual grassland species to specific grassland management practices can be variable and often are regionally dependent. As a result, management of grassland areas is best directed toward the creation of a mosaic of grassland habitat types. This habitat mosaic is probably best maintained through some type of rotational management system in which sections of large grassland areas receive management on a regular schedule. Such a rotational system would provide a variety of habitat types in every year, would ensure the availability of suitable habitat for birds at either end of the grassland management spectrum, and also would provide habitat for birds whose preferences lie between these extremes.

  4. [Research progress and trend on grassland agroecology].

    PubMed

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  5. Response of Biological Soil Crust Diazotrophs to Season, Altered Summer Precipitation, and Year-Round Increased Temperature in an Arid Grassland of the Colorado Plateau, USA

    DOE PAGES

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; ...

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33 Tg y -1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3 × 10 6 to 1 × 108 g -1 soil, and nifH from heterocystous cyanobacteriamore » closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.« less

  6. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    USGS Publications Warehouse

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; Johnson, Shannon L.; Ticknor, Lawrence O.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33Tg y-1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3×106 to 1×8 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  7. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the colorado plateau, USA.

    PubMed

    Yeager, Chris M; Kuske, Cheryl R; Carney, Travis D; Johnson, Shannon L; Ticknor, Lawrence O; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (∼33 Tg y(-1)), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3 × 10(6) to 1 × 10(8) g(-1) soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. SpirirestisnifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2-3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  8. Comparison of precipitation chemistry in the Central Rocky Mountains, Colorado, USA

    USGS Publications Warehouse

    Heuer, K.; Tonnessen, K.A.; Ingersoll, G.P.

    2000-01-01

    Volume-weighted mean concentrations of nitrate (NO3-), ammonium (NH4+), and sulfate (SO42-) in precipitation were compared at high-elevation sites in Colorado from 1992 to 1997 to evaluate emission source areas to the east and west of the Rocky Mountains. Precipitation chemistry was measured by two sampling methods, the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and snowpack surveys at maximum accumulation. Concentrations of NO3- and SO42- in winter precipitation were greater on the western slope of the Rockies, and concentrations of NO3- and NH4+ in summer precipitation were greater on the eastern slope. Summer concentrations in general were almost twice as high as winter concentrations. Seasonal weather patterns in combination with emission source areas help to explain these differences. This comparison shows that high-elevation ecosystems in Colorado are influenced by air pollution emission sources located on both sides of the Continental Divide. It also suggests that sources of nitrogen and sulfur located east of the Divide have a greater influence on precipitation chemistry in the Colorado Rockies. Copyright (C) 2000.

  9. The Public Health Framework of Legalized Marijuana in Colorado

    PubMed Central

    Van Dyke, Mike; Maffey, Ali; Whitley, Elizabeth; Gillim-Ross, Laura; Wolk, Larry

    2016-01-01

    On January 1, 2014, Colorado became the first state in the nation to sell legal recreational marijuana for adult use. As a result, Colorado has had to carefully examine potential population health and safety impacts as well as the role of public health in response to legalization. We have discussed an emerging public health framework for legalized recreational marijuana. We have outlined this framework according to the core public health functions of assessment, policy development, and assurance. In addition, we have discussed challenges to implementing this framework that other states considering legalization may face. PMID:26562117

  10. Measuring grassland structure for recovery of grassland species at risk

    NASA Astrophysics Data System (ADS)

    Guo, Xulin; Gao, Wei; Wilmshurst, John

    2005-09-01

    An action plan for recovering species at risk (SAR) depends on an understanding of the plant community distribution, vegetation structure, quality of the food source and the impact of environmental factors such as climate change at large scale and disturbance at small scale, as these are fundamental factors for SAR habitat. Therefore, it is essential to advance our knowledge of understanding the SAR habitat distribution, habitat quality and dynamics, as well as developing an effective tool for measuring and monitoring SAR habitat changes. Using the advantages of non-destructive, low cost, and high efficient land surface vegetation biophysical parameter characterization, remote sensing is a potential tool for helping SAR recovery action. The main objective of this paper is to assess the most suitable techniques for using hyperspectral remote sensing to quantify grassland biophysical characteristics. The challenge of applying remote sensing in semi-arid and arid regions exists simply due to the lower biomass vegetation and high soil exposure. In conservation grasslands, this problem is enhanced because of the presence of senescent vegetation. Results from this study demonstrated that hyperspectral remote sensing could be the solution for semi-arid grassland remote sensing applications. Narrow band raw data and derived spectral vegetation indices showed stronger relationships with biophysical variables compared to the simulated broad band vegetation indices.

  11. Land tenure reform and grassland degradation in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Liu, Min; Dries, Liesbeth; Heijman, Wim; Huang, Jikun; Zhu, Xueqin; Deng, Xiangzheng

    2017-04-01

    Since the start of the land tenure reform in the pastoral areas of China in the 1980s, grassland use rights have increasingly been assigned to individual households and subsequently more grasslands have been in private use. However, in the same period, most of the grasslands in China have experienced degradation. The question that this paper tries to address is whether the land tenure reform plays a significant role in grassland degradation. It is answered by an empirical analysis of the impact of land tenure reform on the changes in grassland condition, using data from 60 counties in Inner Mongolia between 1985 and 2008. Grassland condition is presented by grassland quantity and quality using spatial information based on remote sensing. The timing of the assignment of grassland use rights and the timing of the actual adoption of private use by households differ among counties. These timing differences and differences in grassland condition among counties allow disentangling the impact of the land tenure reform. A fixed effects model is used to control for climate, agricultural activity and the time-invariant heterogeneity among counties. The model results show that the private use of grasslands following the land tenure reform has had significantly negative effects on grassland quality and quantity in Inner Mongolia. Moreover, the negative effects did not disappear even after several years of experience with private use. In conclusion, our analysis reveals that the land tenure reform, namely privatisation of grassland use rights, is a significant driver of grassland degradation in Inner Mongolia in a long term, which presents "a tragedy of privatisation", as opposed to the well-known "tragedy of the commons".

  12. Exacerbated degradation and desertification of grassland in Central Asia

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Xiao, X.; Biradar, C. M.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R. J.

    2016-12-01

    Grassland desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies generally did not separate the two components and analyzed them based on time series vegetation indices, which however cannot provide a clear and comprehensive picture for desertification. Here we proposed a desertification zone classification-based grassland degradation strategy to detect the grassland desertification process in Central Asia. First, annual spatially explicit maps of grasslands and deserts were generated to track the conversion between grasslands and deserts. The results showed that 13 % of grasslands were converted to deserts from 2000 to 2014, with an increasing desertification trend northward in the latitude range of 43-48°N. Second, a fragile and unstable Transitional zone was identified in southern Kazakhstan based on desert frequency maps. Third, gradual vegetation dynamics during the thermal growing season (EVITGS) were investigated using linear regression and Mann-Kendall approaches. The results indicated that grasslands generally experienced widespread degradation in Central Asia, with an additional hotspot identified in the northern Kazakhstan. Finally, attribution analyses of desertification were conducted by correlating vegetation dynamics with three different drought indices (Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), and Drought Severity Index (DSI)), precipitation, and temperature, and showed that grassland desertification was exacerbated by droughts, and persistent drought was the main factor for grassland desertification in Central Asia. This study provided essential information for taking practical actions to prevent the further desertification and targeting right spots for better intervention to combat the land degradation in the region.

  13. Vegetation-climate feedbacks in the conversion of tropical savanna to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, W.A.; Jackson, R.B.

    2000-05-01

    Tropical savannas have been heavily impacted by human activity, with large expanses transformed from a mixture of trees and grasses to open grassland and agriculture. The National Center for Atmospheric Research (NCAR) CCM3 general circulation model, coupled with the NCAR Land Surface Model, was used to simulate the effects of this conversion on regional climate. Conversion of savanna to grassland reduced precipitation by approximately 10% in four of the five savanna regions under study; only the northern African savannas showed no significant decline. Associated with this decline was an increase in the frequency of dry periods within the wet season,more » a change that could be particularly damaging to shallow-rooted crops. The overall decline in precipitation is almost equally attributable to changes in albedo and roughness length. Conversion to grassland increased mean surface air temperature of all the regions by 0.5 C, primarily because of reductions in surface roughness length. Rooting depth, which decreases dramatically with the conversion of savanna to grassland, contributed little to the overall effect of savanna conversion, but deeper rooting had a small positive effect on latent heat flux with a corresponding reduction in sensible heat flux. The authors propose that the interdependence of climate and vegetation in these regions is manifested as a positive feedback loop in which anthropogenic impacts on savanna vegetation are exacerbated by declines in precipitation.« less

  14. Business Metrics for High-Performance Homes: A Colorado Springs Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.; Jones, A.

    This report explores the correlation between energy efficiency and the business success of home builders by examining a data set of builders and homes in the Colorado Springs, Colorado, market between 2006 and 2014. During this time, the Great Recession of 2007 to 2009 occurred, and new-home sales plummeted both nationally and in Colorado Springs. What is evident from an analysis of builders and homes in Colorado Springs is that builders who had Home Energy Rating System (HERS) ratings performed on some or all of their homes during the Recession remained in business during this challenging economic period. Many buildersmore » who did not have HERS ratings performed on their homes at that time went out of business or left the area. From the analysis presented in this report, it is evident that a correlation exists between energy efficiency and the business success of home builders, although the reasons for this correlation remain largely anecdotal and not yet clearly understood.« less

  15. Colorado geology then and now: following the route of the Colorado Scientific Society's 1901 trip through central Colorado

    USGS Publications Warehouse

    Simmons, Beth

    2013-01-01

    In 1901, Charles Van Hise asked Samuel Emmons and Whitman Cross to organize a grand excursion across Colorado as part of the combined meeting of the American Association for the Advancement of Science, GSA, and the Colorado Scientific Society (CSS). This trip replays part of that 10-day excursion across Colorado. Shortened to three days, this trip takes in some of the same sites as the 1901 trip, plus adds others of interest along the route where CSS members are reinventing geological interpretations. The trip will follow the precedent set in 1901; CSS members will serve as “site or stop hosts” in addition to the trip leader and drivers. While walking in the steps of the most famous of our profession we will also see some of the most magnificent scenery of Colorado.

  16. Management of water resources for grasslands

    USDA-ARS?s Scientific Manuscript database

    Grasslands support essential food and fiber production, biodiversity, and water function. In general, urban areas and cropland occupies the most fertile, flattest, and humid lands, while planted or native grasslands are located on drier, steeper, or less fertile areas of any region. With continuin...

  17. Grassland bats and land management in the Southwest

    Treesearch

    Alice L. Chung-MacCoubrey

    1996-01-01

    Of the bat research that has been conducted in the Southwestern states, few studies have addressed species inhabiting grasslands and the potential effects of management activities on these populations. Up to 17 bat species may be found regularly or occasionally in Southwestern grasslands or short-grass prairie. Main habitat requirements of grassland-dwelling bats are...

  18. The Status of Child Nutrition Programs in Colorado.

    ERIC Educational Resources Information Center

    McMillan, Daniel C.; Vigil, Herminia J.

    This report describes federal and state child nutrition programs in effect in Colorado elementary and secondary schools. Programs discussed include the National School Lunch Program (NSLP), the School Breakfast Program (SBP), school breakfast start-up grants, the Special Milk Program, the Summer Food Service Program, and the Nutrition Education…

  19. The Status of Child Nutrition Programs in Colorado.

    ERIC Educational Resources Information Center

    McMillan, Daniel C.; Vigil, Herminia J.

    This report provides descriptive and statistical data on the status of child nutrition programs in Colorado. The report contains descriptions of the National School Lunch Program, school breakfast programs, the Special Milk Program, the Summer Food Service Program, the Nutrition Education and Training Program, state dietary guidelines, Colorado…

  20. Analysis on the Change of Grassland Coverage in the Source Region of Three Rivers during 2000-2012

    NASA Astrophysics Data System (ADS)

    Luo, Chengfeng; Wang, Jiao; Liu, Meilin; Liu, Zhengjun

    2014-03-01

    The Source Region of Three Rivers (SRTR) has very important ecological functions which form an ecological security barrier for China's Qinghai-Tibet plateau. As the biggest nationally occuring nature reserve region in China, the ecological environment here is very fragile. In SRTR the grassland coverage is an effective detector to reflect the ecological environment condition, because it records the changing process of climatic and environmental sensitively. In recent years SRTR has been suffering pressures from both nature and social pressures. With MODIS data the study monitored the grassland coverage continuously in SRTR from 2000 to 2012. The density-model was adapted to estimate grassland coverage degree firstly. Then the degree of change and the change intensity, change type were used to judge the grassland coverage change trend comprehensively. For grassland coverage there was natural change annual or within the year, and the degree of change was used to judge if there was change or not. The grassland has another important characteristic, annual fluctuation, and it can be differed from sustained changes with change type. For grassland coverage, such continuous change, like improvement or degradation, and to what extent, has more guidance sense on specific production practice. On the base of change type and degree of change, change intensity was used to identify the change trend of the grassland coverage. The analysis results from our study show that steady state and fluctuation are two main change trends for the vegetation coverage in SRTR from 2000 to 2012. The conclusion of this paper can provide references in response to environment change research and in the regional ecological environmental protection project in SRTR.

  1. Sand deposition in the Colorado River in the Grand Canyon from flooding of the Little Colorado River

    USGS Publications Warehouse

    Wiele, S.M.; Graf, J.B.; Smith, J.D.

    1996-01-01

    Methods for computing the volume of sand deposited in the Colorado River in Grand Canyon National Park by floods in major tributaries and for determining redistribution of that sand by main-channel flows are required for successful management of sand-dependent riparian resources. We have derived flow, sediment transport, and bed evolution models based on a gridded topography developed from measured channel topography and used these models to compute deposition in a short reach of the river just downstream from the Little Colorado River, the largest tributary in the park. Model computations of deposition from a Little Colorado River flood in January 1993 were compared to bed changes measured at 15 cross sections. The total difference between changes in cross-sectional area due to deposition computed by the model and the measured changes was 6%. A wide reach with large areas of recirculating flow and large depressions in the main channel accumulated the most sand, whereas a reach with similar planimetric area but a long, narrow shape and relatively small areas of recirculating flow and small depressions in the main channel accumulated only about a seventh as much sand. About 32% of the total deposition was in recirculation zones, 65% was in the main channel, and 3% was deposited along the channel margin away from the recirculation zone. Overall, about 15% of the total input of sand from this Little Colorado River flood was deposited in the first 3 km below the confluence, suggesting that deposition of the flood-derived material extended for only several tens of kilometers downstream from the confluence.

  2. Incorporating grassland management in a global vegetation model

    NASA Astrophysics Data System (ADS)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate

  3. National forests

    Treesearch

    Linda A. Joyce; Geoffry M. Blate; Jeremy S. Littell; Steven G. McNulty; Constance I. Millar; Susanne C. Moser; Ronald P. Neilson; Kathy O' Halloran; David L. Peterson

    2008-01-01

    The National Forest System (NFS) is composed of 155 national forests (NFs) and 20 national grasslands (NGs), which encompass a wide range of ecosystems, harbor much of the nation’s biodiversity, and provide myriad goods and services. The mission of the U.S. Forest Service (USFS), which manages the NFS, has broadened from water and timber to sustaining ecosystem health...

  4. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  5. Grassland birds wintering at U.S. Navy facilities in southern Texas

    USGS Publications Warehouse

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  6. Generalizing ecological site concepts of the Colorado Plateau for landscape-level applications

    USDA-ARS?s Scientific Manuscript database

    The Colorado Plateau is an iconic landscape of the American West— containing dozens of national parks, monuments, historic sites, and several UNESCO World Heritage Sites— including some of the Nation’ s most recognizable landmarks, such as the Grand Canyon and the Arches National Park. The concentra...

  7. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range

    USGS Publications Warehouse

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.

    2016-01-01

    More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.

  8. Reproductive biology of Larrea tridentata: A comparison between core shrubland and isolated grassland plants at the Sevilleta National Wildlife Refuge, New Mexico

    Treesearch

    Rosemary L. Pendleton; Burton K. Pendleton; Karen R. Wetherill; Terry Griswold

    2008-01-01

    Expansion of diploid creosote shrubs (Larrea tridentata (Sessé & Moc. ex DC.) Coville)) into grassland sites occurs exclusively through seed production. We compared the reproductive biology of Larrea shrubs located in a Chihuahuan desert shrubland with isolated shrubs well-dispersed into the semiarid grasslands at the Sevilleta...

  9. Grassland ecosystems of the Llano Estacado

    Treesearch

    Eileen Johnson

    2007-01-01

    The Llano Estacado, or Southern High Plains, has been a grassland throughout the Quaternary. The character of this grassland has varied through time, alternating between open, parkland, and savannah as the climate has changed. Different lines of evidence are used to reconstruct the climatic regimes and ecosystems, consisting of sediments and soils, vertebrate and...

  10. Factors associated with grassland bird species richness: The relative roles of grassland area, landscape structure, and prey

    Treesearch

    Tammy L. Hamer; Curtis H. Flather; Barry R. Noon

    2006-01-01

    The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We...

  11. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Land Surface Models across Three Long-term Grassland Sites

    NASA Astrophysics Data System (ADS)

    Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.

    2017-12-01

    Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models

  12. 2011 Kids Count in Colorado! The Impact of the Great Recession on Colorado's Children

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2011

    2011-01-01

    "Kids Count in Colorado!" is an annual publication of the Colorado Children's Campaign, which provides the best available state- and county-level data to measure and track the education, health and general well-being of the state's children. "Kids Count in Colorado!" informs policy debates and community discussions, serving as…

  13. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Soussana, Jean-François; Klumpp, Katja; Sultan, Benjamin

    2017-12-01

    Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071-2100 is predicted to be 1-5.5 °C higher than that for 1971-2000. Climate change and elevated CO 2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change. Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO 2 . The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C. This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon

  14. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Treesearch

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  15. The role of grasslands in food security and climate change.

    PubMed

    O'Mara, F P

    2012-11-01

    Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and

  16. A multi-criteria targeting approach to neutral grassland conservation.

    PubMed

    Bayliss, Julian; Helyar, Alice; Lee, John T; Thompson, Stewart

    2003-02-01

    Resources for creating and managing rare habitats are limited, and a targeting approach aimed at identifying the most viable sites for habitat conservation is therefore desirable. This study developed a multi-criteria targeting approach to site conservation for two rare grassland types, based on a suite of biotic and abiotic factors managed within a Geographical Information System. A number of biotic and abiotic criteria were assessed to evaluate the biodiversity status of grassland sites. Biotic factors included species diversity, species richness and species rarity; and abiotic factors included patch area, position in the ecological unit and the influence of surrounding land use. Each criterion was given equal weighting and a final biodiversity value for each patch was calculated; the patch with the highest cumulative rank score was deemed the patch with the greatest biodiversity. Each site was then examined in relation to agricultural land under the existing management prescriptions of the Upper Thames Tributaries Environmentally Sensitive Area (UTTESA). Sites identified with high biodiversity potential, but currently not included under management prescriptions, were targeted for future inclusion in the ESA scheme. The targeting approach demonstrated how the national Lowland Meadows habitat action plan creation target of 500 ha could be achieved in the UTTESA. The fact that this target figure was so easily attained within this study area highlighted the possible underestimation of national habitat creation targets.

  17. Infrequent composted biosolids applications affect semi-arid grassland soils and vegetation.

    PubMed

    Ippolito, J A; Barbarick, K A; Paschke, M W; Brobst, R B

    2010-05-01

    Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13-14 years) and short-term (2-3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha(-1)) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0-8 cm depth pH, EC, NO(3)-N, NH(4)-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO(3)-N and NH(4)-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem. Published by Elsevier Ltd.

  18. 77 FR 15798 - Notice of Intent To Repatriate Cultural Items: The Colorado College, Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... La Poudre, Colorado Springs, CO 80903, telephone (719) 389-6201. SUPPLEMENTARY INFORMATION: Notice is... 201, 14 E. Cache La Poudre, Colorado Springs, Colorado 80903, telephone (719) 389-6201, before April...

  19. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand

  20. National forests on the edge: development pressures on America's National Forest system.

    Treesearch

    Eric M. White; Ralph J. Alig

    2007-01-01

    Nationwide, the national forest system covers 192 million acres and contains 155 national forests and 20 national grasslands. These national forest system lands provide a variety of social, cultural, and economic benefits to society. An increasing number of housing units are now located along and near the boundaries of national forests, resulting from desires to reside...

  1. Biopsychosocial law, health care reform, and the control of medical inflation in Colorado.

    PubMed

    Bruns, Daniel; Mueller, Kathryn; Warren, Pamela A

    2012-05-01

    A noteworthy attempt at health care reform was the 1992 Colorado workers' compensation reform bill, which led to the creation of what has been called "biopsychosocial laws." These laws mandated the use of treatment guidelines for patients with injury or chronic pain, which advocated a biopsychosocial model of rehabilitation, and aspired to use a "best practice" approach to controlling costs. The purpose of this study was to examine the financial impact of this health care reform process, and to test the hypothesis that this approach can be an effective strategy to contain costs while providing good care. This study utilized a dataset collected prospectively from 1992 to 2007 in 45 U.S. states for regulatory purposes. These data summarized the medical treatment and disability costs of 520,314 injured workers in Colorado, and an estimated 28.6 million injured workers nationally. As no other state passed a comparable bill, the Colorado worker compensation reform bill created a natural experiment, where a treatment group was created by legally enforceable medical treatment guidelines. In the 15 years following the implementation of the reform, the inflation of medical costs in Colorado workers' compensation was only one third that of the national average, saving an estimated $859 million on patients injured in 2007 alone. Although there were confounding variables, and causality could not be determined, these data are consistent with the hypothesis that Colorado's 1992 legislative efforts to reform workers compensation law using the biopsychosocial model worked as intended to provide good care while controlling costs. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  2. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    NASA Astrophysics Data System (ADS)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  3. 78 FR 30737 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0... FR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...: This final rule reestablishes the membership on the Colorado Potato Administrative Committee, Area No...

  4. Advancing the "Colorado Graduates" Agenda: Understanding the Dropout Problem and Mobilizing to Meet the Graduation Challenge

    ERIC Educational Resources Information Center

    Mac Iver, Martha Abele; Balfanz, Robert; Byrnes, Vaughan

    2009-01-01

    The ambitious goal set by Colorado's governor to address the state's dropout problem is a model for the nation. Helping thousands of young people to receive their high school diplomas instead of leaving school without them is a crucial step in improving the quality of life for all Colorado residents. Accomplishing this goal will require focused…

  5. Evaluation of semiarid grassland degradation in North China from multiple perspectives

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, G.; Xue, B. L.; Xu, X.

    2017-12-01

    There has been increasing interest in grassland ecosystem degradation resulting from intensive human activity and climate change, especially in arid and semiarid regions. Species composition, grassland desertification, and aboveground biomass (AGB) are used as indicators of grassland degradation in this study. We comprehensively analyzed variations in these three indicators in semiarid grassland in North China, on multiple time scales, based on MODIS products and field sampling datasets. Since 1984, species composition has become simpler and species indicative of grassland degradation, such as Potentilla acaulis and Artemisia frigida, have become dominant. These changes indicate that serious grassland degradation has occurred since 1984. Grassland degradation was also analyzed on shorter time scales. Analyses of interannual variations during 2005-2015 showed that desertification decreased and average AGB in the growth season increased over the study area, indicating that grassland was recovering. Analyses of spatial variations showed that the position of slightly desertified grassland shifted and formed a band in the west, where the lowest AGB in the growth season was recorded but tendency ratio of AGB increased from 2005 to 2015. Climatic factors had critical effects on grassland degradation, as identified by the three indicators on different time scales. The simpler species composition resulted from the increase in average temperature and decrease in average precipitation over the past 30 years. For nearly a decade, an increase in precipitation and decreases in temperature and potential evapotranspiration reduced desertification and increased AGB in the growth season overall. Consequently, there has distinct difference in grassland degradation between analysis results on above two time scales, indicating multiple perspectives should be considered to accurately assess the state and characteristics of grassland degradation.

  6. Mapping Woody Plant Encroachment in Grassland Using Multiple Source Remote Sensing images: Case Study in Oklahoma

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Zhang, Y.; Zou, Z.; Zhou, Y.; Wu, X.; Bajgain, R.

    2015-12-01

    Woody plant encroachment (mainly Juniperus virginiana, a coniferous evergreen tree) in the native grassland has been rapidly increasing in the U.S. Southern Great Plains, largely triggered by overgrazing domestic livestock, fire suppression, and changing rainfall regimes. Increasing dense woody plants have significant implications for local grassland ecosystem dynamics, such as carbon storage, soil nutrient availability, herbaceous forage production, livestock, watershed hydrology and wildlife habitats. However, very limited data are available about the spatio-temporal dynamics of woody plant encroachment to the native grassland at regional scale. Data from remotes sensing could potentially provide relevant information and improve the conversion of native grassland to woody plant encroachment. Previous studies on woody detection in grassland mainly conducted at rangeland scale using airborne or high resolution images, which is sufficient to monitor the dynamics of woody plant encroachment in local grassland. This study examined the potential of medium resolution images to detect the woody encroachment in tallgrass prairie. We selected Cleveland county, Oklahoma, US. as case study area, where eastern area has higher woody coverage than does the western area. A 25-m Phased Array Type L-band Synthetic Aperture Radar (PALSAR, N36W98) image was used to map the trees distributed in the grassland. Then, maximum enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the winter calculated from time-series Landsat images was used to identify the invaded woody species (Juniperus virginiana) through phenology-based algorithm. The resulting woody plant encroachment map was compared with the results extracted from the high resolution images provided by the National Agriculture Imagery Program (NAIP). Field photos were also used to validate the accuracy. These results showed that integrating PALSAR and Landsat had good performance to identify the

  7. Late Cenozoic Colorado River Incision and Implications for Neogene Uplift of the Colorado Rockies

    NASA Astrophysics Data System (ADS)

    Aslan, A.; Karlstrom, K. E.; Kirby, E.; Heizler, M. T.

    2012-12-01

    Basalt flows and volcanic ashes serve as a datum for calculating post-10 Ma river incision rates in western Colorado. The main picture that emerges from the data is one of regional variability of incision rates, which we hypothesize to reflect differential uplift of the Colorado Rockies during the Neogene. Maximum rates (90-180 m/Ma) and magnitudes (750-1500 m) of river incision are recorded between Grand Mesa and Glenwood Canyon, and in the Flat Tops. Minimum rates (<30 m/Ma) and magnitudes (<250 m) of river incision are associated post-Laramide normal faults within the Browns Park-Sand Wash basin in northwestern Colorado and in Middle Park of north-central Colorado. Differential uplift of the Colorado Rockies during the late Cenozoic can be inferred by comparing incision rates and magnitudes at locations upstream and downstream of knickzones. Along the Colorado River, post-10 Ma incision rates and magnitudes incision remain fairly constant (rates >100 m/Ma; magnitudes >1000 m) from Grand Mesa upstream to Gore Canyon, and then decrease markedly in Middle Park (rates <10 m/Ma; magnitudes <100 m) across the Gore Canyon knickzone. Normal-faulting of ca. 10 Ma deposits in Middle Park shows that incision rate variations partly reflect late Cenozoic faulting. Along the Yampa River, post-10 Ma incision rates and magnitudes are low (rates 15-27 m/Ma; magnitudes < 230 m) immediately upstream of Yampa Canyon, and then increase significantly (rates 96-132 m/Ma; magnitudes ~1250 m) upstream near the headwaters. We interpret this upstream increase in river incision rate and magnitude to reflect Neogene uplift of the Yampa River headwaters relative to its lower reaches. Lastly, differential late Cenozoic uplift of the Colorado Rockies is suggested by differences in the timing of regional exhumation and river incision within different drainage basins. Colorado River incision and regional exhumation occurred between 9.8 and 7.8 Ma. In contrast, Yampa River incision began between

  8. Will Vouchers Arrive in Colorado?: The Courts Intervene

    ERIC Educational Resources Information Center

    Fusarelli, Lance D.

    2004-01-01

    In April 2003 the Colorado legislature created a school voucher program that has the potential to become one of the largest in the nation. Initially limiting the number of children eligible for vouchers to only 1% of the student population in each of the 11 low-performing school districts targeted by the legislation, or about 3,400 students…

  9. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Gang, Chengcheng; Zhou, Liang; Chen, Yizhao; Li, Jianlong; Ju, Weimin; Odeh, Inakwu

    2014-02-01

    Grasslands, one of the most widespread land cover types in China, are of great importance to natural environmental protection and socioeconomic development. An accurate quantitative assessment of the effects of inter-annual climate change and human activities on grassland productivity has great theoretical significance to understanding the driving mechanisms of grassland degradation. Net primary productivity (NPP) was selected as an indicator for analyzing grassland vegetation dynamics from 2001 to 2010. Potential NPP and the difference between potential NPP and actual NPP were used to represent the effects of climate and human factors, respectively, on grassland degradation. The results showed that 61.49% of grassland areas underwent degradation, whereas only 38.51% exhibited restoration. In addition, 65.75% of grassland degradation was caused by human activities whereas 19.94% was caused by inter-annual climate change. By contrast, 32.32% of grassland restoration was caused by human activities, whereas 56.56% was caused by climatic factors. Therefore, inter-annual climate change is the primary cause of grassland restoration, whereas human activities are the primary cause of grassland degradation. Grassland dynamics and the relative roles of climate and human factors in grassland degradation and restoration varied greatly across the five provinces studied. The contribution of human activities to grassland degradation was greater than that of climate change in all five provinces. Three outcomes were observed in grassland restoration: First, the contribution of climate to grassland restoration was greater than that of human activities, particularly in Qinghai, Inner Mongolia, and Xinjiang. Second, the contribution of human activities to grassland restoration was greater than that of climate in Gansu. Third, the two factors almost equally contributed to grassland restoration in Tibet. Therefore, the effectiveness of ecological restoration programs should be enhanced

  10. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau.

    PubMed

    Munson, Seth M; Belnap, Jayne; Okin, Gregory S

    2011-03-08

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  11. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  12. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, Jill S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  13. Colorado Water Institute

    Science.gov Websites

    Colorado Water Institute Colorado State University header HomeMission StatementGRAD592NewslettersPublications/ReportsCSU Water ExpertsFunding OpportunitiesScholarshipsSubscribeEmploymentAdvisory BoardStaffContact UsCommentsLinks Water Center Logo Water Resources Archive Office of Engagement Ag Water

  14. Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands

    NASA Astrophysics Data System (ADS)

    Tan, Kun; Ciais, Philippe; Piao, Shilong; Wu, Xiaopu; Tang, Yanhong; Vuichard, Nicolas; Liang, Shuang; Fang, Jingyun

    2010-03-01

    The cold grasslands of the Qinghai-Tibetan Plateau form a globally significant biome, which represents 6% of the world's grasslands and 44% of China's grasslands. Yet little is known about carbon cycling in this biome. In this study, we calibrated and applied a process-based ecosystem model called Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) to estimate the C fluxes and stocks of these grasslands. First, the parameterizations of ORCHIDEE were improved and calibrated against multiple time-scale and spatial-scale observations of (1) eddy-covariance fluxes of CO2 above one alpine meadow site; (2) soil temperature collocated with 30 meteorological stations; (3) satellite leaf area index (LAI) data collocated with the meteorological stations; and (4) soil organic carbon (SOC) density profiles from China's Second National Soil Survey. The extensive SOC survey data were used to extrapolate local fluxes to the entire grassland biome. After calibration, we show that ORCHIDEE can successfully capture the seasonal variation of net ecosystem exchange (NEE), as well as the LAI and SOC spatial distribution. We applied the calibrated model to estimate 0.3 Pg C yr-1 (1 Pg = 1015 g) of total annual net primary productivity (NPP), 0.4 Pg C of vegetation total biomass (aboveground and belowground), and 12 Pg C of SOC stocks for Qinghai-Tibetan grasslands covering an area of 1.4 × 106 km2. The mean annual NPP, vegetation biomass, and soil carbon stocks decrease from the southeast to the northwest, along with precipitation gradients. Our results also suggest that in response to an increase of temperature by 2°C, approximately 10% of current SOC stocks in Qinghai-Tibetan grasslands could be lost, even though NPP increases by about 9%. This result implies that Qinghai-Tibetan grasslands may be a vulnerable component of the terrestrial carbon cycle to future climate warming.

  15. Reforestation or conservation? The attributes of old growth grasslands in South Africa

    PubMed Central

    Zaloumis, Nicholas P.

    2016-01-01

    Deforestation as a result of burning and land conversion in the tropics and subtropics has been widely studied and active restoration of forests has been widely promoted. Besides other benefits, reforestation can sequester carbon thereby reducing CO2 emissions to the atmosphere. However, before grasslands are targeted for ‘reforestation', it is necessary to distinguish whether they are ancient natural grasslands or secondary vegetation colonizing deforested areas. Here we report the results of a study comparing primary grasslands in South Africa with 4–40 year old secondary grasslands recovering from afforestation with Pinus species. Primary grasslands had significantly higher plant species richness overall, especially of forb species. Ground cover of primary grasslands was more evenly distributed among species than secondary grasslands which tended to mono-dominance. Forbs with underground storage organs (USOs) were common in primary grasslands but conspicuously absent in the recovering systems. Comparison of secondary grasslands of different ages (up to 40 years) showed negligible recovery of the original species composition. Three key features distinguish old growth primary from secondary grasslands: total and forb species numbers, evenness of species contributions to cover and the presence of USOs. Old growth grasslands also differed in their fire response, showing significant post-burn resprouting and fire-stimulated flowering in contrast to secondary grasslands. Though similar contrasting attributes of ancient and secondary grasslands have been reported in South America, more studies are needed to explore their generality in other geographical regions. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502375

  16. Effects of exotic grasses on soil seed banks in Southeastern Arizona grasslands

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2007-01-01

    At the Appleton-Whittell Research Ranch, an ungrazed grassland preserve in southeastern Arizona, soil seed banks were sampled in June, August, and October 2002 and June 2003. Wildfire had previously burned 90% of the research ranch in May 2002. Seed density and species richness in burned native grassland (2 plots) were compared to those in burned exotic grassland (2 plots). Averaged over 4 sample dates, seed densities were as follows: burned native grassland, 591 ?? 243.1 seeds??m-2 and 784 ?? 334.9 seeds??m-2; burned exotic grassland, 501 ?? 198.9 seeds??m-2 and 196 ?? 123.8 seeds??m-2. Species richness in the seed bank, also averaged over 4 sample dates, was as follows: burned native grassland, 16.3 ?? 1.7 species??m -2 and 19.5 ?? 1.0 species??m-2; burned exotic grassland, 12.0 ?? 3.4 species??m-2 and 11.06 ?? 2.5 species??m-2. The seed bank of burned exotic grassland contained significantly fewer seeds and species than that of burned native grassland. In addition, the seed bank in burned exotic grassland comprised mainly exotic grasses, whereas annual and perennial herbs, most of them native, dominated the seed bank of burned native grassland. Of the 50 species detected in soil samples, only 20 had a persistent seed bank, and only 1 of these was a native perennial bunchgrass. The preponderance of transient species means that eradication of exotic grasses must be followed by reseeding of native grasses and herbs, perhaps repeatedly, if native grassland is to replace exotic grassland.

  17. Digital Learning Compass: Distance Education State Almanac 2017. Colorado

    ERIC Educational Resources Information Center

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Colorado. The sample for this analysis is comprised of all active, degree-granting…

  18. 78 FR 9629 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Service 7 CFR Part 948 [Doc. No. AMS-FV-12-0044; FV12-948-2 PR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato Administrative Committee, Area No. 2 AGENCY: Agricultural... membership on the Colorado Potato Administrative Committee, Area No. 2 (Committee). The Committee locally...

  19. Stable carbon isotope as a signal index for monitoring grassland degradation

    NASA Astrophysics Data System (ADS)

    Yao, Hongyun; Wilkes, Andreas; Zhu, Guodong; Zhang, Hongdan; Liu, Xiaojuan; Dan Ding; Zhai, Xiajie; Tang, Shiming; Chen, Qing; Zhang, Yujuan; Huang, Ding; Wang, Chengjie

    2016-08-01

    Grassland degradation due to overgrazing is common in many areas of the world. This study analyzed the potential of the stable carbon isotope (δ13C) value as a structural microcosmic index to monitor processes of grassland degradation. The δ13C values of plant leaves, roots and soils in non-grazed (NG) and over-grazed (OG) grassland were measured from samples collected from the seven types of grassland in China. We found that the leaf δ13C values of palatable species (δ13Cleaf) and root δ13C values (δ13Croot) in OG grasslands were reduced compared with those from NG grasslands. Furthermore, the δ13Cleaf and δ13Csoil were positive correlation with elevation and latitude, δ13Croot was negative correlation with them at high altitude (3000~5000m), and δ13Croot and δ13Csoil were negative correlation with them at low altitude (0~2000m), respectively. Consequently, tracing of the δ13C variations in grassland ecosystem can provide a powerful tool to evaluate the degree of grassland degradation.

  20. Stable carbon isotope as a signal index for monitoring grassland degradation.

    PubMed

    Yao, Hongyun; Wilkes, Andreas; Zhu, Guodong; Zhang, Hongdan; Liu, Xiaojuan; Dan Ding; Zhai, Xiajie; Tang, Shiming; Chen, Qing; Zhang, Yujuan; Huang, Ding; Wang, Chengjie

    2016-08-16

    Grassland degradation due to overgrazing is common in many areas of the world. This study analyzed the potential of the stable carbon isotope (δ(13)C) value as a structural microcosmic index to monitor processes of grassland degradation. The δ(13)C values of plant leaves, roots and soils in non-grazed (NG) and over-grazed (OG) grassland were measured from samples collected from the seven types of grassland in China. We found that the leaf δ(13)C values of palatable species (δ(13)Cleaf) and root δ(13)C values (δ(13)Croot) in OG grasslands were reduced compared with those from NG grasslands. Furthermore, the δ(13)Cleaf and δ(13)Csoil were positive correlation with elevation and latitude, δ(13)Croot was negative correlation with them at high altitude (3000~5000m), and δ(13)Croot and δ(13)Csoil were negative correlation with them at low altitude (0~2000m), respectively. Consequently, tracing of the δ(13)C variations in grassland ecosystem can provide a powerful tool to evaluate the degree of grassland degradation.

  1. Stable carbon isotope as a signal index for monitoring grassland degradation

    PubMed Central

    Yao, Hongyun; Wilkes, Andreas; Zhu, Guodong; Zhang, Hongdan; Liu, Xiaojuan; Dan Ding; Zhai, Xiajie; Tang, Shiming; Chen, Qing; Zhang, Yujuan; Huang, Ding; Wang, Chengjie

    2016-01-01

    Grassland degradation due to overgrazing is common in many areas of the world. This study analyzed the potential of the stable carbon isotope (δ13C) value as a structural microcosmic index to monitor processes of grassland degradation. The δ13C values of plant leaves, roots and soils in non-grazed (NG) and over-grazed (OG) grassland were measured from samples collected from the seven types of grassland in China. We found that the leaf δ13C values of palatable species (δ13Cleaf) and root δ13C values (δ13Croot) in OG grasslands were reduced compared with those from NG grasslands. Furthermore, the δ13Cleaf and δ13Csoil were positive correlation with elevation and latitude, δ13Croot was negative correlation with them at high altitude (3000~5000m), and δ13Croot and δ13Csoil were negative correlation with them at low altitude (0~2000m), respectively. Consequently, tracing of the δ13C variations in grassland ecosystem can provide a powerful tool to evaluate the degree of grassland degradation. PMID:27527910

  2. The role of grasslands in food security and climate change

    PubMed Central

    O'Mara, F. P.

    2012-01-01

    Background Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Scope Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Conclusions Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very

  3. 2008 KidsCount in Colorado!

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2008

    2008-01-01

    "KidsCount in Colorado!" is an annual publication of the Colorado Children's Campaign, which provides the best available state- and county-level data to measure and track the education, health and general well-being of the state's children. KidsCount in Colorado! informs policy debates and community discussions, serving as a valuable…

  4. Salinity in the Colorado River in the Grand Valley, western Colorado, 1994-95

    USGS Publications Warehouse

    Butler, David L.; von Guerard, Paul B.

    1996-01-01

    Salinity, or the dissolved-solids concentration, is the measure of salts such as sodium chloride, calcium bicarbonate, and calcium sulfate that are dissolved in water. About one-half of the salinity in the Colorado River Basin is from natural sources (U.S. Department of the Interior, 1995), such as thermal springs in the Glenwood-Dotsero area, located about 90 miles upstream from Grand Junction (fig. 1). Effects of human activities, such as irrigation, reservoir evaporation, and transbasin diversions, have increased the levels of salinity in the Colorado River. High salinity can affect industrial and municipal water users by causing increased water-treatment costs, increased deterioration of plumbing and appliances, increased soap needs, and undesirable taste of drinking water. High salinity also can cause lower crop yields by reducing water and nutrient uptake by plants and can increase agricultural production costs because of higher leaching and drainage requirements. Agricultural losses might occur when salinity reaches about 700?850 milligrams per liter (U.S Department of the Interior, 1994). Figure 1. Irrigated area in the Grand Valley and locations of sampling sites for the 1994?95 salinity study of the Colorado River. The Colorado River is the major source of irrigation water to the Grand Valley (fig. 1) and also is one source of water for the Clifton Water District, which supplies domestic water to part of the eastern Grand Valley. During spring and early summer in 1994, the Colorado River in the Grand Valley had lower than average streamflow. There was concern by water users about the effect of this low streamflow on salinity in the river. In 1994, the U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, began a study to evaluate salinity in the Colorado River. This fact sheet describes results of that study. The specific objectives of the fact sheet are to (1) compare salinity in the Colorado River among

  5. AmeriFlux US-SRG Santa Rita Grassland

    DOE Data Explorer

    Scott, Russell [United States Department of Agriculture

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SRG Santa Rita Grassland. Site Description - Semidesert C4 grassland, lies in Pasture 1 on the Santa Rita Experimental Range. This is the companion site for US-SRM, but has much less mesquite encroachment.

  6. Favorable Geochemistry from Springs and Wells in Colorado

    DOE Data Explorer

    Richard E. Zehner

    2012-02-01

    This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included.

  7. Fraser, Colorado

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This sequence of three images in northern Colorado was taken by NASA's Airborne Synthetic Aperture Radar (AirSar) for the joint NASA-National Oceanic and Atmospheric Administration Cold Land Processes Experiment. The images were produced from data acquired on February 19, 21 and 23, 2002 (top to bottom), and demonstrate the effects of snow on the radar backscatter at different frequencies. The images are centered at 40 degrees north latitude and 106 degrees west longitude, 12 kilometers (7.5 miles) west of the town of Fraser. The colors red, green and blue indicate the relative total power of the radar backscatter at P-, L-, and C-bands, respectively.

    The top image was acquired before snowfall; the middle image was acquired the morning after the snow. When the snow melted, the most prominent changes were visible and can be seen in the bottom image. In this image, melting snow allows less of the radar signal to backscatter and some features appear darker.

    The Cold Land Processes Experiment is a multi-year experiment to study how snow processes work and how snow-covered areas affect weather and climate. Fraser, Colo., is one of three study areas in northern Colorado and southern Wyoming providing ideal natural laboratories for snow research.

    AirSar flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. Built, operated and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., AirSar is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.

  8. Functional response of U.S. grasslands to the early 21st-century drought

    Treesearch

    M. Susan Moran; Guillermo E. Ponce-Campos; Alfredo Huete; Mitchel P. McClaran; Yongguang Zhang; Erik P. Hamerlynck; David J. Augustine; Stacey A. Gunter; Stanley G. Kitchen; Debra P. C. Peters; Patrick J. Starks; Mariano Hernandez

    2014-01-01

    Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that...

  9. Missouri's Approach to Grassland Bird Conservation Planning

    Treesearch

    Brad Jacobs

    2005-01-01

    Missouri?s state and federal agencies, nongovernmental organizations and citizens have a partnership called the Grasslands Coalition. The Grasslands Coalition was established to help preserve remaining tallgrass prairie. This includes applying a management regime that enhances natural functions and interactions. The coalition is a state-based effort co-sponsored by...

  10. Desert grassland and shrubland ecosystems [chapter 5

    Treesearch

    Samuel R. Loftin; Richard Agllilar; Alice L. Chung-MacCoubrey; Wayne A. Robbie

    1995-01-01

    The productivity, stability, and health of the Middle Rio Grande Basin, arid and semiarid grassland and shrub land ecosystems depend upon complex interactions. These relationships occur between factors such as climate, domestic livestock, and wildlife use, and human activities such as urban development, agriculture, and recreation. These grassland/ shrub land...

  11. Historic and Current Conditions of Southwestern Grasslands

    Treesearch

    Reggie Fletcher; Wayne A. Robbie

    2004-01-01

    Southwestern grasslands today share general differences from their pre-Euro-American settlement conditions. With few exceptions, grasslands--whether in the desert, prairie, or mountains--were, prior to non-Indian settlement, more diverse in plant and animal species composition, more productive, more resilient, and better able to absorb the impact of disturbances....

  12. Grazing effects on carbon fluxes in a northern China grassland

    USDA-ARS?s Scientific Manuscript database

    Grazing is a widespread use of grasslands in northern China, but if stocking rate exceeds grassland carrying capacity, degradation and desertification can occur. As a result, grazing management is critical and can play a significant role in driving C sink and source activity in grassland ecosystems...

  13. The Colorado River region and John Wesley Powell

    USGS Publications Warehouse

    Rabbitt, Mary C.; McKee, Edwin D.; Hunt, Charles B.; Leopold, Luna Bergere

    1969-01-01

    A century ago John Wesley Powell-teacher, scientist, and veteran of the Civil War-set out to explore the unknown reaches of the Colorado River. He emerged from the forbidding canyons with a compelling interest in the nature of the western lands and how they could be developed for the greatest benefit to the Nation. A man gifted with imagination, yet always tempered by the scientist's appreciation for facts, Powell became one of the country's most vigorous proponents for the orderly development of the public domain and the wise use of its natural resources. Throughout his lifetime, Powell stood firm in his belief that science, as a sound basis for human progress, should serve all the people, and he played an important role in organizing and directing scientific activities of the U.S. Government. His zeal led to the establishment of the Geological Survey in the U.S. Department of the Interior and the Bureau of Ethnology in the Smithsonian Institution. On this 100th Anniversary of the Powell Colorado River Expedition, the U.S. Department of the Interior, Smithsonian Institution, and National Geographic Society (which Powell helped to found) have joined many organizations and individuals to recall the works of this man ;and to examine anew the imprints of his mind. His prescient concepts for the Nation's programs concerning people and their environment have been enhanced through a century of national development.

  14. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    NASA Astrophysics Data System (ADS)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  15. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): Relationship with flows in the upper Colorado River

    USGS Publications Warehouse

    Osmundson, B.C.; May, T.W.; Osmundson, D.B.

    2000-01-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 ??g/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 ??g/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995.

  16. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): relationship with flows in the upper Colorado River.

    PubMed

    Osmundson, B C; May, T W; Osmundson, D B

    2000-05-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 microg/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 microg/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995.

  17. Ready for College in Colorado: Evaluation of the Colorado SUN and the College Connection Program

    ERIC Educational Resources Information Center

    Bragg, Debra D.

    2010-01-01

    In fall 2007, the state of Colorado received one of four federal grants from the Ready for College (RFC) grant program of the Office of Vocational and Adult Education (OVAE), U.S. Department of Education. The Colorado (CO) SUN project (where SUN stands for Success UNlimited) was designed to identify and enhance innovative practices from Colorado's…

  18. Grazing-induced BVOC fluxes from a managed grassland

    NASA Astrophysics Data System (ADS)

    Mozaffar, Ahsan; Schoon, Niels; Bachy, Aurelie; Digrado, Anthony; Heinesch, Bernard; Aubinet, Marc; Fauconnier, Marie-laure; Delaplace, Pierre; Dujardin, Patrick; Amelynck, Crist

    2017-04-01

    Grassland ecosystems cover one fourth of the Earth's land surface and are both sources and sinks of Biogenic Volatile Organic Compounds (BVOCs) which play an important role in atmospheric chemistry and air pollution. The use of grassland for cattle breeding is a common practice in many parts of the world. As it has been widely demonstrated that plants emit large bursts of BVOCs when they are mechanically damaged, grass tearing and trampling during grazing are expected to induce large BVOC emissions as well. Nevertheless, to the best of our knowledge, no study has been performed on BVOC fluxes from grazed grassland yet. Therefore investigations were performed using automated dynamic chambers in a managed grassland in Belgium over the 2015 and 2016 growing season. BVOC fluxes, together with carbon dioxide (CO2) and water vapor (H2O) fluxes from grazed and undisturbed grassland were followed simultaneously using PTR-MS (Proton Transfer Reaction-Mass Spectrometry) and a LI-840 non-dispersive IR gas analyzer. In addition, air in the chamber was sampled occasionally for GC-MS (Gas Chromatography-Mass Spectrometry) analysis to assist compound identification. Significant differences between grazed and undisturbed grassland patches were observed in terms of BVOC, CO2 and H2O vapor fluxes. Grazing by cows was found to result in enhanced emissions of several BVOCs such as methanol, acetaldehyde, acetone, acetic acid and Green Leaf Volatiles (GLVs), and induced BVOC emissions generally lasted for around 5 days following a grazing event. Quantitative data on the impact of grazing on BVOC, CO2 and H2O exchange between grassland and the atmosphere will be presented, and correlations between BVOC fluxes and environmental conditions will be discussed.

  19. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    PubMed

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change

  20. Tropical grasslands: A pivotal place for a more multi-functional agriculture.

    PubMed

    Boval, Maryline; Angeon, Valérie; Rudel, Tom

    2017-02-01

    Tropical grasslands represent a pivotal arena for the sustainable intensification of agriculture in the coming decades. The abundant ecosystem services provided by the grasslands, coupled with the aversion to further forest destruction, makes sustainable intensification of tropical grasslands a high policy priority. In this article, we provide an inventory of agricultural initiatives that would contribute to the sustainable intensification of the tropical grassland agro-ecosystem, and we recommend a shift in the scientific priorities of animal scientists that would contribute to realization of a more agro-ecological and multi-functional agriculture in the world's tropical grasslands.

  1. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  2. Grassland bird densities in seral stages of mixed-grass prairie

    Treesearch

    Shawn C. Fritcher; Mark A. Rumble; Lester D. Flake

    2004-01-01

    Birds associated with prairie ecosystems are declining and the ecological condition (seral stage) of remaining grassland communities may be a factor. Livestock grazing intensity influences the seral stage of grassland communities and resource managers lack information to assess how grassland birds are affected by these changes. We estimated bird density, species...

  3. Rapid mortality of Populus tremuloides in southwestern Colorado, USA

    Treesearch

    James J. Worrall; Leanne Egeland; Thomas Eager; Roy A. Mask; Erik W. Johnson; Philip A. Kemp; Wayne D. Shepperd

    2008-01-01

    Concentrated patches of recent trembling aspen (Populus tremuloides) mortality covered 56,091 ha of Colorado forests in 2006. Mortality has progressed rapidly. Area affected increased 58% between 2005 and 2006 on the Mancos-Dolores Ranger District, San Juan National Forest, where it equaled nearly 10% of the aspen cover type. In four stands that were...

  4. Alternative Fuels Data Center: Colorado Transportation Data for Alternative

    Science.gov Websites

    (nameplate, MW) 2,478 Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains Jan. 26, 2016 Video Video thumbnail for Partnerships Cement Long-Term Success for Northern Colorado Duo Partnerships Cement

  5. Bighorn sheep response to road-related disturbances in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Keller, B.J.; Bender, L.C.

    2007-01-01

    Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.

  6. State summaries: Colorado

    USGS Publications Warehouse

    Keller, J.; Carroll, C.; Widmann, B.

    2006-01-01

    According to the Colorado Geological Survey (CGS), Colorado's mining industry enjoyed a record-breaking year in 2005. For the whole year, the total value of nonfuel minerals, coal and uranium produced in the state in 2005 amounted to $2.4 billion. The production value of $1.52 billion in the nonfuel sector broke the previous record of $1.3 billion set in 1980, and is 60% higher than the revised 2004 CGS estimate of $950.5 million. The United States Geological Survey (USGS) ranked Colorado ninth among the states in nonfuel mineral value, up from 17th in 2004. About $1 billion of the nonfuel total is from metal mining. New record-high productions were achieved not only for molybdenum but also for coal and goal.

  7. Exotic plant invasion alters nitrogen dynamics in an arid grassland

    USGS Publications Warehouse

    Evans, R.D.; Rimer, R.; Sperry, L.; Belnap, J.

    2001-01-01

    The introduction of nonnative plant species may decrease ecosystem stability by altering the availability of nitrogen (N) for plant growth. Invasive species can impact N availability by changing litter quantity and quality, rates of N2-fixation, or rates of N loss. We quantified the effects of invasion by the annual grass Bromus tectorum on N cycling in an arid grassland on the Colorado Plateau (USA). The invasion occurred in 1994 in two community types in an undisturbed grassland. This natural experiment allowed us to measure the immediate responses following invasion without the confounding effects of previous disturbance. Litter biomass and the C:N and lignin:N ratios were measured to determine the effects on litter dynamics. Long-term soil incubations (415 d) were used to measure potential microbial respiration and net N mineralization. Plant-available N was quantified for two years in situ with ion-exchange resin bags, and potential changes in rates of gaseous N loss were estimated by measuring denitrification enzyme activity. Bromus invasion significantly increased litter biomass, and Bromus litter had significantly greater C:N and lignin:N ratios than did native species. The change in litter quantity and chemistry decreased potential rates of net N mineralization in sites with Bromus by decreasing nitrogen available for microbial activity. Inorganic N was 50% lower on Hilaria sites with Bromus during the spring of 1997, but no differences were observed during 1998. The contrasting differences between years are likely due to moisture availability; spring precipitation was 15% greater than average during 1997, but 52% below average during spring of 1998. Bromus may cause a short-term decrease in N loss by decreasing substrate availability and denitrification enzyme activity, but N loss is likely to be greater in invaded sites in the long term because of increased fire frequency and greater N volatilization during fire. We hypothesize that the introduction of

  8. Innovative grassland management systems for environmental and livelihood benefits

    PubMed Central

    Kemp, David R.; Guodong, Han; Xiangyang, Hou; Michalk, David L.; Fujiang, Hou; Jianping, Wu; Yingjun, Zhang

    2013-01-01

    Grasslands occupy 40% of the world’s land surface (excluding Antarctica and Greenland) and support diverse groups, from traditional extensive nomadic to intense livestock-production systems. Population pressures mean that many of these grasslands are in a degraded state, particularly in less-productive areas of developing countries, affecting not only productivity but also vital environmental services such as hydrology, biodiversity, and carbon cycles; livestock condition is often poor and household incomes are at or below poverty levels. The challenge is to optimize management practices that result in “win-win” outcomes for grasslands, the environment, and households. A case study is discussed from northwestern China, where it has been possible to reduce animal numbers considerably by using an energy-balance/market-based approach while improving household incomes, providing conditions within which grassland recovery is possible. This bottom-up approach was supported by informing and working with the six layers of government in China to build appropriate policies. Further policy implications are considered. Additional gains in grassland rehabilitation could be fostered through targeted environmental payment schemes. Other aspects of the livestock production system that can be modified are discussed. This work built a strategy that has implications for many other grassland areas around the world where common problems apply. PMID:23671092

  9. Innovative grassland management systems for environmental and livelihood benefits.

    PubMed

    Kemp, David R; Guodong, Han; Xiangyang, Hou; Michalk, David L; Fujiang, Hou; Jianping, Wu; Yingjun, Zhang

    2013-05-21

    Grasslands occupy 40% of the world's land surface (excluding Antarctica and Greenland) and support diverse groups, from traditional extensive nomadic to intense livestock-production systems. Population pressures mean that many of these grasslands are in a degraded state, particularly in less-productive areas of developing countries, affecting not only productivity but also vital environmental services such as hydrology, biodiversity, and carbon cycles; livestock condition is often poor and household incomes are at or below poverty levels. The challenge is to optimize management practices that result in "win-win" outcomes for grasslands, the environment, and households. A case study is discussed from northwestern China, where it has been possible to reduce animal numbers considerably by using an energy-balance/market-based approach while improving household incomes, providing conditions within which grassland recovery is possible. This bottom-up approach was supported by informing and working with the six layers of government in China to build appropriate policies. Further policy implications are considered. Additional gains in grassland rehabilitation could be fostered through targeted environmental payment schemes. Other aspects of the livestock production system that can be modified are discussed. This work built a strategy that has implications for many other grassland areas around the world where common problems apply.

  10. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.

    PubMed

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang

    2016-04-21

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  11. Madagascar's grasses and grasslands: anthropogenic or natural?

    PubMed Central

    Besnard, Guillaume; Forest, Félix; Malakasi, Panagiota; Moat, Justin; Clayton, W. Derek; Ficinski, Paweł; Savva, George M.; Nanjarisoa, Olinirina P.; Razanatsoa, Jacqueline; Randriatsara, Fetra O.; Kimeu, John M.; Luke, W. R. Quentin; Kayombo, Canisius; Linder, H. Peter

    2016-01-01

    Grasses, by their high productivity even under very low pCO2, their ability to survive repeated burning and to tolerate long dry seasons, have transformed the terrestrial biomes in the Neogene and Quaternary. The expansion of grasslands at the cost of biodiverse forest biomes in Madagascar is often postulated as a consequence of the Holocene settlement of the island by humans. However, we show that the Malagasy grass flora has many indications of being ancient with a long local evolutionary history, much predating the Holocene arrival of humans. First, the level of endemism in the Madagascar grass flora is well above the global average for large islands. Second, a survey of many of the more diverse areas indicates that there is a very high spatial and ecological turnover in the grass flora, indicating a high degree of niche specialization. We also find some evidence that there are both recently disturbed and natural stable grasslands: phylogenetic community assembly indicates that recently severely disturbed grasslands are phylogenetically clustered, whereas more undisturbed grasslands tend to be phylogenetically more evenly distributed. From this evidence, it is likely that grass communities existed in Madagascar long before human arrival and so were determined by climate, natural grazing and other natural factors. Humans introduced zebu cattle farming and increased fire frequency, and may have triggered an expansion of the grasslands. Grasses probably played the same role in the modification of the Malagasy environments as elsewhere in the tropics. PMID:26791612

  12. Parasitism and body condition in humpback chub from the Colorado and Little Colorado Rivers, Grand Canyon, Arizona

    USGS Publications Warehouse

    Hoffnagle, Timothy L.; Choudhury, Anindo; Cole, Rebecca A.

    2006-01-01

    Glen Canyon Dam has greatly altered the Colorado River in Grand Canyon. The Little Colorado River (LCR) provides a small refuge of seasonally warm and turbid water that is thought to be more suitable than the Colorado River for endangered humpback chub Gila cypha. However, the LCR has low productivity and contains nonnative fishes and parasites, which pose a threat to humpback chub. The Colorado River hosts a different suite of nonnative fishes and is cold and clear but more productive. We compared condition factor (K), abdominal fat index (AFI), and presence and number of two introduced pathogenic parasites (Lernaea cyprinacea and Bothriocephalus acheilognathi) between juvenile (<150 mm total length) humpback chub from the LCR and those from the Colorado River during 1996a??1999. Both K and AFI were lower and L. cyprinacea prevalence and B. acheilognathi prevalence were higher in LCR fish than in Colorado River fish for all years. Mean K and AFI were 0.622 and 0.48, respectively, in the LCR and 0.735 and 2.02, respectively, in the Colorado River, indicating that fish in the Colorado River were more robust. Mean prevalence of L. cyprinacea was 23.9% and mean intensity was 1.73 L. cyprinacea/infected fish in the LCR, whereas prevalence was 3.2% and intensity was 1.0 L. cyprinacea/infected fish in the Colorado River. Mean prevalence of B. acheilognathi was 51.0% and mean intensity was 25.0 B. acheilognathi/infected fish in the LCR, whereas prevalence was 15.8% and intensity was 12.0 B. acheilognathi/infected fish in the Colorado River. Increased parasitism and poorer body condition in humpback chub from the LCR challenge the paradigm that warmer LCR waters are more suitable for humpback chub than the colder Colorado River and indicate the need to consider the importance and benefits of all available habitats, as well as biotic and abiotic factors, when managing endangered species and their environment.

  13. Advancing the "Colorado Graduates" Agenda: Understanding the Dropout Problem and Mobilizing to Meet the Graduation Challenge. [Executive Summary

    ERIC Educational Resources Information Center

    Mac Iver, Martha Abele; Balfanz, Robert; Byrnes, Vaughan

    2009-01-01

    The ambitious goal set by Colorado's governor to address the state's dropout problem is a model for the nation. Helping thousands of young people to receive their high school diplomas instead of leaving school without them is a crucial step in improving the quality of life for all Colorado residents. Accomplishing this goal will require focused…

  14. 75 FR 13138 - Grand Ditch Breach Restoration Environmental Impact Statement, Rocky Mountain National Park, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... DEPARTMENT OF THE INTERIOR National Park Service Grand Ditch Breach Restoration Environmental... Restoration, Rocky Mountain National Park, Colorado. SUMMARY: Pursuant to the National Environmental Policy... Statement for the Grand Ditch Breach Restoration, Rocky Mountain National Park, Colorado. This effort will...

  15. Canyonlands National Park, UT, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-014 (22 June 1973) --- Desert and mountain scenery along the Utah/Colorado border are displayed in this scene of the Canyonlands National Park, UT (39.0N, 110.0W). The park occupies the near center of the image, displaying spectacular incised meanders and the bulls-eye structure of Upheaval Dome (a salt dome). The Green River and the Colorado River flow southward to join (off scene) before flowing through the Grand Canyon National Park. Photo credit: NASA

  16. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    PubMed Central

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. PMID:21368143

  17. Satellite images of the September 2013 flood event in Lyons, Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Friesen, Beverly A.; Wilds, Stanley; Noble, Suzanne; Warner, Harumi; Wilson, Earl M.

    2013-01-01

    The U.S. Geological Survey (USGS) Special Applications Science Center (SASC) produced an image base map showing high-resolution remotely sensed data over Lyons, Colorado—a city that was severely affected by the flood event that occurred throughout much of the Colorado Front Range in September of 2013. The 0.5-meter WorldView-2 data products were created from imagery collected by DigitalGlobe on September 13 and September 24, 2013, during and following the flood event. The images shown on this map were created to support flood response efforts, specifically for use in determining damage assessment and mitigation decisions. The raw, unprocessed imagery were orthorectified and pan-sharpened to enhance mapping accuracy and spatial resolution, and reproduced onto a cartographic base map. These maps are intended to provide a snapshot representation of post-flood ground conditions, which may be useful to decisionmakers and the general public. The SASC also provided data processing and analysis support for other Colorado flood-affected areas by creating cartographic products, geo-corrected electro-optical and radar image mosaics, and GIS water cover files for use by the Colorado National Guard, the National Park Service, the U.S. Forest Service, and the flood response community. All products for this International Charter event were uploaded to the USGS Hazards Data Distribution System (HDDS) website (http://hdds.usgs.gov/hdds2/) for distribution.

  18. The potential of small-Unmanned Aircraft Systems for the rapid detection of threatened unimproved grassland communities using an Enhanced Normalized Difference Vegetation Index.

    PubMed

    Strong, Conor J; Burnside, Niall G; Llewellyn, Dan

    2017-01-01

    The loss of unimproved grassland has led to species decline in a wide range of taxonomic groups. Agricultural intensification has resulted in fragmented patches of remnant grassland habitat both across Europe and internationally. The monitoring of remnant patches of this habitat is critically important, however, traditional surveying of large, remote landscapes is a notoriously costly and difficult task. The emergence of small-Unmanned Aircraft Systems (sUAS) equipped with low-cost multi-spectral cameras offer an alternative to traditional grassland survey methods, and have the potential to progress and innovate the monitoring and future conservation of this habitat globally. The aim of this article is to investigate the potential of sUAS for rapid detection of threatened unimproved grassland and to test the use of an Enhanced Normalized Difference Vegetation Index (ENDVI). A sUAS aerial survey is undertaken at a site nationally recognised as an important location for fragmented unimproved mesotrophic grassland, within the south east of England, UK. A multispectral camera is used to capture imagery in the visible and near-infrared spectrums, and the ENDVI calculated and its discrimination performance compared to a range of more traditional vegetation indices. In order to validate the results of analysis, ground quadrat surveys were carried out to determine the grassland communities present. Quadrat surveys identified three community types within the site; unimproved grassland, improved grassland and rush pasture. All six vegetation indices tested were able to distinguish between the broad habitat types of grassland and rush pasture; whilst only three could differentiate vegetation at a community level. The Enhanced Normalized Difference Vegetation Index (ENDVI) was the most effective index when differentiating grasslands at the community level. The mechanisms behind the improved performance of the ENDVI are discussed and recommendations are made for areas of future

  19. The potential of small-Unmanned Aircraft Systems for the rapid detection of threatened unimproved grassland communities using an Enhanced Normalized Difference Vegetation Index

    PubMed Central

    Strong, Conor J.; Llewellyn, Dan

    2017-01-01

    The loss of unimproved grassland has led to species decline in a wide range of taxonomic groups. Agricultural intensification has resulted in fragmented patches of remnant grassland habitat both across Europe and internationally. The monitoring of remnant patches of this habitat is critically important, however, traditional surveying of large, remote landscapes is a notoriously costly and difficult task. The emergence of small-Unmanned Aircraft Systems (sUAS) equipped with low-cost multi-spectral cameras offer an alternative to traditional grassland survey methods, and have the potential to progress and innovate the monitoring and future conservation of this habitat globally. The aim of this article is to investigate the potential of sUAS for rapid detection of threatened unimproved grassland and to test the use of an Enhanced Normalized Difference Vegetation Index (ENDVI). A sUAS aerial survey is undertaken at a site nationally recognised as an important location for fragmented unimproved mesotrophic grassland, within the south east of England, UK. A multispectral camera is used to capture imagery in the visible and near-infrared spectrums, and the ENDVI calculated and its discrimination performance compared to a range of more traditional vegetation indices. In order to validate the results of analysis, ground quadrat surveys were carried out to determine the grassland communities present. Quadrat surveys identified three community types within the site; unimproved grassland, improved grassland and rush pasture. All six vegetation indices tested were able to distinguish between the broad habitat types of grassland and rush pasture; whilst only three could differentiate vegetation at a community level. The Enhanced Normalized Difference Vegetation Index (ENDVI) was the most effective index when differentiating grasslands at the community level. The mechanisms behind the improved performance of the ENDVI are discussed and recommendations are made for areas of future

  20. Informing agricultural management - The challenge of modelling grassland phenology

    NASA Astrophysics Data System (ADS)

    Calanca, Pierluigi

    2017-04-01

    Grasslands represent roughly 70% of the agricultural land worldwide, are the backbone of animal husbandry and contribute substantially to agricultural income. At the farm scale a proper management of meadows and pastures is necessary to attain a balance between forage production and consumption. A good hold on grassland phenology is of paramount importance in this context, because forage quantity and quality critically depend on the developmental stage of the sward. Traditionally, empirical rules have been used to advise farmers in this respect. Yet the provision of supporting information for decision making would clearly benefit from dedicated tools that integrate reliable models of grassland phenology. As with annual crops, in process-based models grassland phenology is usually described as a linear function of so-called growing degree days, whereby data from field trials and monitoring networks are used to calibrate the relevant parameters. It is shown in this contribution that while the approach can provide reasonable estimates of key developmental stages in an average sense, it fails to account for the variability observed in managed grasslands across sites and years, in particular concerning the start of the growing season. The analysis rests on recent data from western Switzerland, which serve as a benchmark for simulations carried out with grassland models of increasing complexity. Reasons for an unsatisfactory model performance and possibilities to improve current models are discussed, including the necessity to better account for species composition, late season management decisions, as well as plant physiological processes taking place during the winter season. The need to compile existing, and collect new data doe managed grasslands is also stressed.

  1. Financial results of ponderosa pine forest restoration in southwestern Colorado

    Treesearch

    Dennis L. Lynch

    2001-01-01

    From 1996 to 1998, the Ponderosa Pine Partnership conducted an experimental forest restoration project on 493 acres of small diameter ponderosa pine in the San Juan National Forest, Montezuma County, Colorado. The ecological basis and the financial analysis for this project are discussed. Specific financial results of the project including products sold, revenues...

  2. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  3. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  4. Proceedings of the U.S. Geological Survey Eighth Biennial Geographic Information Science Workshop and first The National Map Users Conference, Denver, Colorado, May 10-13, 2011

    USGS Publications Warehouse

    Sieverling, Jennifer B.; Dietterle, Jeffrey

    2014-01-01

    The U.S. Geological Survey (USGS) is sponsoring the first The National Map Users Conference in conjunction with the eighth biennial Geographic Information Science (GIS) Workshop on May 10-13, 2011, in Lakewood, Colorado. The GIS Workshop will be held at the USGS National Training Center, located on the Denver Federal Center, Lakewood, Colorado, May 10-11. The National Map Users Conference will be held directly after the GIS Workshop at the Denver Marriott West, a convention hotel in the Lakewood, Colorado area, May 12-13. The National Map is designed to serve the Nation by providing geographic data and knowledge for government, industry, and public uses. The goal of The National Map Users Conference is to enhance communications and collaboration among the communities of users of and contributors to The National Map, including USGS, Department of the Interior, and other government GIS specialists and scientists, as well as the broader geospatial community. The USGS National Geospatial Program intends the conference to serve as a forum to engage users and more fully discover and meet their needs for the products and services of The National Map. The goal of the GIS Workshop is to promote advancement of GIS and related technologies and concepts as well as the sharing of GIS knowledge within the USGS GIS community. This collaborative opportunity for multi-disciplinary GIS and associated professionals will allow attendees to present and discuss a wide variety of geospatial-related topics. The Users Conference and Workshop collaboration will bring together scientists, managers, and data users who, through presentations, posters, seminars, workshops, and informal gatherings, will share accomplishments and progress on a variety of geospatial topics. During this joint event, attendees will have the opportunity to present or demonstrate their work; to develop their knowledge by attending hands-on workshops, seminars, and presentations given by professionals from USGS and

  5. NASA Helps Build Colorado Economy

    NASA Image and Video Library

    2010-12-13

    Colorado State Governor Bill Ritter delivers remarks at the Colorado State Capitol in Denver on Monday, Dec. 13, 2010, prior to the signing of an agreement with NASA that creates a Technology Acceleration Program and Regional Innovation Cluster for Aerospace and Clean Energy. A manufacturing park focused on rapid new product development and production will be developed to assist growing Colorado businesses while promoting the commercialization of technology developed for the space program. Photo Credit: (NASA/Bill Ingalls)

  6. PDO and ENSO Sea Surface Temperature Anomalies Control Grassland Plant Production across the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.

    2017-12-01

    The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.

  7. Influence of Agropastoral System Components on Mountain Grassland Vulnerability Estimated by Connectivity Loss.

    PubMed

    Gartzia, Maite; Fillat, Federico; Pérez-Cabello, Fernando; Alados, Concepción L

    2016-01-01

    Over the last decades, global changes have altered the structure and properties of natural and semi-natural mountain grasslands. Those changes have contributed to grassland loss mainly through colonization by woody species at low elevations, and increases in biomass and greenness at high elevations. Nevertheless, the interactions between agropastoral components; i.e., ecological (grassland, environmental, and geolocation properties), social, and economic components, and their effects on the grasslands are still poorly understood. We estimated the vulnerability of dense grasslands in the Central Pyrenees, Spain, based on the connectivity loss (CL) among grassland patches that has occurred between the 1980s and the 2000s, as a result of i) an increase in biomass and greenness (CL-IBG), ii) woody encroachment (CL-WE), or iii) a decrease in biomass and greenness (CL-DBG). The environmental and grassland components of the agropastoral system were associated with the three processes, especially CL-IBG and CL-WE, in relation with the succession of vegetation toward climax communities, fostered by land abandonment and exacerbated by climate warming. CL-IBG occurred in pasture units that had a high proportion of dense grasslands and low current livestock pressure. CL-WE was most strongly associated with pasture units that had a high proportion of woody habitat and a large reduction in sheep and goat pressure between the 1930s and the 2000s. The economic component was correlated with the CL-WE and the CL-DBG; specifically, expensive pastures were the most productive and could maintain the highest rates of livestock grazing, which slowed down woody encroachment, but caused grassland degradation and DBG. In addition, CL-DBG was associated with geolocation of grasslands, mainly because livestock tend to graze closer to passable roads and buildings, where they cause grassland degradation. To properly manage the grasslands, an integrated management plan must be developed that

  8. Ecological evaluation of the abundance and effects of elk herbivory in Rocky Mountain National Park, Colorado, 1994-1999

    USGS Publications Warehouse

    Singer, Francis J.; Zeigenfuss, Linda C.

    2002-01-01

    Several National Park Service units in the Intermountain region possess a number of closely related management needs relative to the abundance of wild ungulates and their herbivory effects on plants and ecosystem processes. In 1993, the then National Biological Service (NBS) - now U.S. Geological Survey, Biological Resources Discipline (USGS, BRD)­ initiated a series of research studies in four park units in the Intermountain West., into the abundance and effects of ungulates on park ecosystems. Each of these parks received a number of similar research study elements including: (a) a number of new ungulate grazing exclosures (n = 12-21 exclosures per park); (b) aerial survey sightability models to estimate population sizes of ungulates; (e) measures of biomass production and consumption rates near the exclosures and across the landscape; (d) studies of the effects of the grazing on plant abundance, species diversity, and ecosystem effects; and (e) computer model simulations (SAVANNA) of the effects on the ecosystem and plant resources of different ungulate management scenarios. One park unit, Rocky Mountain National Park, Colorado, received funding from the U.S. Geological Survey (USGS, BRD) and parallel funding from NPS for an intensive research study of the effects of elk on the park ecosystems.

  9. Lesser prairie-chicken avoidance of trees in a grassland landscape

    USGS Publications Warehouse

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities < 2 trees ∙ ha− 1; however, we could not test if nest survival was affected at greater tree densities as no nests were detected at densities > 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving

  10. Comparative water relations of adjacent california shrub and grassland communities.

    PubMed

    Davis, S D; Mooney, H A

    1985-07-01

    Much of the coastal mountains and foothills of central and southern California are covered by a mosaic of grassland, coastal sage scrub, and evergreen sclerophyllous shrubs (chaparral). In many cases, the borders between adjacent plant communities are stable. The cause of this stability is unknown. The purpose of our study was to examine the water use patterns of representative grasses, herbs, and shrubs across a grassland/chaparrel ecotone and determine the extent to which patterns of water use contribute to ecotone stability. In addition, we examined the effects of seed dispersal and animal herbivory. We found during spring months, when water was not limited, grassland species had a much higher leaf conductance to water vapor diffusion than chaparral plants. As the summer drought progressed, grassland species depleted available soil moisture first, bare zone plants second, and chaparral third, with one chaparral species (Quercus durata) showing no evidence of water stress. Soil moisture depletion patterns with depth and time corresponded to plant water status and root depth. Rabbit herbivory was highest in the chaparral and bare zone as indicated by high densities of rabbit pellets. Dispersal of grassland seeds into the chaparral and bare zone was low. Our results support the hypothesis that grassland species deplete soil moisture in the upper soil horizon early in the drought, preventing the establishment of chaparral seedlings or bare zone herbs. Also, grassland plants are prevented from invading the chaparral because of low seed dispersability and high animal herbivory in these regions.

  11. 75 FR 52935 - Colorado Interstate Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Interstate Gas Company (CIG), P.O. Box 1087, Colorado Springs, Colorado 80944, pursuant to section 7(c) of.... Susan C. Stires, Director, Regulatory Affairs, Colorado Interstate Gas Company, P.O. Box 1087, Colorado... President and General Counsel, Colorado Interstate Gas Company; P.O. Box 1087, Colorado Springs, Colorado...

  12. Regime shifts in desert grasslands: patterns, mechanisms, and management

    USDA-ARS?s Scientific Manuscript database

    Transitions from semiarid grassland to shrubland states are among the most widely recognized examples of regime shifts in terrestrial ecosystems. Nonetheless, the processes causing grassland-shrubland transitions, and their consequences, are incompletely understood. We challenge several misconceptio...

  13. "We Need To Be in It for All 9 Innings": Lessons from Employer Participation in School-to-Career in Colorado.

    ERIC Educational Resources Information Center

    Hubbard, Susan; Bell, Amy; Charner, Ivan

    Results of a large set of interviews and discussions conducted by the National Employer Leadership Council showed that approximately 23,000 businesspeople were involved in school-to-career partnerships in Colorado, as of January 1997. Colorado employers identified 12 lessons essential to efforts to build school-to-career systems: (1) recognize,…

  14. Surficial Geologic Map of Mesa Verde National Park, Montezuma County, Colorado

    USGS Publications Warehouse

    Carrara, Paul E.

    2012-01-01

    Mesa Verde National Park in southwestern Colorado was established in 1906 to preserve and protect the artifacts and dwelling sites, including the famous cliff dwellings, of the Ancestral Puebloan people who lived in the area from about A.D. 550 to A.D. 1300. In 1978, the United Nations designated the park as a World Heritage Site. The geology of the park played a key role in the lives of these ancient people. For example, the numerous (approximately 600) cliff dwellings are closely associated with the Cliff House Sandstone of Late Cretaceous age, which weathers to form deep alcoves. In addition, the ancient people farmed the thick, red loess (wind-blown dust) deposits on the mesa tops, which because of its particle size distribution has good moisture retention properties. The soil in this loess cover and the seasonal rains allowed these people to grow their crops (corn, beans, and squash) on the broad mesa tops. Today, geology is still an important concern in the Mesa Verde area because the landscape is susceptible to various forms of mass movement (landslides, debris flows, rockfalls), swelling soils, and flash floods that affect the park's archeological sites and its infrastructure (roads, septic systems, utilities, and building sites). The map, which encompasses an area of about 100 mi2 (260 km2), includes all of Mesa Verde National Park, a small part of the Ute Mountain Indian Reservation that borders the park on its southern and western sides, and some Bureau of Land Management and privately owned land to the north and east. Surficial deposits depicted on the map include: artificial fills, alluvium of small ephemeral streams, alluvium deposited by the Mancos River, residual gravel on high mesas, a combination of alluvial and colluvial deposits, fan deposits, colluvial deposits derived from the Menefee Formation, colluvial deposits derived from the Mancos Shale, rockfall deposits, debris flow deposits, earthflow deposits, translational and rotational landslide

  15. Hayman Fire, Colorado

    NASA Image and Video Library

    2002-06-18

    The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue. http://photojournal.jpl.nasa.gov/catalog/PIA03499

  16. NASA Helps Build Colorado Economy

    NASA Image and Video Library

    2010-12-13

    Colorado Association for Manufacturing and Technology (CAMT) CEO Elaine Thorndike delivers remarks at the Colorado State Capitol in Denver on Monday, Dec. 13, 2010, prior to the signing of an agreement with NASA that creates a Technology Acceleration Program and Regional Innovation Cluster for Aerospace and Clean Energy. A manufacturing park focused on rapid new product development and production will be developed to assist growing Colorado businesses while promoting the commercialization of technology developed for the space program. Photo Credit: (NASA/Bill Ingalls)

  17. Increasingly Important Role of Atmospheric Aridity on Tibetan Alpine Grasslands

    NASA Astrophysics Data System (ADS)

    Ding, Jinzhi; Yang, Tao; Zhao, Yutong; Liu, Dan; Wang, Xiaoyi; Yao, Yitong; Peng, Shushi; Wang, Tao; Piao, Shilong

    2018-03-01

    Pronounced warming occurring on the Tibetan Plateau is expected to stimulate alpine grassland growth but could also increase atmospheric aridity that limits photosynthesis. But there lacks a systematic assessment of the impact of atmospheric aridity on alpine grassland productivity. Here we combine satellite observations, flux-tower-based productivity, and model simulations to quantify the effect of atmospheric aridity on grassland productivity and its temporal change between 1982 and 2011. We found a negative impact of atmospheric vapor pressure deficit on grassland productivity. This negative effect becomes increasingly intensified in terms of the impact severity and extent, suggesting an increasingly important role of atmospheric aridity on productivity. We further demonstrated that this negative effect is mitigated but cannot be overcompensated by the positive effect of rising CO2. Given that vapor pressure deficit is projected to further increase by 10-38% in the future, Tibetan alpine grasslands will face an increasing stress of atmospheric drought.

  18. Exotic grasslands on reclaimed midwestern coal mines: An ornithological perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.E.; Lima, S.L.

    The largest grasslands in Indiana and Illinois are on reclaimed surface coal mines, which are numerous in the Illinois Coal Basin. The reclamation goal of establishing a vegetation cover with inexpensive, hardy exotic grass species (e.g., tall fescue, smooth brome) inadvertently created persistent, large grassland bird refuges. We review research documenting the importance of these sites for native prairie birds. On mines, grassland specialist birds (restricted to grassland throughout their range) prefer sites dominated by exotic grasses to those rich in forbs, whereas nonspecialist bird species show no significant preference. Midwestern mine grasslands potentially could be converted into landscapes thatmore » include native warm-season grasses and forbs adapted to the relatively dry, poor soil conditions, in addition to the present successful exotic grass stands. A key question is whether native mixtures will resist conversion to forb-rich or woody growth over the long term, as the exotic grasses have done.« less

  19. Colorado Children's Budget 2005

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2005

    2005-01-01

    The Children's Budget is a comprehensive report on funding for children's services in Colorado. This report provides a six- year funding history for more than 50 programs funded with state, local, and federal dollars. The Colorado Children's Budget analyzes reductions in programs and services during the economic downturn. The data in the…

  20. Modern landscape processes affecting archaeological sites along the Colorado River corridor downstream of Glen Canyon Dam, Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan

    2017-08-29

    The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.

  1. Ecological transition in Arizona's subalpine and montane grasslands

    Treesearch

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  2. Macroinvertebrate community sample collection methods and data collected from Sand Creek and Medano Creek, Great Sand Dunes National Park and Preserve, Colorado, 2005–07

    USGS Publications Warehouse

    Ford, Morgan A.; Zuellig, Robert E.; Walters, David M.; Bruce, James F.

    2016-08-11

    This report provides a table of site descriptions, sample information, and semiquantitative aquatic macroinvertebrate data from 105 samples collected between 2005 and 2007 from 7 stream sites within the Sand Creek and Medano Creek watersheds in Great Sand Dunes National Park and Preserve, Saguache County, Colorado. Additionally, a short description of sample collection methods and laboratory sample processing procedures is presented. These data were collected in anticipation of assessing the potential effects of fish toxicants on macroinvertebrates.

  3. Nitrogen and phosphorus data for surface water in the Upper Colorado River basin, Colorado, 1980-94

    USGS Publications Warehouse

    Wynn, K.H.; Spahr, N.E.

    1997-01-01

    This report documents, summarizes, and provides on 3.5-in. diskette the surface-water data collected from January 1980 through August 1994 for nitrogen and phosphorus in the Upper Colorado River Basin from the Colorado-Utah State line to the Continental Divide. Ancillary data for parameters, such as water temperature, streamflow, specific conductance, dissolved oxygen, pH, and alkalinity, also are compiled, if available. Data were retrieved from the U.S. Geological Survey National Water Information System and the U.S. Environmental Protection Agency STORET (STOrage and RETrieval) system. The water-quality data are presented for sites having five or more nutrient analyses that reflect ambient stream conditions. The compiled data base contains 4,927 samples from 123 sites. The median sample period of record for individual sites is 2.5 years, and the seventy-fifth percentile is about 12 years. Sixteen sites have only five samples each. The median number of samples per site is 14 samples, whereas the seventy-fifth percentile is 65 samples. The compiled data set was used in the design of a basinwide sampling network that incorporates sites that lack historic surface-water-quality data.

  4. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  5. 7 CFR 948.151 - Colorado Potato Committee membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Colorado Potato Committee membership. 948.151 Section... POTATOES GROWN IN COLORADO Rules and Regulations Modification of Inspection Requirements § 948.151 Colorado Potato Committee membership. The Colorado Potato Committee shall be comprised of six members and...

  6. 7 CFR 948.151 - Colorado Potato Committee membership.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Colorado Potato Committee membership. 948.151 Section... POTATOES GROWN IN COLORADO Rules and Regulations Modification of Inspection Requirements § 948.151 Colorado Potato Committee membership. The Colorado Potato Committee shall be comprised of six members and...

  7. 7 CFR 948.151 - Colorado Potato Committee membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Colorado Potato Committee membership. 948.151 Section... POTATOES GROWN IN COLORADO Rules and Regulations Modification of Inspection Requirements § 948.151 Colorado Potato Committee membership. The Colorado Potato Committee shall be comprised of six members and...

  8. 7 CFR 948.151 - Colorado Potato Committee membership.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Colorado Potato Committee membership. 948.151 Section... POTATOES GROWN IN COLORADO Rules and Regulations Modification of Inspection Requirements § 948.151 Colorado Potato Committee membership. The Colorado Potato Committee shall be comprised of six members and...

  9. 7 CFR 948.151 - Colorado Potato Committee membership.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Colorado Potato Committee membership. 948.151 Section... POTATOES GROWN IN COLORADO Rules and Regulations Modification of Inspection Requirements § 948.151 Colorado Potato Committee membership. The Colorado Potato Committee shall be comprised of six members and...

  10. Climate Change in Colorado: Findings and Scientific Challenges

    NASA Astrophysics Data System (ADS)

    Barsugli, J.; Ray, A.; Averyt, K.; Wolter, K.; Hoerling, M. P.

    2008-12-01

    In response to the risks associated with anthropogenic climate change, Governor Ritter issued the Colorado Climate Action Plan (CCAP) in 2007. In support of the adaptation component of the CCAP, the Colorado Water Conservation Board commissioned the Western Water Assessment at the University of Colorado to prepare the report "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation." The objective of "Climate Change in Colorado" is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources. Accordingly, the document focuses on observed trends, modeling, attribution, and projections of hydroclimatic variables that are important for Colorado's water supply. Although many published datasets include information about Colorado, there are few climate studies that focus on the state. Consequently, many important analyses for Colorado are lacking. The report summarizes Colorado-specific findings from peer-reviewed regional studies, and presents new analyses derived from existing datasets. Here we will summarize the findings of the report, discuss the extent to which conclusions from West-wide studies hold in Colorado, and highlight the many scientific challenges that were faced in the preparation of the report. These challenges include interpreting observed and projected precipitation and temperature variability and trends, dealing with attribution and uncertainty at the state level, and justifying the relevance of climate model projections in a topographically complex state. A second presentation (Ray et al.) discusses the process of developing the report.

  11. Cold and transition season cloud condensation nuclei measurements in western Colorado

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Cotton, W. R.

    2011-05-01

    Recent studies have shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud droplet nucleating aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign. Total particle and cloud condensation nuclei (CCN) number concentrations were measured for a 24-day period in Mesa Verde National Park, in September and October 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship was found for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements collected aboard the King Air platform during December 2009. A CCN closure attempt was performed and suggested that the sampled aerosol may have had a low hygroscopicity that changed little with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with CCN number concentrations that varied slowly in time, and little in space along the Western Slope.

  12. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China.

    PubMed

    Zhang, Jing; Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Lian, Jie; Yue, Xiyuan

    2017-05-01

    Understanding the responses of vegetation characteristics and soil properties to grazing disturbance is useful for grassland ecosystem restoration and management in semiarid areas. Here, we examined the effects of long-term grazing on vegetation characteristics, soil properties, and their relationships across four grassland types (meadow, Stipa steppe, scattered tree grassland, and sandy grassland) in the Horqin grassland, northern China. Our results showed that grazing greatly decreased vegetation cover, aboveground plant biomass, and root biomass in all four grassland types. Plant cover and aboveground biomass of perennials were decreased by grazing in all four grasslands, whereas grazing increased the cover and biomass of shrubs in Stipa steppe and of annuals in scattered tree grassland. Grazing decreased soil carbon and nitrogen content in Stipa steppe and scattered tree grassland, whereas soil bulk density showed the opposite trend. Long-term grazing significantly decreased soil pH and electrical conductivity (EC) in annual-dominated sandy grassland. Soil moisture in fenced and grazed grasslands decreased in the following order of meadow, Stipa steppe, scattered tree grassland, and sandy grassland. Correlation analyses showed that aboveground plant biomass was significantly positively associated with the soil carbon and nitrogen content in grazed and fenced grasslands. Species richness was significantly positively correlated with soil bulk density, moisture, EC, and pH in fenced grasslands, but no relationship was detected in grazed grasslands. These results suggest that the soil carbon and nitrogen content significantly maintains ecosystem function in both fenced and grazed grasslands. However, grazing may eliminate the association of species richness with soil properties in semiarid grasslands.

  13. Colorado Children's Budget 2012

    ERIC Educational Resources Information Center

    Buck, Beverly; Cuciti, Peggy L.; Baker, Robin

    2012-01-01

    The "Colorado Children's Budget 2012" examines the state's commitment to investing in the well-being of children. It tallies up Colorado's actual and planned investment during the past five years (Fiscal Year (FY) 2008-2009 through FY 2012-2013) on programs and services in four areas: Early Childhood Learning and Development, K-12…

  14. Colorado Children's Budget 2011

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2011

    2011-01-01

    "Colorado Children's Budget 2011" tallies up Colorado's public investments during FY 2007-08 through FY 2011-12 for programs and services that enhance the well-being of children across four domains--Early Childhood, K-12 Education, Health, and Other Supports. It is intended to be a resource guide for policymakers and advocates who are…

  15. Measuring the Health of an Invisible Population: Lessons from the Colorado Transgender Health Survey.

    PubMed

    Christian, Robin; Mellies, Amy Anderson; Bui, Alison Grace; Lee, Rita; Kattari, Leo; Gray, Courtney

    2018-05-15

    Transgender people, those whose gender identity does not match their sex assigned at birth, face barriers to receiving health care. These include discrimination, prohibitive cost, and difficulty finding transgender-inclusive providers. As transgender identities are not typically recognized in public health research, the ability to compare the health of the transgender population to the overall population is limited. The Colorado Transgender Health Survey sought to explore current disparities and their effects on the health of transgender people in Colorado. The Colorado Transgender Health Survey, based on the Behavioral Risk Factor Surveillance System (BRFSS), was developed by the Colorado Department of Public Health and Environment, transgender advocates, and transgender community members. Outreach was targeted to transgender-inclusive events and organizations. Responses to the 2014 Colorado Transgender Health Survey were compared side by side to Colorado 2014 BRFSS data. Results from 406 transgender or gender-nonconforming adults who live in Colorado were included in the analysis. Forty percent of respondents report delaying medical care due to cost, inadequate insurance, and/or fear of discrimination. Respondents report significant mental health concerns, with 43% reporting depression, 36% reporting suicidal thoughts, and 10% attempting suicide in the past year. Respondents with a transgender-inclusive provider were more likely to receive wellness exams (76 versus 48%), less likely to delay care due to discrimination (24 versus 42%), less depressed (38 versus 54%), and less likely to attempt suicide (7 versus 15%) than those without. The transgender community in Colorado faces significant disparities, especially around mental health. However, a transgender-inclusive provider is associated with improved mental and physical health and health behaviors. Further population-level research and provider education on transgender health should to be incorporated into

  16. Discrimination of grassland species and their classification in botanical families by laboratory scale hyperspectral imaging NIR: preliminary results

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to discriminate by on-line hyperspectral imaging, taxonomic plant families comprised of different grassland species. Plants were collected from semi-natural meadows of the National Apuseni Park, Apuseni Mountains, Gârda area (Romania) according to botanical families. ...

  17. Impacts of tree rows on grassland birds & potential nest predators: A removal experiment

    USGS Publications Warehouse

    Ellison, Kevin S.; Ribic, Christine; Sample, David W.; Fawcett, Megan J.; Dadisman, John D.

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland

  18. Occupancy patterns of regionally declining grassland sparrow populations in a forested Pennsylvania landscape

    USGS Publications Warehouse

    Hill, Jason M.; Diefenbach, Duane R.

    2014-01-01

    Organisms can be affected by processes in the surrounding landscape outside the boundary of habitat areas and by local vegetation characteristics. There is substantial interest in understanding how these processes affect populations of grassland birds, which have experienced substantial population declines. Much of our knowledge regarding patterns of occupancy and density stem from prairie systems, whereas relatively little is known regarding how occurrence and abundance of grassland birds vary in reclaimed surface mine grasslands. Using distance sampling and single-season occupancy models, we investigated how the occupancy probability of Grasshopper (Ammodramus savannarum) and Henslow's Sparrows (A. henslowii) on 61 surface mine grasslands (1591 ha) in Pennsylvania changed from 2002 through 2011 in response to landscape, grassland, and local vegetation characteristics . A subset (n = 23; 784 ha) of those grasslands were surveyed in 2002, and we estimated changes in sparrow density and vegetation across 10 years. Grasshopper and Henslow's Sparrow populations declined 72% and 49%, respectively from 2002 to 2011, whereas overall woody vegetation density increased 2.6 fold. Henslow's Sparrows avoided grasslands with perimeter–area ratios ≥0.141 km/ha and woody shrub densities ≥0.04 shrubs/m2. Both species occupied grasslands ≤13 ha, but occupancy probability declined with increasing grassland perimeter–area ratio and woody shrub density. Grassland size, proximity to nearest neighboring grassland ( = 0.2 km), and surrounding landscape composition at 0.5, 1.5, and 3.0 km were not parsimonious predictors of occupancy probability for either species. Our results suggest that reclaimed surface mine grasslands, without management intervention, are ephemeral habitats for Grasshopper and Henslow's Sparrows. Given the forecasted decline in surface coal production for Pennsylvania, it is likely that both species will continue to decline in our study region for the

  19. Occupancy patterns of regionally declining grassland sparrow populations in a forested Pennsylvania landscape.

    PubMed

    Hill, Jason M; Diefenbach, Duane R

    2014-06-01

    Organisms can be affected by processes in the surrounding landscape outside the boundary of habitat areas and by local vegetation characteristics. There is substantial interest in understanding how these processes affect populations of grassland birds, which have experienced substantial population declines. Much of our knowledge regarding patterns of occupancy and density stem from prairie systems, whereas relatively little is known regarding how occurrence and abundance of grassland birds vary in reclaimed surface mine grasslands. Using distance sampling and single-season occupancy models, we investigated how the occupancy probability of Grasshopper (Ammodramus savannarum) and Henslow's Sparrows (A. henslowii) on 61 surface mine grasslands (1591 ha) in Pennsylvania changed from 2002 through 2011 in response to landscape, grassland, and local vegetation characteristics . A subset (n = 23; 784 ha) of those grasslands were surveyed in 2002, and we estimated changes in sparrow density and vegetation across 10 years. Grasshopper and Henslow's Sparrow populations declined 72% and 49%, respectively from 2002 to 2011, whereas overall woody vegetation density increased 2.6 fold. Henslow's Sparrows avoided grasslands with perimeter-area ratios ≥0.141 km/ha and woody shrub densities ≥0.04 shrubs/m(2). Both species occupied grasslands ≤13 ha, but occupancy probability declined with increasing grassland perimeter-area ratio and woody shrub density. Grassland size, proximity to nearest neighboring grassland (x = 0.2 km), and surrounding landscape composition at 0.5, 1.5, and 3.0 km were not parsimonious predictors of occupancy probability for either species. Our results suggest that reclaimed surface mine grasslands, without management intervention, are ephemeral habitats for Grasshopper and Henslow's Sparrows. Given the forecasted decline in surface coal production for Pennsylvania, it is likely that both species will continue to decline in our study region for the

  20. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    PubMed

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  1. Bibliography, indices, and data sources of water-related studies, upper Colorado River basin, Colorado and Utah, 1872-1995

    USGS Publications Warehouse

    Bauch, N.J.; Apodaca, L.E.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, current water-quality conditions in the Upper Colorado River Basin in Colorado and Utah are being assessed. This report is an initial effort to identify and compile information on water-related studies previously conducted in the basin and consists of a bibliography, coauthor and subject indices, and sources of available water-related data. Computerized literature searches of scientific data bases were carried out to identify past water-related studies in the basin, and government agencies and private organizations were contacted regarding their knowledge or possession of water-related publications and data. Categories of information in the bibliography include: aquatic biology, climate, energy development, geology, land use, limnology, runoff, salinity, surface- and ground-water hydrology, water chemistry, water quality and quantity, and water use and management. The approximately 1,400 indexed references date from 1872 through February 1995 and include books, journal articles, maps, and reports. In many instances, an abstract has been provided for a given reference. Sources of water-related data in the basin are included in a table.

  2. Bird productivity and nest predation in agricultural grasslands

    USGS Publications Warehouse

    Ribic, Christine; Guzy, Michael J.; Anderson, Travis J.; Sample, David W.; Nack, Jamie L.

    2012-01-01

    Effective conservation strategies for grassland birds in agricultural landscapes require understanding how nesting success varies among different grassland habitats. A key component to this is identifying nest predators and how these predators vary by habitat. We quantified nesting activity of obligate grassland birds in three habitats [remnant prairie, cool-season grass Conservation Reserve Program (CRP) fields, and pastures) in southwest Wisconsin, 2002-2004. We determined nest predators using video cameras and examined predator activity using track stations. Bobolink (Dolichonyx oryzivorus) and Henslow's Sparrow (Ammodramus henslowii) nested primarily in CRP fields, and Grasshopper Sparrow (A. savannarum) in remnant prairies. Eastern Meadowlark (Sturnella magna) nested evenly across all three habitats. Daily nest survival rate for Eastern Meadowlark varied by nesting stage alone. Daily nest survival rate for Grasshopper Sparrow varied by nest vegetation and distance to the nearest woody edge; nest survival was higher near woody edges. In CRP fields, most predators were grassland-associated, primarily thirteen-lined ground squirrels (Ictidomys tridecemlineatus). In pastures, one-third of the nest predators were grassland-associated (primarily thirteen-lined ground squirrels) and 56% were associated with woody habitats (primarily raccoons, Procyon lotor). Raccoon activity was greatest around pastures and lowest around prairies; regardless of habitat, raccoon activity along woody edges was twice that along non-woody edges. Thirteen-lined ground squirrel activity was greater along prairie edges than pastures and was greater along nonwoody edges compared to woody edges. In CRP fields, raccoon activity was greater along edges compared to the interiors; for ground squirrels these relationships were reversed. Using video camera technology to identify nest predators was indispensable in furthering our understanding of the grassland system. The challenge is to use that

  3. NASA Helps Build Colorado Economy

    NASA Image and Video Library

    2010-12-13

    NIST MEP Director Roger Kilmer delivers remarks at the Colorado State Capitol in Denver on Monday, Dec. 13, 2010, prior to the signing of an agreement between the Colorado Association for Manufacturing and Technology (CAMT) and NASA that creates a Technology Acceleration Program and Regional Innovation Cluster for Aerospace and Clean Energy. A manufacturing park focused on rapid new product development and production will be developed to assist growing Colorado businesses while promoting the commercialization of technology developed for the space program. Photo Credit: (NASA/Bill Ingalls)

  4. National Smart Water Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, R A

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and themore » western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing

  5. Influence of Agropastoral System Components on Mountain Grassland Vulnerability Estimated by Connectivity Loss

    PubMed Central

    Fillat, Federico; Pérez-Cabello, Fernando; Alados, Concepción L.

    2016-01-01

    Over the last decades, global changes have altered the structure and properties of natural and semi-natural mountain grasslands. Those changes have contributed to grassland loss mainly through colonization by woody species at low elevations, and increases in biomass and greenness at high elevations. Nevertheless, the interactions between agropastoral components; i.e., ecological (grassland, environmental, and geolocation properties), social, and economic components, and their effects on the grasslands are still poorly understood. We estimated the vulnerability of dense grasslands in the Central Pyrenees, Spain, based on the connectivity loss (CL) among grassland patches that has occurred between the 1980s and the 2000s, as a result of i) an increase in biomass and greenness (CL-IBG), ii) woody encroachment (CL-WE), or iii) a decrease in biomass and greenness (CL-DBG). The environmental and grassland components of the agropastoral system were associated with the three processes, especially CL-IBG and CL-WE, in relation with the succession of vegetation toward climax communities, fostered by land abandonment and exacerbated by climate warming. CL-IBG occurred in pasture units that had a high proportion of dense grasslands and low current livestock pressure. CL-WE was most strongly associated with pasture units that had a high proportion of woody habitat and a large reduction in sheep and goat pressure between the 1930s and the 2000s. The economic component was correlated with the CL-WE and the CL-DBG; specifically, expensive pastures were the most productive and could maintain the highest rates of livestock grazing, which slowed down woody encroachment, but caused grassland degradation and DBG. In addition, CL-DBG was associated with geolocation of grasslands, mainly because livestock tend to graze closer to passable roads and buildings, where they cause grassland degradation. To properly manage the grasslands, an integrated management plan must be developed that

  6. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau

    PubMed Central

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253

  7. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.

    PubMed

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland.

  8. Colorado Library Program Assessment

    ERIC Educational Resources Information Center

    Russell, Becky

    2012-01-01

    Colorado school librarians are in the midst of a crisis. According to a 2009-2010 survey of public schools in Colorado, just 23% of elementary schools have an endorsed librarian, while 37% of middle schools and 32% of high schools report having an endorsed librarian. This report also shows how these percentages have dropped in just a two-year…

  9. Tools for Management for Grassland Ecosystem Sustainability: Thinking "Outside the Box"

    Treesearch

    Gerald J. Gottfried

    2004-01-01

    Grassland ecosystem management is dynamic and has adapted to the development of new tools and ideas. Our ancestors were indirectly managing grasslands when they learned to move livestock to take advantage of better water and greener forage. One could argue that even their hunting of grassland wildlife, especially the use of fire to drive animals to waiting hunters, had...

  10. Net ecosystem productivity of temperate grasslands in northern China: An upscaling study

    USGS Publications Warehouse

    Zhang, Li; Guo, Huadong; Jia, Gensuo; Wylie, Bruce; Gilmanov, Tagir; Howard, Daniel M.; Ji, Lei; Xiao, Jingfeng; Li, Jing; Yuan, Wenping; Zhao, Tianbao; Chen, Shiping; Zhou, Guangsheng; Kato, Tomomichi

    2014-01-01

    Grassland is one of the widespread biome types globally, and plays an important role in the terrestrial carbon cycle. We examined net ecosystem production (NEP) for the temperate grasslands in northern China from 2000 to 2010. We combined flux observations, satellite data, and climate data to develop a piecewise regression model for NEP, and then used the model to map NEP for grasslands in northern China. Over the growing season, the northern China's grassland had a net carbon uptake of 158 ± 25 g C m−2 during 2000–2010 with the mean regional NEP estimate of 126 Tg C. Our results showed generally higher grassland NEP at high latitudes (northeast) than at low latitudes (central and west) because of different grassland types and environmental conditions. In the northeast, which is dominated by meadow steppes, the growing season NEP generally reached 200–300 g C m−2. In the southwest corner of the region, which is partially occupied by alpine meadow systems, the growing season NEP also reached 200–300 g C m−2. In the central part, which is dominated by typical steppe systems, the growing season NEP generally varied in the range of 100–200 g C m−2. The NEP of the northern China's grasslands was highly variable through years, ranging from 129 (2001) to 217 g C m−2 growing season−1 (2010). The large interannual variations of NEP could be attributed to the sensitivity of temperate grasslands to climate changes and extreme climatic events. The droughts in 2000, 2001, and 2006 reduced the carbon uptake over the growing season by 11%, 29%, and 16% relative to the long-term (2000–2010) mean. Over the study period (2000–2010), precipitation was significantly correlated with NEP for the growing season (R2 = 0.35, p-value < 0.1), indicating that water availability is an important stressor for the productivity of the temperate grasslands in semi-arid and arid regions in northern China. We conclude that northern temperate grasslands have the potential to

  11. Effects of haying on breeding birds in CRP grasslands

    USGS Publications Warehouse

    Igl, Lawrence D.; Johnson, Douglas H.

    2016-01-01

    The Conservation Reserve Program (CRP) is a voluntary program that is available to agricultural producers to help protect environmentally sensitive or highly erodible land. Management disturbances of CRP grasslands generally are not allowed unless authorized to provide relief to livestock producers during severe drought or a similar natural disaster (i.e., emergency haying and grazing) or to improve the quality and performance of the CRP cover (i.e., managed haying and grazing). Although CRP grasslands may not be hayed or grazed during the primary bird-nesting season, these disturbances may have short-term (1 yr after disturbance) and long-term (≥2 yr after disturbance) effects on grassland bird populations. We assessed the effects of haying on 20 grassland bird species in 483 CRP grasslands in 9 counties of 4 states in the northern Great Plains, USA between 1993 and 2008. We compared breeding bird densities (as determined by total-area counts) in idle and hayed fields to evaluate changes 1, 2, 3, and 4 years after haying. Haying of CRP grasslands had either positive or negative effects on grassland birds, depending on the species, the county, and the number of years after the initial disturbance. Some species (e.g., horned lark [Eremophila alpestris], bobolink [Dolichonyx oryzivorus]) responded positively after haying, and others (e.g., song sparrow [Melospiza melodia]) responded negatively. The responses of some species changed direction as the fields recovered from haying. For example, densities for common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus platensis), and clay-colored sparrow (Spizella pallida) declined the first year after haying but increased in the subsequent 3 years. Ten species showed treatment × county interactions, indicating that the effects of haying varied geographically. This long-term evaluation on the effects of haying on breeding birds provides important information on the strength and direction of changes in

  12. Green fescue grassland: 40 years of secondary succession.

    Treesearch

    Elbert H. Reid; Gerald S. Strickler; Wade B. Hall

    1980-01-01

    The 40-year succession of a depleted green fescue (Festuca viridula) sub-alpine grassland in the Wallowa Mountains, Oregon, was influenced by historic soil erosion. Range conditions of the grassland annually grazed by domestic sheep improved greatly between 1938 and 1978; most of the improvement occurred between the 30th and 40th years. Photographs illustrate the...

  13. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    NASA Astrophysics Data System (ADS)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The

  14. Establishment gaps as an innovative tool to restore landscape-scale grassland biodiversity

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Deák, Balázs; Török, Péter; Tischew, Sabine; Kirmer, Anita; Kelemen, András; Miglécz, Tamás; Tóth, Katalin; Radócz, Szilvia; Sonkoly, Judit; Valkó, Orsolya

    2017-04-01

    The large-scale abandonment of croplands resulted in landscape-scale changes in biodiversity, ecosystem services and agricultural production in Central Europe. Grasslands are vital landscape elements, and sustaining their biodiversity is crucial for biodiversity conservation. Thus, grassland restoration on former croplands offers a vital opportunity to restore grassland biodiversity. We studied vegetation changes in former croplands sown by grass seed mixtures in Hungary. We evaluated the usefulness of sowing grass seed mixtures, a frequently used restoration technique. We also developed a novel method (so-called establishment gaps) to increase the diversity of species-poor sown grasslands. We compiled a multi-species seed mixture containing 35 species. We established altogether 32 establishment gaps (size: 1×1-m, 2×2-m and 4×4-m) in 8-year-old restored grasslands. We evaluated the success and cost-effectiveness of spontaneous grassland recovery and active grassland restoration by seed sowing. We focused on the restoration of ecosystem services, like weed control, biomass production, and recovery of biodiversity. Using establishment gaps we could successfully introduce target species to the species-poor recovered grasslands. All sown species established in the establishment gaps and many of them maintained or even increased their first-year cover to the second year. Larger establishment gaps were characterised by higher cover of sown species and more homogeneous species composition compared to the smaller ones. Thus, we recommend using large establishment gaps in restoration practice. Our findings suggest that grassland restoration on croplands offer a viable solution for restoring biodiversity and ecosystem services. We found that both spontaneous grassland recovery and seed sowing can be cost-effective methods, and can be successful even during a relatively short period of a nature conservation project.

  15. Colorado State Capitol Geothermal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, Lance

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  16. Prescribed fire as an alternative measure in European grassland conservation

    NASA Astrophysics Data System (ADS)

    Valkó, Orsolya; Deák, Balázs; Török, Péter; Tóthmérész, Béla

    2015-04-01

    There are contrasting opinions on the perspectives of prescribed burning management in European grasslands. One hand, prescribed burning can be effectively used with relatively low implementation costs for the management of open landscapes, the reduction of accumulated litter or for decreasing the chance of wildfires. On the other hand burning can also have serious detrimental impacts on grassland ecosystems by promoting the dominance of some problem species (e.g. some competitors or invasive species) and by threatening endangered plant and animal species, especially invertebrates, thus, inappropriate burning can result in a loss of biodiversity in the long run. Our goal was to review the publications on the application of prescribed burning in European grasslands considering general (e.g. timing, frequency and duration) and specific (e.g. types of grasslands, effects on endangered species) circumstances. Even prescribed burning forms an integral part of the North-American grassland management practice, it is rarely applied in Europe, despite the fact that uncontrolled burning occurs frequently in some regions. According to the North-American experiences prescribed burning can be a viable solution for biodiversity conservation and can be a feasible solution for several nature conservation problems. We reviewed prescribed burning studies from Europe and North-America to identify findings which might be adapted to the European grassland conservation strategy. We found that not only the application of fire management is scarce in Europe but there is also a lack of published studies on this topic. European studies - contrary to the North-American practice - usually used yearly dormant-season burning, and concluded that this burning type solely is not feasible to preserve and maintain species-rich grasslands. In North-American grasslands, application of burning has a stronger historical, practical and scientific background; it is fine-tuned in terms of timing, frequency

  17. Potential soil carbon sequestration in overgrazed grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Conant, Richard T.; Paustian, Keith

    2002-12-01

    Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr-1), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr-1, most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.

  18. Modeling effects of conservation grassland losses on amphibian habitat

    USGS Publications Warehouse

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  19. Using Calibrated RGB Imagery from Low-Cost Uavs for Grassland Monitoring: Case Study at the Rengen Grassland Experiment (rge), Germany

    NASA Astrophysics Data System (ADS)

    Lussem, U.; Hollberg, J.; Menne, J.; Schellberg, J.; Bareth, G.

    2017-08-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  20. 75 FR 30806 - Colorado Interstate Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... Interstate Gas Company (CIG), P.O. Box 1087, Colorado Springs, Colorado 80944, filed with the Federal Energy... Susan C. Stires, Director, Regulatory Affairs, Colorado Interstate Gas Company, P.O. Box 1087, Colorado..., P.O. Box 1087, Colorado Springs, Colorado 80944 at 719-520-4898. Pursuant to section 157.9 of the...

  1. Childhood Poverty in Colorado: A Closer Look at a Statewide Challenge

    ERIC Educational Resources Information Center

    Piscopo, Lisa

    2009-01-01

    The nation's recent economic problems underscore the urgency of addressing the challenges that low-income families face. The current economic downturn will exacerbate what already are troubling trends in Colorado--namely, that too many children in the state live in poverty and these numbers are growing rapidly. Until updated data are available, it…

  2. Cowbird parasitism in grassland and cropland in the northern Great Plains: Chapter 27

    USGS Publications Warehouse

    Koford, Rolf R.; Bowen, B.S.; Lokemoen, John T.; Kruse, Arnold D.; Smith, James N.M.; Cook, T.L.; Rothstein, S. IU.; Robinson, S.K.; Sealy, S.G.

    2000-01-01

    The landscape of the Great Plains has been greatly altered by human activities in the past century, and several grassland passerines have experienced significant population declines in recent decades. We explore here whether brood parasitism by Brown-headed Cowbirds, which are abundant in the Great Plains, has contributed to these declines. We measured the frequency of cowbird parasitism of passerine species in seeded grassland, natural grassland, and cropland in studies conducted in North Dakota during 1981-1993. The proportions of parasitized nests were 25%, 34%, and 39% in seeded grassland, natural grassland, and cropland, respectively. We speculate that much of the variation in parasitism rate among these habitats is related to the local abundance of cowbirds, to nest visibility, and to the presence of suitable perches for female cowbirds. Local abundance of cowbirds may be high in areas with cattle pastures. Nests and nesting behavior are probably more visible to female cowbirds in cropland than in grassland. Female cowbirds may use shrubs as perches while searching for host nests, and shrubs are more common in natural grasslands than in the other habitats we examined. Experimental work on the determinants of cowbird abundance in grasslands is needed.

  3. Colorado Early Childhood Study.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Planning and Evaluation Unit.

    The Colorado State Board of Education allocated Title IV-V funds in 1975 for a study of the status of early childhood education in Colorado. The purposes of the study were to: (1) gather data relevant to early childhood education on the status of all children from birth through age 5; (2) identify needs of children of this age within the state;…

  4. 7 CFR 948.51 - Colorado Potato Committee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee... selected from each area committee. Committeemen shall be selected by the Secretary from nominations of area...

  5. 7 CFR 948.51 - Colorado Potato Committee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee... selected from each area committee. Committeemen shall be selected by the Secretary from nominations of area...

  6. 7 CFR 948.51 - Colorado Potato Committee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee... selected from each area committee. Committeemen shall be selected by the Secretary from nominations of area...

  7. 7 CFR 948.51 - Colorado Potato Committee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee... selected from each area committee. Committeemen shall be selected by the Secretary from nominations of area...

  8. 7 CFR 948.51 - Colorado Potato Committee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee... selected from each area committee. Committeemen shall be selected by the Secretary from nominations of area...

  9. 75 FR 26988 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... Wheat and students participating in University of Colorado Museum sponsored archeological field schools... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: University of.... 3003, of the completion of an inventory of human remains in the possession of the University of...

  10. Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.

    2010-12-01

    More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides

  11. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    PubMed

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  12. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    PubMed Central

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B.; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W. T.; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019) increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma biofertilizer

  13. Modification of Susceptible and Toxic Herbs on Grassland Disease.

    PubMed

    Yao, Xiang; Fan, Yubing; Chai, Qing; Johnson, Richard D; Nan, Zhibiao; Li, Chunjie

    2016-09-16

    Recent research shows that continuous overgrazing not only causes grassland biodiversity to decline, but also causes light fungal disease. Achnatherum inebrians is susceptible to fungal diseases and increases in prevalence during over grazing due its toxicity to livestock. This study aimed to examine the effects of A. inebrians on biological control organisms and levels of plant diseases in overgrazed grasslands in northwestern China. The results showed that A. inebrians plants were seriously infected by fungal diseases and that this led to a high incidence of the mycoparasitic species Ampelomyces quisqualis and Sphaerellopsis filum. In addition, the fungivore, Aleocharinae, was found only in the soil growing A. inebrians rather than in the overgrazed area without A. inebrians. Overall, in an overgrazed grassland fenced for one year, disease levels in blocks without A. inebrians were significantly higher than those in blocks with A. inebrians. Our findings indicated that the disease susceptible, toxic A. inebrians can help control plant disease levels in overgrazed grasslands.

  14. Modification of Susceptible and Toxic Herbs on Grassland Disease

    PubMed Central

    Yao, Xiang; Fan, Yubing; Chai, Qing; Johnson, Richard D.; Nan, Zhibiao; Li, Chunjie

    2016-01-01

    Recent research shows that continuous overgrazing not only causes grassland biodiversity to decline, but also causes light fungal disease. Achnatherum inebrians is susceptible to fungal diseases and increases in prevalence during over grazing due its toxicity to livestock. This study aimed to examine the effects of A. inebrians on biological control organisms and levels of plant diseases in overgrazed grasslands in northwestern China. The results showed that A. inebrians plants were seriously infected by fungal diseases and that this led to a high incidence of the mycoparasitic species Ampelomyces quisqualis and Sphaerellopsis filum. In addition, the fungivore, Aleocharinae, was found only in the soil growing A. inebrians rather than in the overgrazed area without A. inebrians. Overall, in an overgrazed grassland fenced for one year, disease levels in blocks without A. inebrians were significantly higher than those in blocks with A. inebrians. Our findings indicated that the disease susceptible, toxic A. inebrians can help control plant disease levels in overgrazed grasslands. PMID:27633060

  15. Estimated Colorado Golf Course Irrigation Water Use, 2005

    USGS Publications Warehouse

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  16. The Colorado Plateau: cultural, biological, and physical research

    USGS Publications Warehouse

    Cole, Kenneth L.; van Riper, Charles

    2004-01-01

    Stretching from the four corners of Arizona, New Mexico, Colorado, and Utah, the Colorado Plateau is a natural laboratory for a wide range of studies. This volume presents 23 original articles drawn from more than 100 research projects presented at the Sixth Biennial Conference of Research on the Colorado Plateau. This scientific gathering revolved around research, inventory, and monitoring of lands in the region. The book's contents cover management techniques for cultural, biological, and physical resources, representing collaborative efforts among federal, university, and private sector scientists and land managers. Chapters on cultural concerns cover benchmarks of modern southwestern anthropological knowledge, models of past human activity and impact of modern visitation at newly established national monuments, challenges in implementing the 1964 Wilderness Act, and opportunities for increased federal research on Native American lands. The section on biological resources comprises sixteen chapters, with coverage that ranges from mammalian biogeography to responses of elk at the urban-wildland interface. Additional biological studies include the effects of fire and grazing on vegetation; research on bald eagles at Grand Canyon and tracking wild turkeys using radio collars; and management of palentological resources. Two final chapters on physical resources consider a proposed rerouting of the Rio de Flag River in urban Flagstaff, Arizona, and an examination of past climate patterns over the Plateau, using stream flow records and tree ring data. In light of similarities in habitat and climate across the Colorado Plateau, techniques useful to particular management units have been found to be applicable in many locations. This volume highlights an abundance of research that will prove useful for all of those working in the region, as well as for others seeking comparative studies that integrate research into land management actions.

  17. A Vegetation Database for the Colorado River Ecosystem from Glen Canyon Dam to the Western Boundary of Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.

    2008-01-01

    A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the

  18. Cold and transition season cloud condensation nuclei measurements in western Colorado

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Cotton, W. R.

    2010-11-01

    Recent research has shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud-active aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign. Total particle and cloud condensation nuclei (CCN) number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains, in Sept. and Oct. 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements aboard the KingAir platform during December 2009. A CCN closure attempt was performed using the size distribution information and suggested that the sampled aerosol in general had low hygroscopicity that changed slightly with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with a cloud active portion that varied slowly in time, and little in space along the Western Slope.

  19. Lightning in Colorado forest fire smoke plumes during summer 2012

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.

    2012-12-01

    May and June 2012 were unusually hot and dry in Colorado, which was suffering from a strong drought. A major consequence of this climatic regime was one of the most destructive forest fire seasons in state history, with hundreds of thousands of acres of forest and grassland consumed by flames, hundreds of homes burned, and several lives lost. Many of these fires occurred within range of the newly installed Colorado Lightning Mapping Array (COLMA), which provides high-resolution observations of discharges over a large portion of the state. The COLMA was installed in advance of the Deep Convective Clouds and Chemistry (DC3) project. High-altitude lightning was observed to occur sporadically in the smoke plumes over three major fires that occurred during early summer: Hewlett Gulch, High Park, and Waldo Canyon. Additionally, the Colorado State University CHILL (CSU-CHILL) and Pawnee radars observed the Hewlett Gulch plume electrify with detailed polarimetric and dual-Doppler measurements, and also provided these same measurements for the High Park plume when it was not producing lightning. Meanwhile, local Next Generation Radars (NEXRADs) provided observations of the electrified High Park and Waldo Canyon plumes. All of these plumes also were observed by geostationary meteorological satellites. These observations provide an unprecedented dataset with which to study smoke plume and pyrocumulus electrification. The polarimetric data - low reflectivity, high differential reflectivity, low correlation coefficient, and noisy differential phase - were consistent with the smoke plumes and associated pyrocumulus being filled primarily with irregularly shaped ash particles. Lightning was not observed in the plumes until they reached over 10 km above mean sea level, which was an uncommon occurrence requiring explosive fire growth combined with increased meteorological instability and reduced wind shear. Plume updraft intensification and echo-top growth led the occurrence of

  20. Grassland biodiversity can pay.

    PubMed

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  1. 78 FR 19304 - Notice of Intent To Repatriate Cultural Items: The Colorado College, Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., Armstrong Hall, Room 201, 14 E. Cache La Poudre, Colorado Springs, CO 80903, telephone (719) 389-6201..., Room 201, 14 E. Cache La Poudre, Colorado Springs, CO 80903, telephone (719) 389-6201, before April 29...

  2. Persistence of Ethnicity: The Japanese of Colorado.

    ERIC Educational Resources Information Center

    Endo, Russell

    This paper presents an overview of the history of Japanese in Colorado. Japanese immigrants first came to Colorado between 1900 and 1910 as railroad laborers. Some became coal miners in southern Colorado; most others became farm laborers. Although the Japanese population during this period was small, communities developed in several locales. The…

  3. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size.

    PubMed

    Zuckerberg, Benjamin; Ribic, Christine A; McCauley, Lisa A

    2018-02-06

    Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch-size-induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland-bird demography and could be an effective component of climate-change adaptation.

  4. Geologic map of the Grand Junction Quadrangle, Mesa County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Carrara, Paul E.; Hood, William C.; Murray, Kyle E.

    2002-01-01

    This 1:24,000-scale geologic map of the Grand Junction 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the junction of the Colorado River and the Gunnison River. Bedrock strata include the Upper Cretaceous Mancos Shale through the Lower Jurassic Wingate Sandstone units. Below the Mancos Shale, which floors the Grand Valley, the Upper and Lower(?)Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation hold up much of the resistant northeast- dipping monocline along the northeast side of the Uncompahgre uplift. The impressive sequence of Jurassic strata below include the Brushy Basin, Salt Wash, and Tidwell Members of the Upper Jurassic Morrison Formation, the Middle Jurassic Wanakah Formation and informal 'board beds' unit and Slick Rock Member of the Entrada Formation, and the Lower Jurassic Kayenta Formation and Wingate Sandstone. The Upper Triassic Chinle Formation and Early Proterozoic meta-igneous gneiss and migmatitic meta- sedimentary rocks, which are exposed in the Colorado National Monument quadrangle to the west, do not crop out here. The monoclinal dip slope of the northeastern margin of the Uncompahgre uplift is apparently a Laramide structural feature. Unlike the southwest-dipping, high-angle reverse faults in the Proterozoic basement and s-shaped fault- propagation folds in the overlying strata found in the Colorado National Monument 7.5' quadrangle along the front of the uplift to the west, the monocline in the map area is unbroken except at two localities. One locality displays a small asymmetrical graben that drops strata to the southwest. This faulted character of the structure dies out to the northwest into an asymmetric fault-propagation fold that also drops strata to the southwest. Probably both parts of this structure are underlain by a northeast-dipping high

  5. Some Historical Background to the Country School Legacy: Frontier and Rural Schools in Colorado, 1859-1950. Country School Legacy: Humanities on the Frontier.

    ERIC Educational Resources Information Center

    Johnson, Charlie H., Jr.

    A study of historical background of the frontier and rural schools in Colorado describes education in the United State in general and the development of the educational process and school facilities during five phases of Colorado's economic and political development. "The Nation" discusses philosophies generally held during the middle…

  6. Convergence of potential net ecosystem production among contrasting C3 grasslands

    PubMed Central

    Peichl, Matthias; Sonnentag, Oliver; Wohlfahrt, Georg; Flanagan, Lawrence B.; Baldocchi, Dennis D.; Kiely, Gerard; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Pio, Casimiro; Migliavacca, Mirco; Jones, Michael B.; Saunders, Matthew

    2013-01-01

    Metabolic theory and body size dependent constraints on biomass production and decomposition suggest that differences in the intrinsic potential net ecosystem production (NEPPOT) should be small among contrasting C3 grasslands and therefore unable to explain the wide range in the annual apparent net ecosystem production (NEPAPP) reported by previous studies. We estimated NEPPOT for nine C3 grasslands under contrasting climate and management regimes using multi-year eddy covariance data. NEPPOT converged within a narrow range suggesting little difference in the net carbon dioxide uptake capacity across C3 grasslands. Our results indicate a unique feature of C3 grasslands compared to other terrestrial ecosystems and suggest a state of stability in NEPPOT due to tightly coupled production and respiration processes. Consequently, the annual NEPAPP of C3 grasslands is primarily a function of seasonal and short-term environmental and management constraints, and therefore especially susceptible to changes in future climate patterns and associated adaptation of management practices. PMID:23346985

  7. Impacts of Tree Rows on Grassland Birds and Potential Nest Predators: A Removal Experiment

    PubMed Central

    Ellison, Kevin S.; Ribic, Christine A.; Sample, David W.; Fawcett, Megan J.; Dadisman, John D.

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow’s sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2–4 times for bobolink and Henslow’s sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow’s sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow’s sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland

  8. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    PubMed

    Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  9. Key challenges and priorities for modelling European grasslands under climate change.

    PubMed

    Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni

    2016-10-01

    Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research

  10. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    PubMed Central

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  11. The future of arid grasslands: identifying issues, seeking solutions

    Treesearch

    Barbara Tallman; Deborah M. Finch; Carl Edminster; Robert Hamre

    1998-01-01

    This conference was designed to provide a non-confrontational setting for a variety of people from differing viewpoints to discuss the threats facing arid grasslands of the Southwest. Participants included ranchers and other private economists, scientists, and students. The sessions were organized around the major themes of understanding grasslands, identifying...

  12. Deciphering Paria and Little Colorado River flood regimes and their significance in multi-objective adaptive management strategies for Colorado River resources in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Jain, S.; Topping, D. J.; Melis, T. S.

    2014-12-01

    Planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, sandbars, recreational trout angling, endangered native fish, whitewater rafting, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on warm-season Paria River floods (JUL-OCT, at point-to-regional scales) has been identified as lead information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars below Glen Canyon Dam; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of warm season tributary sand input from the Paria River into the Colorado River in Grand Canyon National Park. The Little Colorado River is an important secondary source of sand inputs to Grand Canyon, but its lower segment is also critical spawning habitat for the endangered humpback chub. Fish biologists have reported increased abundance of chub juveniles in this key tributary in summers following cool-season flooding (DEC-FEB), but little is known about chub spawning substrates and behavior or the role that flood frequency in this tributary may play in native fish population dynamics in Grand Canyon. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm- and cool-season floods from these two important tributaries of the semi-arid Colorado Plateau. Coupled variations of floods (magnitude and timing) from these rivers are also

  13. Colorado Academic Library Master Plan, Spring 1982.

    ERIC Educational Resources Information Center

    Breivik, Patricia Senn; And Others

    Based on a need to assess current library strengths and weaknesses and to project potential library roles in supporting higher education, this master plan makes a series of recommendations to Colorado's academic libraries. It is noted that the plan was endorsed by both the Colorado Commission on Higher Education and the Colorado State Department…

  14. 78 FR 45495 - Conejos Peak Ranger District, Rio Grande National Forest; Colorado; Cumbres Vegetation Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...; Colorado; Cumbres Vegetation Management Project AGENCY : Forest Service, USDA. ACTION: Notice of intent to... to 719-852-6250, with subject Cumbres Vegetation Management Project. FOR FURTHER INFORMATION CONTACT... Vegeta tion Management Project is move toward achieving long-term desired conditions described in the...

  15. Chicken Farming in Grassland Increases Environmental Sustainability and Economic Efficiency

    PubMed Central

    Liu, Meizhen; Wang, Bingxue; Osborne, Colin P.; Jiang, Gaoming

    2013-01-01

    Background Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities. Methodology/Principal Findings A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m−2 for grazing sheep to 84 g m−2 for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (p<0.01). Compared with traditional sheep grazing, chicken farming significantly improved soil surface water content (0–10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0–10 cm soil layer by 35% of the control (p<0.05). Most importantly, the economic income of local herdsmen has been raised about six times compared with the traditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities. Conclusion/Significance Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China. PMID:23372678

  16. Chicken farming in grassland increases environmental sustainability and economic efficiency.

    PubMed

    Liu, Meizhen; Wang, Bingxue; Osborne, Colin P; Jiang, Gaoming

    2013-01-01

    Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities. A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m(-2) for grazing sheep to 84 g m(-2) for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (p<0.01). Compared with traditional sheep grazing, chicken farming significantly improved soil surface water content (0-10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0-10 cm soil layer by 35% of the control (p<0.05). Most importantly, the economic income of local herdsmen has been raised about six times compared with the traditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities. Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China.

  17. Regression models for estimating salinity and selenium concentrations at selected sites in the Upper Colorado River Basin, Colorado, 2009-2012

    USGS Publications Warehouse

    Linard, Joshua I.; Schaffrath, Keelin R.

    2014-01-01

    Elevated concentrations of salinity and selenium in the tributaries and main-stem reaches of the Colorado River are a water-quality concern and have been the focus of remediation efforts for many years. Land-management practices with the objective of limiting the amount of salt and selenium that reaches the stream have focused on improving the methods by which irrigation water is conveyed and distributed. Federal land managers implement improvements in accordance with the Colorado River Basin Salinity Control Act of 1974, which directs Federal land managers to enhance and protect the quality of water available in the Colorado River. In an effort to assist in evaluating and mitigating the detrimental effects of salinity and selenium, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, the Colorado River Water Resources District, and the Bureau of Land Management, analyzed salinity and selenium data collected at sites to develop regression models. The study area and sites are on the Colorado River or in one of three small basins in Western Colorado: the White River Basin, the Lower Gunnison River Basin, and the Dolores River Basin. By using data collected from water years 2009 through 2011, regression models able to estimate concentrations were developed for salinity at six sites and selenium at six sites. At a minimum, data from discrete measurement of salinity or selenium concentration, streamflow, and specific conductance at each of the sites were needed for model development. Comparison of the Adjusted R2 and standard error statistics of the two salinity models developed at each site indicated the models using specific conductance as the explanatory variable performed better than those using streamflow. The addition of multiple explanatory variables improved the ability to estimate selenium concentration at several sites compared with use of solely streamflow or specific conductance. The error associated with the log-transformed salinity

  18. [Impacts of Ochotona pallasi disturbance on alpine grassland community characteristics].

    PubMed

    Zhao, Guo-qin; Li, Guang-yong; Ma, Wen-hu; Zhao, Dian-zhi; Li, Xiao-yan

    2013-08-01

    Plateau pika is the main fossorial mammal in the alpine grassland in Qinghai Lake Watershed of Northwest China. Based on the field investigation data from 18 alpine grassland quadrats in the Watershed, and by using redundancy analysis (RDA) and the surface fitting offered by 'R-Vegan' , the disturbance intensity of plateau pika (Ochotona pallasi) was classified as four levels. In order to explore the impacts of plateau pika disturbance on the alpine grassland ecosystem and its grazing quality, the community characteristics under different disturbance intensities by plateau pika were analyzed, and a conceptual model about the alpine grassland community succession was proposed. The results showed that with the increase of the disturbance intensity, the dominant species changed from Juncus roemerianus to Poa pratensis and Laux maritima. When the disturbance was small, the community had high quantitative values of coverage, aboveground biomass, biodiversity, and species richness, but the proportion of weeds was also high. When the disturbance was large, the quantitative values were the lowest, while the proportion of weeds was the highest. When the disturbance was moderate, the community had relatively high quantitative values, and the proportion of grasses and sedges was the highest. It was concluded that the community' s characteristic values under low plateau pika disturbance intensity were high but the grazing quality was low, while high disturbance intensity resulted in the grassland degradation. Therefore, the disturbance intensity in the threshold could maintain the stability of alpine grassland ecosystem and improve its grazing quality.

  19. Area sensitivity in North American grassland birds: Patterns and processes

    USGS Publications Warehouse

    Ribic, C.A.; Koford, Rolf R.; Herkert, J.R.; Johnson, D.H.; Niemuth, N.D.; Naugle, D.E.; Bakker, K.K.; Sample, D.W.; Renfrew, R.B.

    2009-01-01

    Grassland birds have declined more than other bird groups in North America in the past 35-40 years (Vickery and Herkert 2001, Sauer et al. 2008), prompting a wide variety of research aimed at understanding these declines, as well as conservation programs trying to reverse the declines (Askins et al. 2007). Area sensitivity, whereby the pattern of a species’ occurrence and density increases with patch area (Robbins et al. 1989), has been invoked as an important issue in grassland-bird conservation, and understanding the processes that drive area sensitivity in grassland birds is a major conservation need (Vickery and Herkert 2001). Here, we review the literature on North American grassland bird species that is relevant to the following questions: (1) What is the evidence for area sensitivity in grassland birds? (2) What are the historical explanations for area sensitivity? (3) What ecological processes could produce area sensitivity? And (5) what are the conservation implications of knowing the processes behind area sensitivity? Because of space limitations, we could not cite every paper we reviewed; the cited papers are given as examples of the literature in this field

  20. 40 CFR 81.306 - Colorado.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Colorado. 81.306 Section 81.306... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.306 Colorado. Colorado—1971 Sulfur Dioxide NAAQS (Primary and Secondary) Designated Area Does not meet primary standards...

  1. Geologic Map of Wupatki National Monument and Vicinity, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.

    2007-01-01

    Introduction The geologic map of Wupatki National Monument is a cooperative effort between the U.S. Geological Survey, the National Park Service, and the Navajo Nation to provide geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), and visitor information services at Wupatki National Monument, Arizona. Funding for the map was provided in part by the Water Rights Branch of the Water Resources Division of the National Park Service. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928)-871-6587. Wupatki National Monument lies within the USGS 1:24,000-scale Wupatki NE, Wupatki SE, Wupatki SW, Gray Mountain, East of SP Mountain, and Campbell Francis Wash quadrangles in northern Arizona. The map is bounded approximately by longitudes 111? 16' to 111? 32' 30' W. and latitudes 35? 30' to 35? 37' 40' N. The map area is in Coconino County on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into three physiographic parts, the Coconino Plateau, the Little Colorado River Valley, and the San Francisco Volcanic Field as defined by Billingsley and others (1997) [fig. 1]. Elevations range from 4,220 ft (1,286 m) at the Little Colorado River near the northeast corner of the map area to about 6,100 ft (1,859 m) at the southwest corner of the map area. The small community of Gray Mountain is about 16 mi (26 km) northwest of Wupatki National Monument Visitor Center, and Flagstaff, Arizona, the nearest metropolitan area, is about 24 mi (38 km) southwest of the Visitor Center (fig. 1). U.S. Highway 89 provides access to the west entrance of

  2. State Teacher Policy Yearbook: Progress on Teacher Quality, 2007. Colorado State Summary

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2007

    2007-01-01

    The "State Teacher Policy Yearbook" examines what is arguably the single most powerful authority over the teaching profession: state government. This Colorado edition of the National Council on Teacher Quality's (NCTQ's) "State Teacher Policy Yearbook" is the first of what will be an annual look at the status of state policies…

  3. Grassland productivity limited by multiple nutrients.

    PubMed

    Fay, Philip A; Prober, Suzanne M; Harpole, W Stanley; Knops, Johannes M H; Bakker, Jonathan D; Borer, Elizabeth T; Lind, Eric M; MacDougall, Andrew S; Seabloom, Eric W; Wragg, Peter D; Adler, Peter B; Blumenthal, Dana M; Buckley, Yvonne M; Chu, Chengjin; Cleland, Elsa E; Collins, Scott L; Davies, Kendi F; Du, Guozhen; Feng, Xiaohui; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Heckman, Robert W; Jin, Virginia L; Kirkman, Kevin P; Klein, Julia; Ladwig, Laura M; Li, Qi; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Risch, Anita C; Schütz, Martin; Stevens, Carly J; Wedin, David A; Yang, Louie H

    2015-07-06

    Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.

  4. Rapid Decline of a Grassland System and Its Ecological and Conservation Implications

    PubMed Central

    Ceballos, Gerardo; Davidson, Ana; List, Rurik; Pacheco, Jesús; Manzano-Fischer, Patricia; Santos-Barrera, Georgina; Cruzado, Juan

    2010-01-01

    One of the most important conservation issues in ecology is the imperiled state of grassland ecosystems worldwide due to land conversion, desertification, and the loss of native populations and species. The Janos region of northwestern Mexico maintains one of the largest remaining black-tailed prairie dog (Cynomys ludovicianus) colony complexes in North America and supports a high diversity of threatened and endangered species. Yet, cattle grazing, agriculture, and drought have greatly impacted the region. We evaluated the impact of human activities on the Janos grasslands, comparing changes in the vertebrate community over the last two decades. Our results reveal profound, rapid changes in the Janos grassland community, demonstrating large declines in vertebrate abundance across all taxonomic groups. We also found that the 55,000 ha prairie dog colony complex has declined by 73% since 1988. The prairie dog complex has become increasingly fragmented, and their densities have shown a precipitous decline over the years, from an average density of 25 per ha in 1988 to 2 per ha in 2004. We demonstrated that prairie dogs strongly suppressed woody plant encroachment as well as created open grassland habitat by clearing woody vegetation, and found rapid invasion of shrubland once the prairie dogs disappeared from the grasslands. Comparison of grasslands and shrublands showed markedly different species compositions, with species richness being greatest when both habitats were considered together. Our data demonstrate the rapid decline of a grassland ecosystem, and documents the dramatic loss in biodiversity over a very short time period concomitant with anthropogenic grassland degradation and the decline of a keystone species. PMID:20066035

  5. Colorado mileage-based user fee study.

    DOT National Transportation Integrated Search

    2013-12-01

    The Transportation Research Board, Government Accountability Office, and Colorado Transportation : Finance and Implementation Panel (CTFIP) suggested that Colorado pursue fees based on actual travel : as an alternative to the fuel tax. Revenues from ...

  6. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    USGS Publications Warehouse

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  7. Colorado Centennial-Bicentennial Teacher's Guide.

    ERIC Educational Resources Information Center

    Colorado Centennial - Bicentennial Commission, Denver.

    Intended for use by teachers in the establishment of curriculum to study centennial-bicentennial topics, the main purpose of this guide is to instill in students an appreciation of Colorado's system of government, resources, people, territory, and technology. Suggestions for teaching about seven major areas which relate to Colorado's heritage are…

  8. 40 CFR 81.306 - Colorado.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Colorado. 81.306 Section 81.306... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.306 Colorado. Colorado—SO2 Designated Area Does not meet primary standards Does not meet secondary standards Cannot be...

  9. 40 CFR 81.306 - Colorado.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Colorado. 81.306 Section 81.306... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.306 Colorado. Colorado—SO2 Designated Area Does not meet primary standards Does not meet secondary standards Cannot be...

  10. 40 CFR 81.306 - Colorado.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Colorado. 81.306 Section 81.306... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.306 Colorado. Colorado—SO2 Designated Area Does not meet primary standards Does not meet secondary standards Cannot be...

  11. Selected Colorado Technology Education Programs.

    ERIC Educational Resources Information Center

    Gloeckner, Gene W.

    The transition from industrial arts to technology education is a priority in Colorado. Millions of dollars have been and will be spent to renovate industrial arts facilities and laboratories. Four Colorado middle schools have exemplary technology education programs. The Eagle Crest Technology Education Laboratory is used for both middle and high…

  12. How Spatial Heterogeneity of Cover Affects Patterns of Shrub Encroachment into Mesic Grasslands

    PubMed Central

    Montané, Francesc; Casals, Pere; Dale, Mark R. T.

    2011-01-01

    We used a multi-method approach to analyze the spatial patterns of shrubs and cover types (plant species, litter or bare soil) in grassland-shrubland ecotones. This approach allows us to assess how fine-scale spatial heterogeneity of cover types affects the patterns of Cytisus balansae shrub encroachment into mesic mountain grasslands (Catalan Pyrenees, Spain). Spatial patterns and the spatial associations between juvenile shrubs and different cover types were assessed in mesic grasslands dominated by species with different palatabilities (palatable grass Festuca nigrescens and unpalatable grass Festuca eskia). A new index, called RISES (“Relative Index of Shrub Encroachment Susceptibility”), was proposed to calculate the chances of shrub encroachment into a given grassland, combining the magnitude of the spatial associations and the surface area for each cover type. Overall, juveniles showed positive associations with palatable F. nigrescens and negative associations with unpalatable F. eskia, although these associations shifted with shrub development stage. In F. eskia grasslands, bare soil showed a low scale of pattern and positive associations with juveniles. Although the highest RISES values were found in F. nigrescens plots, the number of juvenile Cytisus was similar in both types of grasslands. However, F. nigrescens grasslands showed the greatest number of juveniles in early development stage (i.e. height<10 cm) whereas F. eskia grasslands showed the greatest number of juveniles in late development stages (i.e. height>30 cm). We concluded that in F. eskia grasslands, where establishment may be constrained by the dominant cover type, the low scale of pattern on bare soil may result in higher chances of shrub establishment and survival. In contrast, although grasslands dominated by the palatable F. nigrescens may be more susceptible to shrub establishment; current grazing rates may reduce juvenile survival. PMID:22174858

  13. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.

    PubMed

    Ockinger, Erik; Smith, Henrik G

    2006-09-01

    During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at

  14. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W.; Rames, Clement L.

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in amore » simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.« less

  15. Debris flows in Grand Canyon National Park, Arizona: magnitude, frequency and effects on the Colorado River

    USGS Publications Warehouse

    Melis, Theodre S.; Webb, Robert H.; ,

    1993-01-01

    Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.

  16. Foods and nutritional components of diets of black bear in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2009-01-01

    We used scat analysis to determine diets and relative nutritional values of diets for black bears (Ursus americanus Pallas, 1780) in Rocky Mountain National Park, Colorado, from 2003 to 2006, and compared foods consumed and nutritional components to identify important sources of fecal gross energy (GE), crude fat (CF), and fecal nitrogen (FN) in annual and seasonal diets. Patterns of use of food classes followed typical seasonal patterns for bears, although use of animal matter was among the highest reported (>49% annually). Use of animal matter increased after spring, although crude protein levels in bear diets were always >25%. GE was typically lowest for grasses and other herbaceous plants and highest for ants and ungulates; FN was strongly positively related to most animal sources, but negatively correlated with vegetative matter; and CF showed the strongest positive relationship with ungulates and berries, with the latter likely influenced by the presence of seeds. Compared with historic data (1984-1991), contemporary diets included substantially greater prevalence of anthropogenic foods, which likely contributed to increases in size, condition, and productivity of the contemporary bear population. Management strategies are needed to increase quantity and quality of natural foods while minimizing dependence on anthropogenic sources.

  17. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    USGS Publications Warehouse

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  18. Colorado's Alternative School Calendar Program.

    ERIC Educational Resources Information Center

    Stiverson, C. L.

    1982-01-01

    Colorado's 22 school districts on a four-day week schedule, as authorized by Colorado Senate Bill 78, show comparable student achievement levels as those on a five-day schedule; support from parents, teachers; and students; improved energy savings and/or time savings; and cost savings. Five other possible benefits are listed. (LC)

  19. 75 FR 37749 - White River National Forest, Colorado, Oil and Gas Leasing Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ...; and amending the WRNF Land and Resource Management Plan 2002 Revision (Forest Plan) to incorporate the... improved oil and gas drilling, completion, and production technology; an increase in demand and public need... the following: 1. Silt, CO--Bureau of Land Management Colorado River Valley Field Office, Silt...

  20. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China

    Treesearch

    Lu Hao; Ge Sun; Yongqiang Liu; Zhiqiu Gao; Junjie He; Tingting Shi; Bingjuan Wu

    2014-01-01

    China launched the ‘‘Returning Grazing Lands to Grasslands’’ project about a decade ago to restore severely degraded grasslands. Grassland grazing exclusion was one of the experimental approaches for achieving the grand goal. Here, we evaluate the long-term regional ecological effects of grassland grazing exclusion in the Xilingol region of Inner Mongolia, China. The...

  1. DUID prevalence in Colorado's DUI citations.

    PubMed

    Wood, Ed; Salomonsen-Sautel, Stacy

    2016-06-01

    There are limited studies that measure the prevalence of driving under the influence of drugs (DUID) based upon impairment measures because most prevalence studies are based on drug tests. The aim of this study was to provide the first estimate of DUID prevalence in Colorado using data collected by Colorado law enforcement officers in vehicular homicide (VH) and vehicular assault (VA) cases, and reported in court records. The four research questions of this study were answered by completing independent t-tests or Mann-Whitney U tests, Pearson chi-square analyses or Fisher's exact tests, and Kruskal-Wallis tests. Seventy percent (119 out of 170) of the cases involved alcohol only and 30% (51 out of 170) involved drugs. Of the latter cases, 32 cases involved a combination of alcohol and drugs and 19 cases identified drugs only, with no alcohol. Marijuana was the most commonly cited drug (23 cases); however, it was the sole impairing substance identified in only three cases. Polydrug use was very common among DUID cases, which makes it difficult to identify which drug or drugs caused the impairment responsible for the Driving Under the Influence citation. This study revealed tha (a) drugged driving is a frequent cause of DUI citations in cases charged with VH or VA; (b) that polydrug use, rather than marijuana, is the most common cause of drugged driving in Colorado; and (c) that current warrant procedures render blood test results meaningless in cases of marijuana-impairment. States should collect and analyze DUID data to ensure legislators focus on the right DUID problems to improve biological testing for drugs, adopt more appropriate roadside testing, and enact stronger DUID laws to protect the public. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.

  2. Responses of microbial respiration in grazed and ungrazed grasslands to glucose addition

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Liu, Qianyuan; Pang, Rui

    2017-04-01

    Grazing can change species composition, alter soil properties, and thus modify microbial activities, affecting biogeochemical processes in grasslands. However, it remains unclear how microbial respiration in grazed and ungrazed grasslands responds to glucose addition. Here we hypothesize that microbial respiration in grazed grasslands will respond more strongly to glucose addition than in ungrazed grasslands because moderate grazing can enhance microbial activity. To examine the hypothesis above, we collected the upper 10 cm soil from grazed and ungrazed grasslands at five sites of China. Three sites (Hulunbuir 1, Hulunbuir 2 and Xielingele) were located in Inner Mongolia and two in the Tibet Plateau) Soils were incubated with low glucose input (50% MBC), high glucose input (150% MBC), and water for 60 days in 21oC. CO2 released from soil was trapped with 1 M NaOH. The results showed that the effect of grazing on microbial respiration has two distinct patterns, depending on soil types and addition amount. After glucose addition, cumulative CO2 efflux from grazed soils was significantly higher than from ungrazed soils in two temperate grasslands (Hulunbuir 1 and Xielingele). This may be ascribed to that moderate grazing promoted microbial activity. On the contrary, microbial respirations from grazed soils were lower than ungrazed soils in two alpine meadows of Haibei and Dangxiong and in Hulunbuir 2. This effect of grazing was not obvious in Hulunbeier 2 soils at low carbon addition level. Grazing may decrease soil organic carbon, nitrogen availability and thus microbial activity in alpine grasslands. These findings indicate that soil microorganisms could have different adaptation mechanisms to grazing in temperate and alpine grasslands.

  3. Response of grassland biomass production to simulated climate change and clipping along an elevation gradient.

    PubMed

    Carlyle, Cameron N; Fraser, Lauchlan H; Turkington, Roy

    2014-03-01

    Changes in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient. We monitored plant cover and biomass and found that OTC reduced biomass by 15%, but clipping and water treatments interacted with each other and their effects varied in different grassland types. For example, total biomass did not decline in the higher elevation grasslands due to clipping, and water addition mitigated the effects of clipping on subordinate grasses in the lower grasslands. The response of total biomass was driven by dominant plant species while subordinate grasses and forbs showed more variable responses. Overall, our results demonstrate that biomass in the highest elevation grassland was least effected by the treatments and the response of biomass tended to be dependent on interactions between climate change treatments and defoliation. Together, the results suggest that ecosystem function of these grasslands under altered climate patterns will be dependent on site-specific management.

  4. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods.

    PubMed

    Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei

    2016-02-17

    The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m(-2) and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0-100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems.

  5. Analysis of predator movement in prairie landscapes with contrasting grassland composition

    USGS Publications Warehouse

    Phillips, M.L.; Clark, W.R.; Nusser, S.M.; Sovada, M.A.; Greenwood, R.J.

    2004-01-01

    Mammalian predation influences waterfowl breeding success in the U.S. northern Great Plains, yet little is known about the influence of the landscape on the ability of predators to find waterfowl nests. We used radiotelemetry to record nightly movements of red foxes (Vulpes vulpes) and striped skunks (Mephitis mephitis) in two 41.4-km2 study areas in North Dakota. Study areas contained either 15-20% grassland (low grassland composition) or 45-55% grassland (high grassland composition). Grasslands included planted cover, pastureland, and hayland. We predicted that the type and composition of cover types in the landscape would influence both predator movement across the landscape (as measured by the fractal dimension and displacement ratio) as well as localized movement (as measured by the rate of movement and turning angle between locations) within patches of different cover types. Red fox movements were straighter (lower fractal dimensions and higher displacements) across landscapes with a low grassland composition, indicating directed movement between the more isolated patches of planted cover. Striped skunk movements did not differ between landscape types, illustrating their movement along wetland edges, which had similar compositions in both landscape types. The high variability in turning angles by red fox in planted cover and pastureland in both landscape types is consistent with restricted-area foraging. The high rate of movement by red foxes in planted cover and by striped skunks in wetland edges suggests that spatial memory may influence movement patterns. Understanding the behavior of predators in fragmented prairie landscape is essential for managing breeding habitat for grassland birds and for predicting the spatial and temporal dynamics of predators and their prey.

  6. Establishment of seeded grasslands for wildlife habitat in the prairie pothole region

    USGS Publications Warehouse

    Duebbert, Harold F.; Jacobson, Erling T.; Higgins, Kenneth F.; Podoll, Erling B.

    1981-01-01

    Techniques are described for establishment of seeded grasslands on cultivated soils to provide wildlife habitat within the glaciated prairie pothole region in the north-central United States. Management of grassland habitats on a sound ecological basis is an important wildlife management activity in the region. The primary purpose of the guidelines in this publication is to help managers establish and maintain good stands of seeded cover for waterfowl nesting and use by other prairie wildlife. Several options are available for selecting a type of cover to be established. The following seeded grassland types are described: (1) introduced cool-season grasses and legumes; (2) tall, warm-season native grasses; and (3) mixed-grass prairie grasses. Major vegetative species recommended for (1) are tall wheatgrass (Agropyron elongatum), intermediate wheatgrass (A. intermedium), alfalfa (Medicago sativa), and sweetclover (Melilotus spp.); for (2) are big bluestem (Andropogon gerardi), indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum); for (3) are green needlegrass (Stipa viridula), little bluestem (Andropogon scoparius), western wheatgrass (Agropyron smithii), and sideoats grama (Bouteloua curtipendula). Important factors that affect the success of establishment of seeded grasslands include site adaptability, site preparation, seedbed preparation, planting equipment and methods, rates and dates of seeding, and seed sources. A management goal for seeded grasslands intended to provide optimum habitat for dabbling duck nesting should be to maintain vigorous stands of vegetation with the tallest, most dense cover form that is possible under prevailing soil and climatic conditions. Grassland management is a never-ending job and seeded grasslands require periodic rejuvenation to maintain them in an optimum condition. Prescribed burning and planned grazing systems are acceptable methods for periodically rejuvenating seeded native grasses. Stands of introduced

  7. Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape.

    PubMed

    Leys, Berangere A; Commerford, Julie L; McLauchlan, Kendra K

    2017-01-01

    Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records.

  8. Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape

    PubMed Central

    Leys, Berangere A.; Commerford, Julie L.; McLauchlan, Kendra K.

    2017-01-01

    Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records. PMID:28448597

  9. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?

    PubMed Central

    Yan, Yan

    2015-01-01

    Overgrazing is considered one of the key disturbance factors that results in alpine grassland degradation in Tibet. Grazing exclusion by fencing has been widely used as an approach to restore degraded grasslands in Tibet since 2004. Is the grazing exclusion management strategy effective for the vegetation restoration of degraded alpine grasslands? Three alpine grassland types were selected in Tibet to investigate the effect of grazing exclusion on plant community structure and biomass. Our results showed that species biodiversity indicators, including the Pielou evenness index, the Shannon–Wiener diversity index, and the Simpson dominance index, did not significantly change under grazing exclusion conditions. In contrast, the total vegetation cover, the mean vegetation height of the community, and the aboveground biomass were significantly higher in the grazing exclusion grasslands than in the free grazed grasslands. These results indicated that grazing exclusion is an effective measure for maintaining community stability and improving aboveground vegetation growth in alpine grasslands. However, the statistical analysis showed that the growing season precipitation (GSP) plays a more important role than grazing exclusion in which influence on vegetation in alpine grasslands. In addition, because the results of the present study come from short term (6–8 years) grazing exclusion, it is still uncertain whether these improvements will be continuable if grazing exclusion is continuously implemented. Therefore, the assessments of the ecological effects of the grazing exclusion management strategy on degraded alpine grasslands in Tibet still need long term continued research. PMID:26157607

  10. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?

    PubMed

    Yan, Yan; Lu, Xuyang

    2015-01-01

    Overgrazing is considered one of the key disturbance factors that results in alpine grassland degradation in Tibet. Grazing exclusion by fencing has been widely used as an approach to restore degraded grasslands in Tibet since 2004. Is the grazing exclusion management strategy effective for the vegetation restoration of degraded alpine grasslands? Three alpine grassland types were selected in Tibet to investigate the effect of grazing exclusion on plant community structure and biomass. Our results showed that species biodiversity indicators, including the Pielou evenness index, the Shannon-Wiener diversity index, and the Simpson dominance index, did not significantly change under grazing exclusion conditions. In contrast, the total vegetation cover, the mean vegetation height of the community, and the aboveground biomass were significantly higher in the grazing exclusion grasslands than in the free grazed grasslands. These results indicated that grazing exclusion is an effective measure for maintaining community stability and improving aboveground vegetation growth in alpine grasslands. However, the statistical analysis showed that the growing season precipitation (GSP) plays a more important role than grazing exclusion in which influence on vegetation in alpine grasslands. In addition, because the results of the present study come from short term (6-8 years) grazing exclusion, it is still uncertain whether these improvements will be continuable if grazing exclusion is continuously implemented. Therefore, the assessments of the ecological effects of the grazing exclusion management strategy on degraded alpine grasslands in Tibet still need long term continued research.

  11. Eastern Colorado mobility study : final report

    DOT National Transportation Integrated Search

    2002-04-01

    Colorado, with an economy based in large part on agriculture, has a need to transport large quantities of commodities. The rapidly growing urban areas in the state also need many products and goods to support the growth. Furthermore, Colorado is stra...

  12. Legacy effects of grassland management on soil carbon to depth.

    PubMed

    Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D

    2016-08-01

    The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. © 2016 John Wiley & Sons Ltd.

  13. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands.

    PubMed

    Schneider, Gudrun; Krauss, Jochen; Boetzl, Fabian A; Fritze, Michael-Andreas; Steffan-Dewenter, Ingolf

    2016-12-01

    Semi-natural grasslands in Europe are insect biodiversity hotspots and important source habitats delivering ecosystem services to adjacent agricultural land by species spillover. However, this spillover might also occur in the opposite direction, affecting the diversity of semi-natural grasslands. This opposite spillover has got little attention in scientific literature even though generalist species penetrating into the grasslands can affect local biotic interactions, community composition and the conservation value of grassland habitats. In this study, we examined spillover effects from two different adjacent habitat types on carabid beetle assemblages in 20 semi-natural calcareous grasslands. The grasslands were either adjacent to a cereal crop field or to a coniferous forest. We found distinct differences in carabid beetle assemblages in calcareous grasslands depending on adjacent habitat type. Species richness and activity density were higher, but the evenness was lower in calcareous grasslands adjacent to crop fields compared with calcareous grasslands adjacent to coniferous forests. Further, we found a strong spillover of carabid beetles from adjacent crop fields after crop harvest, which may result in transiently increased predation pressure and resource competition in calcareous grasslands. Our results highlight that species composition, diversity and presumably ecosystem functions within semi-natural habitats are affected by the type and management of surrounding habitats. This needs to be considered by nature conservation measures, which aim to protect the unique insect communities of semi-natural European grasslands.

  14. Factors Limiting the Establishment of a Chaparral Oak, Quercus durata Jeps., in Grassland

    Treesearch

    Kimberlyn Williams; Stephen D. Davis; Barbara L. Gartner; Staffan Karlsson

    1991-01-01

    We studied factors that restrict colonization of grassland by Quercus durata Jeps., an oak commonly found in chaparral on serpentine soils. The study site contained a chaparral/ grassland border that had been stable for at least 50 years. Monitoring of acorns planted in the chaparral understory and grassland revealed that, although initial seedling...

  15. 77 FR 39575 - Special Areas; Roadless Area Conservation; Applicability to the National Forests in Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ..., gas, and hydrogen pipelines and electric transmission and distribution facilities are located outside... Currant Creek would not be mined until Oak Mesa was mined out. Oil and gas resources were another issue that generated substantial public input. Colorado has 8% of all dry natural gas reserves in the U.S...

  16. 75 FR 74678 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Colorado and Wyoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ..., mechanical, biological, and ground and aerial herbicide control methods. ``Invasive species'' are defined as... and aerial application of herbicides, mechanical, biological, and cultural weed treatments. The MBRTB... include analysis of the effects of new herbicides, new invasive plant populations, or aerial application...

  17. Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland

    USGS Publications Warehouse

    Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.

    2016-01-01

    Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and

  18. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the

  19. Variability in vegetation effects on density and nesting success of grassland birds

    USGS Publications Warehouse

    Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.

    2005-01-01

    The structure of vegetation in grassland systems, unlike that in forest systems, varies dramatically among years on the same sites, and among regions with similar vegetation. The role of this variation in vegetation structure on bird density and nesting success of grassland birds is poorly understood, primarily because few studies have included sufficiently large temporal and spatial scales to capture the variation in vegetation structure, bird density, or nesting success. To date, no large-scale study on grassland birds has been conducted to investigate whether grassland bird density and nesting success respond similarly to changes in vegetation structure. However, reliable management recommendations require investigations into the distribution and nesting success of grassland birds over larger temporal and spatial scales. In addition, studies need to examine whether bird density and nesting success respond similarly to changing environmental conditions. We investigated the effect of vegetation structure on the density and nesting success of 3 grassland-nesting birds: clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus) in 3 regions of the northern tallgrass prairie in 1998-2001. Few vegetation features influenced the densities of our study species, and each species responded differently to those vegetation variables. We could identify only 1 variable that clearly influenced nesting success of 1 species: clay-colored sparrow nesting success increased with increasing percentage of nest cover from the surrounding vegetation. Because responses of avian density and nesting success to vegetation measures varied among regions, years, and species, land managers at all times need to provide grasslands with different types of vegetation structure. Management guidelines developed from small-scale, short-term studies may lead to misrepresentations of the needs of grassland-nesting birds.

  20. Grassland bird responses to land management in the largest remaining tallgrass prairie.

    PubMed

    Rahmig, Corina J; Jensen, William E; With, Kimberly A

    2009-04-01

    Extensive habitat loss and changing agricultural practices have caused widespread declines in grassland birds throughout North America. The Flint Hills of Kansas and Oklahoma--the largest remaining tallgrass prairie--is important for grassland bird conservation despite supporting a major cattle industry. In 2004 and 2005, we assessed the community, population, and demographic responses of grassland birds to the predominant management practices (grazing, burning, and haying) of the region, including grasslands restored under the Conservation Reserve Program (CRP). We targeted 3 species at the core of this avian community: the Dickcissel (Spiza americana), Grasshopper Sparrow (Ammodramus savannarum), and Eastern Meadowlark (Sturnella magna). Bird diversity was higher in native prairie hayfields and grazed pastures than CRP fields, which were dominated by Dickcissels. Although Dickcissel density was highest in CRP, their nest success was highest and nest parasitism by Brown-headed Cowbirds (Moluthrus ater) lowest in unburned hayfields (in 2004). Conversely, Grasshopper Sparrow density was highest in grazed pastures, but their nest success was lowest in these pastures and highest in burned hayfields, where cowbird parasitism was also lowest (in 2004). Management did not influence density and nest survival of Eastern Meadowlarks, which were uniformly low across the region. Nest success was extremely low (5-12%) for all 3 species in 2005, perhaps because of a record spring drought. Although the CRP has benefited grassland birds in agricultural landscapes, these areas may have lower habitat value in the context of native prairie. Hayfields may provide beneficial habitat for some grassland birds in the Flint Hills because they are mowed later in the breeding season than elsewhere in the Midwest. Widespread grazing and annual burning have homogenized habitat-and thus grassland-bird responses-across the Flint Hills. Diversification of management practices could increase

  1. Ecosystem carbon loss with woody plant invasion of grasslands.

    PubMed

    Jackson, Robert B; Banner, Jay L; Jobbágy, Esteban G; Pockman, William T; Wall, Diana H

    2002-08-08

    The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr(-1)) by comparing carbon and nitrogen budgets and soil delta(13)C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.

  2. Colorado Model Content Standards: Science

    ERIC Educational Resources Information Center

    Colorado Department of Education, 2007

    2007-01-01

    The Colorado Model Content Standards for Science specify what all students should know and be able to do in science as a result of their school studies. Specific expectations are given for students completing grades K-2, 3-5, 6-8, and 9-12. Five standards outline the essential level of science knowledge and skills needed by Colorado citizens to…

  3. Temporal trends in marijuana attitudes, availability and use in Colorado compared to non-medical marijuana states: 2003-11.

    PubMed

    Schuermeyer, Joseph; Salomonsen-Sautel, Stacy; Price, Rumi Kato; Balan, Sundari; Thurstone, Christian; Min, Sung-Joon; Sakai, Joseph T

    2014-07-01

    In 2009, policy changes were accompanied by a rapid increase in the number of medical marijuana cardholders in Colorado. Little published epidemiological work has tracked changes in the state around this time. Using the National Survey on Drug Use and Health, we tested for temporal changes in marijuana attitudes and marijuana-use-related outcomes in Colorado (2003-11) and differences within-year between Colorado and thirty-four non-medical-marijuana states (NMMS). Using regression analyses, we further tested whether patterns seen in Colorado prior to (2006-8) and during (2009-11) marijuana commercialization differed from patterns in NMMS while controlling for demographics. Within Colorado those reporting "great-risk" to using marijuana 1-2 times/week dropped significantly in all age groups studied between 2007-8 and 2010-11 (e.g. from 45% to 31% among those 26 years and older; p=0.0006). By 2010-11 past-year marijuana abuse/dependence had become more prevalent in Colorado for 12-17 year olds (5% in Colorado, 3% in NMMS; p=0.03) and 18-25 year olds (9% vs. 5%; p=0.02). Regressions demonstrated significantly greater reductions in perceived risk (12-17 year olds, p=0.005; those 26 years and older, p=0.01), and trend for difference in changes in availability among those 26 years and older and marijuana abuse/dependence among 12-17 year olds in Colorado compared to NMMS in more recent years (2009-11 vs. 2006-8). Our results show that commercialization of marijuana in Colorado has been associated with lower risk perception. Evidence is suggestive for marijuana abuse/dependence. Analyses including subsequent years 2012+ once available, will help determine whether such changes represent momentary vs. sustained effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Area requirements of grassland birds: A regional perspective

    USGS Publications Warehouse

    Johnson, Douglas H.; Igl, Lawrence D.

    2001-01-01

    Area requirements of grassland birds have not been studied except in tallgrass prairie. We studied the relation between both species-occurrence and density and patch size by conducting 699 fixed-radius point counts of 15 bird species on 303 restored grassland areas in nine counties in four northern Great Plains states. Northern Harrier (Circus cyaneus), Sedge Wren (Cistothorus platensis), Clay-colored Sparrow (Spizella pallida), Grasshopper Sparrow (Ammodramus savannarum), Baird's Sparrow (Ammodramus bairdii), Le Conte's Sparrow (Ammodramus leconteii), and Bobolink (Dolichonyx oryzivorus) were shown to favor larger grassland patches in one or more counties. Evidence of area sensitivity was weak or ambivalent for Eastern Kingbird (Tyrannus tyrannus), Common Yellowthroat (Geothlypis trichas), Savannah Sparrow (Passerculus sandwichensis), and Western Meadowlark (Sturnella neglecta). Red-winged Blackbirds (Agelaius phoeniceus) preferred larger patches in some counties, and smaller patches in others. Mourning Doves (Zenaida macroura) and Brown- headed Cowbirds (Molothrus ater) tended to favor smaller grassland patches. Three species showed greater area sensitivity in counties where each species was more common. Five species demonstrated some spatial pattern of area sensitivity, either north to south or east to west. This study demonstrates the importance of replication in space; results from one area may not apply to others because of differences in study design, analytical methods, location relative to range of the species, and surrounding landscapes.

  5. Grassland bird response to harvesting switchgrass as a biomass energy crop

    USGS Publications Warehouse

    Roth, A.M.; Sample, D.W.; Ribic, C.A.; Paine, L.; Undersander, D.J.; Bartelt, G.A.

    2005-01-01

    The combustion of perennial grass biomass to generate electricity may be a promising renewable energy option. Switchgrass (Panicum virgatum) grown as a biofuel has the potential to provide a cash crop for farmers and quality nesting cover for grassland birds. In southwestern Wisconsin (near lat. 42??52???, long. 90??08???), we investigated the impact of an August harvest of switchgrass for bioenergy on community composition and abundance of Wisconsin grassland bird species of management concern. Harvesting the switchgrass in August resulted in changes in vegetation structure and bird species composition the following nesting season. In harvested transects, residual vegetation was shorter and the litter layer was reduced in the year following harvest. Grassland bird species that preferred vegetation of short to moderate height and low to moderate density were found in harvested areas. Unharvested areas provided tall, dense vegetation structure that was especially attractive to tall-grass bird species, such as sedge wren (Cistothorus platensis) and Henslow's sparrow (Ammodramus henslowii). When considering wildlife habitat value in harvest management of switchgrass for biofuel, leaving some fields unharvested each year would be a good compromise, providing some habitat for a larger number of grassland bird species of management concern than if all fields were harvested annually. In areas where most idle grassland habitat present on the landscape is tallgrass, harvest of switchgrass for biofuel has the potential to increase the local diversity of grassland birds.

  6. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands

    DOE PAGES

    Yue, Haowei; Wang, Mengmeng; Wang, Shiping; ...

    2015-02-17

    Warming has been shown to cause soil carbon (C) loss in northern grasslands owing to accelerated microbial decomposition that offsets increased grass productivity. Yet, a multi-decadal survey indicated that the surface soil C stock in Tibetan alpine grasslands remained relatively stable. To investigate this inconsistency, we analyzed the feedback responses of soil microbial communities to simulated warming by soil transplant in Tibetan grasslands. Microbial functional diversity decreased in response to warming, whereas microbial community structure did not correlate with changes in temperature. The relative abundance of catabolic genes associated with nitrogen (N) and C cycling decreased with warming, most notablymore » in genes encoding enzymes associated with more recalcitrant C substrates. By contrast, genes associated with C fixation increased in relative abundance. The relative abundance of genes associated with urease, glutamate dehydrogenase and ammonia monoxygenase ( ureC, gdh and amoA) were significantly correlated with N 2O efflux. These results suggest that unlike arid/semiarid grasslands, Tibetan grasslands maintain negative feedback mechanisms that preserve terrestrial C and N pools. To examine whether these trends were applicable to the whole plateau, we included these measurements in a model and verified that topsoil C stocks remained relatively stable. Thus, by establishing linkages between microbial metabolic potential and soil biogeochemical processes, we conclude that long-term C loss in Tibetan grasslands is ameliorated by a reduction in microbial decomposition of recalcitrant C substrates.« less

  7. Mercury transport in a high-elevation watershed in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Mast, M.A.; Campbell, D.H.; Krabbenhoft, D.P.; Taylor, Howard E.

    2005-01-01

    Mercury (Hg) was measured in stream water and precipitation in the Loch Vale watershed in Rocky Mountain National Park, Colorado, during 2001-2002 to investigate processes controlling Hg transport in high-elevation ecosystems. Total Hg concentrations in precipitation ranged from 2.6 to 36.2 ng/L and showed a strong seasonal pattern with concentrations that were 3 to 4 times higher during summer months. Annual bulk deposition of Hg was 8.3 to 12.4 ?? g/m 2 and was similar to deposition rates in the Midwestern and Northeastern U.S. Total Hg concentrations in streams ranged from 0.8 to 13.5 ng/L and were highest in mid-May on the rising limb of the snowmelt hydrograph. Stream-water Hg was positively correlated with dissolved organic carbon suggesting organically complexed Hg was flushed into streams from near-surface soil horizons during the early stages of snowmelt. Methylmercury (MeHg) in stream water peaked at 0.048 ng/L just prior to peak snowmelt but was at or below detection (< 0.040 ng/L) for the remainder of the snowmelt season. Annual export of total Hg in Loch Vale streams ranged from 1.2 to 2.3 ?? g/m2, which was less than 20% of wet deposition, indicating the terrestrial environment is a net sink of atmospheric Hg. Concentrations of MeHg in stream water and corresponding watershed fluxes were low, indicating low methylation rates or high demethylation rates or both. ?? Springer 2005.

  8. Market-Based Higher Education: Does Colorado's Voucher Model Improve Higher Education Access and Efficiency?

    ERIC Educational Resources Information Center

    Hillman, Nicholas W.; Tandberg, David A.; Gross, Jacob P. K.

    2014-01-01

    In 2004, Colorado introduced the nation's first voucher model for financing public higher education. With state appropriations now allocated to students, rather than institutions, state officials expect this model to create cost efficiencies while also expanding college access. Using difference-in-difference regression analysis, we find limited…

  9. Proceedings of the 12th Biennial Conference of research on the Colorado Plateau

    USGS Publications Warehouse

    Ralston, Barbara E.

    2016-05-20

    The 12th Biennial Conference held in Flagstaff, Arizona, from September 16 to 19, 2013, covered a range of topics in the physical, biological, and socio-cultural sciences. The conference was organized and hosted by Northern Arizona University’s (NAU) Merriam-Powell Center for Environmental Research, the Colorado Plateau Cooperative Ecosystem Studies Unit, and the U.S. Geological Survey Southwest Biological Science Center. Financial and in-kind support was provided by a wide range of organizations including the U.S. Forest Service, National Park Service, Bureau of Land Management, Grand Canyon Trust, Colorado Plateau Research Station, and various NAU entities. NAU sponsors include the Landscape Conservation Initiative, School of Forestry, School of Earth Science and Environmental Sustainability, Office of the Provost, and Office of the Vice President of Research. Contributors to these proceedings include researchers and managers from Federal, State, and Tribal governments, universities, private entities, and non-profit organizations. In this regard, this conference has wide-ranging support and participation among private and public entities involved in the science and management of natural resources on the Colorado Plateau.

  10. 77 FR 23498 - Notice of Intent To Repatriate Cultural Items: The Colorado College, Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Taylor Museum and the Colorado Springs Fine Arts Center) and the Denver Museum of Nature & Science... Davis, Chief of Staff, President's Office, Colorado College, Armstrong Hall, Room 201, 14 E. Cache La... objects, as well as other cultural items were removed from Canyon de Chelly, Apache County, AZ, under the...

  11. MODIS NDVI and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-08-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation (February-May) and increasing temperature during the growing period because of the global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  12. Late Quaternary eolian dust in surficial deposits of a Colorado Plateau grassland: Controls on distribution and ecologic effects

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.C.; Neff, J.C.; Goldstein, H.; Yount, J.

    2006-01-01

    In a semi-arid, upland setting on the Colorado Plateau that is underlain by nutrient-poor Paleozoic eolian sandstone, alternating episodes of dune activity and soil formation during the late Pleistocene and Holocene have produced dominantly sandy deposits that support grass and shrub communities. These deposits also contain eolian dust, especially in paleosols. Eolian dust in these deposits is indicated by several mineralogic and chemical disparities with local bedrock, but it is most readily shown by the abundance of titaniferous magnetite in the sandy deposits that is absent in local bedrock. Magnetite and some potential plant nutrients (especially, P, K, Na, Mn, and Zn) covary positively with depth (3-4 m) in dune-crest and dune-swale settings. Magnetite abundance also correlates strongly and positively with abundances of other elements (e.g., Ti, Li, As, Th, La, and Sc) that are geochemically stable in these environments. Soil-property variations with depth can be ascribed to three primary factors: (1) shifts in local geomorphic setting; (2) accumulation of relatively high amounts of atmospheric mineral dust inputs during periods of land-surface stability; and (3) variations in dust flux and composition that are likely related to changes in dust-source regions. Shifts in geomorphic setting are revealed by large variations in soil texture and are also expressed by changes in soil chemical and magnetic properties. Variable dust inputs are indicated by both changes in dust flux and changes in relations among magnetic, chemical, and textural properties. The largest of these changes is found in sediment that spans late Pleistocene to early Holocene time. Increased dust inputs to the central Colorado Plateau during this period may have been related to desiccation and shrinkage of large lakes from about 12 to 8 ka in western North America that exposed vast surfaces capable of emitting dust. Soil properties that result from variable dust accumulation and redistribution

  13. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  14. Forest and grassland carbon in North America: A short course for land managers

    Treesearch

    Chris Swanston; Michael J. Furniss; Kristen Schmitt; Jeffrey Guntle; Maria Janowiak; Sarah Hines

    2012-01-01

    This multimedia short-course presents a range of information on the science, management and policy of forest and grassland carbon. Forests and grasslands worldwide play a critical role in storing carbon and sequestering greenhouse gases from the atmosphere. The U.S. Forest Service, which manages 193 million acres of forests and grasslands, emphasizes the need for...

  15. Recommendations on the use of prescribed burning practices in grassland conservation - An evidence-based study from Hungary

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Valkó, Orsolya; Török, Péter; Végvári, Zsolt; Deák, Balázs

    2015-04-01

    Fire as a natural disturbance has been present in most European grasslands. In parallel controlled use of burning was an important part of the traditional landscape management for millennia. It was used to reduce litter and suppress woody vegetation as well as to maintain open landscapes suitable for farming. Recently, human activities have a considerable impact on natural fire regimes through habitat fragmentation, cessation of traditional grassland management and climate change. Nowadays the majority of human-ignited fires are uncontrolled burnings and arson, which have serious negative impacts on human life, property and can be detrimental also from the nature conservation point of view. Despite fire was widely applied in the past and the considerable extension and frequency of current grassland fires, the impact of fire on the grassland biodiversity is still scarcely documented in Europe. The aim of our study was to gather practical knowledge and experiences from Hungary concerning the effects of fire on grasslands. To fulfil this aim we sent questionnaires to experts from Hungarian national park directorates to gather unpublished data and field observations concerning the effects of burning on grasslands. Based on the answers for the questionnaires fire regularly occur in almost every grassland types in Hungary. We found that effects of fire are habitat-specific. One hand uncontrolled burning and arson have serious detrimental impacts on many endangered species (ground-dwelling birds, such as Asio flammeus, Tringa totanus and Vanellus vanellus; or lizards, such as Ablepharus kitaibelii). On the other hand in several cases fire has a positive effect on the habitat structure and favours species of high nature conservation interest (plant species, such as Adonis volgensis, Chamaecytisus supinus and Pulsatilla grandis; butterflies, such as Euphydryas aurinia; bird species such as Circus aeruginosus and Larus cachinnans). Our results suggest that even uncontrolled

  16. Seismicity of the Colorado Lineament

    NASA Astrophysics Data System (ADS)

    Brill, Kenneth G., Jr.; Nuttli, Otto W.

    1983-01-01

    The Colorado Lineament appears to be one of the source zones for the larger earthquakes of the west-central United States. As defined by Warner (1975), the lineament trends northeastward from northwestern Arizona to central Minnesota. Numerous Precambrian trends have been recognized along the lineament; some are reflected in the overlying strata. Mineralized areas such as the Colorado Mineral Belt, the Hartville iron deposits of Wyoming, and the Cuyuna Iron Range of Minnesota are associated with the lineament, which may represent a Precambrian continental plate boundary in the form of a wrench fault system (Warner, 1978). Between 1860 and 1875 about 18 earthquakes with epicentral intensity greater than or equal to VI and felt area greater than 25,000 km2 (10,000 mi2; equivalently a body-wave magnitude ges;4.5) had epicenters within the surface projection of the Colorado Lineament. All but a few of the remaining west-central earthquakes of this size can be associated with the Nemaha uplift, the Rio Grande Rift, the Wichita Mountain uplift and the Overthrust Belt. Although these latter structures have previously been recognized as source zones for larger earthquakes, the Colorado Lineament had not been so recognized.

  17. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    USGS Publications Warehouse

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  18. Powassan encephalitis and Colorado tick fever.

    PubMed

    Romero, José R; Simonsen, Kari A

    2008-09-01

    This article discusses two tick-borne illnesses: Powassan encephalitis, a rare cause of central nervous system infection caused by the Powassan virus, and Colorado tick fever, an acute febrile illness caused by the Colorado tick fever virus common to the Rocky Mountain region of North America.

  19. Spatial geologic data model for the Gunnison, Grand Mesa, Uncompahgre National Forests mineral assessment area, southwestern Colorado and digital data for the Leadville, Montrose, Durango, and Colorado parts of the Grand Junction, Moab, and Cortez 1 degree x 2 degrees geologic maps

    USGS Publications Warehouse

    Day, W.C.; Green, G.N.; Knepper, D.H.; Phillips, R.C.

    1999-01-01

    The digital geologic and geographic information system (GIS) data presented here were prepared to aid in Grand Mesa, Uncompahgre, Gunnison National Forest (GMUG) mineral resource assessment Project studies by the U.S. Geological Survey Mineral Resource Program. The goals of the GMUG Project is to provide mineral resource data and an assessment for undiscovered mineral resources in U.S. Forest Service (USFS) and Bureau of Land Management (BLM) lands in southwestern Colorado. The Project area covers a large region in southwestern Colorado that is bounded by latitudes 37o 45’ to 39o 30’ north and longitudes 106o to 109o west. The study area is covered by all or parts of six 1o x2o topographic and quadrangle geologic maps, which include geologic maps for the Leadville (Tweto and others, 1978), Montrose (Tweto and others, 1976), Durango (Steven and others, 1974), Grand Junction (Cashion, 1973), Moab (Williams, 1976), and Cortez (Haynes and others, 1972) quadrangles. These geologic maps were used inasmuch as a complete remapping and compilation effort for this study area was beyond the scope of the Project.

  20. Barriers to Enrollment in Health Coverage in Colorado.

    PubMed

    Martin, Laurie T; Bharmal, Nazleen; Blanchard, Janice C; Harvey, Melody; Williams, Malcolm

    2015-03-20

    As part of the implementation of the Affordable Care Act, Colorado has expanded Medicaid and also now operates its own health insurance exchange for individuals (called Connect for Health Colorado). As of early 2014, more than 300,000 Coloradans have newly enrolled in Medicaid or health insurance through Connect for Health Colorado, but there also continues to be a diverse mix of individuals in Colorado who remain eligible for but not enrolled in either private insurance or Medicaid. The Colorado Health Foundation commissioned the RAND Corporation to conduct a study to better understand why these individuals are not enrolled in health insurance coverage and to develop recommendations for how Colorado can strengthen its outreach and enrollment efforts during the next open enrollment period, which starts in November 2014. RAND conducted focus groups with uninsured and newly insured individuals across the state and interviews with local stakeholders responsible for enrollment efforts in their regions. The authors identified 11 commonly cited barriers, as well as several that were specific to certain regions or populations (such as young adults and seasonal workers). Collectively, these barriers point to a set of four priority recommendations that stakeholders in Colorado may wish to consider: (1) Support and expand localized outreach and tailored messaging; (2) Strengthen marketing and messaging to be clear, focused on health benefits of insurance (rather than politics and mandates), and actionable; (3) Improve the clarity and transparency of insurance and health care costs and enrollment procedures; and (4) Revisit the two-stage enrollment process and improve Connect for Health Colorado website navigation and technical support.

  1. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    NASA Technical Reports Server (NTRS)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  2. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Treesearch

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  3. Patch size and landscape effects on density and nesting success of grassland birds

    USGS Publications Warehouse

    Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.; Donovan, Therese M.; Svedarsky, W. Daniel

    2006-01-01

    Current management recommendations for grassland birds in North America emphasize providing large patches of grassland habitat within landscapes that have few forest or shrubland areas. These Bird Conservation Areas are being proposed under the assumption that large patches of habitat in treeless landscapes will maintain viable populations of grassland birds. This assumption requires that patch size and landscape features affect density and nesting success of grassland birds, and that these effects are consistent among years and regions and across focal species. However, these assumptions have not yet been validated for grassland birds, and the relative importance of local vegetation structure, patch size, and landscape composition on grassland bird populations is not well known. In addition, factors influencing grassland bird nesting success have been investigated mostly in small-scale and short-duration studies. To develop management guidelines for grassland birds, we tested the spatial and temporal repeatability of the influence of patch size and landscape composition on density and nesting success of 3 grassland passerines, after controlling for local-scale vegetation structure, climate, and—when analyzing nest success—bird density. We conducted our study during 4 years (1998–2001) in 44 study plots that were set up in 3 regions of the northern tallgrass prairie in Minnesota and North Dakota, USA. In these study plots we measured density and nesting success of clay-colored sparrows (Spizella pallida), Savannah sparrows (Passerculus sandwichensis), and bobolinks (Dolichonyx oryzivorus). Statistical models indicated that density was influenced by patch size, landscape, region, and local vegetation structure more so than by local vegetation structure alone. Both magnitude and direction of the response of density to patch size varied among regions, years, and species. In contrast, the direction of landscape effects was consistent among regions, years, and

  4. Constructing Seasonal Climograph Overlap Envelopes from Holocene Packrat Midden Contents, Dinosaur National Monument, Colorado

    NASA Astrophysics Data System (ADS)

    Sharpe, Saxon E.

    2002-05-01

    Five Neotoma spp. (packrat) middens are analyzed from Sand Canyon Alcove, Dinosaur National Monument, Colorado. Plant remains in middens dated at approximately 9870, 9050, 8460, 3000, and 0 14C yr B.P. are used to estimate Holocene seasonal temperature and precipitation values based on modern plant tolerances published by Thompson et al. (1999a, 1999b). Early Holocene vegetation at the alcove shows a transition from a cool/mesic to a warmer, more xeric community between 9050 and 8460 14C yr B.P. Picea pungens, Pinus flexilis, and Juniperus communis exhibit an average minimum elevational displacement of 215 m. Picea pungens and Pinus flexilis are no longer found in the monument. Estimates based on modern plant parameters (Thompson et al., 1999a) suggest that average temperatures at 9870 14C yr B.P. may have been at least 1° to 3°C colder in January and no greater than 3° to 10°C colder in July than modern at this site. Precipitation during this time may have been at least 2 times modern in January and 2 to 3 times modern in July. Discrepancies in estimated temperature and precipitation tolerances between last occurrence and first occurrence taxa in the midden record suggest that midden assemblages may include persisting relict vegetation.

  5. Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA

    PubMed Central

    Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic

  6. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    PubMed

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  7. Effect of Degradation Intensity on Grassland Ecosystem Services in the Alpine Region of Qinghai-Tibetan Plateau, China

    PubMed Central

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau. PMID:23469278

  8. Habitat acquisition strategies for grassland birds in an urbanizing landscape

    Treesearch

    Stephanie A. Snyder; James R. Miller; Adam M. Skibbe; Robert G. Haight

    2007-01-01

    Habitat protection for grassland birds is an important component of open space land acquisition in suburban Chicago. We use optimization decision models to develop recommendations for land protection and analyze tradeoffs between alternative goals. One goal is to acquire (and restore if necessary) as much grassland habitat as possible for a given budget. Because a...

  9. Regional dynamics of grassland change in the western Great Plains

    USGS Publications Warehouse

    Drummond, M.A.

    2007-01-01

    This paper examines the contemporary land-cover changes in two western Great Plains ecoregions between 1973 and 2000. Agriculture and other land uses can have a substantial effect on grassland cover that varies regionally depending on the primary driving forces of change. In order to better understand change, the rates, types, and causes of land conversion were examined for 1973, 1980, 1986, 1992, and 2000 using Landsat satellite data and a statistical sampling strategy. The overall estimated rate of land-cover change between 1973 and 2000 was 7.4% in the Northwestern Great Plains and 11.5% in the Western High Plains. Trends in both ecoregions have similarities, although the dynamics of change differ temporally depending on driving forces. Between 1973 and 1986, grassland cover declined when economic opportunity drove an expansion of agriculture. Between 1986 and 2000, grassland expanded as public policy and a combination of socioeconomic factors drove a conversion from agriculture to grassland. ?? 2007 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  10. Threshold responses to interacting global changes in a California grassland ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Christopher; Mooney, Harold; Vitousek, Peter

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place inmore » the context of 4 global change factors – warming, elevated CO 2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.« less

  11. Greenhouse gas budgets of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Horváth, L.; Jones, S. K.

    2012-04-01

    Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the

  12. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. © 2015 John Wiley & Sons Ltd.

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower-Colorado River valley, Arizona, California, and Nevada

    USGS Publications Warehouse

    Radtke, D.B.; Kepner, W.G.; Effertz, R.J.

    1988-01-01

    The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)

  14. Ecohydrology of Graciosa semi-natural grasslands: water use and evapotranspiration partition

    NASA Astrophysics Data System (ADS)

    Paço, Teresa A.; Paredes, Paula; Azevedo, Eduardo B.; Madruga, João S.; Pereira, Luís S.

    2016-04-01

    Semi-natural grasslands are a main landscape of Graciosa and other Islands of Azores. The present study aims at calibrate and validate the soil water balance model SIMDualKc for those grasslands aiming at assessing the dynamics of soil water and evapotranspiration. This objective relates with the need to improve knowledge on the ecohydrology of grasslands established in (volcanic) Andosols. This model adopts the dual crop coefficient approach to compute daily crop evapotranspiration (ETc) and to perform its partition into transpiration (T) and soil evaporation (Es). The application refers to a semi-natural grassland sporadically sowed with ryegrass (Lolium multiflorum Lam.). Model calibration and validation were performed comparing simulated against observed grassland evapotranspiration throughout two periods in consecutive years. Daily ET values were derived from eddy covariance data collected at the Eastern North Atlantic (ENA) facility of the ARM programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), at Graciosa, Azores (Portugal). Various statistical performance indicators were used to assess model accuracy and results show a good adequacy of the model for predicting vegetation ET in such conditions. Surface flux energy balance was also evaluated throughout the observation period (2014-2016). The ratio Es/ET shows that soil evaporation is much small than T/ET due to high soil cover by vegetation. The model was then applied to contrasting climatic conditions (dry vs. wet years) to assess related impacts on water balance components and grassland transpiration.

  15. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  16. Hydrologic impacts of converting grassland to managed forestland in Uruguay

    Treesearch

    G.M. Chescheira; R.W. Skaggsa; D.M. Amatyab

    2008-01-01

    Over 500,000 hectares of grassland have been converted to managed forestland in Uruguay since 1990. This study was initiated to determine the hydrologic and water quality impacts of changing land use from grassland (pasture) to pine plantation in Uruguay. Two adjacent watersheds located on the El Cerro ranch in the Tacuarembo River basin were selected for a paired...

  17. Vegetation and substrate properties of aeolian dune fields in the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.

    2011-01-01

    This report summarizes vegetation and substrate properties of aeolian landscapes in the Colorado River corridor through Grand Canyon, Arizona, in Grand Canyon National Park. Characterizing these parameters provides a basis from which to assess future changes in this ecosystem, including the spread of nonnative plant species. Differences are apparent between aeolian dune fields that are downwind of where modern controlled flooding deposits new sandbars (modern-fluvial-sourced dune fields) and those that have received little or no new windblown sand since river regulation began in the 1960s (relict-fluvial-sourced dune fields). The most substantial difference between modern- and relict-fluvial-sourced aeolian dune fields is the greater abundance of biologic soil crust in relict dune fields. These findings can be used with similar investigations in other geomorphic settings in Grand Canyon and elsewhere in the Colorado River corridor to evaluate the health of the Colorado River ecosystem over time.

  18. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  19. Local-scale habitat associations of grassland birds in southwestern Minnesota

    USGS Publications Warehouse

    Elliott, Lisa H.; Johnson, Douglas H.

    2017-01-01

    Conservation of obligate grassland species requires not only the protection of a sufficiently large area of habitat but also the availability of necessary vegetation characteristics for particular species. As a result land managers must understand which habitat characteristics are important for their target species. To identify the habitat associations of eight species of grassland birds, we conducted bird and vegetation surveys on 66 grassland habitat patches in southwestern Minnesota in 2013 and 2014. Species of interest included sedge wren (Cistothorus platensis), Savannah sparrow (Passerculus sandwichensis), grasshopper sparrow (Ammodramus savannarum), Henslow's sparrow (Ammodramus henslowii), dickcissel (Spiza americana), bobolink (Dolichonyx oryzivorus), and western meadowlark (Sturnella neglecta). We calculated correlation coefficients between vegetation variables and species density as measures of linear association. We assessed curvilinear relationships with loess plots. We found grassland birds on 95.5% of surveyed sites, indicating remnant prairie in southwestern Minnesota is used by grassland birds. In general individual species showed different patterns of association and most species were tolerant of a wide variety of habitat conditions. The most consistent pattern was a negative association with both the quantity and proximity of trees. Our findings that individual species have different habitat preferences suggest that prairie resource managers may need to coordinate management efforts in order to create a mosaic of habitat types to support multiple species, though tree control will be an important and ongoing management activity at the individual site level.

  20. Towards place-based borderlands grassland conservation (Hacia la conservacion de pastizales en tierras fronterizas)

    Treesearch

    Diana Hadley; Xavier Basurto

    2006-01-01

    When European explorers first observed the vast grasslands of the American continent, they viewed a series of interconnected, intact grassland ecosystems flourishing with an enormous diversity of flora and an abundance of wildlife. The term "sea of grass" appears frequently in descriptions of the vast prairie grasslands that extended from Canada to central...

  1. 75 FR 69662 - Public Water System Supervision Program Revision for the State of Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... accordance with the provisions of section 1413 of the Safe Drinking Water Act (SDWA), 42 U.S.C. 300g-2, and... Short Term Regulatory Revisions which correspond to the National Primary Drinking Water Regulations..., Drinking Water Program, 1595 Wynkoop Street, Denver, CO 80202-1129, (2) Colorado Department of Public...

  2. Managing Boulder Colorado's Water Supply to Address Risks from Climate Change

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Strzepek, K.; Rozaklis, L.; Ellinghouse, C.; Hallett, K. C.

    2008-12-01

    Stratus Consulting, the City of Boulder, the University of Colorado and AMEC Consulting (formerly Hydrosphere) studied the impacts of climate change on Boulder, Colorado's water supply. The City of Boulder's Water Resources Coordinator was closely involved in the design of the study and the analysis of results. The work, funded by a grant from the National Oceanographic and Atmospheric Administration to Stratus Consulting, is an example of a successful collaboration between municipal, academic, government, and professional institutes. This study combines the potential impacts of climate change with long-term climate variability to examine their effects on the water supply of one community. The study team examined outputs from general circulation models (GCMs; supplied by the National Center for Atmospheric Research) for grid boxes that include Boulder, Colorado, and selected the wettest model, the driest model, and a middle model. Estimates of climate change for 20-year periods centering on 2030 and 2070 were used. In addition, 437-year (1566- 2002) reconstructions of streamflow in Boulder Creek, South Boulder Creek, and the Colorado River (conducted by Connie Woodhouse) were used. A "nearest neighbor" approach was used to select years in the observed climate record that resemble the paleoclimate reconstructions. Average monthly GCM changes in temperature and precipitation for 2030 and 2070 were combined with multiple recreations of the paleoclimate record to simulate the combined effects of change in climate and paleoclimate variability. Using Boulder's water management model (which incorporates supply and demand for water and water rights) and accounting for population growth in Boulder and changes in demand for crop irrigation, the study found that wet and "middle" scenarios had little effect on the reliability of Boulder's water supply. But reduced precipitation scenarios resulted in violations of some of Boulder's water supply reliability criteria, which give

  3. Educator Preparation in Colorado, 1995-96.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver.

    This report provides data on teacher education and certification in Colorado in the following formats: (1) the number of students in each of the 16 Colorado institutions of higher education approved for educator preparation programs who were recommended for licensure and endorsements during 1995-1996 (total 2517); (2) the numbers of students…

  4. Spatial patterns of grasses and shrubs in an arid grassland environment

    USDA-ARS?s Scientific Manuscript database

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  5. Colorado and the Higher Education Voucher Experiment: Finance Revolution or "Hail Mary Pass?"

    ERIC Educational Resources Information Center

    Reindl, Travis

    2005-01-01

    In May 2004, Colorado Governor Bill Owens signed Senate Bill 189 into law, essentially transforming how public higher education is funded in that state. The measure, the first of its kind in the nation, changes the flow of state appropriations from the traditional enrollment-based black grant to institutions into two more market-based streams: (1)…

  6. 76 FR 60080 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    .../National Historic Landmarks Program. COLORADO San Juan County Gold Prince Mine, Mill and Aerial Tramway, (Mining Industry in Colorado, MPS) Address Restricted, Silverton, 11000734 FLORIDA Miami-Dade County...

  7. Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and In Situ Observations

    PubMed Central

    Tang, Chuanjiang; Fu, Xinyu; Jiang, Dong; Zhang, Xinyue; Zhou, Su

    2014-01-01

    Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands. PMID:25250396

  8. NASA Helps Build Colorado Economy

    NASA Image and Video Library

    2010-12-13

    NASA Deputy Administrator Lori Garver delivers remarks at the Colorado State Capitol in Denver on Monday, Dec. 13, 2010, prior to signing an agreement that creates a Technology Acceleration Program and Regional Innovation Cluster for Aerospace and Clean Energy. A manufacturing park focused on rapid new product development and production will be developed to assist growing Colorado businesses while promoting the commercialization of technology developed for the space program. Photo Credit: (NASA/Bill Ingalls)

  9. Colorado: Youth Risk Behavior Survey, 1991.

    ERIC Educational Resources Information Center

    Colorado Univ. Health Sciences Center, Denver.

    In April 1991, the Youth Risk Behavior Survey was administered to a sample of 1,412 high school students in Colorado public schools to collect information about priority health-risk behaviors among adolescents. Questionnaires were received from 1,170 students, a response rate of 83%. Classes in Colorado's 280 public schools were also selected to…

  10. 77 FR 50712 - Notice of Filing of Plats; Colorado.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLCO956000 L14200000.BJ0000] Notice of Filing of Plats; Colorado. AGENCY: Bureau of Land Management, Interior. ACTION: Notice of filing of plats; Colorado. SUMMARY: The Bureau of Land Management (BLM) Colorado State Office is publishing this notice to...

  11. Monitoring as a Means to Focus Research and Conservation - The Grassland Bird Monitoring Example

    Treesearch

    Brenda Dale; Michael Norton; Constance Downes; Brian Collins

    2005-01-01

    One recommendation of the Canadian Landbird Monitoring Strategy of Partners in Flight-Canada is to improve monitoring capability for rapidly declining grassland birds. In Canada, we lack statistical power for many grassland species because they are detected in small numbers, on a low number of routes, or show high year-to-year variability. In developing a Grassland...

  12. Phosphorus translocation by red deer on a subalpine grassland in the central European Alps

    Treesearch

    Martin Schutz; Anita C. Risch; Gerald Achermann; Conny Thiel-Egenter; Deborah Page-Dumroese; Martin F. Jurgensen; Peter J. Edward

    2006-01-01

    We examined the role of red deer (Cervus elaphus L.) in translocating phosphorus (P) from their preferred grazing sites (short-grass vegetation on subalpine grasslands) to their wider home range in a subalpine grassland ecosystem in the Central European Alps. Phosphorus was used because it is the limiting nutrient in these grasslands. When we compared P removal of...

  13. A comparison of permafrost prediction models along a section of Trail Ridge Road, Rocky Mountain National Park, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Williams, Mark W.; Evans, Andrew

    2012-02-01

    The distribution of mountain permafrost along Trail Ridge Road (TRR) in Rocky Mountain National Park, Colorado, was modeled using 'frost numbers' and a 'temperature of permafrost model' (TTOP) in order to assess the accuracy of prediction models. The TTOP model is based on regional observations of air temperature and heat transfer functions involving vegetation, soil, and snow; whereas the frost number model is based on site-specific ratios of ground temperature measurements of frozen and thawed degree-days. Thirty HOBOtemperature data loggers were installed near the surface as well as at depth (30 to 85 cm). From mid-July 2008 to 2010, the mean annual soil temperature (MAST) for all surface sites was - 1.5 °C. Frost numbers averaged 0.56; TTOP averaged - 1.8 °C. The MAST was colder on western-facing slopes at high elevations. Surface and deeper probes had similar MASTs; however, deeper probes had less daily and seasonal variation. Another model developed at the regional scale based on proxy indicators of permafrost (rock glaciers and land cover) classified 5.1 km 2 of permafrost within the study area, whereas co-kriging interpolations of frost numbers and TTOP data indicated 2.0 km 2 and 4.6 km 2 of permafrost, respectively. Only 0.8 km 2 were common among all three models. Three boreholes drilled within 2 m of TRR indicate that permafrost does not exist at these locations despite each borehole being classified as containing permafrost by at least one model. Addressing model uncertainty is important because nutrients stored within frozen or frost-affected soils can be released and impact alpine water bodies. The uncertainty also exposes two fundamental problems: empirical models designed for high latitudes are not necessarily applicable to mountain permafrost, and the presence of mountain permafrost in the alpine tundra of the Colorado Front Range has not been validated.

  14. Long Term Positive Effect of Grassland Restoration on Plant Diversity - Success or Not?

    PubMed Central

    Lindborg, Regina

    2016-01-01

    Restoration is important for biodiversity conservation worldwide, but surprisingly little is known about its efficiency in a long-term perspective. In this study, we re-examined Swedish semi-natural grasslands 12–20 years after the restoration, by comparing field inventories of vascular plant species diversity made in 2001 with follow-up inventories in 2012. We also analysed restoration effect in relation to six environmental factors and used continuously managed semi-natural grasslands as references of desired state after restoration. We found that total species richness increased over time but not to reference levels, while there were no significant changes in species density or number of grassland specialists. However, the overall species composition in the restored sites, as well as grassland specialist composition, now largely resembled reference conditions. Fertilisation and time between abandonment and restoration were the only environmental variables that affected total species composition change, while site area affected change in grassland specialist composition. Our results show that restoration of semi-natural grasslands can contribute to conservation of semi-natural habitats and their associated biodiversity. Yet, due to the vague restoration goals for these sites, it is difficult to evaluate the restoration success, which emphasise the general need for clear and measurable goals. PMID:27196748

  15. Long Term Positive Effect of Grassland Restoration on Plant Diversity - Success or Not?

    PubMed

    Waldén, Emelie; Lindborg, Regina

    2016-01-01

    Restoration is important for biodiversity conservation worldwide, but surprisingly little is known about its efficiency in a long-term perspective. In this study, we re-examined Swedish semi-natural grasslands 12-20 years after the restoration, by comparing field inventories of vascular plant species diversity made in 2001 with follow-up inventories in 2012. We also analysed restoration effect in relation to six environmental factors and used continuously managed semi-natural grasslands as references of desired state after restoration. We found that total species richness increased over time but not to reference levels, while there were no significant changes in species density or number of grassland specialists. However, the overall species composition in the restored sites, as well as grassland specialist composition, now largely resembled reference conditions. Fertilisation and time between abandonment and restoration were the only environmental variables that affected total species composition change, while site area affected change in grassland specialist composition. Our results show that restoration of semi-natural grasslands can contribute to conservation of semi-natural habitats and their associated biodiversity. Yet, due to the vague restoration goals for these sites, it is difficult to evaluate the restoration success, which emphasise the general need for clear and measurable goals.

  16. Translocation of Humpback Chub into tributary streams of the Colorado River: Implications for conservation of large-river fishes

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Paukert, Craig P.; Healy, Brian D.; Trammell, Melissa; Speas, Dave; Smith, Emily Omana

    2015-01-01

    The Humpback Chub Gila cypha, a large-bodied, endangered cyprinid endemic to the Colorado River basin, is in decline throughout most of its range due largely to anthropogenic factors. Translocation of Humpback Chub into tributaries of the Colorado River is one conservation activity that may contribute to the expansion of the species’ current range and eventually provide population redundancy. We evaluated growth, survival, and dispersal following translocation of approximately 900 Humpback Chub over a period of 3 years (2009, 2010, and 2011) into Shinumo Creek, a tributary stream of the Colorado River within Grand Canyon National Park. Growth and condition of Humpback Chub in Shinumo Creek were consistent among year-classes and equaled or surpassed growth estimates from both the main-stem Colorado River and the Little Colorado River, where the largest (and most stable) Humpback Chub aggregation remains. Based on passive integrated tag recoveries, 53% ( = 483/902) of translocated Humpback Chub dispersed from Shinumo Creek into the main-stem Colorado River as of January 2013, 35% leaving within 25 d following translocation. Annual apparent survival estimates within Shinumo Creek ranged from 0.22 to 0.41, but were strongly influenced by emigration. Results indicate that Shinumo Creek provides favorable conditions for growth and survival of translocated Humpback Chub and could support a new population if reproduction and recruitment occur in the future. Adaptation of translocation strategies of Humpback Chub into tributary streams ultimately may refine the role translocation plays in recovery of the species.

  17. Conifer health classification for Colorado, 2008

    USGS Publications Warehouse

    Cole, Christopher J.; Noble, Suzanne M.; Blauer, Steven L.; Friesen, Beverly A.; Curry, Stacy E.; Bauer, Mark A.

    2010-01-01

    Colorado has undergone substantial changes in forests due to urbanization, wildfires, insect-caused tree mortality, and other human and environmental factors. The U.S. Geological Survey Rocky Mountain Geographic Science Center evaluated and developed a methodology for applying remotely-sensed imagery for assessing conifer health in Colorado. Two classes were identified for the purposes of this study: healthy and unhealthy (for example, an area the size of a 30- x 30-m pixel with 20 percent or greater visibly dead trees was defined as ?unhealthy?). Medium-resolution Landsat 5 Thematic Mapper imagery were collected. The normalized, reflectance-converted, cloud-filled Landsat scenes were merged to form a statewide image mosaic, and a Normalized Difference Vegetation Index (NDVI) and Renormalized Difference Infrared Index (RDII) were derived. A supervised maximum likelihood classification was done using the Landsat multispectral bands, the NDVI, the RDII, and 30-m U.S. Geological Survey National Elevation Dataset (NED). The classification was constrained to pixels identified in the updated landcover dataset as coniferous or mixed coniferous/deciduous vegetation. The statewide results were merged with a separate health assessment of Grand County, Colo., produced in late 2008. Sampling and validation was done by collecting field data and high-resolution imagery. The 86 percent overall classification accuracy attained in this study suggests that the data and methods used successfully characterized conifer conditions within Colorado. Although forest conditions for Lodgepole Pine (Pinus contorta) are easily characterized, classification uncertainty exists between healthy/unhealthy Ponderosa Pine (Pinus ponderosa), Pi?on (Pinus edulis), and Juniper (Juniperus sp.) vegetation. Some underestimation of conifer mortality in Summit County is likely, where recent (2008) cloud-free imagery was unavailable. These classification uncertainties are primarily due to the spatial and

  18. Sudden aspen decline in southwest Colorado

    Treesearch

    J. J. Worrall; R. A. Mask; T. Eager; L. Egeland; W. D. Shepperd

    2008-01-01

    Sudden aspen decline (SAD) has increased rapidly in recent years, approaching 350,000 acres in Colorado in 2007, or 13% of the aspen cover type. We investigated the severity, site/stand factors and causes associated with SAD in southwest Colorado. First, we documented landscape (GIS-DEM analyses) and stand factors (stand exams). There was a strong inverse relationship...

  19. Remote sensing for grassland management in the arid Southwest

    USGS Publications Warehouse

    Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R.

    2006-01-01

    We surveyed a group of rangeland managers in the Southwest about vegetation monitoring needs on grassland. Based on their responses, the objective of the RANGES (Rangeland Analysis Utilizing Geospatial Information Science) project was defined to be the accurate conversion of remotely sensed data (satellite imagery) to quantitative estimates of total (green and senescent) standing cover and biomass on grasslands and semidesert grasslands. Although remote sensing has been used to estimate green vegetation cover, in arid grasslands herbaceous vegetation is senescent much of the year and is not detected by current remote sensing techniques. We developed a ground truth protocol compatible with both range management requirements and Landsat's 30 m resolution imagery. The resulting ground-truth data were then used to develop image processing algorithms that quantified total herbaceous vegetation cover, height, and biomass. Cover was calculated based on a newly developed Soil Adjusted Total Vegetation Index (SATVI), and height and biomass were estimated based on reflectance in the near infrared (NIR) band. Comparison of the remotely sensed estimates with independent ground measurements produced r2 values of 0.80, 0.85, and 0.77 and Nash Sutcliffe values of 0.78, 0.70, and 0.77 for the cover, plant height, and biomass, respectively. The approach for estimating plant height and biomass did not work for sites where forbs comprised more than 30% of total vegetative cover. The ground reconnaissance protocol and image processing techniques together offer land managers accurate and timely methods for monitoring extensive grasslands. The time-consuming requirement to collect concurrent data in the field for each image implies a need to share the high fixed costs of processing an image across multiple users to reduce the costs for individual rangeland managers.

  20. 77 FR 9840 - Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...-1191; Airspace Docket No. 11-ANM-21] Amendment of Class E Airspace; Colorado Springs, CO AGENCY... airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black... controlled airspace at Colorado Springs, CO (76 FR 70920). Interested parties were invited to participate in...