Sample records for national laboratory hazardous

  1. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  2. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  3. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  4. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvage, R.D.

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure thatmore » future aircraft-crash frequency calculations are consistent with calculations in this report.« less

  5. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  6. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.; Tibrea, S.; Nance, T.

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  7. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-riskmore » informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.« less

  8. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example ofmore » a risk-based decision technique. This document contains the Appendices for the report.« less

  9. AMERICAN HEALTHY HOMES SURVEY: A NATIONAL STUDY OF RESIDENTIAL RELATED HAZARDS

    EPA Science Inventory

    The US Environmental Protection Agency's (EPA) National Exposure Research Laboratory (NERL) and the US Department of Housing and Urban Development's (HUD) Office of Healthy Homes and Lead Hazard Control conducted a national survey of housing related hazards in US residences. The...

  10. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less

  11. Flood-hazard analysis of four headwater streams draining the Argonne National Laboratory property, DuPage County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.

    2016-11-22

    Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.

  12. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  13. Dental Laboratory Respiratory Hazards and Vacuum Performance Parameters.

    DTIC Science & Technology

    1986-11-01

    DENTAL LABORATORY RESPIRATORY HZRS AND VACUUMPERFORMANCE PRANETERS(U) SCHOOL OF AEROSPACE MEDICINE BROOKS AFB TX K D SATRON ET AL. NOV 86...34 " " " "" .. . . . . .," ." - " -’ " "’,".", "- " ".". ’-"’’. ,.’- " = ". - ’ . .- ., USAFSAM-TR-86-25 DENTAL LABORATORY RESPIRATORY HAZARDS AND VACUUM PERFORMANCE c...Security Classification) Dental Laboratory Respiratory Hazards and Vacuum Performance Parameters 12. PERSONAL AUTHOR(S) Satrom, Kirk D.; Callison,

  14. School Science Laboratories. A Guide to Some Hazardous Substances. A Supplement to the National Institute for Occupational Safety and Health Manual of Safety and Health Hazards in the School Science Laboratory.

    ERIC Educational Resources Information Center

    Council of State Science Supervisors, Washington, DC.

    The purpose of this document is to identify potentially hazardous substances that may be in use in many school laboratories and to provide an inventory of these substances so that science teachers may take the initiative in providing for the proper storage, handling, use, and if warranted, removal of hazardous materials. The document consists of…

  15. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less

  16. Managing hazardous waste in the clinical laboratory.

    PubMed

    Hoeltge, G A

    1989-09-01

    Clinical laboratories generate wastes that present chemical and biologic hazards. Ignitable, corrosive, reactive, toxic, and infectious potentials must be contained and minimized. A summary of these problems and an overview of the applicable regulations are presented. A checklist of activities to facilitate the annual review of the hazardous waste program is provided.

  17. Workplace Health and Safety: Hazardous Substances in the Science Laboratory.

    ERIC Educational Resources Information Center

    Marsden, Noel; Walsh, Wendy; Beiers, Robin

    1997-01-01

    Lists requirements of hazardous-substances legislation as it pertains to science laboratories with a summary of obligations under the Hazardous Substances Compliance Standard for manufacturers, importers, suppliers of hazardous substances, employers or principals, and employees. (AIM)

  18. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less

  19. Prudent Practices for Handling Hazardous Chemicals in Laboratories.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    This guide recommends procedures for safe handling and disposal of hazardous substances, along with broad recommendations for developing comprehensive laboratory safety programs. Although specific information is provided, general principles which can be adapted to activities in any laboratory are emphasized. Section 1 focuses on procedures for…

  20. Waste certification program plan for Oak Ridge National Laboratory. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1997-09-01

    This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.

  1. Identifying and Dealing with Hazardous Materials and Procedures in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Katz, David A.

    1982-01-01

    A survey of freshman chemistry laboratory manuals identified 15 questionable laboratory procedures, including the use of potentially hazardous chemicals. Alternatives are suggested for each hazard discussed (such as using a substitute solvent for benzene). (SK)

  2. Earthquake hazards: a national threat

    USGS Publications Warehouse

    ,

    2006-01-01

    Earthquakes are one of the most costly natural hazards faced by the Nation, posing a significant risk to 75 million Americans in 39 States. The risks that earthquakes pose to society, including death, injury, and economic loss, can be greatly reduced by (1) better planning, construction, and mitigation practices before earthquakes happen, and (2) providing critical and timely information to improve response after they occur. As part of the multi-agency National Earthquake Hazards Reduction Program, the U.S. Geological Survey (USGS) has the lead Federal responsibility to provide notification of earthquakes in order to enhance public safety and to reduce losses through effective forecasts based on the best possible scientific information.

  3. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less

  4. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Elizabeth J.; Dewart, Jean Marie; Deola, Regina

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete.more » In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.« less

  5. Frequent Questions About Managing Hazardous Waste at Academic Laboratories

    EPA Pesticide Factsheets

    FAQs about Alternative Requirements for Hazardous Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Colleges and Universities and Other Eligible Academic Entities Formally Affiliated with Colleges and Universities.

  6. The OSHA hazardous chemical occupational exposure standard for laboratories.

    PubMed

    Armbruster, D A

    1991-01-01

    OSHA's chemical occupational exposure standard for laboratories is an outgrowth of the previously issued Hazard Communication Standard. The standard relieves laboratories from complying with general industry standards but does require compliance with specific laboratory guidelines. The heart of the standard is the creation of a Chemical Hygiene Plan (CHP). The CHP addresses major issues such as safety equipment and procedures, work practices, training, the designation of a chemical hygiene officer, and the provision of medical consultation and examination for affected employees. This new standard, in full effect as of January 31, 1991, presents yet another regulatory challenge to laboratory managers but also ensures a safer environment for laboratory workers.

  7. Self Audits of Hazardous Waste Operations in Laboratories.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1987-01-01

    Discusses the need for compliance with state and federal regulations regarding the handling of hazardous wastes in college chemistry laboratories. Addresses: (1) waste determination; (2) facility requirements; (3) use of the manifest, vendor, transporter, site selection requirements, and training; (4) contingency planning; and (5) documentation.…

  8. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  9. 75 FR 53268 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...

  10. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at an eligible academic entity. An eligible academic entity that generates hazardous waste outside of a...

  11. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at an eligible academic entity. An eligible academic entity that generates hazardous waste outside of a...

  12. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at an eligible academic entity. An eligible academic entity that generates hazardous waste outside of a...

  13. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at an eligible academic entity. An eligible academic entity that generates hazardous waste outside of a...

  14. 40 CFR 262.216 - Non-laboratory hazardous waste generated at an eligible academic entity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generated at an eligible academic entity. 262.216 Section 262.216 Protection of Environment ENVIRONMENTAL... Laboratories Owned by Eligible Academic Entities § 262.216 Non-laboratory hazardous waste generated at an eligible academic entity. An eligible academic entity that generates hazardous waste outside of a...

  15. 76 FR 50164 - National Oil and Hazardous Substance Pollution Contingency Plan National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ..., Reporting and recordkeeping requirements, Superfund, Water pollution control, Water supply. Authority: 33 U... and Hazardous Substance Pollution Contingency Plan National Priorities List: Deletion of the Pasley..., as amended, is an Appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...

  16. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Occupational exposure to hazardous chemicals in laboratories. 1910.1450 Section 1910.1450 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances §...

  17. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 6 2013-07-01 2013-07-01 false Occupational exposure to hazardous chemicals in laboratories. 1910.1450 Section 1910.1450 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances §...

  18. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Occupational exposure to hazardous chemicals in laboratories. 1910.1450 Section 1910.1450 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances §...

  19. 76 FR 58404 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan... opportunities for investigation and soil remediation, if the Program's Work Group determines that lead in...

  20. 77 FR 31215 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the... National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This partial deletion pertains to the surface soil, unsaturated subsurface soil, surface water and sediments of Operable Unit (OU) 1...

  1. 78 FR 69360 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial... and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the State of California... Corp Air Station Superfund Site without prior Notice of Intent for Partial Deletion because EPA views...

  2. 75 FR 43115 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Intent to Partially..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan... Intent for Partial Deletion because EPA views this as a noncontroversial revision and anticipates no...

  3. About the Frederick National Laboratory for Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and currently operated by Leidos Biomedical Research, Inc. The laboratory addresses some of the most urge

  4. 76 FR 56362 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... protection, Air pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water...

  5. 76 FR 42055 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... protection, Air pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental...

  6. 76 FR 77457 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals, Hazardous... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 300 [EPA-HQ-SFUND-1999-0013; FRL-9503-8] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Hiteman...

  7. 76 FR 76336 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals, Hazardous waste... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 300 [EPA-HQ-SFUND-2000-0003; FRL-9501-1] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Notice of Intent for...

  8. 76 FR 11350 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This partial deletion pertains to the soil and ground water associated with the northern 62-acre parcel. After this...

  9. 76 FR 18136 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Norwood... amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The... we view this as a noncontroversial revision and anticipate no adverse comment. We have explained our...

  10. 76 FR 45484 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Notice of Intent for..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan... PBL Superfund Site without prior Notice of Intent for Deletion because EPA views this as a...

  11. 75 FR 44932 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... recordkeeping requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Intent To Delete the... Act (CERCLA) of 1980, is an Appendix of the National Oil and Hazardous Substances Pollution...

  12. Simulation Technology Laboratory Building 970 hazards assessment document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will producemore » consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.« less

  13. 76 FR 56294 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water supply. Authority: 33 U...

  14. 29 CFR 1915.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Occupational exposure to hazardous chemicals in laboratories. 1915.1450 Section 1915.1450 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY... chemicals in laboratories. Note: The requirements applicable to shipyard employment under this section are...

  15. 29 CFR 1915.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Occupational exposure to hazardous chemicals in laboratories. 1915.1450 Section 1915.1450 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY... chemicals in laboratories. Note: The requirements applicable to shipyard employment under this section are...

  16. National Oil and Hazardous Substances Pollution Contingency Plan

    DOT National Transportation Integrated Search

    1996-07-01

    The purpose of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) is to provide the organizational structure and procedures for preparing for and responding to discharges of oil and releases of hazardous substances, pollutants...

  17. Hazardous Waste Resources for Tribal Nations in the Midwest

    EPA Pesticide Factsheets

    Hazardous waste on tribal lands presents a unique set of opportunities and obstacles. This website is intended to be a host for resources that can help Tribal Nations understand the dynamics of hazardous waste and provide guidance on building tribal hazard

  18. 78 FR 48844 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Mosley... National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the State of Oklahoma... Deletion of the MRSL Superfund Site without prior Notice of Intent to Delete because we view this as a...

  19. 75 FR 27255 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Intent to Delete the..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...

  20. 76 FR 71500 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... requirements, Superfund, Water pollution control, Water Supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601... and Hazardous Substances Pollution Contingency Plan National Priorities List: Deletion of the Martin... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). EPA, with the...

  1. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  2. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  3. 77 FR 50070 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ..., Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601-9657; E.O... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Hooker..., as amended, is an appendix of the National Oil and Hazardous Substances Pollution Contingency Plan...

  4. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  5. Waste certification program plan for Oak Ridge National Laboratory. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrin, R.C.

    1997-05-01

    This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less

  6. Occupational health hazards in the interventional laboratory: time for a safer environment.

    PubMed

    Klein, Lloyd W; Miller, Donald L; Balter, Stephen; Laskey, Warren; Haines, David; Norbash, Alexander; Mauro, Matthew A; Goldstein, James A

    2009-07-01

    This document is a consensus statement by the major American societies of physicians who work in the interventional laboratory environment. It reviews available data on the prevalence of occupational health risks and summarizes ongoing epidemiologic studies designed to further elucidate these risks. Its purpose is to affirm that the interventional laboratory poses workplace hazards that must be acknowledged, better understood, and mitigated to the greatest extent possible. Vigorous efforts are advocated to reduce these hazards. Interventional physicians and their professional societies, working together with industry, should strive toward minimizing operator radiation exposure, eliminating the need for personal protective apparel, and ending the orthopedic and ergonomic consequences of the interventional laboratory work environment.

  7. Occupational health hazards in the interventional laboratory: time for a safer environment.

    PubMed

    Klein, Lloyd W; Miller, Donald L; Balter, Stephen; Laskey, Warren; Haines, David; Norbash, Alexander; Mauro, Matthew A; Goldstein, James A

    2009-02-15

    This document is a consensus statement by the major American societies of physicians who work in the interventional laboratory environment. It reviews available data on the prevalence of occupational health risks and summarizes ongoing epidemiologic studies designed to further elucidate these risks. Its purpose is to affirm that the interventional laboratory poses workplace hazards that must be acknowledged, better understood, and mitigated to the greatest extent possible. Vigorous efforts are advocated to reduce these hazards. Interventional physicians and their professional societies, working together with industry, should strive toward minimizing operator radiation exposure, eliminating the need for personal protective apparel, and ending the orthopedic and ergonomic consequences of the interventional laboratory work environment. Copyright SIR, 2009

  8. Occupational health hazards in the interventional laboratory: time for a safer environment.

    PubMed

    Klein, Lloyd W; Miller, Donald L; Balter, Stephen; Laskey, Warren; Haines, David; Norbash, Alexander; Mauro, Matthew A; Goldstein, James A

    2009-02-01

    This document is a consensus statement by the major American societies of physicians who work in the interventional laboratory environment. It reviews available data on the prevalence of occupational health risks and summarizes ongoing epidemiologic studies designed to further elucidate these risks. Its purpose is to affirm that the interventional laboratory poses workplace hazards that must be acknowledged, better understood, and mitigated to the greatest extent possible. Vigorous efforts are advocated to reduce these hazards. Interventional physicians and their professional societies, working together with industry, should strive toward minimizing operator radiation exposure, eliminating the need for personal protective apparel, and ending the orthopedic and ergonomic consequences of the interventional laboratory work environment.

  9. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  10. Dual benefit robotics programs at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. Inmore » the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.« less

  11. 75 FR 54821 - National Oil and Hazardous Substance Pollution Contingency Plan; National Priorities List; Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... and Hazardous Substance Pollution Contingency Plan; National Priorities List; Intent for Partial... amended, is an Appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The... Superfund Site without prior Notice of Intent for Partial Deletion because EPA views this as a...

  12. 75 FR 47521 - National Oil and Hazardous Substance Pollution Contingency Plan; National Priorities List: Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... and Hazardous Substance Pollution Contingency Plan; National Priorities List: Intent To Delete the... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the... Corporation (Markhams) Superfund Site without prior notice of intent to delete because we view this as a...

  13. Assessing hazards along our Nation's coasts

    USGS Publications Warehouse

    Hapke, Cheryl J.; Brenner, Owen; Henderson, Rachel E.; Reynolds, B.J.

    2013-01-01

    Coastal areas are essential to the economic, cultural, and environmental health of the Nation, yet by nature coastal areas are constantly changing due to a variety of events and processes. Extreme storms can cause dramatic changes to our shorelines in a matter of hours, while sea-level rise can profoundly alter coastal environments over decades. These changes can have a devastating impact on coastal communities, such as the loss of homes built on retreating sea cliffs or protective dunes eroded by storm waves. Sometimes, however, the changes can be positive, such as new habitat created by storm deposits. The U.S. Geological Survey (USGS) is meeting the need for scientific understanding of how our coasts respond to different hazards with continued assessments of current and future changes along U.S. coastlines. Through the National Assessment of Coastal Change Hazards (NACCH), the USGS carries out the unique task of quantifying coastal change hazards along open-ocean coasts in the United States and its territories. Residents of coastal communities, emergency managers, and other stakeholders can use science-based data, tools, models, and other products to improve planning and enhance resilience.

  14. Contracting with the Frederick National Laboratory | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  15. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    USGS Publications Warehouse

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  16. 76 FR 72216 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... by developing a written Chemical Hygiene Plan (CHP) that describes standard operating procedures for...] Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of Management... requirements specified in the Standard on Occupational Exposure to Hazardous Chemicals in Laboratories (29 CFR...

  17. Exposure to hazardous substances in a standard molecular biology laboratory environment: evaluation of exposures in IARC laboratories.

    PubMed

    Chapot, Brigitte; Secretan, Béatrice; Robert, Annie; Hainaut, Pierre

    2009-07-01

    Working in a molecular biology laboratory environment implies regular exposure to a wide range of hazardous substances. Several recent studies have shown that laboratory workers may have an elevated risk of certain cancers. Data on the nature and frequency of exposures in such settings are scanty. The frequency of use of 163 agents by staff working in molecular biology laboratories was evaluated over a period of 4 years by self-administered questionnaire. Of the agents listed, ethanol was used by the largest proportion of staff (70%), followed by ethidium bromide (55%). Individual patterns of use showed three patterns, namely (i) frequent use of a narrow range of products, (ii) occasional use of a wide range of products, and (iii) frequent and occasional use of an intermediate range of products. Among known or suspected carcinogens (International Agency for Research on Cancer Group 1 and 2A, respectively), those most frequently used included formaldehyde (17%), oncogenic viruses (4%), and acrylamide (32%). The type of exposure encountered in research laboratories is extremely diverse. Few carcinogenic agents are used frequently but many laboratory workers may be exposed occasionally to known human carcinogens. In addition, many of the chemicals handled by staff represent a health hazard. The results enabled the staff physician to develop an individual approach to medical surveillance and to draw a personal history of occupational exposures for laboratory staff.

  18. 76 FR 25376 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... describes: Standard operating procedures for using hazardous chemicals; hazard-control techniques; equipment...] Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of Management... collection requirements specified in the Standard on Occupational Exposure to Hazardous Chemicals in...

  19. 78 FR 56611 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... requirements, Superfund, Water pollution control, Water supply. Dated: July 3, 2013. A. Stanley Meiburg, Acting...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... National Oil and [[Page 56612

  20. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  1. Seismic hazard in the South Carolina coastal plain: 2002 update of the USGS national seismic hazard maps

    USGS Publications Warehouse

    Cramer, C.H.; Mays, T.W.; ,

    2005-01-01

    The damaging 1886 moment magnitude ???7 Charleston, South Carolina earthquake is indicative of the moderately likely earthquake activity along this portion of the Atlantic Coast. A recurrence of such an earthquake today would have serious consequences for the nation. The national seismic hazard maps produced by the U.S. Geological Survey (USGS) provide a picture of the levels of seismic hazard across the nation based on the best and most current scientific information. The USGS national maps were updated in 2002 and will become part of the International Codes in 2006. In the past decade, improvements have occurred in the scientific understanding of the nature and character of earthquake activity and expected ground motions in the central and eastern U.S. The paper summarizes the new knowledge of expected earthquake locations, magnitudes, recurrence, and ground-motion decay with distance. New estimates of peak ground acceleration and 0.2 s and 1.0 s spectral acceleration are compared with those displayed in the 1996 national maps. The 2002 maps show increased seismic hazard in much of the coastal plain of South Carolina, but a decrease in long period (1 s and greater) hazard by up to 20% at distances of over 50 km from the Charleston earthquake zone. Although the national maps do not account for the effects of local or regional sediments, deep coastal-plain sediments can significally alter expected ground shaking, particularly at long period motions where it can be 100% higher than the national maps.

  2. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  3. Scientific Openness and National Security at the National Laboratories

    NASA Astrophysics Data System (ADS)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  4. National Earthquake Hazards Reduction Program; time to expand

    USGS Publications Warehouse

    Steinbrugge, K.V.

    1990-01-01

    All of us in earthquake engineering, seismology, and many related disciplines have been directly or indirectly affected by the National Earthquake Hazards Reduction Program (NEHRP). This program was the result of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124). With well over a decade of experience, should this expression of public policy now take a different or expanded role? 

  5. AWPA biodeterioration hazard map revisited

    Treesearch

    Grant T. Kirker; Amy B. Bishell; William J. Hickey

    2017-01-01

    The fungal decay hazard map used by the American Wood Protection Association (AWPA) currently describes regional decay hazards in ground contact for North America and is based on condition assessments of utility poles from the 1970’s. Current work at the USDA Forest Service, Forest Products Laboratory is underway to analyze soil and wood samples from several National...

  6. 77 FR 67783 - National Oil and Hazardous Substance Pollution Contingency Plan National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... and Hazardous Substance Pollution Contingency Plan National Priorities List: Deletion of the Waste... and Hazardous Substances Pollution Contingency Plan (NCP). EPA and the State of Michigan, through the...-Holland Lagoons Superfund Site without prior Notice of Intent to Delete because we view this as a...

  7. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  8. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  9. A Laboratory Exercise for Compatibility Testing of Hazardous Wastes in an Environmental Analysis Course.

    ERIC Educational Resources Information Center

    Chang, J. C.; And Others

    1986-01-01

    Discusses a new program at the University of Michigan in hazardous waste management. Describes a laboratory demonstration that deals with the reactivity and potential violence of several reactions that may be encountered on a hazardous waste site. Provides criteria for selecting particular compatibility testing methods. (TW)

  10. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; Pesticide... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; National Emission Standards for Hazardous... proposed rule titled, National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...

  11. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  12. Tsunami Hazards - A National Threat

    USGS Publications Warehouse

    ,

    2006-01-01

    In December 2004, when a tsunami killed more than 200,000 people in 11 countries around the Indian Ocean, the United States was reminded of its own tsunami risks. In fact, devastating tsunamis have struck North America before and are sure to strike again. Especially vulnerable are the five Pacific States--Hawaii, Alaska, Washington, Oregon, and California--and the U.S. Caribbean islands. In the wake of the Indian Ocean disaster, the United States is redoubling its efforts to assess the Nation's tsunami hazards, provide tsunami education, and improve its system for tsunami warning. The U.S. Geological Survey (USGS) is helping to meet these needs, in partnership with the National Oceanic and Atmospheric Administration (NOAA) and with coastal States and counties.

  13. 78 FR 65210 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ..., Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of California, through the California...

  14. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  15. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  16. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  17. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  18. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  19. 78 FR 63099 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ..., Superfund, Water pollution control, Water supply. Dated: September 26, 2013. Judith A. Enck, Regional...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Pollution Contingency Plan (NCP). The EPA and the State of New York, through the Department of Environmental...

  20. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  1. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ams, Bridget Elaine

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos Nationalmore » Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.« less

  2. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  3. 78 FR 66325 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of South Carolina, through the South... because we view this as a noncontroversial revision and anticipate no adverse comment. We have explained...

  4. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  5. Documentation for the 2008 Update of the United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, Mark D.; Frankel, Arthur D.; Harmsen, Stephen C.; Mueller, Charles S.; Haller, Kathleen M.; Wheeler, Russell L.; Wesson, Robert L.; Zeng, Yuehua; Boyd, Oliver S.; Perkins, David M.; Luco, Nicolas; Field, Edward H.; Wills, Chris J.; Rukstales, Kenneth S.

    2008-01-01

    The 2008 U.S. Geological Survey (USGS) National Seismic Hazard Maps display earthquake ground motions for various probability levels across the United States and are applied in seismic provisions of building codes, insurance rate structures, risk assessments, and other public policy. This update of the maps incorporates new findings on earthquake ground shaking, faults, seismicity, and geodesy. The resulting maps are derived from seismic hazard curves calculated on a grid of sites across the United States that describe the frequency of exceeding a set of ground motions. The USGS National Seismic Hazard Mapping Project developed these maps by incorporating information on potential earthquakes and associated ground shaking obtained from interaction in science and engineering workshops involving hundreds of participants, review by several science organizations and State surveys, and advice from two expert panels. The National Seismic Hazard Maps represent our assessment of the 'best available science' in earthquake hazards estimation for the United States (maps of Alaska and Hawaii as well as further information on hazard across the United States are available on our Web site at http://earthquake.usgs.gov/research/hazmaps/).

  6. 78 FR 60809 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). EPA and the State of New York, through the New York State... Deletion of the Site without prior Notice of Intent to Delete because EPA views this as a noncontroversial...

  7. Community | Argonne National Laboratory

    Science.gov Websites

    occupies 1,500 wooded acres 25 miles southwest of Chicago in DuPage County, Ill. Our highly collaborative Experience at Argonne National Laboratory Chicago Tribune New UChicago Program Teaches Data Science for

  8. The OSHA Hazardous Chemical Occupational Exposure Standard for Laboratories - A New Management Regulation to Ensure Employee Health

    DTIC Science & Technology

    1991-04-01

    Hazardous Chemical Occupational Exposur PE - 87714F Standard for Laboratories- A New Management Regu- PR - SUPT lation to Ensure Employee Health TA - XX 6...produce acute or chronic adverse health effects in sional visitors such as guests or sales personnel. exposed workers . Health hazards include...standard is to safeguard the health and well- place and increases the likelihood of exposure. being of laboratory workers . The welfare of our person- A

  9. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    NASA Astrophysics Data System (ADS)

    Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom

    2017-06-01

    We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  10. Truck Transportation of Hazardous Materials - A National Overview

    DOT National Transportation Integrated Search

    1987-12-01

    The primary objective of the effort has been to provide Government regulators and policy-makers with (a) an estimate of the aggregate national volume of hazardous chemical and petroleum products transportation in trucks, (b) a profile of the truck fl...

  11. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  12. Los Alamos and Lawrence Livermore National Laboratories Code-to-Code Comparison of Inter Lab Test Problem 1 for Asteroid Impact Hazard Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Robert P.; Miller, Paul; Howley, Kirsten

    The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less

  13. National-Level Multi-Hazard Risk Assessments in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Murnane, R. J.; Balog, S.; Fraser, S. A.; Jongman, B.; Van Ledden, M.; Phillips, E.; Simpson, A.

    2017-12-01

    National-level risk assessments can provide important baseline information for decision-making on risk management and risk financing strategies. In this study, multi-hazard risk assessments were undertaken for 9 countries in Sub-Saharan Africa: Cape Verde, Ethiopia, Kenya, Niger, Malawi, Mali, Mozambique, Senegal and Uganda. The assessment was part of the Building Disaster Resilience in Sub-Saharan Africa Program and aimed at supporting the development of multi-risk financing strategies to help African countries make informed decisions to mitigate the socio-economic, fiscal and financial impacts of disasters. The assessments considered hazards and exposures consistent with the years 2010 and 2050. We worked with multiple firms to develop the hazard, exposure and vulnerability data and the risk results. The hazards include: coastal flood, drought, earthquake, landslide, riverine flood, tropical cyclone wind and storm surge, and volcanoes. For hazards expected to vary with climate, the 2050 hazard is based on the IPCC RCP 6.0. Geolocated exposure data for 2010 and 2050 at a 15 arc second ( 0.5 km) resolution includes: structures as a function of seven development patterns; transportation networks including roads, bridges, tunnels and rail; critical facilities such as schools, hospitals, energy facilities and government buildings; crops; population; and, gross domestic product (GDP). The 2050 exposure values for population are based on the IPCC SSP 2. Values for other exposure data are a function of population change. Vulnerability was based on openly available vulnerability functions. Losses were based on replacement values (e.g., cost/m2 or cost/km). Risk results are provided in terms of annual average loss and a variety of return periods at the national and Admin 1 levels. Assessments of recent historical events are used to validate the model results. In the future, it would be useful to use hazard footprints of historical events for validation purposes. The

  14. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  15. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  16. Hood College, Frederick National Laboratory Will Renew Popular Scientific Symposium | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hood College and the Frederick National Laboratory for Cancer Research have partnered to cohost an annual scientific symposium in the tradition of the landmark Oncogene Meeting, a national fixture in Frederick for more than 20 year

  17. Seismic hazard in the Nation's breadbasket

    USGS Publications Warehouse

    Boyd, Oliver; Haller, Kathleen; Luco, Nicolas; Moschetti, Morgan P.; Mueller, Charles; Petersen, Mark D.; Rezaeian, Sanaz; Rubinstein, Justin L.

    2015-01-01

    The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.

  18. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  19. An Annotated Bibliography of the Literature Dealing With the Hazardous Chemicals Used in the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Chaney, Donna J.

    On the premise that many laboratory instructors lack knowledge about chemical toxicity, this study investigated three areas: (1) chemicals used in the academic laboratory which pose a health hazard; (2) ways of reducing toxicity in the laboratory (with attention to the apparent lack of teacher training which contributes to the cause of the problem…

  20. Privacy Policy | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  1. News | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events News & Events -4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  2. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  3. Laboratory Safety and Chemical Hazards.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Toxicology/chemical hazards, safety policy, legal responsibilities, adequacy of ventilation, chemical storage, evaluating experimental hazards, waste disposal, and laws governing chemical safety were among topics discussed in 10 papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Several topics…

  4. Natural hazard risk perception of Italian population: case studies along national territory.

    NASA Astrophysics Data System (ADS)

    Gravina, Teresita; Tupputi Schinosa, Francesca De Luca; Zuddas, Isabella; Preto, Mattia; Marengo, Angelo; Esposito, Alessandro; Figliozzi, Emanuele; Rapinatore, Matteo

    2015-04-01

    Risk perception is judgment that people make about the characteristics and severity of risks, in last few years risk perception studies focused on provide cognitive elements to communication experts responsible in order to design citizenship information and awareness appropriate strategies. Several authors in order to determine natural hazards risk (Seismic, landslides, cyclones, flood, Volcanic) perception used questionnaires as tool for providing reliable quantitative data and permitting comparison the results with those of similar surveys. In Italy, risk perception studies based on surveys, were also carried out in order to investigate on national importance Natural risk, in particular on Somma-Vesuvio and Phlegrean Fields volcanic Risks, but lacked risk perception studies on local situation distributed on whole national territory. National importance natural hazard were frequently reported by national mass media and there were debate about emergencies civil protection plans, otherwise could be difficult to obtain information on bonded and regional nature natural hazard which were diffuses along National territory. In fact, Italian peninsula was a younger geological area subjected to endogenous phenomena (volcanoes, earthquake) and exogenous phenomena which determine land evolution and natural hazard (landslide, coastal erosion, hydrogeological instability, sinkhole) for population. For this reason we decided to investigate on natural risks perception in different Italian place were natural hazard were taken place but not reported from mass media, as were only local relevant or historical event. We carried out surveys in different Italian place interested by different types of natural Hazard (landslide, coastal erosion, hydrogeological instability, sinkhole, volcanic phenomena and earthquake) and compared results, in order to understand population perception level, awareness and civil protection exercises preparation. Our findings support that risks

  5. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilmer, J.

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided,more » this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.« less

  6. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... March 3, 2010, final national emission standards for hazardous air pollutants for reciprocating internal... engines to allow emergency engines to operate for up to 15 hours per year as part of an emergency demand...

  7. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  8. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  9. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  10. Frederick National Laboratory, National Cancer Institute of Mexico to Offer Training Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- The Frederick National Laboratory for Cancer Research will extend its scientific mentoring across international borders for the first time by offering postdoctoral research fellowships to scientists under an agreement with the Nati

  11. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  12. Critical components required to improve deployable laboratory biological hazards identification

    NASA Astrophysics Data System (ADS)

    Niemeyer, Debra M.

    2004-08-01

    An ever-expanding global military mission necessitates quick and accurate identification of biological hazards, whether naturally occurring or man-made. Coupled with an ever-present threat of biological attack, an expanded U.S. presence in worn-torn locations like Southwest Asia presents unique public health challenges. We must heed modern day "lessons learned" from Operation Desert Shield and the Soviet Afghanistan Campaign and guard against rapid incapacitation of troop strength from endemic disease and biological attack. To minimize readiness impacts, field hygiene is enforced, and research on better medical countermeasures such as antibiotics and vaccines continues. However, there are no preventions or remedies for all military-relevant infectious diseases or biological agents. A deployable, streamlined, self-contained diagnostic and public health surveillance laboratory capability with a reach-back communication is critical to meeting global readiness challenges. Current deployable laboratory packages comprise primarily diagnostic or environmental sample testing capabilities. Discussion will focus on critical components needed to improve existing laboratory assets, and to facilitate deployment of small, specialized packages far forward. The ideal laboratory model described will become an essential tool for the Combatant or Incident Commander to maintain force projection in the expeditionary environment.

  13. The influence of market proximity on national forest hazardous fuels treatments

    Treesearch

    Max Nielsen-Pincus; Susan Charnley; Cassandra Moseley

    2013-01-01

    The US Department of Agriculture Forest Service’s focus on hazardous fuels reduction has increased since the adoption of the National Fire Plan in 2001. However, appropriations for hazardous fuels reduction still lag behind wildfire suppression spending. Offsetting fuels treatment costs through biomass utilization or by using innovative administrative mechanisms such...

  14. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  15. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  16. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  17. Slumgullion; Colorado’s natural landslide laboratory

    USGS Publications Warehouse

    Highland, L.M.

    1993-01-01

    The mountains of Colorado, and the Rocky Mountains in general, have one of the highest levels of landslide hazard in the nation. In a typical year, landslides hazard in the nation. In a typical year, landslides cause several fatalities and millions of dollars in damage to highways, pipelines, buildings, and forests in Colorado. To reduce such losses we need to understand why landslides occur and how they behave once they form. The Slumgullion landslide, an ideal natural laboratory, offers a unique opportunity to carefully observe and monitor the movement of a large, active landslide. In 1990, soon after the State of Colorado assigned high priority to hazard evaluation of the Slumgullion landslide, the USGS began an intensive study as part of its Landslide Hazards Reduction Program. 

  18. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  19. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  20. U.S. states and territories national tsunami hazard assessment, historic record and sources for waves

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Weaver, C.

    2007-12-01

    In 2005, the U.S. National Science and Technology Council (NSTC) released a joint report by the sub-committee on Disaster Reduction and the U.S. Group on Earth Observations titled Tsunami Risk Reduction for the United States: A Framework for Action (Framework). The Framework outlines the President's&pstrategy for reducing the United States tsunami risk. The first specific action called for in the Framework is to "Develop standardized and coordinated tsunami hazard and risk assessments for all coastal regions of the United States and its territories." Since NOAA is the lead agency for providing tsunami forecasts and warnings and NOAA's National Geophysical Data Center (NGDC) catalogs information on global historic tsunamis, NOAA/NGDC was asked to take the lead in conducting the first national tsunami hazard assessment. Earthquakes or earthquake-generated landslides caused more than 85% of the tsunamis in the NGDC tsunami database. Since the United States Geological Survey (USGS) conducts research on earthquake hazards facing all of the United States and its territories, NGDC and USGS partnered together to conduct the first tsunami hazard assessment for the United States and its territories. A complete tsunami hazard and risk assessment consists of a hazard assessment, exposure and vulnerability assessment of buildings and people, and loss assessment. This report is an interim step towards a tsunami risk assessment. The goal of this report is provide a qualitative assessment of the United States tsunami hazard at the national level. Two different methods are used to assess the U.S. tsunami hazard. The first method involves a careful examination of the NGDC historical tsunami database. This resulted in a qualitative national tsunami hazard assessment based on the distribution of runup heights and the frequency of runups. Although tsunami deaths are a measure of risk rather than hazard, the known tsunami deaths found in the NGDC database search were compared with the

  1. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability

    PubMed Central

    Black, Alex A.; Wood, Joanne M.

    2017-01-01

    Purpose The mechanisms underlying the elevated crash rates of older drivers with glaucoma are poorly understood. A key driving skill is timely detection of hazards; however, the hazard detection ability of drivers with glaucoma has been largely unexplored. This study assessed the eye movement patterns and visual predictors of performance on a laboratory-based hazard detection task in older drivers with glaucoma. Methods Participants included 30 older drivers with glaucoma (71±7 years; average better-eye mean deviation (MD) = −3.1±3.2 dB; average worse-eye MD = −11.9±6.2 dB) and 25 age-matched controls (72±7 years). Visual acuity, contrast sensitivity, visual fields, useful field of view (UFoV; processing speeds), and motion sensitivity were assessed. Participants completed a computerised Hazard Perception Test (HPT) while their eye movements were recorded using a desk-mounted Tobii TX300 eye-tracking system. The HPT comprises a series of real-world traffic videos recorded from the driver’s perspective; participants responded to road hazards appearing in the videos, and hazard response times were determined. Results Participants with glaucoma exhibited an average of 0.42 seconds delay in hazard response time (p = 0.001), smaller saccades (p = 0.010), and delayed first fixation on hazards (p<0.001) compared to controls. Importantly, larger saccades were associated with faster hazard responses in the glaucoma group (p = 0.004), but not in the control group (p = 0.19). Across both groups, significant visual predictors of hazard response times included motion sensitivity, UFoV, and worse-eye MD (p<0.05). Conclusions Older drivers with glaucoma had delayed hazard response times compared to controls, with associated changes in eye movement patterns. The association between larger saccades and faster hazard response time in the glaucoma group may represent a compensatory behaviour to facilitate improved performance. PMID:28570621

  2. Undergraduates | Argonne National Laboratory

    Science.gov Websites

    Directory Argonne National Laboratory Educational Programs Connecting today's world-class research to which you can use to change the world." -Nelson Mandela Undergrads are just beginning their journey into the world of science and engineering. Here at Argonne, we work to make the world a better place

  3. Occupational health hazards in the interventional laboratory: Time for a safer environment.

    PubMed

    Klein, Lloyd W; Miller, Donald L; Balter, Stephen; Laskey, Warren; Naito, Neil; Haines, David; Ross, Allan; Mauro, Matthew A; Goldstein, James A

    2018-01-04

    Over the past 30 years, the advent of fluoroscopically guided interventional procedures has resulted in dramatic increments in both X-ray exposure and physical demands that predispose interventionists to distinct occupational health hazards. The hazards of accumulated radiation exposure have been known for years, but until recently the other potential risks have been ill-defined and under-appreciated. The physical stresses inherent in this career choice appear to be associated with a predilection to orthopedic injuries, attributable in great part to the cumulative adverse effects of bearing the weight and design of personal protective apparel worn to reduce radiation risk and to the poor ergonomic design of interventional suites. These occupational health concerns pertain to cardiologists, radiologists and surgeons working with fluoroscopy, pain management specialists performing nonvascular fluoroscopic procedures, and the many support personnel working in these environments. This position paper is the work of representatives of the major societies of physicians who work in the interventional laboratory environment, and has been formally endorsed by all. In this paper, the available data delineating the prevalence of these occupational health risks is reviewed and ongoing epidemiological studies designed to further elucidate these risks are summarized. The main purpose is to publicly state speaking with a single voice that the interventional laboratory poses workplace hazards that must be acknowledged, better understood and mitigated to the greatest extent possible, and to advocate vigorously on behalf of efforts to reduce these hazards. Interventional physicians and their professional societies, working together with industry, should strive toward the ultimate zero radiation exposure work environment that would eliminate the need for personal protective apparel and prevent its orthopedic and ergonomic consequences. © 2008 Wiley-Liss, Inc. Copyright © 2008 Wiley

  4. Visiting Scholars Program | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Visiting Scholars Program (VSP) provides a unique opportunity for scientists to collaborate with the Frederick National Laboratory for Cancer Research (FNLCR), the only federal national laboratory in the United States devoted exclusively to b

  5. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  6. 75 FR 42361 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the Rocky Mountain Arsenal Federal Facility AGENCY: Environmental Protection Agency. ACTION: Proposed rule... Notice of Intent to Delete portions of the Rocky Mountain Arsenal Federal Facility (RMA) from the...

  7. 76 FR 72049 - National Emission Standards for Hazardous Air Pollutant Emissions for Shipbuilding and Ship...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...This action finalizes the residual risk and technology review conducted for two industrial source categories regulated by separate national emission standards for hazardous air pollutants. The two national emission standards for hazardous air pollutants are: National Emissions Standards for Shipbuilding and Ship Repair (Surface Coating) and National Emissions Standards for Wood Furniture Manufacturing Operations. This action also finalizes revisions to the regulatory provisions related to emissions during periods of startup, shutdown and malfunction.

  8. LA-UR-14-27684, Analysis of Wildland Fire Hazard to the TWF at Los Alamos National Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, Sarah

    Wildfires represent an Anticipated Natural Phenomena Hazard for LANL and the surrounding area. The TWF facility is located in a cleared area and is surrounded on three sides by roadway pavement. Therefore, direct propagation of flames to the facility is not considered the most credible means of ignition. Rather, fires started by airborne transport of burning brands constitute the most significant wildland fire threat to the TWF. The purpose of this document is to update LA-UR-13-24529, Airborne Projection of Burning Embers – Planning and Controls for Los Alamos National Laboratory Facilities, to be specific to the TWF site and operations.

  9. Graduates | Argonne National Laboratory

    Science.gov Websites

    Staff Directory Argonne National Laboratory Educational Programs Connecting today's world-class research , Argonne is the place to be if you are a graduate student. With access to world-class facilities and world -reknowned researchers, graduate students at Argonne can taste the best of the research and development world

  10. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  11. Inverter testing at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg

    1997-02-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  12. LABORATORY AND FIELD AUDITS AS PART OF THE EPA (ENVIRONMENTAL PROTECTION AGENCY) HAZARDOUS WASTE ENGINEERING RESEARCH LABORATORY (HWERL) QUALITY ASSURANCE PROGRAM

    EPA Science Inventory

    Audits are an important and integral part of the EPA Hazardous Waste Engineering Research Laboratory (HWERL) Quality Assurance (QA) Program. As part of the overall QA program, audits are used to determine contractor compliance with quality assurance plans and to assess the overal...

  13. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments

    PubMed Central

    Litton, Charles D.; Perera, Inoka E.; Harteis, Samuel P.; Teacoach, Kara A.; DeRosa, Maria I.; Thomas, Richard A.; Smith, Alex C.

    2018-01-01

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments. PMID:29599565

  14. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    PubMed

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  15. Mortality among workers at Oak Ridge National Laboratory.

    PubMed

    Richardson, David B; Wing, Steve; Keil, Alexander; Wolf, Susanne

    2013-07-01

    Workers employed at the Oak Ridge National Laboratory (ORNL) were potentially exposed to a range of chemical and physical hazards, many of which are poorly characterized. We compared the observed deaths among workers to expectations based upon US mortality rates. The cohort included 22,831 workers hired between January 1, 1943 and December 31, 1984. Vital status and cause of death information were ascertained through December 31, 2008. Standardized mortality ratios (SMRs) were computed separately for males and females using US and Tennessee mortality rates; SMRs for men were tabulated separately for monthly-, weekly-, and hourly-paid workers. Hourly-paid males had more deaths due to cancer of the pleura (SMR = 12.09, 95% CI: 4.44, 26.32), cancer of the bladder (SMR = 1.89, 95% CI: 1.26, 2.71), and leukemia (SMR = 1.33, 95% CI: 0.87, 1.93) than expected based on US mortality rates. Female workers also had more deaths than expected from cancer of the bladder (SMR = 2.20, 95% CI: 1.20, 3.69) and leukemia (SMR = 1.64, 95% CI: 1.09, 2.36). The pleural cancer excess has only appeared since the 1980s, approximately 40 years after the start of operations. The bladder cancer excess was larger among workers who also had worked at other Oak Ridge nuclear weapons facilities, while the leukemia excess was among people who had not worked at other DOE facilities. Occupational hazards including asbestos and ionizing radiation may contribute to these excesses. Copyright © 2013 Wiley Periodicals, Inc.

  16. Health and Safety Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N.

    1993-12-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S&H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactivemore » materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures.« less

  17. Miscellaneous Coating Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The national emission standards for hazardous air pollutants for miscellaneous coating manufacturing. Includes summary, rule history, compliance and implementation information, federal registry citations.

  18. 76 FR 20605 - National Oil and Hazardous Substance Pollution Contingency Plan National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... and Hazardous Substance Pollution Contingency Plan National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). EPA and the State of Michigan, through the Michigan Department... Delete because we view this as a noncontroversial revision and anticipate no adverse comment. We have...

  19. 78 FR 11620 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List: Deletion of the Kerr... Substances Pollution Contingency Plan (NCP). EPA and the State of Illinois, through the Illinois... because we view this as a noncontroversial revision and anticipate no adverse comment. We have explained...

  20. Partnering at the National Laboratories: Catalysis as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national researchmore » enterprise.« less

  1. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  2. HEP Division Argonne National Laboratory

    Science.gov Websites

    Argonne National Laboratory Environmental Safety & Health DOE Logo Home Division ES&H ... Search Argonne Home >High Energy Physics> Environmental Safety & Health Environmental Safety & Health New Employee Training */ ?> Office Safety: Checklist (Submitted Checklists) Submitted

  3. Organic Liquids Distribution: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for organic liquidsdistribution (OLD) (non-gasoline) operations. Includes rule history, Federal Registry citations, implementation and compliance information.

  4. 76 FR 76118 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Notice of Intent for Deletion of the State Marine of Port Arthur Superfund Site AGENCY: Environmental Protection Agency. ACTION... Delete the State Marine of Port Arthur (SMPA) Superfund Site located in Port Arthur, Texas, from the...

  5. 77 FR 46009 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of Maine, through the Maine Department of... preclude future actions under Superfund. This partial deletion pertains to all Site media (including soil...

  6. 76 FR 57662 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental...: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...

  7. 76 FR 32115 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Intent To Delete the... Substances Pollution Contingency Plan (NCP). The EPA and the State of Delaware, through the Delaware... Delete because EPA views this as a noncontroversial revision and anticipates no adverse comment. We have...

  8. 78 FR 44512 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Sola... Pollution Contingency Plan (NCP). The EPA and the State of California, through the Regional Water Quality...., Inc. Superfund Site without prior Notice of Intent to Delete because we view this as a...

  9. 76 FR 51316 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Contingency Plan (NCP). The EPA and the Commonwealth of Puerto Rico, through the Puerto Rico Environmental... Site without prior Notice of Intent to Delete because we view this as a noncontroversial revision and...

  10. 78 FR 45167 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Cannon... Substances Pollution Contingency Plan (NCP). The EPA and the State of Massachusetts, through the...), Superfund Site without prior Notice of Intent to Delete because we view this as a noncontroversial revision...

  11. 78 FR 45905 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Craig... Substances Pollution Contingency Plan (NCP). The EPA and the Commonwealth of Pennsylvania, through the... Craig Farm Drum Superfund Site without prior Notice of Intent to Delete because we view this as a...

  12. 78 FR 47267 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Contingency Plan (NCP). The EPA and the State of Oklahoma, through the Oklahoma Department of Environmental... without prior Notice of Intent to Delete because we view this as a noncontroversial revision and...

  13. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  14. 60 Years of Great Science (Oak Ridge National Laboratory)

    DOE R&D Accomplishments Database

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  15. National Emission Standards for Hazardous Air Pollutants in Region 7

    EPA Pesticide Factsheets

    National Emission Standards for Hazardous Air Pollutants (NESHAPs) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.

  16. 76 FR 57702 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... INFORMATION: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...

  17. 76 FR 57701 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental... INFORMATION: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...

  18. 76 FR 57661 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List AGENCY: Environmental... INFORMATION: List of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601...

  19. 76 FR 45483 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Notice of Intent for... Contingency Plan (NCP). The EPA and the State of Texas, through the Texas Commission on Environmental Quality... Notice of Deletion for SMPA Superfund Site without prior Notice of Intent for Deletion because EPA views...

  20. 76 FR 50441 - National Oil and Hazardous Substance Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... and Hazardous Substance Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of New Jersey, through the New Jersey... Deletion of the Sayreville Landfill Superfund Site without prior Notice of Intent to Delete because we view...

  1. 77 FR 43567 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the Fort... Contingency Plan (NCP). The EPA and the State of New Jersey, through the NJ Department of Environmental... Intent to Delete because we view this as a noncontroversial revision and anticipate no adverse comment...

  2. Pharmaceuticals Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) from facilities that manufacture pharmaceutical products. Includes rule history, Federal Register citations, implementation and compliance information, and additional resources.

  3. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  4. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) on October...

  5. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  6. Increase Workshop | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Faculty Visiting Us Argonne Educational Programs is committed to providing a learning environment that emphasizes the

  7. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  8. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins; Marine Tank...-AO91 National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins... Emissions Standards for Group I Polymers and Resins (Butyl Rubber Production, Epichlorohydrin Elastomers...

  9. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  10. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  11. 76 FR 49397 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... requirements, Superfund, Water pollution control, Water supply. Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. 9601... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the... Substances Pollution Contingency Plan (NCP). The EPA and the State of Utah, through the Utah Department of...

  12. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, H.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had nomore » discernible impact on the general public or on the environment.« less

  13. Internship Opportunities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning -class research to tomorrow's STEM problem solvers Home Learning Center Undergraduates Graduates Faculty ) 252-4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  14. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  15. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish amore » lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.« less

  16. ORNL (Oak Ridge National Laboratory) 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  17. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  18. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and Allied... when they should not be covered. This action clarifies text of the National Emission Standards for Hazardous Air Pollutants: Paints and Allied Products Manufacturing Area Source Standards which was published...

  19. Visitor's Guide | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research headquarters are located at the Advanced Technology and Research Facility (ATRF), located at 8560 Progress Drive, Frederick Maryland. Additional offices and laboratories are locatedon the NC

  20. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  1. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  2. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less

  3. Annual Report on the State of the DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this firstmore » report.« less

  4. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  5. Expert elicitation for a national-level volcano hazard model

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark; Stirling, Mark; Cronin, Shane; Wang, Ting; Jolly, Gill

    2016-04-01

    The quantification of volcanic hazard at national level is a vital pre-requisite to placing volcanic risk on a platform that permits meaningful comparison with other hazards such as earthquakes. New Zealand has up to a dozen dangerous volcanoes, with the usual mixed degrees of knowledge concerning their temporal and spatial eruptive history. Information on the 'size' of the eruptions, be it in terms of VEI, volume or duration, is sketchy at best. These limitations and the need for a uniform approach lend themselves to a subjective hazard analysis via expert elicitation. Approximately 20 New Zealand volcanologists provided estimates for the size of the next eruption from each volcano and, conditional on this, its location, timing and duration. Opinions were likewise elicited from a control group of statisticians, seismologists and (geo)chemists, all of whom had at least heard the term 'volcano'. The opinions were combined via the Cooke classical method. We will report on the preliminary results from the exercise.

  6. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    PubMed

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  7. Cellulose Products Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Cellulose Products Manufacturing, see the rule history for this Maximum Achievable Control Technology (MACT), and find Compliance help for this source.

  8. 76 FR 81327 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... for each emission unit type (e.g., gas- or oil-fired paper machine dryers) based on the most common... 63 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry...-AQ41 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry AGENCY...

  9. Frederick National Laboratory and Georgetown University Launch Research and Education Collaboration | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f

  10. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  11. The Hazardous-Drums Project: A Multiweek Laboratory Exercise for General Chemistry Involving Environmental, Quality Control, and Cost Evaluation

    ERIC Educational Resources Information Center

    Hayes, David; Widanski, Bozena

    2013-01-01

    A laboratory experiment is described that introduces students to "real-world" hazardous waste management issues chemists face. The students are required to define an analytical problem, choose a laboratory analysis method, investigate cost factors, consider quality-control issues, interpret the meaning of results, and provide management…

  12. Technology Innovation at the National Renewable Energy Laboratory (Text

    Science.gov Websites

    market, new processes out in the fields, and to make an impact." A photo montage of six different Version) | NREL Technology Innovation at the National Renewable Energy Laboratory (Text Version ) Technology Innovation at the National Renewable Energy Laboratory (Text Version) This is the text version for

  13. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most support of this mission, Sandia National Laboratories has a significant role in advancing the "state

  14. The International Space Station: A National Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  15. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65.more » The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.« less

  16. Critical Infrastructure Protection- Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  17. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

    EPA Pesticide Factsheets

    This page contains the current National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines and additional information regarding rule compliance and implementation.

  18. Global Impact | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  19. Studies of Short Time Response Options for Potentially Hazardous Objects: Current and Forthcoming Results

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Greenaugh, Kevin C.; Seery, Bernard D.; Bambacus, Myra; Leung, Ronald Y.; Finewood, Lee; Dearborn, David S. P.; Miller, Paul L.; Weaver, Robert P.; Plesko, Catherine; hide

    2017-01-01

    NASA's Goddard Space Flight Center (GSFC) and the National Nuclear Security Administration (NNSA), Department of Energy (DOE) National Laboratories, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory(LANL), and Sandia National Laboratory (SNL) are collaborating on Planetary Defense Research. The research program is organized around three case studies: 1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36)[OSIRIS-REx mission target], 2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target], 3. Deflection of a scaled-down version of the comet 67PChuryumov-Gerasimenko [Rosetta mission target]. NASAGSFC is providing astrodynamics and spacecraft mission design expertise, while NNSA, DOE, LLNL, LANL and SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.

  20. Fact Sheet on How to Get Started Managing Hazardous Waste Laboratory Waste Under the Alternative Set of Generator Regulations

    EPA Pesticide Factsheets

    Fact sheet to help academic laboratories decide whether to opt into the alternate set of hazardous waste requirements for eligible academic laboratories found in RCRA subpart K, how to plan for the transition to subpart K, and what first steps to take.

  1. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  2. A network of schools for a natural hazard laboratory

    NASA Astrophysics Data System (ADS)

    Occhipinti, S.

    2012-04-01

    With the Department of Education of the Aosta Valley - Italy - I have been engaged, for a long time, to promote initiatives with the aim to disseminate scientific culture in order to support teachers in their work and to foster in students the acquisition of scientific knowledge, skills and literacy, as required by the international standards of OECD and TIMSS. For this purpose, a network including all schools has been built, with the aim to promote the co-construction of standards of knowledge, a shared and effective use of resources and tools, of good practices, particularly those experiences based on a deductive, constructivist and Inquiry based approach. SCIENCE IN THE NETWORK: a Regional Science Centre has been built, with the aim to share experimental protocols and scientific instruments, to rationalize expenses, with hands-on individual workstations, high level instruments, but also rough materials. Students of all classes and all ages learn how to use scientific instruments, as required by an "up to date" school. A NETWORK OF PROJECTS: A NATURAL HAZARDS LABORATORY, with many others, has been set up, in cooperation with all regional stakeholders, with the aim to promote in all the schools a shared knowledge of the landscape, of its geological and geomorphologic evolution, with the aim to spread the culture of natural hazards and of prevention, to increase the sensitivity for an intelligent, supportive and sustainable use of the territory, environmentally aware of the natural dynamics. Students can experiment, using technical or wooden made instruments, the effects that natural phenomena, action of waters, ice and gravity can product on outcrops and landscape and to apply to local contest the relationship between the concept of hazard, risk and vulnerability.

  3. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  4. Frederick National Laboratory Scientists to Present Advanced Technologies in Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hundreds of science and business professionals are expected to attend the second annual Technology Showcase at the Frederick National Laboratory for Cancer Research, scheduled for June 13.  The event will feature technologies bei

  5. USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.

    2000-01-01

    The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and

  6. Development plan for the External Hazards Experimental Group. Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin Leigh; Smith, Curtis Lee; Burns, Douglas Edward

    This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expectedmore » to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.« less

  7. The 2014 update to the National Seismic Hazard Model in California

    USGS Publications Warehouse

    Powers, Peter; Field, Edward H.

    2015-01-01

    The 2014 update to the U. S. Geological Survey National Seismic Hazard Model in California introduces a new earthquake rate model and new ground motion models (GMMs) that give rise to numerous changes to seismic hazard throughout the state. The updated earthquake rate model is the third version of the Uniform California Earthquake Rupture Forecast (UCERF3), wherein the rates of all ruptures are determined via a self-consistent inverse methodology. This approach accommodates multifault ruptures and reduces the overprediction of moderate earthquake rates exhibited by the previous model (UCERF2). UCERF3 introduces new faults, changes to slip or moment rates on existing faults, and adaptively smoothed gridded seismicity source models, all of which contribute to significant changes in hazard. New GMMs increase ground motion near large strike-slip faults and reduce hazard over dip-slip faults. The addition of very large strike-slip ruptures and decreased reverse fault rupture rates in UCERF3 further enhances these effects.

  8. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  9. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  10. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  11. System hazards in managing laboratory test requests and results in primary care: medical protection database analysis and conceptual model.

    PubMed

    Bowie, Paul; Price, Julie; Hepworth, Neil; Dinwoodie, Mark; McKay, John

    2015-11-27

    To analyse a medical protection organisation's database to identify hazards related to general practice systems for ordering laboratory tests, managing test results and communicating test result outcomes to patients. To integrate these data with other published evidence sources to inform design of a systems-based conceptual model of related hazards. A retrospective database analysis. General practices in the UK and Ireland. 778 UK and Ireland general practices participating in a medical protection organisation's clinical risk self-assessment (CRSA) programme from January 2008 to December 2014. Proportion of practices with system risks; categorisation of identified hazards; most frequently occurring hazards; development of a conceptual model of hazards; and potential impacts on health, well-being and organisational performance. CRSA visits were undertaken to 778 UK and Ireland general practices of which a range of systems hazards were recorded across the laboratory test ordering and results management systems in 647 practices (83.2%). A total of 45 discrete hazard categories were identified with a mean of 3.6 per practice (SD=1.94). The most frequently occurring hazard was the inadequate process for matching test requests and results received (n=350, 54.1%). Of the 1604 instances where hazards were recorded, the most frequent was at the 'postanalytical test stage' (n=702, 43.8%), followed closely by 'communication outcomes issues' (n=628, 39.1%). Based on arguably the largest data set currently available on the subject matter, our study findings shed new light on the scale and nature of hazards related to test results handling systems, which can inform future efforts to research and improve the design and reliability of these systems. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Hazardous materials information hotline using System 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, J.E.; Fuchel, K.

    1984-04-30

    The Center for Assessment of Chemical and Physical Hazards (CACPH) at Brookhaven National Laboratory (BNL) has developed a computer hotline service for the Department of Energy (DOE) and its contractors. This service provides access to health and safety information for over 800 chemicals and hazardous materials. The data base uses System 2000 on a CDC 6600 and provides information on the chemical name and its synonyms, 17 categories of health and safety information, composition of chemical mixtures, categories of chemicals, use and hazards, and physical, chemical and toxicity attributes. In order to make this information available to people unfamiliar withmore » System 2000, a user-friendly interface was developed using a Fortran PLEX Program. 1 reference, 1 figure.« less

  13. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  14. The USDA Forest Service National Seed Laboratory

    Treesearch

    Robert P. Karrfalt

    2006-01-01

    The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the lab’s evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...

  15. Assessment and management of chemical exposure in the Mohs laboratory.

    PubMed

    Gunson, Todd H; Smith, Harvey R; Vinciullo, Carl

    2011-01-01

    The correct handling, storage, and disposal of chemicals used in the processing of tissue for Mohs micrographic surgery are essential. To identify the chemicals involved in the preparation of Mohs frozen sections and assess the associated occupational health risks. To quantify exposure levels of hazardous chemicals and ensure that they are minimized. A risk assessment form was completed for each chemical. Atmospheric sampling was performed at our previous laboratory for formaldehyde and volatile organic compounds. These data were used in the design of our new facility, where testing was repeated. Twenty-five chemicals were identified. Ten were classified as hazardous substances, 10 were flammable, six had specific disposal requirements, four were potential carcinogens, and three were potential teratogens. Formaldehyde readings at our previous laboratory were up to eight times the national exposure standard. Testing at the new laboratory produced levels well below the exposure standards. Chemical exposure within the Mohs laboratory can present a significant occupational hazard. Acutely toxic and potentially carcinogenic formaldehyde was found at high levels in a relatively standard laboratory configuration. A laboratory can be designed with a combination of physical environment and operational protocols that minimizes hazards and creates a safe working environment. © 2010 by the American Society for Dermatologic Surgery, Inc.

  16. The U.S. National Tsunami Hazard Mitigation Program: Successes in Tsunami Preparedness

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Wilson, R. I.

    2012-12-01

    Formed in 1995 by Congressional Action, the National Tsunami Hazards Mitigation Program (NTHMP) provides the framework for tsunami preparedness activities in the United States. The Program consists of the 28 U.S. coastal states, territories, and commonwealths (STCs), as well as three Federal agencies: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the United States Geological Survey (USGS). Since its inception, the NTHMP has advanced tsunami preparedness in the United States through accomplishments in many areas of tsunami preparedness: - Coordination and funding of tsunami hazard analysis and preparedness activities in STCs; - Development and execution of a coordinated plan to address education and outreach activities (materials, signage, and guides) within its membership; - Lead the effort to assist communities in meeting National Weather Service (NWS) TsunamiReady guidelines through development of evacuation maps and other planning activities; - Determination of tsunami hazard zones in most highly threatened coastal communities throughout the country by detailed tsunami inundation studies; - Development of a benchmarking procedure for numerical tsunami models to ensure models used in the inundation studies meet consistent, NOAA standards; - Creation of a national tsunami exercise framework to test tsunami warning system response; - Funding community tsunami warning dissemination and reception systems such as sirens and NOAA Weather Radios; and, - Providing guidance to NOAA's Tsunami Warning Centers regarding warning dissemination and content. NTHMP activities have advanced the state of preparedness of United States coastal communities, and have helped save lives and property during recent tsunamis. Program successes as well as future plans, including maritime preparedness, are discussed.

  17. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    USGS Publications Warehouse

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2014-01-01

    Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.

  18. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...

  19. 78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...

  20. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowson, D.; Gibson, J.D.; Haase, C.S.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Actmore » (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.« less

  1. Internships and Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory hasmany exciting opportunities for scientists and biotechnology professionalsthrough numerous post-doctoral and pre-doctoral fellowship positions sponsored by the National Cancer Institute (NCI) at Freder

  2. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  3. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    .... On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) that was...

  4. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production. The EPA is... present oral testimony at the public hearing, please contact Ms. Teresa Clemons, U.S. Environmental...

  5. Natural Hazards - A National Threat

    USGS Publications Warehouse

    Geological Survey, U.S.

    2007-01-01

    The USGS Role in Reducing Disaster Losses -- In the United States each year, natural hazards cause hundreds of deaths and cost billions of dollars in disaster aid, disruption of commerce, and destruction of homes and critical infrastructure. Although the number of lives lost to natural hazards each year generally has declined, the economic cost of major disaster response and recovery continues to rise. Each decade, property damage from natural hazards events doubles or triples. The United States is second only to Japan in economic damages resulting from natural disasters. A major goal of the U.S. Geological Survey (USGS) is to reduce the vulnerability of the people and areas most at risk from natural hazards. Working with partners throughout all sectors of society, the USGS provides information, products, and knowledge to help build more resilient communities.

  6. 2008 United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; ,

    2008-01-01

    The U.S. Geological Survey recently updated the National Seismic Hazard Maps by incorporating new seismic, geologic, and geodetic information on earthquake rates and associated ground shaking. The 2008 versions supersede those released in 1996 and 2002. These maps are the basis for seismic design provisions of building codes, insurance rate structures, earthquake loss studies, retrofit priorities, and land-use planning. Their use in design of buildings, bridges, highways, and critical infrastructure allows structures to better withstand earthquake shaking, saving lives and reducing disruption to critical activities following a damaging event. The maps also help engineers avoid costs from over-design for unlikely levels of ground motion.

  7. Site Remediation National Emission Standards for Hazardous Air Pollutants (NESHAP) Fact Sheets

    EPA Pesticide Factsheets

    This page contains July 2003 and May 2016 fact sheets with information regarding the final National Emission Standards for Hazardous Air Pollutants (NESHAP). This document provides a summary of the information for these regulations.

  8. Magnetic Tape Manufacturing Operations: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read this page to find information on the National Emission Standards for hazardous air pollutants for magnetic tape manufacturing operations. Read the rule summary and history, as well as supporting documents and related rules.

  9. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments Database

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  10. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established inmore » the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.« less

  11. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  12. Los Alamos National Laboratory emergency management plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, G.F.

    1998-07-15

    The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents,more » transportation accidents, electrical accidents, and natural disasters.« less

  13. Manufacturing of Nutritional Yeast: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the final rule on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Manufacturing of Nutritional Yeast, see the rule history, and a compliance and enforcement manual on this Maximum Achievable Control Technology.

  14. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. Thismore » network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.« less

  15. 31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SECTIONS AND DETAILS OF ARVFS FACILITY, INCLUDING RADIATION HAZARD SIGN, WOOD RETAINING WALL, TANK COVER, AND DRAIN BOX. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-3. INEL INDEX CODE NUMBER: 075 0701 851 151972. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  16. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  17. 77 FR 41146 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-R09-OAR-2012-0286; FRL-9698-6] Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories; Gila River Indian Community... emission standards for hazardous air pollutants (NESHAP) to the Gila River Indian Community Department of...

  18. Chemical Preparations Industry: National Emission Standards for Hazardous Air Pollutants for Area Sources

    EPA Pesticide Factsheets

    National emissions standards for control of hazardous air pollutants (HAP) from the chemical preparations area source category. Includes rule history, Federal Registry citations, implementation information, and additional resources.

  19. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Risa; Jones, Rebecca; Bersell, Bridget

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps.more » Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.« less

  20. Location | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  1. Collaborations | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory has a range of contractual agreement options available which offer flexibility to facilitate the formation of partnerships. The appropriate business mechanism is considered based on the scope and objectives of the pa

  2. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Science.gov Websites

    Environmental Management: Sandia Sandia National Laboratories Exceptional service in the Environmental Responsibility Environmental Management System Pollution Prevention History 60 impacts Diversity ; Verification Research Research Foundations Bioscience Computing & Information Science Electromagnetics

  3. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  4. 55 FR 14037 Correction to the National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Correction to the National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke Byproduct Recovery Plants.

  5. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  6. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  7. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    PubMed

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  8. Accessibility | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is making every effort to ensure that the information available on our website is accessible to all. If you use special adaptive equipment to access the web and encounter problems when usin

  9. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT

    EPA Science Inventory

    The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...

  10. Developing a methodology for the national-scale assessment of rainfall-induced landslide hazard in a changing climate

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta; Micu, Dana; Sima, Mihaela; Bălteanu, Dan; Bojariu, Roxana; Dumitrescu, Alexandru; Dragotă, Carmen; Micu, Mihai; Senzaconi, Francisc

    2017-04-01

    Landslides together with earthquakes and floods represent the main natural hazards in Romania, causing major impacts to human activities. The RO-RISK (Disaster Risk Evaluation at a National Level) project is a flagship project aimed to strengthen risk prevention and management in Romania, by evaluating - among the specific risks in the country - landslide hazard and risk at a national level. Landslide hazard is defined as "the probability of occurrence within a specified period of time and within a given area of a landslide of a given magnitude" (Varnes 1984; Guzzetti et al. 1999). Nevertheless, most landslide ʿhazardʾ maps only consist in susceptibility (i.e. spatial probability) zonations without considering temporal or magnitude information on the hazard. This study proposes a methodology for the assessment of landslide hazard at the national scale on a scenario basis, while also considering changes in hazard patterns and levels under climate change conditions. A national landslide database consisting of more than 3,000 records has been analyzed against a meteorological observation dataset in order to assess the relationship between precipitation and landslides. Various extreme climate indices were computed in order to account for the different rainfall patterns able to prepare/trigger landslides (e.g. extreme levels of seasonal rainfall, 3-days rainfall or number of consecutive rainy days with different return periods). In order to derive national rainfall thresholds, i.e. valid for diverse climatic environments across the country, values in the parameter maps were rendered comparable by means of normalization with the mean annual precipitation and the rainy-day-normal. A hazard assessment builds on a frequency-magnitude relationship. In the current hazard scenario approach, frequency was kept constant for each single map, while the magnitude of the expected geomorphic event was modeled in relation to the distributed magnitude of the triggering factor. Given

  11. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  12. Calendar Year 2001 Annual Site Environmental Report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VIGIL, FRANCINE S.; SANCHEZ, REBECCA D.; WAGNER, KATRINA

    2002-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility overseen by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) through the Albuquerque Operations Office (AL), Office of Kirtland Site Operations (OKSO). Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. Work performed at SNL/NM is in support of the DOE and Sandia Corporation's mission to provide weapon component technology and hardware for the needs of the nation's security. Sandia Corporation also conducts fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safetymore » for hazardous and nuclear components. In support of Sandia Corporation's mission, the Integrated Safety and Security (ISS) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist Sandia Corporation's line organizations in meeting all applicable local, state, and federal environmental regulations and DOE requirements. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2001. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental remediation, oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).« less

  13. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: results of the 2014 workshop and sensitivity studies

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.

    2015-01-01

    The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after

  14. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  15. Pesticide Active Ingredient Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This action promulgates national emission standards for hazardous air pollutants (NESHAP) for the pesticide active ingredient (PAI) production source category under section 112 of the Clean Air Act as amended (CAA or Act).

  16. Sandia National Laboratories: Research: Research Foundations: Radiation

    Science.gov Websites

    Effects and High Energy Density Science Sandia National Laboratories Exceptional service in the Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy

  17. History | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma

  18. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  19. National and international response to occupational hazards in the healthcare sector.

    PubMed

    Froneberg, Brigitte

    2006-09-01

    The health care sector is one of the largest, most rapidly expanding areas of employment and is increasingly in need of qualified staff especially in the area of nursing. The health care sector is complex and comprises a variety of largely different professions; occupational hazards and exposures differ accordingly. Rates of absenteeism, reported work-related ill-health, and early retirement or departure from professions are comparatively high, especially among the nursing staff. While classical health hazards are addressed by international and national regulations, underlying causes of ill-health and departure from the profession, such as psychological stress, violence, pressing time schedules, and poor work organization are less well heeded. Practical guidance and quality information have become increasingly available from national and international Occupational Safety and Health (OSH) institutions and can be easily accessed through the Internet. They will undoubtedly benefit the profession, but difficulties not related to OSH will warrant political solutions. This presentation provides access to relevant international and European Union (EU) legislation and to valuable information resources for health care workers available from the Internet.

  20. 76 FR 17367 - National Voluntary Laboratory Accreditation Program; Operating Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology 15 CFR Part 285 [Docket No: 110125063-1062-02] RIN 0693-AB61 National Voluntary Laboratory Accreditation Program; Operating Procedures AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice of proposed...

  1. NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls

    Science.gov Websites

    | News | NREL NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls April 1, 2016 Researchers at wind turbine modeling. The NREL controls team have been evaluating their control theory in simulations

  2. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  3. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  4. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  5. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  6. Smoking patterns among Los Alamos National Laboratory employees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, M.C.; Wilkinson, G.S.

    Smoking patterns among 5507 employees at Los Alamos National Laboratory were investigated for those who underwent physical examinations by occupational physicians from 1978 to 1983. More male than female employees smoked, although differences in smoking rates between the sexes were not as large as differences observed for national smoking rates. Employees over 40 were more likely to smoke than younger employees, males consumed more cigarettes than did females, and Anglo employees smoked more cigarettes than did Hispanic employees. Highly educated employees smoked less than did less-educated workers, and staff members exhibited the lowest rates of smoking. Smoking cessation programs formore » Laboratory employees should be directed toward those subpopulations with the highest rates of smoking. 31 refs., 8 figs., 1 tab.« less

  7. Implementation of a National Reference Laboratory for Buruli Ulcer Disease in Togo

    PubMed Central

    Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl–Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation

  8. Implementation of a national reference laboratory for Buruli ulcer disease in Togo.

    PubMed

    Beissner, Marcus; Huber, Kristina Lydia; Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl-Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions "Maritime" and "Central," standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78

  9. Environmental justice implications of industrial hazardous waste generation in India: a national scale analysis

    NASA Astrophysics Data System (ADS)

    Basu, Pratyusha; Chakraborty, Jayajit

    2016-12-01

    While rising air and water pollution have become issues of widespread public concern in India, the relationship between spatial distribution of environmental pollution and social disadvantage has received less attention. This lack of attention becomes particularly relevant in the context of industrial pollution, as India continues to pursue industrial development policies without sufficient regard to its adverse social impacts. This letter examines industrial pollution in India from an environmental justice (EJ) perspective by presenting a national scale study of social inequities in the distribution of industrial hazardous waste generation. Our analysis connects district-level data from the 2009 National Inventory of Hazardous Waste Generating Industries with variables representing urbanization, social disadvantage, and socioeconomic status from the 2011 Census of India. Our results indicate that more urbanized and densely populated districts with a higher proportion of socially and economically disadvantaged residents are significantly more likely to generate hazardous waste. The quantity of hazardous waste generated is significantly higher in more urbanized but sparsely populated districts with a higher proportion of economically disadvantaged households, after accounting for other relevant explanatory factors such as literacy and social disadvantage. These findings underscore the growing need to incorporate EJ considerations in future industrial development and waste management in India.

  10. Development of models to inform a national Daily Landslide Hazard Assessment for Great Britain

    NASA Astrophysics Data System (ADS)

    Dijkstra, Tom A.; Reeves, Helen J.; Dashwood, Claire; Pennington, Catherine; Freeborough, Katy; Mackay, Jonathan D.; Uhlemann, Sebastian S.; Chambers, Jonathan E.; Wilkinson, Paul B.

    2015-04-01

    were combined with records of observed landslide events to establish which antecedent effective precipitation (AEP) signatures of different duration could be used as a pragmatic proxy for the occurrence of landslides. It was established that 1, 7, and 90 days AEP provided the most significant correlations and these were used to calculate the probability of at least one landslide occurring. The method was then extended over the period 2006 to 2014 and the results evaluated against observed occurrences. It is recognised that AEP is a relatively poor proxy for simulating effective stress conditions along potential slip surfaces. However, the temporal pattern of landslide probability compares well to the observed occurrences and provides a potential benefit to assist with the DLHA. Further work is continuing to fine-tune the model for landslide type, better spatial resolution of effective precipitation input and cross-reference to models that capture changes in water balance and conditions along slip surfaces. The latter is facilitated by intensive research at several field laboratories, such as the Hollin Hill site in Yorkshire, England. At this site, a decade of activity has generated a broad range of research and a wealth of data. This paper reports on one example of recent work; the characterisation of near surface hydrology using infiltration experiments where hydrological pathways are captured, among others, by electrical resistivity tomography. This research, which has further developed our understanding of soil moisture movement in a heterogeneous landslide complex, has highlighted the importance of establishing detailed ground models to enable determination of landslide potential at high resolution. In turn, the knowledge gained through this research is used to enhance the expertise for the daily landslide hazard assessments at a national scale.

  11. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less

  12. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Boyd D.; Schafer, Annette L.

    2014-02-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less

  13. [Tasks and duties of veterinary reference laboratories for food borne zoonoses].

    PubMed

    Ellerbroek, Lüppo; Alter, T; Johne, R; Nöckler, K; Beutin, L; Helmuth, R

    2009-02-01

    Reference laboratories are of central importance for consumer protection. Field expertise and high scientific competence are basic requirements for the nomination of a national reference laboratory. To ensure a common approach in the analysis of zoonotic hazards, standards have been developed by the reference laboratories together with national official laboratories on the basis of Art. 33 of Directive (EG) No. 882/2004. Reference laboratories function as arbitrative boards in the case of ambivalent or debatable results. New methods for detection of zoonotic agents are developed and validated to provide tools for analysis, e. g., in legal cases, if results from different parties are disputed. Besides these tasks, national reference laboratories offer capacity building and advanced training courses and control the performance of ring trials to ensure consistency in the quality of analyses in official laboratories. All reference laboratories work according to the ISO standard 17025 which defines the grounds for strict laboratory quality rules and in cooperation with the respective Community Reference Laboratories (CRL). From the group of veterinary reference laboratories for food-borne zoonoses, the national reference laboratories are responsible for Listeria monocytogenes, for Campylobacter, for the surveillance and control of viral and bacterial contamination of bivalve molluscs, for E. coli, for the performance of analysis and tests on zoonoses (Salmonella), and from the group of parasitological zoonotic agents, the national reference laboratory for Trichinella.

  14. Collaboration Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A Collaboration Agreement is appropriate for research collaboration involving intellectual and material contributions by the Frederick National Laboratory and external partner(s). It is useful for proof-of-concept studies. Includes brief re

  15. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  16. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments Database

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  17. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  18. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  19. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  20. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  1. Contact Us | Frederick National Laboratory for Cancer Research

    Cancer.gov

    E-mail:fnlwebsite@nih.gov Phone:(301) 846-1000 Postal Mail: Frederick National Laboratory for Cancer Research P.O. Box B Frederick, MD 21702-1201 Human Resources Office of Recruitment (301) 846-5362 Jim

  2. Department of Energy Natural Phenomena Hazards Mitigation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  3. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  4. Kathleen Igo | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Directorate: Clinical Research Program Department or lab: Clinical Monitoring Research Program (CMRP) How many years have you worked at the Frederick National Laboratory? I am in my 7th year of employment.

  5. Locations Accessible | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland.Operations and Technical Support contractor Leidos Biomedical Resea

  6. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  7. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  8. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  9. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era.

    PubMed

    Best, Michele; Sakande, Jean

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.

  10. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era

    PubMed Central

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137

  11. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of programmore » promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.« less

  12. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  13. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  14. Multi-Hazard Interactions in Guatemala

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2017-04-01

    In this paper, we combine physical and social science approaches to develop a multi-scale regional framework for natural hazard interactions in Guatemala. The identification and characterisation of natural hazard interactions is an important input for comprehensive multi-hazard approaches to disaster risk reduction at a regional level. We use five transdisciplinary evidence sources to organise and populate our framework: (i) internationally-accessible literature; (ii) civil protection bulletins; (iii) field observations; (iv) stakeholder interviews (hazard and civil protection professionals); and (v) stakeholder workshop results. These five evidence sources are synthesised to determine an appropriate natural hazard classification scheme for Guatemala (6 hazard groups, 19 hazard types, and 37 hazard sub-types). For a national spatial extent (Guatemala), we construct and populate a "21×21" hazard interaction matrix, identifying 49 possible interactions between 21 hazard types. For a sub-national spatial extent (Southern Highlands, Guatemala), we construct and populate a "33×33" hazard interaction matrix, identifying 112 possible interactions between 33 hazard sub-types. Evidence sources are also used to constrain anthropogenic processes that could trigger natural hazards in Guatemala, and characterise possible networks of natural hazard interactions (cascades). The outcomes of this approach are among the most comprehensive interaction frameworks for national and sub-national spatial scales in the published literature. These can be used to support disaster risk reduction and civil protection professionals in better understanding natural hazards and potential disasters at a regional scale.

  15. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    PubMed Central

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  16. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov Websites

    -energy density lithium-ion batteries, while using our fundamental science capabilities to develop storage ), headquartered at Argonne National Laboratory, seeks to develop new technologies that move beyond lithium-ion Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  17. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  18. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress

    PubMed Central

    Alemnji, G. A.; Zeh, C.; Yao, K.; Fonjungo, P. N.

    2016-01-01

    OBJECTIVES Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public–private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. PMID:24506521

  19. Beverly Hayes | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Employee name: Bev Hayes Directorate: Management Operations Department or lab: Contracts and Acquisitions How many years have you worked at the Frederick National Laboratory? Four months going on one year! Job responsibilities: With the C&A manageme

  20. National Emission Standards for Hazardous Air Pollutants Calendar Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. E. Townsend

    2002-06-01

    (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.« less

  1. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, andmore » analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.« less

  2. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.; Wade, M.; Tharp, T.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less

  3. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Sackschewsky, Michael R.; Tilden, Harold T.

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  4. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrievalmore » categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.« less

  5. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  6. Project health and safety plan for the Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abston, J.P.

    1997-04-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Gunite and Associated Tanks (GAAT) in the North and South Tank Farms (NTF and STF) at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to health and safety (H and S) issues. The policy and procedures in this plan apply to all GAAT operations in the NTF and STF. The provisions of this plan are to bemore » carried out whenever activities identifies s part of the GAAT are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices in order to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air. This plan explains additional task-specific health and safety requirements such as the Site Safety and health Addendum and Activity Hazard Analysis, which should be used in concert with this plan and existing established procedures.« less

  7. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmentalmore » restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  8. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  9. Introduction to the National Information Display Laboratory

    NASA Technical Reports Server (NTRS)

    Carlson, Curtis R.

    1992-01-01

    The goals of the National Information Display Laboratory (NIDL) are described in viewgraph form. The NIDL is a Center of Excellence in softcopy technology with the overall goal to develop new ways to satisfy government information needs through aggressive user support and the development of advanced technology. Government/industry/academia participation, standards development, and various display technologies are addressed.

  10. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    USGS Publications Warehouse

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  11. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savy, J B; Foxall, W

    The Lawrence Livermore National Laboratory (LLNL) Site Seismic Safety Program was conceived in 1979 during the preparation of the site Draft Environmental Impact Statement. The impetus for the program came from the development of new methodologies and geologic data that affect assessments of geologic hazards at the LLNL site; it was designed to develop a new assessment of the seismic hazard to the LLNL site and LLNL employees. Secondarily, the program was also intended to provide the technical information needed to make ongoing decisions about design criteria for future construction at LLNL and about the adequacy of existing facilities. Thismore » assessment was intended to be of the highest technical quality and to make use of the most recent and accepted hazard assessment methodologies. The basic purposes and objectives of the current revision are similar to those of the previous studies. Although all the data and experience assembled in the previous studies were utilized to their fullest, the large quantity of new information and new methodologies led to the formation of a new team that includes LLNL staff and outside consultants from academia and private consulting firms. A peer-review panel composed of individuals from academia (A. Cornell, Stanford University), the Department of Energy (DOE; Jeff Kimball), and consulting (Kevin Coppersmith), provided review and guidance. This panel was involved from the beginning of the project in a ''participatory'' type of review. The Senior Seismic Hazard Analysis Committee (SSHAC, a committee sponsored by the U.S. Nuclear Regulatory Commission, DOE, and the Electric Power Research Institute) strongly recommends the use of participatory reviews, in which the reviewers follow the progress of a project from the beginning, rather than waiting until the end to provide comments (Budnitz et al., 1997). Following the requirements for probabilistic seismic hazard analysis (PSHA) stipulated in the DOE standard DOE-STD-1023-95, a

  12. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  13. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  14. U.S. Geological Survey natural hazards science strategy: promoting the safety, security, and economic well-being of the Nation

    USGS Publications Warehouse

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2013-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events. To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science. In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10–year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical

  15. The 2008 U.S. Geological Survey national seismic hazard models and maps for the central and eastern United States

    USGS Publications Warehouse

    Petersen, Mark D.; Frankel, Arthur D.; Harmsen, Stephen C.; Mueller, Charles S.; Boyd, Oliver S.; Luco, Nicolas; Wheeler, Russell L.; Rukstales, Kenneth S.; Haller, Kathleen M.

    2012-01-01

    In this paper, we describe the scientific basis for the source and ground-motion models applied in the 2008 National Seismic Hazard Maps, the development of new products that are used for building design and risk analyses, relationships between the hazard maps and design maps used in building codes, and potential future improvements to the hazard maps.

  16. Chemistry laboratory safety manual available

    NASA Technical Reports Server (NTRS)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  17. A New Master of Natural Hazards Program at The Australian National University

    NASA Astrophysics Data System (ADS)

    Pozgay, S.; Zoleta-Nantes, D.

    2009-12-01

    The new Master of Natural Hazards program at The Australian National University provides a multi-disciplinary approach to the study and monitoring of geophysical processes that can lead to the recognition of hazards and a consequent reduction of their impacts through emergency measures, disaster plans, and relief and rehabilitation. The program provides people with an understanding of the most up-to-date scientific understanding on the causes of natural hazards, their effects on human societies, and ways to mitigate their impacts and reduce their losses by focusing on Australia and the Asia-Pacific case studies. The Master of Natural Hazards program brings together the expertise of researchers across the university to provide an opportunity for students to do coursework and research projects that will provide them with extensive knowledge of the natural hazards that occur and pose the greatest risks on human communities in the Asia-Pacific, and an understanding of the human dimensions of the natural hazards occurrences. The program consists of two compulsory courses each in the Earth Sciences and in the Social Sciences that are designed to provide a complementary and comprehensive overview of natural hazards issues. Elective courses can be of a general grouping, or students may choose one of four Focus Streams: Environmental and Geographic Studies; Climate Change; Earth Structure and Imaging; or Socio-economic, Development and Policy Studies. A special case study project will involve writing a thesis on a topic to be approved by the Program Conveners and will comprise a body of work on an approved topic in natural hazards in the Asia-Pacific region. Students in this program will gain a broad scientific knowledge and methodological skills to understand the physical causes and frequency of the most important natural hazards in the Asia-Pacific region, as well as the latest scientific methods and best practices of monitoring them for hazard mapping and disaster

  18. Use of Bedrock and Geomorphic Mapping Compilations in Assessing Geologic Hazards at Recreation Sites on National Forests in NW California

    NASA Astrophysics Data System (ADS)

    de La Fuente, J. A.; Bell, A.; Elder, D.; Mowery, R.; Mikulovsky, R.; Klingel, H.; Stevens, M.

    2010-12-01

    Geologic hazards on US Forest Service lands have a long history of producing catastrophic events. In 1890 (prior to the establishment of the Forest Service), the China Mine landslide buried a miner’s camp along the Trinity River in NW California, killing a number of miners. An earthquake in southwestern Montana triggered a massive landslide which killed 28 people in a US Forest Service campground in 1959. In 1980, Mount St. Helens erupted in Oregon, killing 57 people. Debris flows from a winter storm in 2003 on the burned hillslopes of the San Bernardino National Forest in California killed 14 people at the St. Sophia youth Camp. A rockfall in the summer of 2009 in Lassen National Park killed a 9 year old boy. The most recent catastrophe occurred on June 11, 2010 when 20 people died in a flash flood at the Albert Pike Campground on the Ouachita National Forest. These and other disasters point out the need for geologic hazard mapping and assessments on the National Forests. The US Forest Service (USFS) is currently assessing geologic hazards in the Northern Province of USFS Region 5 (Pacific Southwest Region), which includes the Klamath, Mendocino, Shasta-Trinity, and Six Rivers National Forests. The most common geologic hazards (relatively short return intervals) in this area include landslides, rock falls, debris flows, flooding, temporary dam failures (landslide or woody debris), naturally occurring hazardous materials, (asbestos radon, etc), and rarely, karst subsidence. Seismic and volcanic hazards are also important at longer return intervals. This assessment will be conducted in three phases, and is patterned after a process developed by Region 8 of the US Forest Service. The first phase is a reconnaissance level assessment based on existing information such as spatial databases, aerial photos, Digital Elevation Models, State of California Alquist-Priolo Earthquake Fault Zone maps, previous investigations and anecdotal accounts of past events. The bedrock

  19. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History

  20. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-008)] National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY: National Aeronautics and Space Administration (NASA...). SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq...

  1. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  2. NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...

  3. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  4. Beta-Testing Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Beta-Testing Agreements are appropriate forlimited term evaluation and applications development of new software, technology, or equipment platforms by the Frederick National Laboratory in collaboration with an external commercial partner. It ma

  5. Technology Innovation for the CTBT, the National Laboratory Contribution

    NASA Astrophysics Data System (ADS)

    Goldstein, W. H.

    2016-12-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) and its Protocol are the result of a long history of scientific engagement and international technical collaboration. The U.S. Department of Energy National Laboratories have been conducting nuclear explosive test-ban research for over 50 years and have made significant contributions to this legacy. Recent examples include the RSTT (regional seismic travel time) computer code and the Smart Sampler—both of these products are the result of collaborations among Livermore, Sandia, Los Alamos, and Pacific Northwest National Laboratories. The RSTT code enables fast and accurate seismic event locations using regional data. This code solves the long-standing problem of using teleseismic and regional seismic data together to locate events. The Smart Sampler is designed for use in On-site Inspections to sample soil gases to look for noble gas fission products from a potential underground nuclear explosive test. The Smart Sampler solves the long-standing problem of collecting soil gases without contaminating the sample with gases from the atmosphere by operating only during atmospheric low-pressure events. Both these products are being evaluated by the Preparatory Commission for the CTBT Organization and the international community. In addition to R&D, the National Laboratories provide experts to support U.S. policy makers in ongoing discussions such as CTBT Working Group B, which sets policy for the development of the CTBT monitoring and verification regime.

  6. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  7. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James; Knight, Paul J.

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less

  8. National laboratory policies and plans in sub-Saharan African countries: gaps and opportunities

    PubMed Central

    van der Broek, Ankie; Jansen, Christel; de Bruijn, Hilde; Schultsz, Constance

    2017-01-01

    Background The 2008 Maputo Declaration calls for the development of dedicated national laboratory policies and strategic plans supporting the enhancement of laboratory services in response to the long-lasting relegation of medical laboratory systems in sub-Saharan Africa. Objectives This study describes the extent to which laboratories are addressed in the national health policies and plans created directly following the 2008 momentum for laboratory strengthening. Method National health policies and plans from 39 sub-Saharan African countries, valid throughout and beyond 31 December 2010 were collected in March 2012 and analysed during 2013. Results Laboratories were addressed by all countries. Human resources were the most addressed topic (38/39) and finances and budget were the least addressed (< 5/39). Countries lagging behind in national laboratory strategic planning at the end of 2013 (17/39) were more likely to be francophone countries located in West-Central Africa (13/17) and have historically low HIV prevalence. The most common gaps anticipated to compromise the implementation of the policies and plans were the disconnect between policies and plans, under-developed finance sections and monitoring and evaluating frameworks, absence of points of reference to define gaps and shortages, and inappropriate governance structure. Conclusion The availability of laboratory policy and plan implementation can be improved by strictly applying a more standardised methodology for policy development, using harmonised norms to set targets for improvement and intensifying the establishment of directorates of laboratory services directly under the authority of Ministries of Health. Horizontal programmes such as the Global Health Security Agenda could provide the necessary impulse to take the least advanced countries on board. PMID:28879152

  9. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazard or simple asphyxiant in accordance with the Hazard Communication Standard (§ 1910.1200). Health... whether a chemical is classified as a health hazard are detailed in appendix A of the Hazard Communication... mutagens in accordance with the Hazard Communication Standard (§ 1910.1200) shall be considered mutagens...

  10. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  11. Lawrence Livermore National Laboratory Environmental Report 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  12. Lawrence Livermore National Laboratory Environmental Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, C. A.; Jones, H. E.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  13. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements.more » (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.« less

  14. What We Offer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Opportunities We recognize that employee benefit programs are an important part of the total compensation package, and are committed to providing you with comprehensive benefit options. The Frederick National Laboratory's prime contractor, Leidos

  15. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  16. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.

    PubMed

    Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N

    2014-04-01

    Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.

  17. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  18. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  19. [Information system of the national network of public health laboratories in Peru (Netlab)].

    PubMed

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  20. The pressing energy innovation challenge of the US National Laboratories

    NASA Astrophysics Data System (ADS)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  1. Waste reduction plan for The Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less

  2. Final Progress Report: Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-08-10

    Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up andmore » ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.« less

  3. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  4. Laboratory safety handbook

    USGS Publications Warehouse

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  5. 76 FR 15607 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ...On September 13, 2004, under authority of section 112 of the Clean Air Act, EPA promulgated national emission standards for hazardous air pollutants for new and existing industrial/commercial/ institutional boilers and process heaters. On June 19, 2007, the United States Court of Appeals for the District of Columbia Circuit vacated and remanded the standards. In response to the Court's vacatur and remand, EPA is, in this action, establishing emission standards that will require industrial/ commercial/institutional boilers and process heaters located at major sources to meet hazardous air pollutants standards reflecting the application of the maximum achievable control technology. This rule protects air quality and promotes public health by reducing emissions of the hazardous air pollutants listed in section 112(b)(1) of the Clean Air Act.

  6. [Laboratory management fee in national health insurance; what is required from clinical laboratory physicians? --message from Chairpersons].

    PubMed

    Kimura, Satoshi; Koshiba, Masahiro

    2013-06-01

    The laboratory management fee (LMF) in national health insurance ("Kentai-Kensa-Kanri-Kasan" in Japanese) has had a major impact on Japanese clinical laboratories, especially in recent years. In 2012, the fee was raised to approximately 5,000 yen per admitted patient. In order to address this national support, clinical pathologists are required to increase their knowledge and skills. On the other hand, there are insufficient clinical pathologists in Japan. In order to solve this problem, the Japanese Society of Laboratory Medicine (JSLM) approved a new license for Qualified Clinical Laboratory Managing Physicians (CLMPs), in addition to Certified Clinical Laboratory Physicians (CCLPs). The requirements to become a CLMP are less strict than for CCLP. There are approximately 500 CLMPs and 600 CCLPs in this country. The aim of this symposium was to offer opportunities to increase attendees' clinical skills, especially CLMPs and young clinical pathologists. Four CCLPs were chosen as speakers from a university hospital, a major city hospital, a medium-sized acute care hospital, and a university hospital anatomical pathologist, together with a chief medical technologist from a university hospital. All the speakers presented their ideal role models of clinical pathologists matching LMF requirements. JSLM together with the Japanese Association of Clinical Laboratory Physicians (JACLaP) sponsored this symposium. It was a successful meeting with more than two hundred attendees.

  7. 76 FR 15266 - National Emission Standards for Hazardous Air Pollutants; Notice of Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2002-0058; EPA-HQ-OAR-2006-0790; EPA-HQ-OAR-2003-0119; FRL- 9272-7] RIN 2060-AQ25; RIN 2060-AM44; RIN 2060-AO12 National Emission Standards for Hazardous Air Pollutants; Notice of Reconsideration AGENCY: Environmental Protection Agency...

  8. New Activities of the U.S. National Tsunami Hazard Mitigation Program, Mapping and Modeling Subcommittee

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Eble, M. C.

    2013-12-01

    The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for

  9. The Role of a National Biocontainment Laboratory in Emergencies.

    PubMed

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  10. IHR (2005) Compliance: Laboratory Capacities and Biological Risks

    DTIC Science & Technology

    2014-08-01

    Preparedness 6. Risk communication 7. Human resources 8. Laboratory Other obligations/Potential Hazards: 9. Points of entry 10. Zoonotic events 11. Food ...of personal protected equipment, 3) safe injection practices, 4) safe handling of potentially contaminated equipment and surfaces, and 5...Any public health event of international or national concern (infectious, zoonotic, food borne, chemical, radio nuclear, or due to unknown

  11. Facilities Potentially Subject to the Secondary Aluminum National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This document contains a September 2001 list of sources potentially subject to the secondary aluminum production national emission standards for hazardous air pollutants (NESHAP). This list does not include auto salvage i.e. sweat furnaces.

  12. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration...

  13. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  14. Organic solutes in ground water at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Leenheer, Jerry A.; Bagby, Jefferson C.

    1982-01-01

    In August 1980, the U.S. Geological Survey started a reconnaissance survey of organic solutes in drinking water sources, ground-water monitoring wells, perched water table monitoring wells, and in select waste streams at the Idaho National Engineering Laboratory (INEL). The survey was to be a two-phase program. In the first phase, 77 wells and 4 potential point sources were sampled for dissolved organic carbon (DOC). Four wells and several potential point sources of insecticides and herbicides were sampled for insecticides and herbicides. Fourteen wells and four potential organic sources were sampled for volatile and semivolatile organic compounds. The results of the DOC analyses indicate no high level (>20 mg/L DOC) organic contamination of ground water. The only detectable insecticide or herbicide was a DDT concentration of 10 parts per trillion (0.01 microgram per liter) in one observation well. The volatile and semivolatile analyses do not indicate the presence of hazardous organic contaminants in significant amounts (>10 micrograms per liter) in the samples taken. Due to the lack of any significant organic ground-water contamination in this reconnaissance survey, the second phase of the study, which was to follow up the first phase by additional sampling of any contaminated wells, was canceled.

  15. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  16. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Natural Hazard Resilience - A Large-scale Transdisciplinary "National Science Challenge" for New Zealand

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.

    2017-12-01

    The National Science Challenges are initiatives to address the most important public science issues that face New Zealand with long-term funding and the combined strength of a coordinated science-sector behind them. Eleven major topics are tackled, across our human, natural and built environments. In the "Resilience Challenge" we address New Zealand's natural hazards. Alongside severe metrological threats, New Zealand also faces one of the highest levels of earthquake and volcanic hazard in the world. Resilience is a hotly discussed concept, here, we take the view: Resilience encapsulates the features of a system to anticipate threats, acknowledge there will be impacts (no matter how prepared we are), quickly pick up the pieces, as well as learn and adapt from the experience to better absorb and rebound from future shocks. Our research must encompass innovation in building and lifelines engineering, planning and regulation, emergency management practice, alongside understanding how our natural hazard systems work, how we monitor them and how our communities/governance/industries can be influenced and encouraged (e.g., via economic incentives) to develop and implement resilience practice. This is a complex interwoven mix of areas and is best addressed through case-study areas where researchers and the users of the research can jointly identify problems and co-develop science solutions. I will highlight some of the strengths and weaknesses of this coordinated approach to an all-hazard, all-country problem, using the example of the Resilience Challenge approach after its first two and a half years of operation. Key issues include balancing investment into high-profile (and often high consequence), but rare hazards against the frequent "monthly" hazards that collectively occupy regional and local governance. Also, it is clear that despite increasingly sophisticated hazard and hazard mitigation knowledge being generated in engineering and social areas, a range of policy

  18. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  19. Who We Are | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is addressing some of the most urgent problems in the biomedical sciences – in cancer and AIDS, drug development and first-in-human clinical trials, applications of nanotechnology in medicine, and rapid response to

  20. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  1. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  2. Energy Secretary Rick Perry Visits Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Energy Secretary Rick Perry visited Oak Ridge National Laboratory on May 22, 2017. During his visit, the secretary not only toured the lab's premier research facilities, but also had some fun with two of its 3D-printed vehicles.

  3. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  4. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  5. Debris flow hazard assessment for the Oregon Caves National Monument

    USGS Publications Warehouse

    Friday, John

    1983-01-01

    After experiencing a devastating debris flow in the Oregon Caves National Monument, the National Park Service needs an evaluation of the hazard of additional flows. Soil properties at six random sites were compared with those at the source of the debris flow. Although all sites had soils that could become unstable with sufficient moisture, soil at one site had properties similar to those at the scar and the potential for another flow was confirmed. The report suggests that winter weather conditions be closely monitored and compared to the antecedent conditions prior to the known failure. When the threshold for additional mass wasting is believed imminent, appropriate action can be taken to insure the safety of work personnel and the public. The peak streamflow that preceded the 5,200 cu yds of debris is estimated to have a 0.5 percent chance of being equaled or exceeded in any given year. (USGS)

  6. Sandia National Laboratories Institutional Plan FY1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less

  7. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  8. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... Network (NAHLN) for public review and comment. The NAHLN is a nationally coordinated network and... Coordinator, National Animal Health Laboratory Network, Veterinary Services, APHIS, 2140 Centre Avenue...

  9. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  10. Tsunami hazard maps of spanish coast at national scale from seismic sources

    NASA Astrophysics Data System (ADS)

    Aniel-Quiroga, Íñigo; González, Mauricio; Álvarez-Gómez, José Antonio; García, Pablo

    2017-04-01

    Tsunamis are a moderately frequent phenomenon in the NEAM (North East Atlantic and Mediterranean) region, and consequently in Spain, as historic and recent events have affected this area. I.e., the 1755 earthquake and tsunami affected the Spanish Atlantic coasts of Huelva and Cadiz and the 2003 Boumerdés earthquake triggered a tsunami that reached Balearic island coast in less than 45 minutes. The risk in Spain is real and, its population and tourism rate makes it vulnerable to this kind of catastrophic events. The Indian Ocean tsunami in 2004 and the tsunami in Japan in 2011 launched the worldwide development and application of tsunami risk reduction measures that have been taken as a priority in this field. On November 20th 2015 the directive of the Spanish civil protection agency on planning under the emergency of tsunami was presented. As part of the Spanish National Security strategy, this document specifies the structure of the action plans at different levels: National, regional and local. In this sense, the first step is the proper evaluation of the tsunami hazard at National scale. This work deals with the assessment of the tsunami hazard in Spain, by means of numerical simulations, focused on the elaboration of tsunami hazard maps at National scale. To get this, following a deterministic approach, the seismic structures whose earthquakes could generate the worst tsunamis affecting the coast of Spain have been compiled and characterized. These worst sources have been propagated numerically along a reconstructed bathymetry, built from the best resolution available data. This high-resolution bathymetry was joined with a 25-m resolution DTM, to generate continuous offshore-onshore space, allowing the calculation of the flooded areas prompted by each selected source. The numerical model applied for the calculation of the tsunami propagations was COMCOT. The maps resulting from the numerical simulations show not only the tsunami amplitude at coastal areas but

  11. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  12. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  13. Gran Sasso National Laboratory: Outreach and communication activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  14. A spatially-dynamic preliminary risk assessment of the American peregrine falcon at the Los Alamos National Laboratory (version 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.

    1997-06-01

    The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on themore » basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 ({+-} 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs.« less

  15. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  16. Centers for Disease Control and Prevention (CDC) Radiation Hazard Scale Data Product Review Feedback Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askin, A.; Buddemeier, B.; Alai, M.

    In support of the Department of Energy (DOE) National nuclear Security Administration (NNSA) and the Centers for Disease Control and Prevention (CDC), Lawrence Livermore National Laboratory (LLNL) assisted in the development of new data templates for disseminating and communicating FRMAC1 data products using the CDC Radiation Hazard Scale communication tool. To ensure these data products will be useful to stakeholders during a radiological emergency, LLNL facilitated opportunities for product socialization and review.

  17. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  18. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  19. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  20. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  1. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  2. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  3. 77 FR 66783 - National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ...-AG73] National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public... Contingency Plan, to acknowledge advancements in technologies used to manage and convey information to the... Substances Pollution Contingency Plan (NCP), to acknowledge advancements in technologies used to manage and...

  4. Paper and Other Web Coating National Emission Standards for Hazardous Air Pollutants (NESHAP) Questions and Answers

    EPA Pesticide Factsheets

    This May 2003 document contains questions and answers on the Paper and Web Coating National Emission Standards for Hazardous Air Pollutants (NESHAP) regulation. The questions cover topics such as compliance, applicability, and initial notification.

  5. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  6. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  7. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  8. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  9. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-06-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  10. New Visiting Scholars Program at Frederick National Laboratory | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is now accepting Expressions of Interest to its new Visiting Scholars Program (VSP). VSP is a unique opportunity for researchers to work on important cancer and AIDS projects with teams of scientists at the only federal national laboratory in the United States devoted exclusively to biomedical research.

  11. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  12. Site environmental report for 2009 : Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into tenmore » chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  13. Site Environmental Report for 2010 Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chaptermore » 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  14. Off-Site Waste and Recovery Operations: National Emission Standards for Hazardous Air Pollutants (NESHAP) Fact Sheets

    EPA Pesticide Factsheets

    This page contains July 1996 and February 2015 fact sheets with information regarding the final National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. This document provides a summary of the information for these regulations.

  15. Halogenated Solvent Cleaning Compliance Assistance Memoranda for the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This page contains three documents, one from 1997, one from 1999, and one from 2001, that provide further clarification on complying with the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Halogenated Solvent Cleaning.

  16. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... management in the areas of environmental restoration, waste management, and related activities. Tentative...

  17. Public health microbiology in Germany: 20 years of national reference centers and consultant laboratories.

    PubMed

    Beermann, Sandra; Allerberger, Franz; Wirtz, Angela; Burger, Reinhard; Hamouda, Osamah

    2015-10-01

    In 1995, in agreement with the German Federal Ministry of Health, the Robert Koch Institute established a public health microbiology system consisting of national reference centers (NRCs) and consultant laboratories (CLs). The goal was to improve the efficiency of infection protection by advising the authorities on possible measures and to supplement infectious disease surveillance by monitoring selected pathogens that have high public health relevance. Currently, there are 19 NRCs and 40 CLs, each appointed for three years. In 2009, an additional system of national networks of NRCs and CLs was set up in order to enhance effectiveness and cooperation within the national reference laboratory system. The aim of these networks was to advance exchange in diagnostic methods and prevention concepts among reference laboratories and to develop geographic coverage of services. In the last two decades, the German public health laboratory reference system coped with all major infectious disease challenges. The European Union and the European Centre for Disease Prevention and Control (ECDC) are considering implementing a European public health microbiology reference laboratory system. The German reference laboratory system should be well prepared to participate actively in this upcoming endeavor. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. EVALUATING ROBOT TECHNOLOGIES AS TOOLS TO EXPLORE RADIOLOGICAL AND OTHER HAZARDOUS ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Nielsen; David I. Gertman; David J. Bruemmer

    2008-03-01

    There is a general consensus that robots could be beneficial in performing tasks within hazardous radiological environments. Most control of robots in hazardous environments involves master-slave or teleoperation relationships between the human and the robot. While teleoperation-based solutions keep humans out of harms way, they also change the training requirements to accomplish a task. In this paper we present a research methodology that allowed scientists at Idaho National Laboratory to identify, develop, and prove a semi-autonomous robot solution for search and characterization tasks within a hazardous environment. Two experiments are summarized that validated the use of semi-autonomy and show thatmore » robot autonomy can help mitigate some of the performance differences between operators who have different levels of robot experience, and can improve performance over teleoperated systems.« less

  19. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-AQ93 National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing... Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants,'' which was... Manufacturing Industry and Standards of Performance for Portland Cement Plants'' under Docket ID No. EPA-HQ-OAR...

  20. 76 FR 42613 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Polyvinyl Chloride and Copolymers Production is being extended for 14 days. DATES: Comments. The public... for the May 20, 2011, Proposed Polyvinyl Chloride and Copolymers Production Rule, the EPA is extending...

  1. Safety in the SEM laboratory--1981 update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bance, G.N.; Barber, V.C.; Sholdice, J.A.

    1981-01-01

    The article reviews recent information on hazards as they relate to safety in SEM laboratories. The first section lists the safety equipment that should be available in a SEM laboratory. Flammable and combustible liquids are discussed, and particular warnings are given concerning the fire and explosion risks associated with diethyl ether and diisopropyl ether. The possible hazards associated with electrical equipment, and the risk of X-ray emissions from EM's are briefly outlined. The hazards associated with acute and chronic toxicity of chemicals used in the EM laboratory are discussed. The need to reduce exposure to a growing list of recognizablemore » hazardous chemicals is emphasized. This reduction can be accomplished by more extensive use of functioning fume hoods, and the use of more appropriate and effective protective gloves. Allergies and the hazards of dangerous pathogens in the SEM laboratory are discussed. The explosion and other hazards associated with cryogens, vacuum evaporators, critical point dryers, and compressed gas cylinders are emphasized.« less

  2. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  3. United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; ,

    2008-01-01

    The U.S. Geological Survey?s maps of earthquake shaking hazards provide information essential to creating and updating the seismic design provisions of building codes and insurance rates used in the United States. Periodic revisions of these maps incorporate the results of new research. Buildings, bridges, highways, and utilities built to meet modern seismic design provisions are better able to withstand earthquakes, not only saving lives but also enabling critical activities to continue with less disruption. These maps can also help people assess the hazard to their homes or places of work and can also inform insurance rates.

  4. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  5. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... November 14, 2011, of the Environmental Management Site-Specific Advisory Board, Idaho National Laboratory...: Robert L. Pence, Federal Coordinator, Department of Energy, Idaho Operations Office, 1955 Fremont Avenue...

  6. Surface water data at Los Alamos National Laboratory: 2009 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  7. Surface water data at Los Alamos National Laboratory: 2008 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  8. Frederick National Laboratory Advisory Committee Welcomes New FNL, NCI Leaders | Poster

    Cancer.gov

    The Frederick National Laboratory Advisory Committee recently met to discuss the future of several high-profile Frederick National Lab initiatives in a meeting that included a chance to meet the new NCI and FNLCR leaders. Here is a look at a few of the highlights from the last of the 2017 FNLAC meetings.

  9. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    EPA Science Inventory

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  10. 75 FR 42676 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2002-0058; EPA-HQ-OAR-2006-0790; EPA-HQ-OAR-2003-0119; FRL- 9178-2] RIN 2060-AG69, RIN 2060-AM44, RIN 2060-AO12 National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers...

  11. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazardmore » areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.« less

  12. 40 CFR 262.213 - Laboratory clean-outs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... eligible academic entity is not required to count a hazardous waste that is an unused commercial chemical..., subpart C) generated solely during the laboratory clean-out toward its hazardous waste generator status... out, the date the laboratory clean-out begins and ends, and the volume of hazardous waste generated...

  13. Human factors in telemanipulation: Perspectives from the Oak Ridge National Laboratory experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.

    1994-01-01

    Personnel at the Robotics and Process Systems Division (RPSD) of the Oak Ridge National Laboratory (ORNL) have extensive experience designing, building, and operating teleoperators for a variety of settings, including space, battlefields, nuclear fuel reprocessing plants, and hazardous waste retrieval. In the course of the last decade and a half, the RPSD designed, built, and operated 4 telemanipulators (M-2, ASM, LTM, CESAR arm) and operated another half dozen (M-8, Model 50, TOS SM-229, RM-10, PaR 5000, BilArm 83A). During this period, human factors professionals have been closely integrated with RPSD design teams, investigating telemanipulator feedback and feed forward, designing cockpitsmore » and control rooms, training users and designers, and helping to develop performance specifications for telemanipulators. This paper presents a brief review of this and other work, with an aim towards providing perspectives on some of the human factors aspects of telemanipulation. The first section of the paper examines user tasks during supervisory control and discusses how telemanipulator responsiveness determines the appropriate control metaphor for continuous manual control. The second section provides an ecological perspective on telemanipulator feedback and feed-forward. The third section briefly describes the RPSD control room design approach and how design projects often serve as systems integrators.« less

  14. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Sitemore » Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report.« less

  15. Natural Gas Storage Research at Savannah River National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  16. Four Argonne National Laboratory scientists receive Early Career Research

    Science.gov Websites

    Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing

  17. 75 FR 24685 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402. FOR...

  18. 76 FR 39080 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  19. Emergency assessment of post-fire debris-flow hazards for the 2013 Rim Fire, Stanislaus National Forest and Yosemite National Park, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2013-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Rim fire in Yosemite National Park and the Stanislaus National Forest, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 28 of the 1,238 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 901 of the 1,238 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  20. Summary Report of Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Gretchen M.; Terusaki, Stan H.

    2013-12-01

    An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC

  1. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  2. 75 FR 67676 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... National Emission Standards for Hazardous Air Pollutants for Source Categories; State of Nevada; Clark... pollutants (NESHAP) to Clark County, Nevada. DATES: Any comments on this proposal must arrive by December 3...: This proposal concerns the delegation of unchanged NESHAP to Clark County, Nevada. In the Rules and...

  3. Sandia National Laboratories: Sandia National Laboratories: News: Events

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. U.S. States and Territories National Tsunami Hazard Assessment: Historical record and sources for waves – Update

    USGS Publications Warehouse

    Dunbar, Paula K.; Weaver, Craig S.

    2015-01-01

    The first U.S. Tsunami Hazard Assessment (Dunbar and Weaver, 2008) was prepared at the request of the National Tsunami Hazard Mitigation Program (NTHMP). The NTHMP is a partnership formed between federal and state agencies to reduce the impact of tsunamis through hazard assessment, warning guidance, and mitigation. The assessment was conducted in response to a 2005 joint report by the Sub-Committee on Disaster Reduction and the U.S. Group on Earth Observations entitled Tsunami Risk Reduction for the United States: A Framework for Action. The first specific action called for in the Framework was to “develop standardized and coordinated tsunami hazard and risk assessments for all coastal regions of the United States and its territories.” Since the first assessment, there have been a number of very significant tsunamis, including the 2009 Samoa, 2010 Chile, and 2011 Japan tsunamis. As a result, the NTHMP requested an update of the U.S. tsunami hazard assessment.

  5. Idaho National Laboratory Site Pollution Prevention Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Managementmore » System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is

  6. The National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Gelbke, C. Korad; Morrissey, D. J.; York, R. C.

    1996-10-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.

  7. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  8. 75 FR 56527 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Coeur d'Alene Resort, 115 South Second Street, Coeur d'Alene, Idaho...

  9. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  10. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard.

    PubMed

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  11. Natural Gas Storage Research at Savannah River National Laboratory

    ScienceCinema

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2018-01-16

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  12. National Media Laboratory media testing results

    NASA Technical Reports Server (NTRS)

    Mularie, William

    1993-01-01

    The government faces a crisis in data storage, analysis, archive, and communication. The sheer quantity of data being poured into the government systems on a daily basis is overwhelming systems ability to capture, analyze, disseminate, and store critical information. Future systems requirements are even more formidable: with single government platforms having data rate of over 1 Gbit/sec, greater than Terabyte/day storage requirements, and with expected data archive lifetimes of over 10 years. The charter of the National Media Laboratory (NML) is to focus the resources of industry, government, and academia on government needs in the evaluation, development, and field support of advanced recording systems.

  13. Hazards of falling debris to people, aircraft, and watercraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.K.; Young, L.W.; Jordan-Culler, T.

    1997-04-01

    This report is a collection of studies performed at Sandia National Laboratories in support of Phase One (inert debris) for the Risk and Lethality Commonality Team. This team was created by the Range Safety Group of the Range Commander`s Council to evaluate the safety issues for debris generated during flight tests and to develop debris safety criteria that can be adopted by the national ranges. Physiological data on the effects of debris impacts on people are presented. Log-normal curves are developed to relate the impact kinetic energy of fragments to the probability of fatality for people exposed in standing, sitting,more » or prone positions. Debris hazards to aircraft resulting from engine ingestion or penetration of a structure or windshield are discussed. The smallest mass fragments of aluminum, steel, and tungsten that may be hazardous to current aircraft are defined. Fragment penetration of the deck of a small ship or a pleasure craft is also considered. The smallest mass fragments of aluminum, steel, or tungsten that can penetrate decks are calculated.« less

  14. Change in argonne national laboratory: a case study.

    PubMed

    Mozley, A

    1971-10-01

    , William B. Cannon, who is vice president of programs and projects of the University of Chicago, and a small selection of staff members believe that the Laboratory is going through a natural and inevitable process of change consonant with altered missions and objectives in an atomic energy laboratory. The general mood, however, demonstrates the Jeffersonian insight, as relevant in science as in politics, that only democratic governance provides salutary checks and balances when things go wrong. The point deserves close scrutiny when Argonne's tripartite contract comes up for renegotiation in October 1971. Fundamentally Argonne's relations with its sponsoring agency remain at the center of its progress and future plans. Despite administrative and management changes, there is little doubt that he who pays the piper calls the tune. In common with other federal contract research and development adjuncts, Argonne has undoubtedly undergone tightening and winnowing away of flexibility in the past 6 years. In the nuclear reactor program the consequences have been strongly felt, and stringent national budgets have widened the tendency in the research domain. The impact of these changes and of AEC's attitude to basic research raise large questions for the future of the national laboratories. Few doubt that these "major national assets," with their outstanding scientific and technical personnel and equipment, fulfill a unique function and are here to stay, though their missions may undergo some change; the question of their most effective direction and handling, however, remains crucial for those concerned with priorities and decision-making for science. A recent review of 40 national federal adjuncts (30,31) has indicated that the primary sponsoring agency obtains better performance from a center that has a relatively high degree of independence than from one that is tightly controlled. The point is confirmed at Argonne where the present tendency (particularly on the nuclear reactor

  15. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Shaull; D. Ortiz; M.R. Alexander

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  16. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  17. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  18. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  19. National Emission Standards for Hazardous Air Pollutants (NESHAP); Asbestos NESHAP Revision: 1990 Final Rule (55 FR 48406)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the November 20, 1990 Final Rule of Asbestos National Emission Standards for Hazardous Air Pollutants (NESHAP) Revision for the Asbestos NESHAP.

  20. 75 FR 11872 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... Site- Specific Advisory Board, Idaho National Laboratory to be held on March 16, 2010 75 FR 9590. In that notice, the meeting address was Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402...

  1. Development and analysis of a meteorological database, Argonne National Laboratory, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.

    2010-01-01

    A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential

  2. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  3. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    PubMed Central

    Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Background Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. Scorecard for laboratory networks We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen. PMID:28879141

  4. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  5. California Fault Parameters for the National Seismic Hazard Maps and Working Group on California Earthquake Probabilities 2007

    USGS Publications Warehouse

    Wills, Chris J.; Weldon, Ray J.; Bryant, W.A.

    2008-01-01

    This report describes development of fault parameters for the 2007 update of the National Seismic Hazard Maps and the Working Group on California Earthquake Probabilities (WGCEP, 2007). These reference parameters are contained within a database intended to be a source of values for use by scientists interested in producing either seismic hazard or deformation models to better understand the current seismic hazards in California. These parameters include descriptions of the geometry and rates of movements of faults throughout the state. These values are intended to provide a starting point for development of more sophisticated deformation models which include known rates of movement on faults as well as geodetic measurements of crustal movement and the rates of movements of the tectonic plates. The values will be used in developing the next generation of the time-independent National Seismic Hazard Maps, and the time-dependant seismic hazard calculations being developed for the WGCEP. Due to the multiple uses of this information, development of these parameters has been coordinated between USGS, CGS and SCEC. SCEC provided the database development and editing tools, in consultation with USGS, Golden. This database has been implemented in Oracle and supports electronic access (e.g., for on-the-fly access). A GUI-based application has also been developed to aid in populating the database. Both the continually updated 'living' version of this database, as well as any locked-down official releases (e.g., used in a published model for calculating earthquake probabilities or seismic shaking hazards) are part of the USGS Quaternary Fault and Fold Database http://earthquake.usgs.gov/regional/qfaults/ . CGS has been primarily responsible for updating and editing of the fault parameters, with extensive input from USGS and SCEC scientists.

  6. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  7. International Safeguards and the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less

  8. Natural hazards science strategy

    USGS Publications Warehouse

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  9. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, themore » EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.« less

  10. 46 CFR 189.25-47 - Chemical and explosive hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemical and explosive hazards. 189.25-47 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-47 Chemical and explosive hazards. (a) The marine inspector shall inspect every chemistry laboratory, scientific laboratory, and chemical storeroom...

  11. 46 CFR 189.25-47 - Chemical and explosive hazards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Chemical and explosive hazards. 189.25-47 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-47 Chemical and explosive hazards. (a) The marine inspector shall inspect every chemistry laboratory, scientific laboratory, and chemical storeroom...

  12. 46 CFR 189.25-47 - Chemical and explosive hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Chemical and explosive hazards. 189.25-47 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-47 Chemical and explosive hazards. (a) The marine inspector shall inspect every chemistry laboratory, scientific laboratory, and chemical storeroom...

  13. 46 CFR 189.25-47 - Chemical and explosive hazards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Chemical and explosive hazards. 189.25-47 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-47 Chemical and explosive hazards. (a) The marine inspector shall inspect every chemistry laboratory, scientific laboratory, and chemical storeroom...

  14. 46 CFR 189.25-47 - Chemical and explosive hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Chemical and explosive hazards. 189.25-47 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-47 Chemical and explosive hazards. (a) The marine inspector shall inspect every chemistry laboratory, scientific laboratory, and chemical storeroom...

  15. The handling, hazards, and maintenance of heavy liquids in the geologic laboratory

    USGS Publications Warehouse

    Hauff, Phoebe L.; Airey, Joseph

    1980-01-01

    In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.

  16. U.S. Department of Energy, Sandia National Laboratories: Printing Case Study

    EPA Pesticide Factsheets

    The U.S. Department of Energy, Sandia National Laboratories (SNL), New Mexico quantified the costs associated with individual desktop printing devices, for comparison with costs associated with using networked copiers as printers

  17. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was

  18. Probabilistic seismic hazard characterization and design parameters for the Pantex Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernreuter, D. L.; Foxall, W.; Savy, J. B.

    1998-10-19

    The Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) updated the seismic hazard and design parameters at the Pantex Plant. The probabilistic seismic hazard (PSH) estimates were first updated using the latest available data and knowledge from LLNL (1993, 1998), Frankel et al. (1996), and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity and for the system of potentially active faults associated with the Amarillo-Wichita uplift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was taken from results of similar studies. Special attentionmore » was given to soil amplification factors for the site. Horizontal Peak Ground Acceleration (PGA) and 5% damped uniform hazard spectra were calculated for six return periods (100 yr., 500 yr., 1000 yr., 2000 yr., 10,000 yr., and 100,000 yr.). The design parameters were calculated following DOE standards (DOE-STD-1022 to 1024). Response spectra for design or evaluation of Performance Category 1 through 4 structures, systems, and components are presented.« less

  19. The Handling of Hazard Data on a National Scale: A Case Study from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Royse, Katherine R.

    2011-11-01

    This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.

  20. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; McDonald, J.R.; Russell, R.J.

    1995-10-01

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

  1. Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories

    DOE PAGES

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...

    2016-04-21

    Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

  2. Using the H Index to Assess Impact of DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Everett P.

    The most readily accessible elements of the Emerald Matrix by quantitative measures are the knowledge and economy related measures. In this paper, the H Index for an institution will be used to assess STE impact, which is in the knowledge generation element. The H Index was developed by Hirsch (2005) as a measure of an individual’s scientific impact. The H Index is defined as the number of publications that have been cited h or more times for a given author. It has been generalized to organizations. Doing so leads to a complication in that H index scales with the numbermore » of publications. Although this may not be problematic when comparing individual researchers, it systematically favors larger institutions. Molinari and Molinari (2008) proposed an alternative index (hm) designed to assess organizational impact. It transforms the H Index for an organization into an impact index by removing a factor dependent on the number of publications. The hm provides another approach to compare institutions provided that differences in the citation patterns associated with fields of study are addressed. Kinney (2007) used the Molinari and Molinari (2008) approach to compare various scientific institutions in nonbiomedical research areas. Kinney (2007) used the Thomson Reuters Web of Science (WoS) as the source and used publications in nonbiomedical research areas, which is very important because the research areas of universities are much broader than say a DOE national laboratory. Also there are differences in citation rates for the various research fields that make comparisons between individuals or organizations difficult. The results from Kinney (2007) are given in Table 1 and indicate that the DOE national laboratories compare favorably with the selected universities in terms of impact (hm) in the research areas used in Kinney’s analysis. This report will compare hm for DOE national laboratories using an approach similar to Kinney (2007) providing a measure of

  3. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    PubMed

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  4. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China

    PubMed Central

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun

    2015-01-01

    Introduction To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. Materials and methods 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. Results The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479 / 1307), 38% (228 / 598), and 36% (449 / 1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Conclusions Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them. PMID:26110033

  5. Multi-hazard national-level risk assessment in Africa using global approaches

    NASA Astrophysics Data System (ADS)

    Fraser, Stuart; Jongman, Brenden; Simpson, Alanna; Murnane, Richard

    2016-04-01

    In recent years Sub-Saharan Africa has been characterized by unprecedented opportunity for transformation and sustained growth. However, natural disasters such as droughts, floods, cyclones, earthquakes, landslides, volcanic eruptions and extreme temperatures cause significant economic and human losses, and major development challenges. Quantitative disaster risk assessments are an important basis for governments to understand disaster risk in their country, and to develop effective risk management and risk financing solutions. However, the data-scarce nature of many Sub-Saharan African countries as well as a lack of financing for risk assessments has long prevented detailed analytics. Recent advances in globally applicable disaster risk modelling practices and data availability offer new opportunities. In December 2013 the European Union approved a € 60 million contribution to support the development of an analytical basis for risk financing and to accelerate the effective implementation of a comprehensive disaster risk reduction. The World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR) was selected as the implementing partner of the Program for Result Area 5: the "Africa Disaster Risk Assessment and Financing Program." As part of this effort, the GFDRR is overseeing the production of national-level multi-hazard risk profiles for a range of countries in Sub-Saharan Africa, using a combination of national and global datasets and state-of-the-art hazard and risk assessment methodologies. In this presentation, we will highlight the analytical approach behind these assessments, and show results for the first five countries for which the assessment has been completed (Kenya, Uganda, Senegal, Niger and Ethiopia). The presentation will also demonstrate the visualization of the risk assessments into understandable and visually attractive risk profile documents.

  6. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in priormore » hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.« less

  7. 77 FR 19224 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... should be sent to National Earthquake Hazards Reduction Program Director, National Institute of Standards...

  8. 77 FR 27439 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... should be sent to National Earthquake Hazards Reduction Program Director, National Institute of Standards...

  9. 75 FR 75457 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... meeting should be sent to National Earthquake Hazards Reduction Program Director, National Institute of...

  10. 76 FR 64325 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... relationship of Presidential Policy Directive/PPD-8: National Preparedness to National Earthquake Hazards...

  11. 77 FR 18792 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... should be sent to National Earthquake Hazards Reduction Program Director, National Institute of Standards...

  12. 75 FR 18787 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... sent to National Earthquake Hazards Reduction Program Director, National Institute of Standards and...

  13. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  14. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  15. Program and plans of the U.S. Geological Survey for producing information needed in National Seismic hazards and risk assessment, fiscal years 1980-84

    USGS Publications Warehouse

    Hays, Walter W.

    1979-01-01

    In accordance with the provisions of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124), the U.S. Geological Survey has developed comprehensive plans for producing information needed to assess seismic hazards and risk on a national scale in fiscal years 1980-84. These plans are based on a review of the needs of Federal Government agencies, State and local government agencies, engineers and scientists engaged in consulting and research, professional organizations and societies, model code groups, and others. The Earthquake Hazards Reduction Act provided an unprecedented opportunity for participation in a national program by representatives of State and local governments, business and industry, the design professions, and the research community. The USGS and the NSF (National Science Foundation) have major roles in the national program. The ultimate goal of the program is to reduce losses from earthquakes. Implementation of USGS research in the Earthquake Hazards Reduction Program requires the close coordination of responsibility between Federal, State and local governments. The projected research plan in national seismic hazards and risk for fiscal years 1980-84 will be accomplished by USGS and non-USGS scientists and engineers. The latter group will participate through grants and contracts. The research plan calls for (1) national maps based on existing methods, (2) improved definition of earthquake source zones nationwide, (3) development of improved methodology, (4) regional maps based on the improved methodology, and (5) post-earthquake investigations. Maps and reports designed to meet the needs, priorities, concerns, and recommendations of various user groups will be the products of this research and provide the technical basis for improved implementation.

  16. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  17. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001

    EPA Science Inventory

    This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...

  18. Inaugural Technology Showcase Draws Hundreds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Before a crowded auditorium of science and business professionals at the Frederick National Laboratory for Cancer Research’s Advanced Technology Research Facility (ATRF), Joost Oppenheim, M.D., had just finished his presentation about a compound th

  19. 75 FR 28227 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... published a proposed rule for mercury emissions from the gold mine ore processing and production area source... proposed rule (75 FR 22470). Several parties requested that EPA extend the comment period. EPA has granted...-AP48 National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

  20. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.

    2012-07-01

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiologicalmore » materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker