Sample records for national microbiology laboratory

  1. Public health microbiology in Germany: 20 years of national reference centers and consultant laboratories.

    PubMed

    Beermann, Sandra; Allerberger, Franz; Wirtz, Angela; Burger, Reinhard; Hamouda, Osamah

    2015-10-01

    In 1995, in agreement with the German Federal Ministry of Health, the Robert Koch Institute established a public health microbiology system consisting of national reference centers (NRCs) and consultant laboratories (CLs). The goal was to improve the efficiency of infection protection by advising the authorities on possible measures and to supplement infectious disease surveillance by monitoring selected pathogens that have high public health relevance. Currently, there are 19 NRCs and 40 CLs, each appointed for three years. In 2009, an additional system of national networks of NRCs and CLs was set up in order to enhance effectiveness and cooperation within the national reference laboratory system. The aim of these networks was to advance exchange in diagnostic methods and prevention concepts among reference laboratories and to develop geographic coverage of services. In the last two decades, the German public health laboratory reference system coped with all major infectious disease challenges. The European Union and the European Centre for Disease Prevention and Control (ECDC) are considering implementing a European public health microbiology reference laboratory system. The German reference laboratory system should be well prepared to participate actively in this upcoming endeavor. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Quality in the molecular microbiology laboratory.

    PubMed

    Wallace, Paul S; MacKay, William G

    2013-01-01

    In the clinical microbiology laboratory advances in nucleic acid detection, quantification, and sequence analysis have led to considerable improvements in the diagnosis, management, and monitoring of infectious diseases. Molecular diagnostic methods are routinely used to make clinical decisions based on when and how to treat a patient as well as monitor the effectiveness of a therapeutic regime and identify any potential drug resistant strains that may impact on the long term patient treatment program. Therefore, confidence in the reliability of the result provided by the laboratory service to the clinician is essential for patient treatment. Hence, suitable quality assurance and quality control measures are important to ensure that the laboratory methods and service meet the necessary regulatory requirements both at the national and international level. In essence, the modern clinical microbiology laboratory ensures the appropriateness of its services through a quality management system that monitors all aspects of the laboratory service pre- and post-analytical-from patient sample receipt to reporting of results, from checking and upholding staff competency within the laboratory to identifying areas for quality improvements within the service offered. For most European based clinical microbiology laboratories this means following the common International Standard Organization (ISO9001) framework and ISO15189 which sets out the quality management requirements for the medical laboratory (BS EN ISO 15189 (2003) Medical laboratories-particular requirements for quality and competence. British Standards Institute, Bristol, UK). In the United States clinical laboratories performing human diagnostic tests are regulated by the Centers for Medicare and Medicaid Services (CMS) following the requirements within the Clinical Laboratory Improvement Amendments document 1988 (CLIA-88). This chapter focuses on the key quality assurance and quality control requirements within the

  3. Consolidated clinical microbiology laboratories.

    PubMed

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Aquatic Microbiology Laboratory Manual.

    ERIC Educational Resources Information Center

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  5. [Safety in the Microbiology laboratory].

    PubMed

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. Automation in the clinical microbiology laboratory.

    PubMed

    Novak, Susan M; Marlowe, Elizabeth M

    2013-09-01

    Imagine a clinical microbiology laboratory where a patient's specimens are placed on a conveyor belt and sent on an automation line for processing and plating. Technologists need only log onto a computer to visualize the images of a culture and send to a mass spectrometer for identification. Once a pathogen is identified, the system knows to send the colony for susceptibility testing. This is the future of the clinical microbiology laboratory. This article outlines the operational and staffing challenges facing clinical microbiology laboratories and the evolution of automation that is shaping the way laboratory medicine will be practiced in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Surge capacity for response to bioterrorism in hospital clinical microbiology laboratories.

    PubMed

    Shapiro, Daniel S

    2003-12-01

    Surge capacity is the ability to rapidly mobilize to meet an increased demand. While large amounts of federal funding have been allocated to public health laboratories, little federal funding has been allocated to hospital microbiology laboratories. There are concerns that hospital laboratories may have inadequate surge capacities to deal with a significant bioterrorism incident. A workflow analysis of a clinical microbiology laboratory that serves an urban medical center was performed to identify barriers to surge capacity in the setting of a bioterrorism event and to identify solutions to these problems. Barriers include a national shortage of trained medical technologists, the inability of clinical laboratories to deal with a dramatic increase in the number of blood cultures, a delay while manufacturers increase production of critical products and then transport and deliver these products to clinical laboratories, and a shortage of class II biological safety cabinets. Federal funding could remedy staffing shortages by making the salaries of medical technologists comparable to those of similarly educated health care professionals and by providing financial incentives for students to enroll in clinical laboratory science programs. Blood culture bottles, and possibly continuous-monitoring blood culture instruments, should be added to the national antibiotic stockpile. Federal support must ensure that companies that manufacture essential laboratory supplies are capable of rapidly scaling up production. Hospitals must provide increased numbers of biological safety cabinets and amounts of space dedicated to clinical microbiology laboratories. Laboratories should undertake limited cross-training of technologists, ensure that adequate packaging supplies are available, and be able to move to a 4-day blood culture protocol.

  8. Internal audit in a microbiology laboratory.

    PubMed Central

    Mifsud, A J; Shafi, M S

    1995-01-01

    AIM--To set up a programme of internal laboratory audit in a medical microbiology laboratory. METHODS--A model of laboratory based process audit is described. Laboratory activities were examined in turn by specimen type. Standards were set using laboratory standard operating procedures; practice was observed using a purpose designed questionnaire and the data were analysed by computer; performance was assessed at laboratory audit meetings; and the audit circle was closed by re-auditing topics after an interval. RESULTS--Improvements in performance scores (objective measures) and in staff morale (subjective impression) were observed. CONCLUSIONS--This model of process audit could be applied, with amendments to take local practice into account, in any microbiology laboratory. PMID:7665701

  9. Emerging Technologies for the Clinical Microbiology Laboratory

    PubMed Central

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  10. [Bacterial identification methods in the microbiology laboratory].

    PubMed

    Bou, Germán; Fernández-Olmos, Ana; García, Celia; Sáez-Nieto, Juan Antonio; Valdezate, Sylvia

    2011-10-01

    In order to identify the agent responsible of the infectious process and understanding the pathogenic/pathological implications, clinical course, and to implement an effective antimicrobial therapy, a mainstay in the practice of clinical microbiology is the allocation of species to a microbial isolation. In daily routine practice microbiology laboratory phenotypic techniques are applied to achieve this goal. However, they have some limitations that are seen more clearly for some kinds of microorganism. Molecular methods can circumvent some of these limitations, although its implementation is not universal. This is due to higher costs and the level of expertise required for thei implementation, so molecular methods are often centralized in reference laboratories and centers. Recently, proteomics-based methods made an important breakthrough in the field of diagnostic microbiology and will undoubtedly have a major impact on the future organization of the microbiology services. This paper is a short review of the most noteworthy aspects of the three bacterial identification methods described above used in microbiology laboratories. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  11. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    PubMed

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  12. Diagnostic trends in Clostridium difficile detection in Finnish microbiology laboratories.

    PubMed

    Könönen, Eija; Rasinperä, Marja; Virolainen, Anni; Mentula, Silja; Lyytikäinen, Outi

    2009-12-01

    Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.

  13. [Onsite microbiology services and outsourcing microbiology and offsite laboratories--advantage and disadvantage, thinking of effective utilization].

    PubMed

    Hosokawa, Naoto

    2011-10-01

    In recent years, budget restrictions have prompted hospital managers to consider outsourcing microbiology service. But there are many advantages onsite microbiology services. Onsite microbiology services have some advantages. 1) High recovery rate of microorganism. 2) Shorter turn around time. 3) Easy to communicate between physician and laboratory technician. 4) Effective utilization of blood culture. 5) Getting early information about microorganism. 6) Making antibiogram (microbiological local factor). 7) Getting information for infection control. The disadvantages are operating costs and labor cost. The important point of maximal utilization of onsite microbiology service is close communication between physicians to microbiology laboratory. It will be able to provide prompt and efficient report to physicians through discussion about Gram stain findings, agar plate media findings and epidemiological information. The rapid and accurate identification of pathogen affords directed therapy, thereby decreasing the use of broad-spectrum antibiotics and shortening the length of hospital stay and unnecessary ancillary procedures. When the physician use outsourcing microbiology services, should discuss with offsite laboratories about provided services. Infection control person has to arrange data of susceptibility about every isolate and monitoring multi-drug resistant organism. Not only onsite microbiology services but also outsourcing microbiology services, to communicate bedside and laboratory is most important point of effective utilization.

  14. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    ERIC Educational Resources Information Center

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  15. [Microbiology laboratory as a base of information sending].

    PubMed

    Komori, Toshiaki; Fujita, Naohisa; Hirose, Yuri; Kimura, Takeshi; Kyotani, Noriko; Kurahashi, Satoko; Yamada, Yukiji; Ushiyama, Masaji; Yasumoto, Towa; Yuasa, Soh-ichi

    2007-10-01

    The goal of our microbiology laboratory is to provide an accurate microbiological result and a useful information for every healthcare workers (HCWs). For this purpose, we were trying to do several activities, such as improving the work-flow of microbiology testings, starting 365-day-open microbiology tests, providing some training courses of microbiology and sending many useful informations about infectious diseases and infection control. Before these activities, we needed another 5 microbiology technicians beside 3 technicians and had started the program to educate them. We have successfully finished it and enabled all plans begin in April, 2005. Since then we are open for 365 days and also sending HCWs many newsletters for performing effective microbiological testings via the intra-network system and having lectures for both doctors and nurses, especially for new resident doctors at the orientation. We had also the training course for certified infection control nurses and accepted two technicians from Africa, who came to study a basic microbiology via JICA. These activities have enabled every technician not only to report and analyze microbiological test result effectively but also to improve writing and presentation skills. Through these activities all technicians have realized that accurate and rapid information from a microbiology laboratory is a key to treat patients with infectious diseases and improve their prognosis. It is suggested that skill-up of technicians lead to report an accurate result in microbiology and at the same time improve the attitude for their job.

  16. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    PubMed

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis. Copyright © 2010 Elsevier España S.L. All rights reserved.

  17. Cost analysis in a clinical microbiology laboratory.

    PubMed

    Brezmes, M F; Ochoa, C; Eiros, J M

    2002-08-01

    The use of models for business management and cost control in public hospitals has led to a need for microbiology laboratories to know the real cost of the different products they offer. For this reason, a catalogue of microbiological products was prepared, and the costs (direct and indirect) for each product were analysed, along with estimated profitability. All tests performed in the microbiology laboratory of the "Virgen de la Concha" Hospital in Zamora over a 2-year period (73192 tests) were studied. The microbiological product catalogue was designed using homogeneity criteria with respect to procedures used, workloads and costs. For each product, the direct personnel costs (estimated from workloads following the method of the College of American Pathologists, 1992 version), the indirect personnel costs, the direct and indirect material costs and the portion of costs corresponding to the remaining laboratory costs (capital and structural costs) were calculated. The average product cost was 16.05 euros. The average cost of a urine culture (considered, for purposes of this study, as a relative value unit) reached 13.59 euros, with a significant difference observed between positive and negative cultures (negative urine culture, 10.72 euros; positive culture, 29.65 euros). Significant heterogeneity exists, both in the costs of different products and especially in the cost per positive test. The application of a detailed methodology of cost analysis facilitates the calculation of the real cost of microbiological products. This information provides a basic tool for establishing clinical management strategies.

  18. Laboratory Design for Microbiological Safety

    PubMed Central

    Phillips, G. Briggs; Runkle, Robert S.

    1967-01-01

    Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771

  19. [Infection control team (ICT) in cooperation with microbiology laboratories].

    PubMed

    Okazaki, Mitsuhiro

    2012-10-01

    Infection control as a medical safety measure is an important issue in all medical facilities. In order to tackle this measure, cooperation between the infection control team (ICT) and microbiological laboratory is indispensable. Multiple drug-resistant bacteria have shifted from Gram-positive bacteria to Gram-negative bacilli within the last ten years. There are also a variety of bacilli, complicating the examination method and test results further. Therefore, cooperation between the ICT and microbiological laboratory has become important to understand examination results and to use them. In order to maintain functional cooperation, explanatory and communicative ability between the microbiological laboratory and ICT is required every day. Such positive information exchange will develop into efficient and functional ICT activity.

  20. Changing needs, opportunities and constraints for the 21st century microbiology laboratory.

    PubMed

    Van Eldere, J

    2005-04-01

    Clinical microbiologists and microbiology laboratories are experiencing changes due to evolving views on 'healthcare delivery' as an economic activity, due to changes in the medical environment and the demographics of the workforce, and technical evolution. Cost-effectiveness of laboratory procedures has been achieved through consolidation and integration of laboratories. Consolidation offers economy of scale and reduction in numbers of on-site staff, but also leads to separation of microbiologists from their clinical colleagues. Integration puts different laboratory disciplines under a single management, and leads to reorganisation of laboratories along common work-lines. Cost-savings combined with on-site availability of laboratories are achieved at the expense of a reduction in the influence of microbiologists in the daily running of the laboratory. Medically, there is growing emphasis on evidence-based diagnostics. Because of time-delays inherent in culturing, microbiology through rapid testing is mandatory. There is an increasing shortage in Europe and the USA of trained microbiology laboratory technicians and microbiologists. This reinforces the trend towards more automation and integration. Technological advances, particularly in molecular diagnostics, offer the possibility of rapid reporting and improvement of the impact of clinical microbiology on patient management. Molecular tests, however, fit perfectly the concept of an integrated laboratory and may further loosen the link between microbiologist and microbiology tests. The challenge for clinical microbiology will be to use new techniques to improve its cost-effectiveness and impact on infectious disease management. The future organisation of microbiology laboratories must support this but is itself of secondary importance. The training of future microbiologist must prepare them for this changing environment.

  1. [Microbiological Surveillance of Measles and Rubella in Spain. Laboratory Network].

    PubMed

    Echevarría, Juan Emilio; Fernández García, Aurora; de Ory, Fernando

    2015-01-01

    The Laboratory is a fundamental component on the surveillance of measles and rubella. Cases need to be properly confirmed to ensure an accurate estimation of the incidence. Strains should be genetically characterized to know the transmission pattern of these viruses and frequently, outbreaks and transmission chains can be totally discriminated only after that. Finally, the susceptibility of the population is estimated on the basis of sero-prevalence surveys. Detection of specific IgM response is the base of the laboratory diagnosis of these diseases. It should be completed with genomic detection by RT-PCR to reach an optimal efficiency, especially when sampling is performed early in the course of the disease. Genotyping is performed by genomic sequencing according to reference protocols of the WHO. Laboratory surveillance of measles and rubella in Spain is organized as a net of regional laboratories with different capabilities. The National Center of Microbiology as National Reference Laboratory (NRL), supports regional laboratories ensuring the availability of all required techniques in the whole country and watching for the quality of the results. The NRL is currently working in the implementation of new molecular techniques based on the analysis of genomic hypervariable regions for the strain characterization at sub-genotypic levels and use them in the surveillance.

  2. Competency assessment of microbiology medical laboratory technologists in Ontario, Canada.

    PubMed

    Desjardins, Marc; Fleming, Christine Ann

    2014-08-01

    Accreditation in Ontario, Canada, requires that licensed clinical laboratories participate in external quality assessment (also known as proficiency testing) and perform competency evaluation of their staff. To assess the extent of ongoing competency assessment practices, the Quality Management Program--Laboratory Services (QMP-LS) Microbiology Committee surveyed all 112 licensed Ontario microbiology laboratories. The questionnaire consisted of a total of 21 questions that included yes/no, multiple-choice, and short-answer formats. Participants were asked to provide information about existing programs, the frequency of testing, what areas are evaluated, and how results are communicated to the staff. Of the 111 responding laboratories, 6 indicated they did not have a formal evaluation program since they perform only limited bacteriology testing. Of the remaining 105 respondents, 87% perform evaluations at least annually or every 2 years, and 61% include any test or task performed, whereas 16% and 10% focus only on problem areas and high-volume complex tasks, respectively. The most common methods of evaluation were review of external quality assessment (EQA) challenges, direct observation, and worksheet review. With the exception of one participant, all communicate results to staff, and most take remedial action to correct the deficiencies. Although most accredited laboratories have a program to assess the ongoing competency of their staff, the methods used are not standardized or consistently applied, indicating that there is room for improvement. The survey successfully highlighted potential areas for improvement and allowed the QMP-LS Microbiology Committee to provide guidance to Ontario laboratories for establishing or improving existing microbiology-specific competency assessment programs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  4. [Medical microbiology laboratories in Dutch hospitals: essential for safe patient care].

    PubMed

    Bonten, M J M

    2008-12-06

    The Netherlands Health Care Inspectorate investigated the quality of medical microbiology laboratories in Dutch hospitals. By and large the laboratories fulfilled the requirements for appropriate care, although some processes were unsatisfactory and some were insufficiently formalised. In the Netherlands, laboratories for medical microbiology are integrated within hospitals and medical microbiologists are responsible for the diagnostic processes as well as for co-treatment of patients, infection prevention and research. This integrated model contrasts to the more industrialised model in many other countries, where such laboratories are physically distinct from hospitals with a strong focus on diagnostics. The Inspectorate also concludes that the current position of medical microbiology in Dutch hospitals is necessary for patient safety and that outsourcing of these facilities is considered unacceptable.

  5. Testing the performance of microbiological safety cabinets used in microbiology laboratories in South Korea.

    PubMed

    Hwang, S H; Yi, T W; Cho, K H; Lee, I M; Yoon, C S

    2011-09-01

    To test a performance of the microbiological safety cabinets (MSCs) according to the type of MSCs in microbial laboratories. Tests were carried out to assess the performance of 31 MSCs in 14 different facilities, including six different biological test laboratories in six hospitals and eight different laboratories in three universities. The following tests were performed on the MSCs: the downflow test, intake velocity test, high-efficiency particulate air filter leak test and the airflow smoke pattern test. These performance tests were carried out in accordance with the standard procedures. Only 23% of Class II A1 (8), A2 (19) and unknown MSCs (4) passed these performance tests. The main reasons for the failure of MSCs were inappropriate intake velocity (65%), leakage in the HEPA filter sealing (50%), unbalanced airflow smoke pattern in the cabinets (39%) and inappropriate downflow (27%). This study showed that routine checks of MSCs are important to detect and strengthen the weak spots that frequently develop, as observed during the evaluation of the MSCs of various institutions. Routine evaluation and maintenance of MSCs are critical for optimizing performance. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  7. Observations on Microbiology Laboratory Instruction for Allied Health Students.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1993-01-01

    The purposes of this paper are (1) to demonstrate that medical microbiology laboratory exercises should be presented with a focus on medical applications, not just traditional microbiology and (2) that exercises devoted to differential diagnostic decision making can be used to enhance the problem solving of students. (PR)

  8. Developing best practice for fungal specimen management: audit of UK microbiology laboratories.

    PubMed

    Lasseter, G; Palmer, M; Morgan, J; Watts, J; Yoxall, H; Kibbler, C; McNulty, C

    2011-01-01

    This study represents an audit of microbiology laboratories in the UK to ascertain whether they are aware of, or follow, the Health Protection Agency (HPA) National Standard Methods Standard Operating Procedure (NSM SOP) for the investigation of dermatological specimens for superficial mycoses, or use a locally adapted version. A questionnaire audit was distributed to 179 NHS microbiology laboratories throughout England, Wales, Scotland and Northern Ireland. The NSM SOP was followed by 92% of laboratories for the microscopy of dermatological samples; light microscopy/ KOH digestion was used by 63% and fluorescence microscopy/KOH digestion by 29% of laboratories. Preliminary reports post-microscopy were issued by 98% of laboratories, with 93% issuing reports within 48 hours. Adherence to the NSM SOP guidelines for culture was low; only 34% of laboratories incubated microscopy-negative specimens for the recommended 14 days, while approximately 60% incubated microscopy-positive specimens for 21 days. The culture medium recommended by the NSM SOP was used in 82% of laboratories. Comments were added to culture reports by 51% of laboratories; most were added manually and comments varied between laboratories. Nail samples were the most common sample received from primary care, followed by skin and hair. These results show no significant difference in the rate of microscopy positives versus culture positives. Microscopy and culture are the easiest and cheapest methods available to UK laboratories for the investigation of suspected superficial fungal infections. Although most laboratories included in this audit claimed to follow the NSM SOP for microscopy and culture, these results show that the techniques used vary throughout the UK. To maximise the service provided to primary care, UK laboratories should use standardise methods based on the NSM SOP.

  9. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data--The Influence of Different Parameters in a Routine Clinical Microbiology Laboratory.

    PubMed

    Kohlmann, Rebekka; Gatermann, Sören G

    2016-01-01

    Many clinical microbiology laboratories report on cumulative antimicrobial susceptibility testing (cAST) data on a regular basis. Criteria for generation of cAST reports, however, are often obscure and inconsistent. Whereas the CLSI has published a guideline for analysis and presentation of cAST data, national guidelines directed at clinical microbiology laboratories are not available in Europe. Thus, we sought to describe the influence of different parameters in the process of cAST data analysis in the setting of a German routine clinical microbiology laboratory during 2 consecutive years. We developed various program scripts to assess the consequences ensuing from different algorithms for calculation of cumulative antibiograms from the data collected in our clinical microbiology laboratory in 2013 and 2014. One of the most pronounced effects was caused by exclusion of screening cultures for multi-drug resistant organisms which decreased the MRSA rate in some cases to one third. Dependent on the handling of duplicate isolates, i.e. isolates of the same species recovered from successive cultures on the same patient during the time period analyzed, we recorded differences in resistance rates of up to 5 percentage points for S. aureus, E. coli and K. pneumoniae and up to 10 percentage points for P. aeruginosa. Stratification by site of care and specimen type, testing of antimicrobials selectively on resistant isolates, change of interpretation rules and analysis at genus level instead of species level resulted in further changes of calculated antimicrobial resistance rates. The choice of parameters for cAST data analysis may have a substantial influence on calculated antimicrobial resistance rates. Consequently, comparability of cAST reports from different clinical microbiology laboratories may be limited. We suggest that laboratories communicate the strategy used for cAST data analysis as long as national guidelines for standardized cAST data analysis and reporting

  10. Competency Assessment of Microbiology Medical Laboratory Technologists in Ontario, Canada

    PubMed Central

    Fleming, Christine Ann

    2014-01-01

    Accreditation in Ontario, Canada, requires that licensed clinical laboratories participate in external quality assessment (also known as proficiency testing) and perform competency evaluation of their staff. To assess the extent of ongoing competency assessment practices, the Quality Management Program—Laboratory Services (QMP-LS) Microbiology Committee surveyed all 112 licensed Ontario microbiology laboratories. The questionnaire consisted of a total of 21 questions that included yes/no, multiple-choice, and short-answer formats. Participants were asked to provide information about existing programs, the frequency of testing, what areas are evaluated, and how results are communicated to the staff. Of the 111 responding laboratories, 6 indicated they did not have a formal evaluation program since they perform only limited bacteriology testing. Of the remaining 105 respondents, 87% perform evaluations at least annually or every 2 years, and 61% include any test or task performed, whereas 16% and 10% focus only on problem areas and high-volume complex tasks, respectively. The most common methods of evaluation were review of external quality assessment (EQA) challenges, direct observation, and worksheet review. With the exception of one participant, all communicate results to staff, and most take remedial action to correct the deficiencies. Although most accredited laboratories have a program to assess the ongoing competency of their staff, the methods used are not standardized or consistently applied, indicating that there is room for improvement. The survey successfully highlighted potential areas for improvement and allowed the QMP-LS Microbiology Committee to provide guidance to Ontario laboratories for establishing or improving existing microbiology-specific competency assessment programs. PMID:24899030

  11. Laboratory Diagnosis and Characterization of Fungal Disease in Patients with Cystic Fibrosis (CF): A Survey of Current UK Practice in a Cohort of Clinical Microbiology Laboratories.

    PubMed

    Boyle, Maeve; Moore, John E; Whitehouse, Joanna L; Bilton, Diana; Downey, Damian G

    2018-03-02

    There is much uncertainty as to how fungal disease is diagnosed and characterized in patients with cystic fibrosis (CF). A 19-question anonymous electronic questionnaire was developed and distributed to ascertain current practice in clinical microbiology laboratories providing a fungal laboratory service to CF centres in the UK. Analyses of responses identified the following: (1) current UK laboratory practice, in general, follows the current guidelines, but the scope and diversity of what is currently being delivered by laboratories far exceeds what is detailed in the guidelines; (2) there is a lack of standardization of fungal tests amongst laboratories, outside of the current guidelines; (3) both the UK CF Trust Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis and the US Cumulative Techniques and Procedures in Clinical Microbiology (Cumitech) Guidelines 43 Cystic Fibrosis Microbiology need to be updated to reflect both new methodological innovations, as well as better knowledge of fungal disease pathophysiology in CF; (4) there is a need for clinical medicine to decide upon a stratification strategy for the provision of new fungal assays that will add value to the physician in the optimal management of CF patients; (5) there is also a need to rationale what assays should be performed at local laboratory level and those which are best served at National Mycology Reference Laboratory level; and (6) further research is required in developing laboratory assays, which will help ascertain the clinical importance of 'old' fungal pathogens, as well as 'emerging' fungal pathogens.

  12. A Selected Bibliography on Microbiological Laboratory Design.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1967

    1967-01-01

    Reference sources on microbiological laboratory design are cited. Subjects covered include--(1) policies and general requirements, (2) ventilated cabinets, (3) animal isolation equipment, (4) air handling, ventilation, and filtration, (5) germicidal ultraviolet irradiation, (6) aerosol test facilities, (7) process production of microorganisms, and…

  13. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  14. The Individualized Quality Control Plan - Coming Soon to Clinical Microbiology Laboratories Everywhere!

    PubMed

    Anderson, Nancy

    2015-11-15

    As of January 1, 2016, microbiology laboratories can choose to adopt a new quality control option, the Individualized Quality Control Plan (IQCP), under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). This voluntary approach increases flexibility for meeting regulatory requirements and provides laboratories the opportunity to customize QC for their testing in their unique environments and by their testing personnel. IQCP is an all-inclusive approach to quality based on risk management to address potential errors in the total testing process. It includes three main steps, (1) performing a risk assessment, (2) developing a QC plan, and (3) monitoring the plan through quality assessment. Resources are available from the Centers for Medicare & Medicaid Services, Centers for Disease Control and Prevention, American Society for Microbiology, Clinical and Laboratory Standards Institute, and accrediting organizations, such as the College of American Pathologists and Joint Commission, to assist microbiology laboratories implementing IQCP.

  15. Integration of Diagnostic Microbiology in a Model of Total Laboratory Automation.

    PubMed

    Da Rin, Giorgio; Zoppelletto, Maira; Lippi, Giuseppe

    2016-02-01

    Although automation has become widely utilized in certain areas of diagnostic testing, its adoption in diagnostic microbiology has proceeded much more slowly. To describe our real-world experience of integrating an automated instrument for diagnostic microbiology (Walk-Away Specimen Processor, WASPLab) within a model of total laboratory automation (TLA). The implementation process was divided into 2 phases. The former period, lasting approximately 6 weeks, entailed the installation of the WASPLab processor to operate as a stand-alone instrumentation, whereas the latter, lasting approximately 2 weeks, involved physical connection of the WASPLab with the automation. Using the WASPLab instrument in conjunction with the TLA model, we obtained a time savings equivalent to the work of 1.2 full-time laboratory technicians for diagnostic microbiology. The connection of WASPLab to TLA allowed its management by a generalist or clinical chemistry technician, with no need for microbiology skills on the part of either worker. Hence, diagnostic microbiology could be performed by the staff that is already using the TLA, extending their activities to include processing urgent clinical chemistry and hematology specimens. The time to result was also substantially improved. According to our experience, using the WASPLab instrument as part of a TLA in diagnostic microbiology holds great promise for optimizing laboratory workflow and improving the quality of testing. © American Society for Clinical Pathology, 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Current Pre- and Post-Graduate Vocational Education and Training in Laboratory Medicine and Microbiology in Poland

    PubMed Central

    Owczarek, Henryk

    2010-01-01

    The status of Polish medical laboratories in continuously changing. Since 2001 the legal framework was established for the clinical chemists employed in medical and microbiological laboratories. Since that time, the job performance by clinical chemists is limited only to the specialist, member of the Polish Chamber of Laboratory Diagnosticians. According to that legal act, graduate in laboratory medicine is certified to perform the professional activities in medical or microbiological laboratories without further vocational training. After graduating from biology, chemistry, pharmacy or veterinary medicine, a person can perform the job only under supervision of a certified clinical chemist. Several Medical Universities have organized the system of post-graduation education for such graduates. The main courses taught are basic pathology, internal medicine, hematology, immunology, and clinical chemistry. In addition, the Ministry of Health and Chamber of Laboratory Diagnosticians are organizing and supervising the higher level of post-graduate education for clinical chemists, the education and vocational training which leads to the title of specialist in clinical chemistry or similar area in laboratory medicine. The professional qualification of such person are evaluated during the final exam at the national level. The specialist is eligible to act as director of clinical laboratories. PMID:27683359

  17. Adoption of lean principles in a high-volume molecular diagnostic microbiology laboratory.

    PubMed

    Mitchell, P Shawn; Mandrekar, Jayawant N; Yao, Joseph D C

    2014-07-01

    Clinical laboratories are constantly facing challenges to do more with less, enhance quality, improve test turnaround time, and reduce operational expenses. Experience with adopting and applying lean concepts and tools used extensively in the manufacturing industry is described for a high-volume clinical molecular microbiology laboratory, illustrating how operational success and benefits can be achieved. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Collection, transport and general processing of clinical specimens in Microbiology laboratory.

    PubMed

    Sánchez-Romero, M Isabel; García-Lechuz Moya, Juan Manuel; González López, Juan José; Orta Mira, Nieves

    2018-02-06

    The interpretation and the accuracy of the microbiological results still depend to a great extent on the quality of the samples and their processing within the Microbiology laboratory. The type of specimen, the appropriate time to obtain the sample, the way of sampling, the storage and transport are critical points in the diagnostic process. The availability of new laboratory techniques for unusual pathogens, makes necessary the review and update of all the steps involved in the processing of the samples. Nowadays, the laboratory automation and the availability of rapid techniques allow the precision and turn-around time necessary to help the clinicians in the decision making. In order to be efficient, it is very important to obtain clinical information to use the best diagnostic tools. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. The world's microbiology laboratories can be a global microbial sensor network.

    PubMed

    O'Brien, Thomas F; Stelling, John

    2014-04-01

    The microbes that infect us spread in global and local epidemics, and the resistance genes that block their treatment spread within and between them. All we can know about where they are to track and contain them comes from the only places that can see them, the world's microbiology laboratories, but most report each patient's microbe only to that patient's caregiver. Sensors, ranging from instruments to birdwatchers, are now being linked in electronic networks to monitor and interpret algorithmically in real-time ocean currents, atmospheric carbon, supply-chain inventory, bird migration, etc. To so link the world's microbiology laboratories as exquisite sensors in a truly lifesaving real-time network their data must be accessed and fully subtyped. Microbiology laboratories put individual reports into inaccessible paper or mutually incompatible electronic reporting systems, but those from more than 2,200 laboratories in more than 108 countries worldwide are now accessed and translated into compatible WHONET files. These increasingly web-based files could initiate a global microbial sensor network. Unused microbiology laboratory byproduct data, now from drug susceptibility and biochemical testing but increasingly from new technologies (genotyping, MALDI-TOF, etc.), can be reused to subtype microbes of each genus/species into sub-groupings that are discriminated and traced with greater sensitivity. Ongoing statistical delineation of subtypes from global sensor network data will improve detection of movement into any patient of a microbe or resistance gene from another patient, medical center or country. Growing data on clinical manifestations and global distributions of subtypes can automate comments for patient's reports, select microbes to genotype and alert responders.

  20. The Point-of-Care Laboratory in Clinical Microbiology

    PubMed Central

    Michel-Lepage, Audrey; Boyer, Sylvie; Raoult, Didier

    2016-01-01

    SUMMARY Point-of-care (POC) laboratories that deliver rapid diagnoses of infectious diseases were invented to balance the centralization of core laboratories. POC laboratories operate 24 h a day and 7 days a week to provide diagnoses within 2 h, largely based on immunochromatography and real-time PCR tests. In our experience, these tests are conveniently combined into syndrome-based kits that facilitate sampling, including self-sampling and test operations, as POC laboratories can be operated by trained operators who are not necessarily biologists. POC laboratories are a way of easily providing clinical microbiology testing for populations distant from laboratories in developing and developed countries and on ships. Modern Internet connections enable support from core laboratories. The cost-effectiveness of POC laboratories has been established for the rapid diagnosis of tuberculosis and sexually transmitted infections in both developed and developing countries. PMID:27029593

  1. [Establishment of a microbiology laboratory open 365 days a year and its impact].

    PubMed

    Komori, Toshiaki; Fujita, Naohisa; Hirose, Yuri; Kimura, Takeshi; Kyotani, Noriko; Kurahashi, Satoko; Yamada, Yukiji; Ushiyama, Masaji; Yasumoto, Towa; Yuasa, Soh-Ichi

    2009-12-01

    The microbiology laboratory of our university hospital aims to provide accurate and rapid microbiological results and useful information for healthcare workers involved in both the treatment of infectious diseases and infection control. For this purpose, we have been running a microbiology laboratory open 365 days a year since 2005. Before starting this laboratory, we formulated both a precise procedural manual and educational program to increase the number of microbiological technologists from 4 to 8 persons and improve their skills. Moreover, we reviewed the reporting system. As a result, we could report positive blood cultures up to 1.4 days earlier than previously possible, and significantly improved the prognosis of MRSA bacteremia patients by the early treatment of anti-MRSA antimicrobials within 48 hours after positive blood culture. In addition, the rate of MRSA/Staphylococcus aureus decreased to 35.8%. It is essential for the treatment of infectious diseases and infection control to accept only appropriate specimens and report the results rapidly and accurately.

  2. Implementing a Quality Management System in the Medical Microbiology Laboratory.

    PubMed

    Carey, Roberta B; Bhattacharyya, Sanjib; Kehl, Sue C; Matukas, Larissa M; Pentella, Michael A; Salfinger, Max; Schuetz, Audrey N

    2018-07-01

    This document outlines a comprehensive practical approach to a laboratory quality management system (QMS) by describing how to operationalize the management and technical requirements described in the ISO 15189 international standard. It provides a crosswalk of the ISO requirements for quality and competence for medical laboratories to the 12 quality system essentials delineated by the Clinical and Laboratory Standards Institute. The quality principles are organized under three main categories: quality infrastructure, laboratory operations, and quality assurance and continual improvement. The roles and responsibilities to establish and sustain a QMS are outlined for microbiology laboratory staff, laboratory management personnel, and the institution's leadership. Examples and forms are included to assist in the real-world implementation of this system and to allow the adaptation of the system for each laboratory's unique environment. Errors and nonconforming events are acknowledged and embraced as an opportunity to improve the quality of the laboratory, a culture shift from blaming individuals. An effective QMS encourages "systems thinking" by providing a process to think globally of the effects of any type of change. Ultimately, a successful QMS is achieved when its principles are adopted as part of daily practice throughout the total testing process continuum. Copyright © 2018 American Society for Microbiology.

  3. [Role of the independent microbiology laboratory in supporting infection control programs in small to mid-sized hospitals].

    PubMed

    Yanagisawa, Hideji

    2009-05-01

    With the revision of the Medical Service Law in 2006 by the Japanese Ministry of Health, Labour and Welfare (MHLW), all healthcare institutions are now required to implement a healthcare risk management program including infection control program. At a national level, an infection control surveillance program (JANIS) was implemented in July 2007. Regular weekly, monthly, and yearly infection control surveillance reports from independent microbiology laboratories can make significant contributions to infection control programs in small to mid-sized hospitals; furthermore, such programs are consistent with the framework of the MHLW's objective of strengthening risk management in healthcare institutions. Against the backdrop of current efforts to improve risk management, independent laboratories can make a significant contribution. Independent laboratories must play a role beyond merely receiving and processing specimens for microbiological examination. In addition to generating results for patients, hospital epidemiological data that contribute to local infection control programs must be a value-added component of the service. A major obstacle for independent laboratories to make a significant contribution to risk management is the current reimbursement system, which makes it economically impossible for independent laboratories to support infection control programs in healthcare institutions.

  4. The Role of the Clinical Laboratory in the Future of Health Care: Lean Microbiology

    PubMed Central

    Samuel, Linoj

    2014-01-01

    This commentary will introduce lean concepts into the clinical microbiology laboratory. The practice of lean in the clinical microbiology laboratory can remove waste, increase efficiency, and reduce costs. Lean, Six Sigma, and other such management initiatives are useful tools and can provide dividends but must be accompanied by organizational leadership commitment to sustaining the lean culture in the laboratory setting and providing resources and time to work through the process. PMID:24574289

  5. An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories.

    PubMed

    Alexander, C L; Currie, S; Pollock, K; Smith-Palmer, A; Jones, B L

    2017-06-01

    Giardia duodenalis and Cryptosporidium species are protozoan parasites capable of causing gastrointestinal disease in humans and animals through the ingestion of infective faeces. Whereas Cryptosporidium species can be acquired locally or through foreign travel, there is the mis-conception that giardiasis is considered to be largely travel-associated, which results in differences in laboratory testing algorithms. In order to determine the level of variation in testing criteria and detection methods between diagnostic laboratories for both pathogens across Scotland, an audit was performed. Twenty Scottish diagnostic microbiology laboratories were invited to participate with questions on sample acceptance criteria, testing methods, testing rates and future plans for pathogen detection. Reponses were received from 19 of the 20 laboratories representing each of the 14 territorial Health Boards. Detection methods varied between laboratories with the majority performing microscopy, one using a lateral flow immunochromatographic antigen assay, another using a manually washed plate-based enzyme immunoassay (EIA) and one laboratory trialling a plate-based EIA automated with an EIA plate washer. Whereas all laboratories except one screened every stool for Cryptosporidium species, an important finding was that significant variation in the testing algorithm for detecting Giardia was noted with only four laboratories testing all diagnostic stools. The most common criteria were 'travel history' (11 laboratories) and/or 'when requested' (14 laboratories). Despite only a small proportion of stools being examined in 15 laboratories for Giardia (2%-18% of the total number of stools submitted), of interest is the finding that a higher positivity rate was observed for Giardia than Cryptosporidium in 10 of these 15 laboratories. These findings highlight that the underreporting of Giardia in Scotland is likely based on current selection and testing algorithms.

  6. Prevention and Control of Antimicrobial Resistant Healthcare-Associated Infections: The Microbiology Laboratory Rocks!

    PubMed

    Simões, Alexandra S; Couto, Isabel; Toscano, Cristina; Gonçalves, Elsa; Póvoa, Pedro; Viveiros, Miguel; Lapão, Luís V

    2016-01-01

    In Europe, each year, more than four milion patients acquire a healthcare-associated infection (HAI) and almost 40 thousand die as a direct consequence of it. Regardless of many stategies to prevent and control HAIs, they remain an important cause of morbidity and mortality worldwide with a significant economic impact: a recent estimate places it at the ten billion dollars/year. The control of HAIs requires a prompt and efficient identification of the etiological agent and a rapid communication with the clinician. The Microbiology Laboratory has a significant role in the prevention and control of these infections and is a key element of any Infection Control Program. The work of the Microbiology Laboratory covers microbial isolation and identification, determination of antimicrobial susceptibility patterns, epidemiological surveillance and outbreak detection, education, and report of quality assured results. In this paper we address the role and importance of the Microbiology Laboratory in the prevention and control of HAI and in Antibiotic Stewardship Programs and how it can be leveraged when combined with the use of information systems. Additionally, we critically review some challenges that the Microbiology Laboratory has to deal with, including the selection of analytic methods and the proper use of communication channels with other healthcare services.

  7. Addressing the key communication barriers between microbiology laboratories and clinical units: a qualitative study

    PubMed Central

    Skodvin, Brita; Aase, Karina; Brekken, Anita Løvås; Charani, Esmita; Lindemann, Paul Christoffer; Smith, Ingrid

    2017-01-01

    Abstract Background Many countries are on the brink of establishing antibiotic stewardship programmes in hospitals nationwide. In a previous study we found that communication between microbiology laboratories and clinical units is a barrier to implementing efficient antibiotic stewardship programmes in Norway. We have now addressed the key communication barriers between microbiology laboratories and clinical units from a laboratory point of view. Methods Qualitative semi-structured interviews were conducted with 18 employees (managers, doctors and technicians) from six diverse Norwegian microbiological laboratories, representing all four regional health authorities. Interviews were recorded and transcribed verbatim. Thematic analysis was applied, identifying emergent themes, subthemes and corresponding descriptions. Results The main barrier to communication is disruption involving specimen logistics, information on request forms, verbal reporting of test results and information transfer between poorly integrated IT systems. Furthermore, communication is challenged by lack of insight into each other’s area of expertise and limited provision of laboratory services, leading to prolonged turnaround time, limited advisory services and restricted opening hours. Conclusions Communication between microbiology laboratories and clinical units can be improved by a review of testing processes, educational programmes to increase insights into the other’s area of expertise, an evaluation of work tasks and expansion of rapid and point-of-care test services. Antibiotic stewardship programmes may serve as a valuable framework to establish these measures. PMID:28633405

  8. Improving Gram stain proficiency in hospital and satellite laboratories that do not have microbiology.

    PubMed

    Guarner, Jeannette; Street, Cassandra; Matlock, Margaret; Cole, Lisa; Brierre, Francoise

    2017-03-01

    Consolidation of laboratories has left many hospitals and satellite laboratories with minimal microbiologic testing. In many hospitals and satellite laboratories, Gram stains on primary specimens are still performed despite difficultly in maintaining proficiency. To maintain Gram stain proficiency at a community 450-bed hospital with an active emergency room we designed bimonthly challenges that require reporting Gram staining and morphology of different organisms. The challenges consist of five specimens prepared by the reference microbiology laboratory from cultures and primary specimens. Twenty to 23 medical laboratory scientists participate reading the challenges. Results from the challenges are discussed with each medical laboratory scientists. In addition, printed images from the challenges are presented at huddle to add microbiology knowledge. On the first three challenges, Gram staining was read correctly in 71%-77% of the time while morphology 53%-66%. In the last six challenges correct answers for Gram stain were 77%-99% while morphology 73%-96%. We observed statistically significant improvement when reading Gram stains by providing frequent challenges to medical laboratory scientists. The clinical importance of Gram stain results is emphasized during huddle presentations increasing knowledge and motivation to perform the test for patients.

  9. Molecular epidemiology and virulence characteristics of Staphylococcus aureus nasal colonization in medical laboratory staff: comparison between microbiological and non-microbiological laboratories.

    PubMed

    Xie, Xiaoying; Dai, Xinlu; Ni, Lijia; Chen, Baiji; Luo, Zhaofan; Yao, Yandan; Wu, Xiquan; Li, Hongyu; Huang, Songyin

    2018-03-12

    Medical laboratory staff are a high-risk population for colonization of Staphylococcus aureus (S. aureus) due to direct and dense contact with the pathogens; however, there is limited information about this colonization. This study sought to determine the prevalence and molecular characteristics of nasal colonization by S. aureus in medical laboratory staff in Guangzhou, southern China, and to compare the differences between microbiological laboratory (MLS) and non-microbiological laboratory (NMLS) staff. S. aureus colonization was assessed by nasal swab cultures from 434 subjects, including 130 MLSs and 304 NMLSs from 33 hospitals in Guangzhou. All S. aureus isolates underwent the antimicrobial susceptibility test, virulence gene detection and molecular typing. The overall prevalence of S. aureus carriage was 20.1% (87/434), which was higher in MLSs than in NMLSs (26.2% vs. 17.4%, P < 0.05), while the prevalence of Methicillin-resistant S. aureus (MRSA) was similar. Living with hospital staff was associated with S. aureus carriage. The majority of the isolates harboured various virulence genes, and those in MLSs appeared less resistant to antibiotics and more virulent than their counterparts. A total of 37 different spa types were detected; among these, t338, t437, t189 and t701 were the most frequently encountered types. T338 was the main spa type contributing to nasal colonization Methicillin-sensitive S. aureus (MSSA) (13.0%), and t437-SCCmec IV was predominant in MRSA isolates (40%). These findings provide insight into the risk factors, molecular epidemiology and virulence gene profiles of S. aureus nasal carriage among the medical laboratory staff in Guangzhou.

  10. The recording of student performance in the microbiology laboratory as a training, tutorial, and motivational tool.

    PubMed

    Lipson, Steven M; Gair, Marina

    2011-01-01

    The laboratory component of a microbiology course consists of exercises which mandate a level of proficiency and manual dexterity equal to and often beyond that recognized among other biology courses. Bacterial growth, maintenance, identification (e.g., Gram stain, biochemical tests, genomics), as well as the continuous need to maintain laboratory safety and sterile technique, are only a few skills/responsibilities critical to the discipline of microbiology. Performance of the Gram stain remains one of the most basic and pivotal skills that must be mastered in the microbiology laboratory. However, a number of students continually have difficulty executing the Gram stain and preparative procedures associated with the test. In order to address this issue, we incorporated real-time digital recording as a supplemental teaching aid in the microbiology laboratory. Our use of the digital movie camera in the teaching setting served to enhance interest, motivate students, and in general, improve student performance.

  11. Addressing the key communication barriers between microbiology laboratories and clinical units: a qualitative study.

    PubMed

    Skodvin, Brita; Aase, Karina; Brekken, Anita Løvås; Charani, Esmita; Lindemann, Paul Christoffer; Smith, Ingrid

    2017-09-01

    Many countries are on the brink of establishing antibiotic stewardship programmes in hospitals nationwide. In a previous study we found that communication between microbiology laboratories and clinical units is a barrier to implementing efficient antibiotic stewardship programmes in Norway. We have now addressed the key communication barriers between microbiology laboratories and clinical units from a laboratory point of view. Qualitative semi-structured interviews were conducted with 18 employees (managers, doctors and technicians) from six diverse Norwegian microbiological laboratories, representing all four regional health authorities. Interviews were recorded and transcribed verbatim. Thematic analysis was applied, identifying emergent themes, subthemes and corresponding descriptions. The main barrier to communication is disruption involving specimen logistics, information on request forms, verbal reporting of test results and information transfer between poorly integrated IT systems. Furthermore, communication is challenged by lack of insight into each other's area of expertise and limited provision of laboratory services, leading to prolonged turnaround time, limited advisory services and restricted opening hours. Communication between microbiology laboratories and clinical units can be improved by a review of testing processes, educational programmes to increase insights into the other's area of expertise, an evaluation of work tasks and expansion of rapid and point-of-care test services. Antibiotic stewardship programmes may serve as a valuable framework to establish these measures. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  12. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  13. The impact of automation on organizational changes in a community hospital clinical microbiology laboratory.

    PubMed

    Camporese, Alessandro

    2004-06-01

    The diagnosis of infectious diseases and the role of the microbiology laboratory are currently undergoing a process of change. The need for overall efficiency in providing results is now given the same importance as accuracy. This means that laboratories must be able to produce quality results in less time with the capacity to interpret the results clinically. To improve the clinical impact of microbiology results, the new challenge facing the microbiologist has become one of process management instead of pure analysis. A proper project management process designed to improve workflow, reduce analytical time, and provide the same high quality results without losing valuable time treating the patient, has become essential. Our objective was to study the impact of introducing automation and computerization into the microbiology laboratory, and the reorganization of the laboratory workflow, i.e. scheduling personnel to work shifts covering both the entire day and the entire week. In our laboratory, the introduction of automation and computerization, as well as the reorganization of personnel, thus the workflow itself, has resulted in an improvement in response time and greater efficiency in diagnostic procedures.

  14. Antimicrobial Stewardship: How the Microbiology Laboratory Can Right the Ship.

    PubMed

    Morency-Potvin, Philippe; Schwartz, David N; Weinstein, Robert A

    2017-01-01

    Antimicrobial stewardship is a bundle of integrated interventions employed to optimize the use of antimicrobials in health care settings. While infectious-disease-trained physicians, with clinical pharmacists, are considered the main leaders of antimicrobial stewardship programs, clinical microbiologists can play a key role in these programs. This review is intended to provide a comprehensive discussion of the different components of antimicrobial stewardship in which microbiology laboratories and clinical microbiologists can make significant contributions, including cumulative antimicrobial susceptibility reports, enhanced culture and susceptibility reports, guidance in the preanalytic phase, rapid diagnostic test availability, provider education, and alert and surveillance systems. In reviewing this material, we emphasize how the rapid, and especially the recent, evolution of clinical microbiology has reinforced the importance of clinical microbiologists' collaboration with antimicrobial stewardship programs. Copyright © 2016 American Society for Microbiology.

  15. Introduction to Biological Research: A Laboratory Course in Microbiology

    ERIC Educational Resources Information Center

    Dudley, Aimee M.; Cardozo, David Lopes

    2006-01-01

    In this paper, the authors describe their development of an introductory laboratory course in microbiology that is geared towards students in grades 8-10. The course was developed as part of the Mentoring for Science Program at Harvard Medical School, an outreach program created by the Minority Faculty Development Program, directed towards…

  16. Clinical microbiology informatics.

    PubMed

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Candida bloodstream infection: a clinical microbiology laboratory perspective.

    PubMed

    Pongrácz, Júlia; Kristóf, Katalin

    2014-09-01

    The incidence of Candida bloodstream infection (BSI) has been on the rise in several countries worldwide. Species distribution is changing; an increase in the percentage of non-albicans species, mainly fluconazole non-susceptible C. glabrata was reported. Existing microbiology diagnostic methods lack sensitivity, and new methods need to be developed or further evaluation for routine application is necessary. Although reliable, standardized methods for antifungal susceptibility testing are available, the determination of clinical breakpoints remains challenging. Correct species identification is important and provides information on the intrinsic susceptibility profile of the isolate. Currently, acquired resistance in clinical Candida isolates is rare, but reports indicate that it could be an issue in the future. The role of the clinical microbiology laboratory is to isolate and correctly identify the infective agent and provide relevant and reliable susceptibility data as soon as possible to guide antifungal therapy.

  18. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  19. An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory

    ERIC Educational Resources Information Center

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A.; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience…

  20. Burkholderia pseudomallei: Challenges for the Clinical Microbiology Laboratory.

    PubMed

    Hemarajata, Peera; Baghdadi, Jonathan D; Hoffman, Risa; Humphries, Romney M

    2016-12-01

    Melioidosis is a potentially fatal infection caused by the bacterium Burkholderia pseudomallei Clinical diagnosis of melioidosis can be challenging since there is no pathognomonic clinical syndrome, and the organism is often misidentified by methods used routinely in clinical laboratories. Although the disease is more prevalent in Thailand and northern Australia, sporadic cases may be encountered in areas where it is not endemic, including the United States. Since the organism is considered a tier 1 select agent according to the Centers for Disease Control and Prevention and the U.S. Department of Agriculture Animal and Plant Health Inspection Service, clinical laboratories must be proficient at rapidly recognizing isolates suspicious for B. pseudomallei, be able to safely perform necessary rule-out tests, and to refer suspect isolates to Laboratory Response Network reference laboratories. In this minireview, we report a case of melioidosis encountered at our institution and discuss the laboratory challenges encountered when dealing with clinical isolates suspicious for B. pseudomallei or clinical specimens from suspected melioidosis cases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Audit of Helicobacter pylori Testing in Microbiology Laboratories in England: To Inform Compliance with NICE Guidance and the Feasibility of Routine Antimicrobial Resistance Surveillance

    PubMed Central

    Allison, Rosalie; Lecky, Donna M.; Bull, Megan; Turner, Kim; Godbole, Gauri

    2016-01-01

    Introduction. The National Institute for Health and Clinical Excellence (NICE) guidance recommends that dyspeptic patients are tested for Helicobacter pylori using a urea breath test, stool antigen test, or serology. Antibiotic resistance in H. pylori is globally increasing, but treatment in England is rarely guided by susceptibility testing or surveillance. Aims. To determine compliance of microbiology laboratories in England with NICE guidance and whether laboratories perform culture and antibiotic susceptibility testing (AST). Methods. In 2015, 170 accredited English microbiology laboratories were surveyed, by email. Results. 121/170 (71%) laboratories responded; 96% provided H. pylori testing (78% on site). 94% provided H. pylori diagnosis using stool antigen; only four provided serology as their noninvasive test; 3/4 of these encouraged urea breath tests in their acute trusts. Only 22/94 (23%) of the laboratories performed H. pylori cultures from gastric biopsies on site; 9/22 performed AST, but the vast majority processed less than one specimen/week. Conclusions. Only five laboratories in England do not comply with NICE guidance; these will need the guidance reinforced. National surveillance needs to be implemented; culture-based AST would need to be centralised. Moving forward, detection of resistance in H. pylori from stool specimens using molecular methods (PCR) needs to be explored. PMID:27829836

  2. A model for consolidation of clinical microbiology laboratory services within a multihospital health-care system.

    PubMed

    Carter, Elliot; Stubbs, James R; Bennett, Betsy

    2004-01-01

    To determine the cost-effectiveness of consolidating clinical microbiology services in a three-hospital health-care network while maintaining high-quality laboratory services, a retrospective review of the total costs of maintaining separate clinical microbiology laboratories within our health-care system was compared to the cost of providing these services after consolidation. Turnaround times before and after consolidation were compared to assess efficiency of the consolidated services. Input of clinicians was also solicited to ensure that quality of services and customer satisfaction remained high. The results of the consolidation project show that the net fiscal saving because of consolidation of clinical microbiology services within our health-care system will be approximately 100,000 dollars per fiscal year. This value includes increased courier charges as well as personnel savings. Although fiscal savings are an integral part of any laboratory consolidation plan, the financial considerations must be balanced by quality of service. The response to consolidation from clinicians was decidedly mixed before implementation of the plan because of fear of increased turnaround times and limited access to laboratory information. The consolidation process, however, was smooth with few physician complaints. The consolidation of our clinical microbiology services illustrates that significant financial savings can be achieved without compromise of efficiency or quality of service.

  3. Bioterrorism and the Role of the Clinical Microbiology Laboratory

    PubMed Central

    2015-01-01

    SUMMARY Regular review of the management of bioterrorism is essential for maintaining readiness for these sporadically occurring events. This review provides an overview of the history of biological disasters and bioterrorism. I also discuss the recent recategorization of tier 1 agents by the U.S. Department of Health and Human Services, the Laboratory Response Network (LRN), and specific training and readiness processes and programs, such as the College of American Pathologists (CAP) Laboratory Preparedness Exercise (LPX). LPX examined the management of cultivable bacterial vaccine and attenuated strains of tier 1 agents or close mimics. In the LPX program, participating laboratories showed improvement in the level of diagnosis required and referral of isolates to an appropriate reference laboratory. Agents which proved difficult to manage in sentinel laboratories included the more fastidious Gram-negative organisms, especially Francisella tularensis and Burkholderia spp. The recent Ebola hemorrhagic fever epidemic provided a check on LRN safety processes. Specific guidelines and recommendations for laboratory safety and risk assessment in the clinical microbiology are explored so that sentinel laboratories can better prepare for the next biological disaster. PMID:26656673

  4. Automation in Clinical Microbiology

    PubMed Central

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  5. Adoption of Lean Principles in a High-Volume Molecular Diagnostic Microbiology Laboratory

    PubMed Central

    Mitchell, P. Shawn; Mandrekar, Jayawant N.

    2014-01-01

    Clinical laboratories are constantly facing challenges to do more with less, enhance quality, improve test turnaround time, and reduce operational expenses. Experience with adopting and applying lean concepts and tools used extensively in the manufacturing industry is described for a high-volume clinical molecular microbiology laboratory, illustrating how operational success and benefits can be achieved. PMID:24829247

  6. MALDI-TOF MS in the Microbiology Laboratory: Current Trends.

    PubMed

    Schubert, Sören; Kostrzewa, Markus

    2017-01-01

    Within less than a decade matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a gold standard for microbial identification in clinical microbiology laboratories. Besides identification of microorganisms the typing of single strains as well as the antibiotic and antimycotic resistance testing has come into focus in order to speed up the microbiological diagnostic. However, the full potential of MALDI-TOF MS has not been tapped yet and future technological advancements will certainly expedite this method towards novel applications and enhancement of current practice. So, the following chapter shall be rather a brainstorming and forecast of how MALDI-TOF MS will develop to influence clinical diagnostics and microbial research in the future. It shall open up the stage for further discussions and does not claim for overall validity.

  7. Medical microbiology: laboratory diagnosis of invasive pneumococcal disease.

    PubMed

    Werno, Anja M; Murdoch, David R

    2008-03-15

    The laboratory diagnosis of invasive pneumococcal disease (IPD) continues to rely on culture-based methods that have been used for many decades. The most significant recent developments have occurred with antigen detection assays, whereas the role of nucleic acid amplification tests has yet to be fully clarified. Despite developments in laboratory diagnostics, a microbiological diagnosis is still not made in most cases of IPD, particularly for pneumococcal pneumonia. The limitations of existing diagnostic tests impact the ability to obtain accurate IPD burden data and to assess the effectiveness of control measures, such as vaccination, in addition to the ability to diagnose IPD in individual patients. There is an urgent need for improved diagnostic tests for pneumococcal disease--especially tests that are suitable for use in underresourced countries.

  8. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  9. Microbiological Laboratory Hazard of Bearded Men

    PubMed Central

    Barbeito, Manuel S.; Mathews, Charles T.; Taylor, Larry A.

    1967-01-01

    An investigation was conducted to evaluate the hypothesis that a bearded man subjects his family and friends to risk of infection if his beard is contaminated by infectious microorganisms while he is working in a microbiological laboratory. Bearded and unbearded men were tested with Serratia marcescens and Bacillus subtilis var. niger. Contact aerosol transmission from a contaminated beard on a mannequin to a suitable host was evaluated with both Newcastle disease virus and Clostridium botulinum toxin, type A. The experiments showed that beards retained microorganisms and toxin despite washing with soap and water. Although washing reduced the amount of virus or toxin, a sufficient amount remained to produce disease upon contact with a suitable host. Images Fig. 1 Fig. 2 Fig. 3 PMID:4963447

  10. Guidelines to implement quality management systems in microbiology laboratories for tissue banking.

    PubMed

    Vicentino, W; Rodríguez, G; Saldías, M; Alvarez, I

    2009-10-01

    Human tissues for implants are a biomedical product that is being used more frequently by many medical disciplines. There are infections in the patients related to the implanted tissues. The early detection of infections transmitted by blood and the microbiological study of tissues before their clinical use are strategies in tissue banks to prevent these situations. This work sought to contribute to establish the bases for the operation of a laboratory applied to the microbiological quality control of tissues. Based on classical microbiological principles, we defined the operation of microbiological control and tissues sterilization since 2003. We determine lists of acceptable microorganisms for every tissue, criteria for the interpretation of results, and a diagnostic algorithm of microbiological quality. We observed that the circumstances of donor death can be a determinant of the quality. The environment and the operator should be investigated as probable sources of contamination in outbreaks. The criteria of work based on a solid methodology must help to avoid the transmission of infections between donor and recipient. This is a critical point in the quality management of a tissue bank.

  11. Twenty-first-century medical microbiology services in the UK.

    PubMed

    Duerden, Brian

    2005-12-01

    With infection once again a high priority for the UK National Health Service (NHS), the medical microbiology and infection-control services require increased technology resources and more multidisciplinary staff. Clinical care and health protection need a coordinated network of microbiology services working to consistent standards, provided locally by NHS Trusts and supported by the regional expertise and national reference laboratories of the new Health Protection Agency. Here, I outline my thoughts on the need for these new resources and the ways in which clinical microbiology services in the UK can best meet the demands of the twenty-first century.

  12. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories.

    PubMed

    Gargis, Amy S; Kalman, Lisa; Lubin, Ira M

    2016-12-01

    Clinical microbiology and public health laboratories are beginning to utilize next-generation sequencing (NGS) for a range of applications. This technology has the potential to transform the field by providing approaches that will complement, or even replace, many conventional laboratory tests. While the benefits of NGS are significant, the complexities of these assays require an evolving set of standards to ensure testing quality. Regulatory and accreditation requirements, professional guidelines, and best practices that help ensure the quality of NGS-based tests are emerging. This review highlights currently available standards and guidelines for the implementation of NGS in the clinical and public health laboratory setting, and it includes considerations for NGS test validation, quality control procedures, proficiency testing, and reference materials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Description of the MHS Health Level 7 Microbiology Laboratory for Public Health Surveillance

    DTIC Science & Technology

    2012-10-01

    included, among others, respiratory infections (e.g., pandemic influenza, pertussis), skin and soft tissue infections (e.g., methicillin resistant ... Staphylococcus aureus ) and gastrointestinal infections (e.g., salmonellosis, norovirus). Positive microbiology results can be matched with outpatient or... Staphylococcus aureus . Laboratory Test Result Due to the structure of the laboratory data, results could be identified across multiple variables and

  14. Improved Sepsis Alert With a Telephone Call From the Clinical Microbiology Laboratory

    PubMed Central

    Bunsow, Eleonora; Vecchio, Marcela González-Del; Sanchez, Carlos; Muñoz, Patricia; Burillo, Almudena; Bouza, Emilio

    2015-01-01

    Abstract Early sepsis attention is a standard of care in many institutions and the role of different specialists is well recognized. However, the impact of a telephone call from a specialist in Clinical Microbiology upon blood cultures request has not been assessed to the best of our knowledge. We performed telephone calls followed by an interview with physicians and nurses in charge of adult patients (> 18 years old) whose blood cultures had just been received in the Microbiology Laboratory in a tertiary hospital. Patients were randomly classified in 2 different groups: group A (telephone call performed) and group B (no telephone call). At the end of the telephonic intervention, recommendations on the use of microbiology and biochemical tests as well as on the management and antibiotic therapy of sepsis were made if required. We included 300 patients. Of those fulfilling standard criteria of sepsis, 30.3% of the nurses and 50% of the physicians immediately recognized it. Advice to optimize the use of biochemical and microbiological tests was provided in 36% of the cases and to improve antimicrobial therapy in 57.6%. The median number of days of antibiotic use in groups A and B were, respectively, 6 days (IQR: 2–12) vs 9 days (IQR: 4–16) P = 0.008 and the median number of prescribed daily doses of antimicrobials (6 [IQR: 3–17] vs 10 [IQR: 5–22] P = 0.016) were lower in group A. We estimate a reduction, only in the use of antibiotic, of 1.8 million Euros per year. A telephone call with management advice, immediately after the arrival of blood cultures in the Microbiology Laboratory improves the recognition of sepsis and the use of diagnostic resources and reduces antimicrobial consumption and expenses. PMID:26426609

  15. Evaluation of Iranian microbiology laboratories for identification of etiologic agents of bacterial meningitidis. Survey results of an external quality assessment scheme (EQAS) programme.

    PubMed

    Marandi, Farinaz Rashed; Rahbar, Mohammad; Sabourian, Roghieh; Saremi, Mahnaz

    2010-01-01

    To determine the ability of Iranian microbiology laboratories for identification and susceptibility testing of Streptococcus pneumoniae and Haemophilus influenzae as causative agents of bacterial meningitides. Two strains of bacteria including Haemophilus influenzae and Streptococcus pneumoniae as a common causative agents of meningitides were chosen and coded as strain number 1 and number 2. The strains were distributed among 679 microbiology laboratories. All laboratories were requested for identification of each unknown microorganism and susceptibility testing of S. pneumoniae against five commonly used antibiotics. Of 679 microbiology laboratories 310 (46%) laboratories participated in the survey and among these, 258 laboratories completely identified S. pneumoniae. About 85% laboratories produced correct susceptibility testing against oxacillin, erythromycin, tetracycline, and vancomycin. Of 310 received responses only 50 laboratories identified H. influenza correctly. The majority of the laboratories did not have the capacity to identification H. influenza. Microbiology laboratories in our country are qualified for identification and susceptibility testing of S. pneumoniae. However, majority of laboratories are not qualified for identification of H. influenzae.

  16. 78 FR 4830 - National Advisory Committee on Microbiological Criteria for Foods; Reestablishment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... DEPARTMENT OF AGRICULTURE Food Safety and Inspection Service [Docket No. FSIS-2012-0040] National Advisory Committee on Microbiological Criteria for Foods; Reestablishment AGENCY: Food Safety and... Committee on Microbiological Criteria for Foods (NACMCF). The Committee is being reestablished in...

  17. Antimicrobial Stewardship: How the Microbiology Laboratory Can Right the Ship

    PubMed Central

    Schwartz, David N.; Weinstein, Robert A.

    2016-01-01

    SUMMARY Antimicrobial stewardship is a bundle of integrated interventions employed to optimize the use of antimicrobials in health care settings. While infectious-disease-trained physicians, with clinical pharmacists, are considered the main leaders of antimicrobial stewardship programs, clinical microbiologists can play a key role in these programs. This review is intended to provide a comprehensive discussion of the different components of antimicrobial stewardship in which microbiology laboratories and clinical microbiologists can make significant contributions, including cumulative antimicrobial susceptibility reports, enhanced culture and susceptibility reports, guidance in the preanalytic phase, rapid diagnostic test availability, provider education, and alert and surveillance systems. In reviewing this material, we emphasize how the rapid, and especially the recent, evolution of clinical microbiology has reinforced the importance of clinical microbiologists' collaboration with antimicrobial stewardship programs. PMID:27974411

  18. Compliance of clinical microbiology laboratories in the United States with current recommendations for processing respiratory tract specimens from patients with cystic fibrosis.

    PubMed

    Zhou, Juyan; Garber, Elizabeth; Desai, Manisha; Saiman, Lisa

    2006-04-01

    Respiratory tract specimens from patients with cystic fibrosis (CF) require unique processing by clinical microbiology laboratories to ensure detection of all potential pathogens. The present study sought to determine the compliance of microbiology laboratories in the United States with recently published recommendations for CF respiratory specimens. Microbiology laboratory protocols from 150 of 190 (79%) CF care sites were reviewed. Most described the use of selective media for Burkholderia cepacia complex (99%), Staphylococcus aureus (82%), and Haemophilus influenzae (89%) and identified the species of all gram-negative bacilli (87%). Only 52% delineated the use of agar diffusion assays for susceptibility testing of Pseudomonas aeruginosa. Standardizing laboratory practices will improve treatment, infection control, and our understanding of the changing epidemiology of CF microbiology.

  19. [Medical supports for the diagnosis of infectious diseases; the role and responsibilities of clinical pathologist and microbiology technologist. Acute purulent meningitis; the position of the technologists in microbiology laboratory].

    PubMed

    Misawa, Shigeki

    2002-07-01

    The features and limitations of microbiology processes for the diagnosis of bacterial meningitis were summarized. Requests for physicians were also emphasized. The microbiology laboratory should be responsible for providing highly reliable and concordant data with a variety of clinical settings. Technologists in a microbiology laboratory should perform following subjects: i) Direct smear examination: Presumptive identification by the observers with abundant experience and sufficient training. ii) Rapid bacterial antigen detection tests: Active utilize alone in combination with the direct microscopy. iii) Culture: Cost effective utilize for appropriate media and culture condition based on the bacteriological statistics. Report with bacteriological interpretations and with additional proper comments, if necessary. iv) Antimicrobial susceptibility tests: Determination of penicillin resistance among the strains of penicillin-resistant or-intermediate Streptococcus pneumoniae (PI or PRSP) should be confirmed by MIC procedures; Detection of beta-lactamase producing Haemophilus influenzae (BLP) could detect by beta-lactamase tests, but not clearly identify for beta-lactamase-negative ampicillin-resistant isolates (BLNAR). In addition, a laboratory should provide appropriate information by using the accumulated routine clinical microbiology data, which may help to physicians in selecting an empiric therapy and to the microbiology technologists in processing the routine microbiology. In recent status, the most common organisms isolated from patients with bacterial meningitis continue to be S. pneumoniae and H. influenzae. Among S. pneumoniae strains, penicillin-intermediate(PISP) and--resistant(PRSP) strains had exceeded 50%, and the strains of beta-lactamase producing H. influenzae (BLP) had decreased with less than 10% and beta-lactamase negative ampicillin-resistant strains (BLNAR) have increasing. To providing rapid and accurate results, a laboratory should require the

  20. The role of the microbiology laboratory in guiding formulary decisions.

    PubMed

    Stratton, C W

    1988-08-01

    Typically, P & T Committee antibiotic selection criteria have included such factors as cost, pharmacokinetics, side effects profile, spectrum of activity, and relative activity against specific pathogens. The microbiology laboratory can provide the P & T Committee with other useful information to help guide them in making even more appropriate and cost-effective formulary decisions. This information includes specific susceptibility data (including prevalence of pathogens, source of infection [community or nosocomial], anatomical site of isolates, specific unit or service where isolated, type of culture specimen, total number of pathogens in the hospital), resistance trends data, an evaluation of microbiologic data presented in published studies, further data regarding an antimicrobial's spectrum of activity and activity against specific pathogens, and the relevance and limitations of in vitro data. With this information in hand, P & T Committee should be in a much better position to optimize formulary decision-making.

  1. Transformation From a Conventional Clinical Microbiology Laboratory to Full Automation.

    PubMed

    Moreno-Camacho, José L; Calva-Espinosa, Diana Y; Leal-Leyva, Yoseli Y; Elizalde-Olivas, Dolores C; Campos-Romero, Abraham; Alcántar-Fernández, Jonathan

    2017-12-22

    To validate the performance, reproducibility, and reliability of BD automated instruments in order to establish a fully automated clinical microbiology laboratory. We used control strains and clinical samples to assess the accuracy, reproducibility, and reliability of the BD Kiestra WCA, the BD Phoenix, and BD Bruker MALDI-Biotyper instruments and compared them to previously established conventional methods. The following processes were evaluated: sample inoculation and spreading, colony counts, sorting of cultures, antibiotic susceptibility test, and microbial identification. The BD Kiestra recovered single colonies in less time than conventional methods (e.g. E. coli, 7h vs 10h, respectively) and agreement between both methodologies was excellent for colony counts (κ=0.824) and sorting cultures (κ=0.821). Antibiotic susceptibility tests performed with BD Phoenix and disk diffusion demonstrated 96.3% agreement with both methods. Finally, we compared microbial identification in BD Phoenix and Bruker MALDI-Biotyper and observed perfect agreement (κ=1) and identification at a species level for control strains. Together these instruments allow us to process clinical urine samples in 36h (effective time). The BD automated technologies have improved performance compared with conventional methods, and are suitable for its implementation in very busy microbiology laboratories. © American Society for Clinical Pathology 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Use of a Digital Camera To Document Student Observations in a Microbiology Laboratory Class.

    ERIC Educational Resources Information Center

    Mills, David A.; Kelley, Kevin; Jones, Michael

    2001-01-01

    Points out the lack of microscopic images of wine-related microbes. Uses a digital camera during a wine microbiology laboratory to capture student-generated microscope images. Discusses the advantages of using a digital camera in a teaching lab. (YDS)

  3. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    PubMed

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  4. Assessing Clinical Microbiology Practice Guidelines: American Society for Microbiology Ad Hoc Committee on Evidence-Based Laboratory Medicine Practice Guidelines Assessment.

    PubMed

    Nachamkin, Irving; Kirn, Thomas J; Westblade, Lars F; Humphries, Romney

    2017-11-01

    As part of the American Society for Microbiology (ASM) Evidence-Based Laboratory Medicine Practice Guidelines Committee of the Professional Practice Committee, an ad hoc committee was formed in 2014 to assess guidelines published by the committee using an assessment tool, Appraisal of Guidelines for Research Evaluation II (AGREE II). The AGREE II assessment helps reviewers determine whether published guidelines are robust, transparent, and clear in presenting practice recommendations in a standardized manner. Identifying strengths and weaknesses of practice guidelines by ad hoc assessments helps with improving future guidelines through the participation of key stakeholders. This minireview describes the development of the ad hoc committee and results from their review of several ASM best practices guidelines and a non-ASM practice guideline from the Emergency Nurses Association. Copyright © 2017 American Society for Microbiology.

  5. Salmonella typhimurium infections associated with a community college microbiology laboratory--Maine, 2013.

    PubMed

    2013-11-01

    On May 2, 2013, a case of salmonellosis was reported to the Maine Center for Disease Control and Prevention. The patient reported symptoms of diarrhea, fever, abdominal pain, and nausea, after attending a community college microbiology laboratory class. A second case was reported on May 8. Epidemiologic interviews conducted with both patients indicated common exposure at a community college, including one patient specifically naming the other patient.

  6. [Funding for Division of Microbiology in 2014 by National Natural Science Foundation of China].

    PubMed

    Qiao, Jianjun; Huang, Chenyang; Liu, Lin; Wen, Mingzhang

    2015-02-04

    In this paper, we provided an overview of proposals submitted and projects funded in 2014 at the Division of Microbiology, Department of Life Sciences, National Natural Science Foundation of China. The traits and problems in different sub-disciplines were analyzed, the background, results and analysis of internet voting before panel meetings in Microbiology discipline were also introduced. The information will provide references for Chinese researchers to apply funding in microbiology discipline in the future.

  7. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology.

    PubMed

    Rossen, J W A; Friedrich, A W; Moran-Gilad, J

    2018-04-01

    Next generation sequencing (NGS) is increasingly being used in clinical microbiology. Like every new technology adopted in microbiology, the integration of NGS into clinical and routine workflows must be carefully managed. To review the practical aspects of implementing bacterial whole genome sequencing (WGS) in routine diagnostic laboratories. Review of the literature and expert opinion. In this review, we discuss when and how to integrate whole genome sequencing (WGS) in the routine workflow of the clinical laboratory. In addition, as the microbiology laboratories have to adhere to various national and international regulations and criteria for their accreditation, we deliberate on quality control issues for using WGS in microbiology, including the importance of proficiency testing. Furthermore, the current and future place of this technology in the diagnostic hierarchy of microbiology is described as well as the necessity of maintaining backwards compatibility with already established methods. Finally, we speculate on the question of whether WGS can entirely replace routine microbiology in the future and the tension between the fact that most sequencers are designed to process multiple samples in parallel whereas for optimal diagnosis a one-by-one processing of the samples is preferred. Special reference is made to the cost and turnaround time of WGS in diagnostic laboratories. Further development is required to improve the workflow for WGS, in particular to shorten the turnaround time, reduce costs, and streamline downstream data analyses. Only when these processes reach maturity will reliance on WGS for routine patient management and infection control management become feasible, enabling the transformation of clinical microbiology into a genome-based and personalized diagnostic field. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Laboratory-acquired brucellosis: a Spanish national survey.

    PubMed

    Bouza, E; Sánchez-Carrillo, C; Hernangómez, S; González, M José

    2005-09-01

    A retrospective postal survey was carried out among 1240 clinical microbiology laboratory workers in Spain. Overall, 75 (43 microbiologists and 32 technicians) had suffered from laboratory-acquired brucellosis (LAB). Considering the total number of replies (N=628), the rate of LAB was 11.9%. The risk of suffering from LAB was clearly related to the number of isolates of Brucella spp. per year. A major break in biosafety measures was recognized in 60 cases (80%). In nine cases, processing was considered to be secure, and in six cases, the source of infection was unknown. Diagnosis was based on serology in all cases. In 51 cases (68%), blood cultures confirmed diagnosis. A variety of regimens were used to treat the 75 LAB cases. The combination of tetracycline and streptomycin was the most commonly used regimen (in 35 patients), followed by the combination of tetracycline and rifampicin (in 19 cases). Only 10 patients (13.3%) suffered from complications. No differences in resolution were observed according to the antimicrobial regimen. Microbiological laboratory workers are still at risk of developing LAB. Improvements in safety seem to be the best means of

  9. Improved Sepsis Alert With a Telephone Call From the Clinical Microbiology Laboratory: A Clinical Trial.

    PubMed

    Bunsow, Eleonora; González-Del Vecchio, Marcela; Sanchez, Carlos; Muñoz, Patricia; Burillo, Almudena; Bouza, Emilio

    2015-09-01

    Early sepsis attention is a standard of care in many institutions and the role of different specialists is well recognized. However, the impact of a telephone call from a specialist in Clinical Microbiology upon blood cultures request has not been assessed to the best of our knowledge. We performed telephone calls followed by an interview with physicians and nurses in charge of adult patients (> 18 years old) whose blood cultures had just been received in the Microbiology Laboratory in a tertiary hospital. Patients were randomly classified in 2 different groups: group A (telephone call performed) and group B (no telephone call). At the end of the telephonic intervention, recommendations on the use of microbiology and biochemical tests as well as on the management and antibiotic therapy of sepsis were made if required. We included 300 patients. Of those fulfilling standard criteria of sepsis, 30.3% of the nurses and 50% of the physicians immediately recognized it. Advice to optimize the use of biochemical and microbiological tests was provided in 36% of the cases and to improve antimicrobial therapy in 57.6%. The median number of days of antibiotic use in groups A and B were, respectively, 6 days (IQR: 2-12) vs 9 days (IQR: 4-16) P = 0.008 and the median number of prescribed daily doses of antimicrobials (6 [IQR: 3-17] vs 10 [IQR: 5-22] P = 0.016) were lower in group A. We estimate a reduction, only in the use of antibiotic, of 1.8 million Euros per year. A telephone call with management advice, immediately after the arrival of blood cultures in the Microbiology Laboratory improves the recognition of sepsis and the use of diagnostic resources and reduces antimicrobial consumption and expenses.

  10. Promoting science for all by way of student interest in a transformative undergraduate microbiology laboratory for nonmajors.

    PubMed

    Marbach-Ad, Gili; McGinnis, J Randy; Dai, Amy H; Pease, Rebecca; Schalk, Kelly A; Benson, Spencer

    2009-01-01

    In this study, we investigated a pedagogical innovation in an undergraduate microbiology course, Microbes and Society, for non-microbiology majors and education majors. The aim was to improve students' understanding by connecting their science experience to their areas of interest. Based on this idea of teaching, we redesigned the laboratory portion of a microbiology course. We had students in the laboratory component choose their areas of interest and use the areas as a framework for understanding science and how it influences and shapes the world around them. This course was part of a longitudinal project (Project Nexus) which prepares, supports, and sustains upper elementary and middle-level specialist science teachers. We used a battery of data collection instruments. We analyzed all data in several dimensions including using active-learning techniques, forming linkages between science and teaching, and connecting science and society. Our hypothesis was that we could promote science for all by connecting the diverse students' areas of interest in science to the laboratory's curriculum. We assessed the success of achieving our goal by using researchers' observations, the instructors' perspectives, and students' feedback. Our findings suggested that this course was appreciated by the students, especially education majors, who recognized the innovations as engaging and worthwhile.

  11. Overview and challenges of molecular technologies in the veterinary microbiology laboratory.

    PubMed

    Cunha, Mónica V; Inácio, João

    2015-01-01

    Terrestrial, aquatic, and aerial animals, either domestic or wild, humans, and plants all face similar health threats caused by infectious agents. Multifaceted anthropic pressure caused by an increasingly growing and resource-demanding human population has affected biodiversity at all scales, from the DNA molecule to the pathogen, to the ecosystem level, leading to species declines and extinctions and, also, to host-pathogen coevolution processes. Technological developments over the last century have also led to quantic jumps in laboratorial testing that have highly impacted animal health and welfare, ameliorated animal management and animal trade, safeguarded public health, and ultimately helped to "secure" biodiversity. In particular, the field of molecular diagnostics experienced tremendous technical progresses over the last two decades that significantly have contributed to our ability to study microbial pathogens in the clinical and research laboratories. This chapter highlights the strengths, weaknesses, opportunities, and threats (or challenges) of molecular technologies in the framework of a veterinary microbiology laboratory, in view of the latest advances.

  12. Contamination of the Clinical Microbiology Laboratory with Vancomycin-Resistant Enterococci and Multidrug- Resistant Enterobacteriaceae: Implications for Hospital and Laboratory Workers

    PubMed Central

    Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.

    2001-01-01

    We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615

  13. PCR identification of bacteria in blood culture does not fit the daily workflow of a routine microbiology laboratory.

    PubMed

    Karumaa, Santra; Kärpänoja, Pauliina; Sarkkinen, Hannu

    2012-03-01

    We have evaluated the GenoType blood culture assay (Hain Lifescience, Nehren, Germany) for the identification of bacteria in 233 positive blood cultures and assessed its suitability in the workflow of a routine microbiology laboratory. In 68/233 (29.2%) samples, the culture result could not be confirmed by the GenoType assay due to a lack of primers in the test, multiple organisms in the sample, or inconsistency with respect to the identification by culture. Although the GenoType blood culture assay gives satisfactory results for bacteria for which primers are available, there are difficulties in applying the test in the routine microbiology laboratory.

  14. Advances Afoot in Microbiology.

    PubMed

    Patel, Robin; Karon, Brad S

    2017-07-01

    In 2016, the American Academy of Microbiology convened a colloquium to examine point-of-care (POC) microbiology testing and to evaluate its effects on clinical microbiology. Colloquium participants included representatives from clinical microbiology laboratories, industry, and the government, who together made recommendations regarding the implementation, oversight, and evaluation of POC microbiology testing. The colloquium report is timely and well written (V. Dolen et al., Changing Diagnostic Paradigms for Microbiology , 2017, https://www.asm.org/index.php/colloquium-reports/item/6421-changing-diagnostic-paradigms-for-microbiology?utm_source=Commentary&utm_medium=referral&utm_campaign=diagnostics). Emerging POC microbiology tests, especially nucleic acid amplification tests, have the potential to advance medical care. Copyright © 2017 American Society for Microbiology.

  15. Outbreak Investigation Using High-Throughput Genome Sequencing within a Diagnostic Microbiology Laboratory

    PubMed Central

    Sherry, Norelle L.; Porter, Jessica L.; Seemann, Torsten; Watkins, Andrew; Stinear, Timothy P.

    2013-01-01

    Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the blaCTX-M-15 extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to

  16. Advances Afoot in Microbiology

    PubMed Central

    Karon, Brad S.

    2017-01-01

    ABSTRACT In 2016, the American Academy of Microbiology convened a colloquium to examine point-of-care (POC) microbiology testing and to evaluate its effects on clinical microbiology. Colloquium participants included representatives from clinical microbiology laboratories, industry, and the government, who together made recommendations regarding the implementation, oversight, and evaluation of POC microbiology testing. The colloquium report is timely and well written (V. Dolen et al., Changing Diagnostic Paradigms for Microbiology, 2017, https://www.asm.org/index.php/colloquium-reports/item/6421-changing-diagnostic-paradigms-for-microbiology?utm_source=Commentary&utm_medium=referral&utm_campaign=diagnostics). Emerging POC microbiology tests, especially nucleic acid amplification tests, have the potential to advance medical care. PMID:28539341

  17. Analytical performances of food microbiology laboratories - critical analysis of 7 years of proficiency testing results.

    PubMed

    Abdel Massih, M; Planchon, V; Polet, M; Dierick, K; Mahillon, J

    2016-02-01

    Based on the results of 19 food microbiology proficiency testing (PT) schemes, this study aimed to assess the laboratory performances, to highlight the main sources of unsatisfactory analytical results and to suggest areas of improvement. The 2009-2015 results of REQUASUD and IPH PT, involving a total of 48 laboratories, were analysed. On average, the laboratories failed to detect or enumerate foodborne pathogens in 3·0% of the tests. Thanks to a close collaboration with the PT participants, the causes of outliers could be identified in 74% of the cases. The main causes of erroneous PT results were either pre-analytical (handling of the samples, timing of analysis), analytical (unsuitable methods, confusion of samples, errors in colony counting or confirmation) or postanalytical mistakes (calculation and encoding of results). PT schemes are a privileged observation post to highlight analytical problems, which would otherwise remain unnoticed. In this perspective, this comprehensive study of PT results provides insight into the sources of systematic errors encountered during the analyses. This study draws the attention of the laboratories to the main causes of analytical errors and suggests practical solutions to avoid them, in an educational purpose. The observations support the hypothesis that regular participation to PT, when followed by feed-back and appropriate corrective actions, can play a key role in quality improvement and provide more confidence in the laboratory testing results. © 2015 The Society for Applied Microbiology.

  18. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  19. [A rarely isolated bacterium in microbiology laboratories: Streptococcus uberis].

    PubMed

    Eryıldız, Canan; Bukavaz, Şebnem; Gürcan, Şaban; Hatipoğlu, Osman

    2017-04-01

    Streptococcus uberis is a gram-positive bacterium that is mostly responsible for mastitis in cattle. The bacterium rarely has been associated with human infections. Conventional phenotyphic methods can be inadequate for the identification of S.uberis; and in microbiology laboratories S.uberis is confused with the other streptococci and enterococci isolates. Recently, molecular methods are recommended for the accurate identification of S.uberis isolates. The aim of this report is to present a lower respiratory tract infection case caused by S.uberis and the microbiological methods for identification of this bacterium. A 66-year-old male patient with squamous cell lung cancer who received radiotherapy was admitted in our hospital for the control. According to the chest X-Ray, patient was hospitalized with the prediagnosis of ''cavitary tumor, pulmonary abscess''. In the first day of the hospitalization, blood and sputum cultures were drawn. Blood culture was negative, however, Candida albicans was isolated in the sputum culture and it was estimated to be due to oral lesions. After two weeks from the hospitalization, sputum sample was taken from the patient since he had abnormal respiratory sounds and cough complaint. In the Gram stained smear of the sputum there were abundant leucocytes and gram-positive cocci, and S.uberis was isolated in both 5% sheep blood and chocolate agar media. Bacterial identification and antibiotic susceptibility tests were performed by VITEK 2 (Biomerieux, France) and also, the bacterium was identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) based VITEK MS system as S.uberis. The isolate was determined susceptible to ampicillin, erythromycin, clindamycin, levofloxacin, linezolid, penicillin, cefotaxime, ceftriaxone, tetracycline and vancomycin. 16S, 23S ribosomal RNA and 16S-23S intergenic spacer gene regions were amplified with specific primers and partial DNA sequence analysis of 16S

  20. About the Frederick National Laboratory for Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and currently operated by Leidos Biomedical Research, Inc. The laboratory addresses some of the most urge

  1. [The microbiology laboratory: a key participant in transplantation].

    PubMed

    Pérez, José L; Pumarola, Tomàs

    2007-04-01

    Together with organ rejection, infectious complications are still the most important cause of morbidity and mortality in organ transplant recipients. Many infectious complications have an exogenous origin, including those produced by organ-transmitted pathogens, whereas others are caused by latent microorganisms that become reactivated in the recipient. Accurate pre-transplantation assessment of the organ donor as well as the recipient can prevent some infectious complications or reduce their detrimental effects during the post-transplant period. A wide range of primary and opportunistic microorganisms can affect transplant recipients, and a detailed description of these pathogens is beyond the scope of this study. However, the importance of microbiology laboratories in centers with transplant programs and the need for integration and active participation of clinical microbiologists in multidisciplinary transplant teams should be emphasized. The work of these professionals is a key requisite to establish accurate diagnoses of infectious complications, which will benefit the patient and optimize the expenditure of resources.

  2. Resident training in microbiology.

    PubMed

    Haller, Barbara L

    2007-06-01

    To meet the challenges of diagnosis and management of infectious diseases, clinical pathology residents must receive comprehensive training in microbiology, learn to think critically, develop problem-solving skills, and take active roles as laboratory consultants. Residents well trained in clinical microbiology become capable laboratory professionals, developing cost-effective testing strategies, decreasing risk for medical errors, and improving patient care. Newer methods for diagnosing infectious disease, such as real-time polymerase chain reaction, microarrays for pathogen detection, and rapid assays for antigen or antibody detection, have become standard. Knowledge of infectious disease principles, drug therapeutic options, and drug resistance is also important. Suggestions for training and for assessing resident competency in clinical microbiology are presented.

  3. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  4. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  5. [THE CONDITION AND TENDENCIES OF DEVELOPMENT OF CLINICAL AND SANITARY MICROBIOLOGY IN THE RUSSIAN FEDERATION AND PROBLEM OF IMPORT SUBSTITUTION].

    PubMed

    Dyatlov, I A; Mironov, A Yu; Shepelin, A P; Aleshkin, V A

    2015-08-01

    The import substitution becomes one of the strategic tasks of national economy as a result of prolongation of economic sanctions concerning the Russian Federation of part of the USA, EU countries, Japan and number of other countries. It is not proper to be limited in import substitution only by goods because in conditions ofsanctions when access toforeign technologies is complicated Russia is needed to substitute foreign technologies by national designs in faster manner One of directions of effective import substitution is localization of production of laboratory equipment and consumables for clinical and sanitary microbiology on the territory ofthe Russian Federation and countries of Customs union. In Russia, in the field ofdiagnostic of dangerous and socially significant infections, all components for import substitution to implement gene diagnostic, immune diagnostic. bio-sensory and biochip approaches, isolation and storage of live microbial cultures, implementation of high-tech methods of diagnostic are available. At the same time, national diagnostic instrument-making industry for microbiology is factually absent. The few devices of national production more than on 50% consist of import components. The microbiological laboratories are to be equipped only with import devices of open type for applying national components. The most perspective national designs to be implemented are multiplex polimerase chain reaction test-systems and biochips on the basis of national plotters and readers. The modern development of diagnostic equipment and diagnostic instruments requires supplement of national collections of bacterial and viral pathogens and working-through of organizational schemes of supplying collections with strains. The presented data concerning justification of nomenclature of laboratory equipment and consumables permits to satisfy in fill scope the needs of clinical and sanitary microbiology in devices, growth mediums, consumables of national production

  6. [Clinical microbiology laboratory and imported parasitic diseases].

    PubMed

    Martín-Rabadán, Pablo; Martínez-Ruiz, Rocío; Cuadros, Juan; Cañavate, Carmen

    2010-12-01

    Imported parasitosis represents an increasingly frequent diagnostic challenge for microbiology laboratories. A surge in immigration and international travel has led to a rise in the number of imported cases of parasitosis, and this trend is expected to continue in the future. The present article addresses this challenge by reviewing recommended diagnostic approaches and tests. Currently, microscopy is always recommended when analysing blood samples for parasites. If malaria is suspected, rapid antigen testing (including at least HRP2 antigen) should also be performed. The work-up for suspected leishmaniasis should include serology, culture, and in selected cases detection of antigen in urine. In suspected Chagas disease, two different serological tests should be performed. PCR for blood protozoa is highly sensitive, although it cannot be used to rule out Chagas disease, since this condition may be present without parasitemia. Accurate diagnosis of intestinal amebiasis usually requires PCR or antigen detection tests. In helminthiasis, traditional microscopy may need to be complemented with other tests, such as agar plate culture for strongyloidiasis, Og4C3 antigen detection for bancroftian filariasis, and antibody detection test for filariasis and schistosomiasis. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  7. Perceptions of a medical microbiology service: a survey of laboratory users.

    PubMed Central

    Morgan, M S

    1995-01-01

    AIM--To ascertain the perception of laboratory users regarding the quality of the medical microbiology services in a district general hospital. METHODS--Detailed questionnaires were circulated to all clinicians in the locality, with headings covering the quality of medical advice provided, the availability of information on specimen collection, format of request forms, specimen transport arrangements, turnaround times, the quality and need for interpretative advice, and the overall impression of the quality of the services provided. RESULTS--Two hundred and thirty five replies were received, giving a response rate of 69%. Transportation of specimens and communication of reports were identified as priority areas for improvement. The overall quality of the service was perceived as satisfactory, although areas were identified where substantial improvements could be made, some at little or no cost to the laboratory. CONCLUSIONS--The survey focused clinicians' attention on the service, raised the profile of the laboratory, and resulted in improved communications and a better understanding of customer needs. Overall, the exercise was felt to be extremely useful, and worthwhile repeating to gauge the effect of the changes instituted as a result. PMID:8537489

  8. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    PubMed

    Makransky, Guido; Thisgaard, Malene Warming; Gadegaard, Helen

    2016-01-01

    To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment. The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology. Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  9. ["What an ideal clinical microbiological laboratory should be"--from the position of medical technologist].

    PubMed

    Nagasawa, M

    2000-01-01

    The evolution of the microbiology laboratory is necessary for correspondence to the transfiguration of infection and contribution to clinical applications. Especially, the correspondence of emergency tests such as smear strain and antigen detection, the report added value and the infection surveillance in team medical treatment are indispensable. Also, medical technologists need to be knowledge able about techniques related to infection overall, and participation in infection diagnosis and social responsibility are indispensable.

  10. Promoting Science for All by Way of Student Interest in a Transformative Undergraduate Microbiology Laboratory for Nonmajors†

    PubMed Central

    Marbach-Ad, Gili; McGinnis, J. Randy; Dai, Amy H.; Pease, Rebecca; Schalk, Kelly A.; Benson, Spencer

    2009-01-01

    In this study, we investigated a pedagogical innovation in an undergraduate microbiology course, Microbes and Society, for non-microbiology majors and education majors. The aim was to improve students’ understanding by connecting their science experience to their areas of interest. Based on this idea of teaching, we redesigned the laboratory portion of a microbiology course. We had students in the laboratory component choose their areas of interest and use the areas as a framework for understanding science and how it influences and shapes the world around them. This course was part of a longitudinal project (Project Nexus) which prepares, supports, and sustains upper elementary and middle-level specialist science teachers. We used a battery of data collection instruments. We analyzed all data in several dimensions including using active-learning techniques, forming linkages between science and teaching, and connecting science and society. Our hypothesis was that we could promote science for all by connecting the diverse students’ areas of interest in science to the laboratory’s curriculum. We assessed the success of achieving our goal by using researchers’ observations, the instructors’ perspectives, and students’ feedback. Our findings suggested that this course was appreciated by the students, especially education majors, who recognized the innovations as engaging and worthwhile. PMID:23653691

  11. Salty Microbiology

    ERIC Educational Resources Information Center

    Schneegurt, Mark A.; Wedel, Adrianne N.; Pokorski, Edward W.

    2004-01-01

    Using microbiology activities in the classroom is an effective way for teachers to address National Standards in the life sciences. However, common microbiology activities that involve swabbing doorknobs and hands are too risky due to the likelihood of culturing human pathogens. In addition, making sterile media and maintaining sterile conditions…

  12. AN OVERVIEW OF PATHOGEN RESEARCH IN THE MICROBIOLOGICAL AND CHEMICAL EXPOSURE ASSESSMENT RESEARCH DIVISION

    EPA Science Inventory

    The Microbiological and Chemical Exposure Assessment Research Division of the EPA Office of Research and Development's National Exposure Research Laboratory has a robust in-house research program aimed at developing better occurrence and exposure methods for waterborne pathogens....

  13. Contracting with the Frederick National Laboratory | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  14. Clinical Microbiology Laboratories' Adoption of Culture-Independent Diagnostic Tests Is a Threat to Foodborne-Disease Surveillance in the United States.

    PubMed

    Shea, Shari; Kubota, Kristy A; Maguire, Hugh; Gladbach, Stephen; Woron, Amy; Atkinson-Dunn, Robyn; Couturier, Marc Roger; Miller, Melissa B

    2017-01-01

    INTRODUCTIONIn November 2015, the Centers for Disease Control and Prevention (CDC) sent a letter to state and territorial epidemiologists, state and territorial public health laboratory directors, and state and territorial health officials. In this letter, culture-independent diagnostic tests (CIDTs) for detection of enteric pathogens were characterized as "a serious and current threat to public health surveillance, particularly for Shiga toxin-producing Escherichia coli (STEC) and Salmonella" The document says CDC and its public health partners are approaching this issue, in part, by "reviewing regulatory authority in public health agencies to require culture isolates or specimen submission if CIDTs are used." Large-scale foodborne outbreaks are a continuing threat to public health, and tracking these outbreaks is an important tool in shortening them and developing strategies to prevent them. It is clear that the use of CIDTs for enteric pathogen detection, including both antigen detection and multiplex nucleic acid amplification techniques, is becoming more widespread. Furthermore, some clinical microbiology laboratories will resist the mandate to require submission of culture isolates, since it will likely not improve patient outcomes but may add significant costs. Specimen submission would be less expensive and time-consuming for clinical laboratories; however, this approach would be burdensome for public health laboratories, since those laboratories would need to perform culture isolation prior to typing. Shari Shea and Kristy Kubota from the Association of Public Health Laboratories, along with state public health laboratory officials from Colorado, Missouri, Tennessee, and Utah, will explain the public health laboratories' perspective on why having access to isolates of enteric pathogens is essential for public health surveillance, detection, and tracking of outbreaks and offer potential workable solutions which will allow them to do this. Marc Couturier of

  15. [Mass spectrometry in the clinical microbiology laboratory].

    PubMed

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  16. Diagnostic microbiology in veterinary dermatology: present and future.

    PubMed

    Guardabassi, Luca; Damborg, Peter; Stamm, Ivonne; Kopp, Peter A; Broens, Els M; Toutain, Pierre-Louis

    2017-02-01

    The microbiology laboratory can be perceived as a service provider rather than an integral part of the healthcare team. The aim of this review is to discuss the current challenges of providing a state-of-the-art diagnostic veterinary microbiology service including the identification (ID) and antimicrobial susceptibility testing (AST) of key pathogens in veterinary dermatology. The Study Group for Veterinary Microbiology (ESGVM) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) identified scientific, technological, educational and regulatory issues impacting the predictive value of AST and the quality of the service offered by microbiology laboratories. The advent of mass spectrometry has significantly reduced the time required for ID of key pathogens such as Staphylococcus pseudintermedius. However, the turnaround time for validated AST methods has remained unchanged for many years. Beyond scientific and technological constraints, AST methods are not harmonized and clinical breakpoints for some antimicrobial drugs are either missing or inadequate. Small laboratories, including in-clinic laboratories, are usually not adequately equipped to run up-to-date clinical microbiologic diagnostic tests. ESGVM recommends the use of laboratories employing mass spectrometry for ID and broth micro-dilution for AST, and offering assistance by expert microbiologists on pre- and post-analytical issues. Setting general standards for veterinary clinical microbiology, promoting antimicrobial stewardship, and the development of new, validated and rapid diagnostic methods, especially for AST, are among the missions of ESGVM. © 2017 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  17. Interdisciplinary STEM education reform: dishing out art in a microbiology laboratory.

    PubMed

    Adkins, Sarah J; Rock, Rachel K; Morris, J Jeffrey

    2018-01-01

    In the modern educational framework, life science and visual art are usually presented as mutually exclusive subjects. Despite this perceived disciplinary contrast, visual art has the ability to engage and provoke students in ways that can have important downstream effects on scientific discovery, especially when applied in a practical setting such as a laboratory course. This review broadly examines the benefit of interdisciplinary fusions of science and art as well as recent ways in which art strategies have been used in undergraduate biology classrooms. In a case study, we found that undergraduate students in an introductory microbiology laboratory course who participated in open-inquiry activities involving agar art had greater confidence in their personal efficacy as scientists compared to a control class. Collectively, these observations suggest that visual art can be a useful enhancement in the course-based undergraduate research setting, and science educators at all levels should consider incorporating artistic creativity in their own classroom strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  19. Microbiological analysis of a mummy from the archeological museum in Zagreb.

    PubMed

    Cavka, Mislav; Glasnović, Anton; Janković, Ivor; Sikanjić, Petra Rajić; Perić, Berislav; Brkljacić, Boris; Mlinarić-Missoni, Emilija; Skrlin, Jasenka

    2010-09-01

    In this paper we report the results of the microbiological analysis of the samples taken from the mummy from the collection of the Archaeological museum in Zagreb, Croatia. Samples were taken from specific places such as oral, orbital, abdominal cavity and bandages surrounding the mummy, and analyzed in Department of Microbiology and Hospital Infections in University Hospital "Dubrava" in Zagreb and in National Reference Laboratory for systemic mycoses of Croatian National Institute of Public Health in Zagreb. The analysis indicated that all of the found organisms were non-primary pathogenic and are not harmful for healthy humans. Isolated microorganisms mainly belonged to the group of saprophytic fungi as listed: Monilia spp., Penicillium spp., Alternaria spp., Aspergillus fumigatus, Aspergillus nidulans, Rhizopus spp. and Chrysosporium spp. and to the genus of saprophytic bacteria, Bacillus spp.

  20. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  1. An investigative, cooperative learning approach to the general microbiology laboratory.

    PubMed

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences.

  2. An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory

    PubMed Central

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A.

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences. PMID:19487504

  3. Scientific Openness and National Security at the National Laboratories

    NASA Astrophysics Data System (ADS)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  5. Decontamination of laboratory microbiological waste by steam sterilization.

    PubMed Central

    Rutala, W A; Stiegel, M M; Sarubbi, F A

    1982-01-01

    A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used. PMID:7103486

  6. Do English NHS Microbiology laboratories offer adequate services for the diagnosis of UTI in children? Healthcare Quality Improvement Partnership (HQIP) Audit of Standard Operational Procedures.

    PubMed

    McNulty, Cliodna A M; Verlander, Neville Q; Moore, Philippa C L; Larcombe, James; Dudley, Jan; Banerjee, Jaydip; Jadresic, Lyda

    2015-09-01

    The National Institute of Care Excellence (NICE) 2007 guidance CG54, on urinary tract infection (UTI) in children, states that clinicians should use urgent microscopy and culture as the preferred method for diagnosing UTI in the hospital setting for severe illness in children under 3 years old and from the GP setting in children under 3 years old with intermediate risk of severe illness. NICE also recommends that all 'infants and children with atypical UTI (including non-Escherichia coli infections) should have renal imaging after a first infection'. We surveyed all microbiology laboratories in England with Clinical Pathology Accreditation to determine standard operating procedures (SOPs) for urgent microscopy, culture and reporting of children's urine and to ascertain whether the SOPs facilitate compliance with NICE guidance. We undertook a computer search in six microbiology laboratories in south-west England to determine urine submissions and urine reports in children under 3 years. Seventy-three per cent of laboratories (110/150) participated. Enterobacteriaceae that were not E. coli were reported only as coliforms (rather than non-E. coli coliforms) by 61% (67/110) of laboratories. Eighty-eight per cent of laboratories (97/110) provided urgent microscopy for hospital and 54% for general practice (GP) paediatric urines; 61% of laboratories (confidence interval 52-70%) cultured 1 μl volume of urine, which equates to one colony if the bacterial load is 106 c.f.u. l(-1). Only 22% (24/110) of laboratories reported non-E. coli coliforms and provided urgent microscopy for both hospital and GP childhood urines; only three laboratories also cultured a 5 μl volume of urine. Only one of six laboratories in our submission audit had a significant increase in urine submissions and urines reported from children less than 3 years old between the predicted pre-2007 level in the absence of guidance and the 2008 level following publication of the NICE guidance. Less than a

  7. What do physicians tell laboratories when requesting tests? A multi-method examination of information supplied to the microbiology laboratory before and after the introduction of electronic ordering.

    PubMed

    Georgiou, Andrew; Prgomet, Mirela; Toouli, George; Callen, Joanne; Westbrook, Johanna

    2011-09-01

    The provision of relevant clinical information on pathology requests is an important part of facilitating appropriate laboratory utilization and accurate results interpretation and reporting. (1) To determine the quantity and importance of handwritten clinical information provided by physicians to the Microbiology Department of a hospital pathology service; and (2) to examine the impact of a Computerized Provider Order Entry (CPOE) system on the nature of clinical information communication to the laboratory. A multi-method and multi-stage investigation which included: (a) a retrospective audit of all handwritten Microbiology requests received over a 1-month period in the Microbiology Department of a large metropolitan teaching hospital; (b) the administration of a survey to laboratory professionals to investigate the impact of different clinical information on the processing and/or interpretation of tests; (c) an expert panel consisting of medical staff and senior scientists to assess the survey findings and their impact on pathology practice and patient care; and (d) a comparison of the provision and value of clinical information before CPOE, and across 3 years after its implementation. The audit of handwritten requests found that 43% (n=4215) contained patient-related clinical information. The laboratory survey showed that 97% (84/86) of the different types of clinical information provided for wound specimens and 86% (43/50) for stool specimens were shown to have an effect on the processing or interpretation of the specimens by one or more laboratory professionals. The evaluation of the impact of CPOE revealed a significant improvement in the provision of useful clinical information from 2005 to 2008, rising from 90.1% (n=749) to 99.8% (n=915) (p<.0001) for wound specimens and 34% (n=129) to 86% (n=422) (p<.0001) for stool specimens. This study showed that the CPOE system provided an integrated platform to access and exchange valuable patient-related information

  8. Impact of the London 2012 Olympic and Paralympic Games on demand for microbiology gastrointestinal diagnostic services at the Public Health Laboratory London.

    PubMed

    Williams, K; Sinclair, C; McEwan, R; Fleet, K; Balasegaram, S; Manuel, R

    2014-07-01

    Planning for the London 2012 Olympic and Paralympic Games at the Public Health Laboratory London was based on the requirement to meet potential increased demand with scalable capacity. The aim of this study was to determine the impact on demand for microbiology gastrointestinal diagnostic services during the Games period. Retrospective cross-sectional time-series data analysis was used to assess the number of gastrointestinal specimens received in the laboratory and the number of positive results. There was no increase in the number of gastrointestinal specimens received during the Games period, thus the Games had no impact on demand for microbiology gastrointestinal diagnostic services at the laboratory. There was a decrease in the number of public health specimens received for culture [incidence rate ratio = 0.34, 95% confidence interval (CI) = 0.13-0.86, P = 0.02] and a decrease in the number of culture positive community specimens (odds ratio = 0.59, 95 % CI = 0.40-0.85, P = 0.005), suggesting a decrease in gastrointestinal illness during the Games period. As previous planning assumptions were not based on actual specimen activity, the results of this study may modify the extent of additional planning for microbiological services required for mass gatherings. © 2014 The Authors.

  9. Clinical Microbiology Reviews: Genesis of a Journal

    PubMed Central

    Morello, Josephine A.

    1999-01-01

    In 1986 planning for a new ASM review journal, Clinical Microbiology Reviews (CMR), began. CMR would publish articles primarily of interest to persons concerned with pathogenesis, laboratory diagnosis, epidemiology, and control of human and veterinary pathogens. The first issue was published in January 1988, with quarterly publication since then. The journal quickly became successful in terms of subscribers and impact on the field, earning a strong national and international reputation. The achievements of CMR are owed to many persons, including the editorial board, the production team, and especially the contributing authors. PMID:10194455

  10. Use of Long-Term E. Coli Cultures: To Study Generation of Genetic Diversity & Teach General Microbiology Laboratory Skills

    ERIC Educational Resources Information Center

    Petrie, Angela; Finkel, Steven E.; Erbe, Jarrod

    2005-01-01

    A novel method of studying the generation of genetic diversity in an undergraduate microbiology laboratory is described. The basis of this approach is the accumulation of mutations that confer a competitive advantage, or growth advantage in stationary phase (GASP) phenotype, to E. coli grown in stationary phase for extended periods of time.

  11. A study of the impact of collaborative learning on student learning of major concepts in a microbiology laboratory exercise

    NASA Astrophysics Data System (ADS)

    Baumgarten, Kristyne A.

    This study investigated the possible relationship between collaborative learning strategies and the learning of core concepts. This study examined the differences between two groups of nursing students enrolled in an introductory microbiology laboratory course. The control group consisted of students enrolled in sections taught in the traditional method. The experimental group consisted of those students enrolled in the sections using collaborative learning strategies. The groups were assessed on their degrees of learning core concepts using a pre-test/post-test method. Scores from the groups' laboratory reports were also analyzed. There was no difference in the two group's pre-test scores. The post-test scores of the experimental group averaged 11 points higher than the scores of the control group. The lab report scores of the experimental group averaged 15 points higher than those scores of the control group. The data generated from this study demonstrated that collaborative learning strategies can be used to increase students learning of core concepts in microbiology labs.

  12. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  13. Prevalence of Chlamydia trachomatis, Trichomonas vaginalis and Neisseria gonorrhoeae Based on Data Collected by a Network of Clinical Microbiology Laboratories, in Italy.

    PubMed

    Salfa, Maria Cristina; Suligoi, Barbara

    Bacterial and protozoal sexually transmitted infections (STIs), such as Chlamydia trachomatis, Trichomonas vaginalis and Neisseria gonorrhoeae, may cause acute symptoms, chronic infections and severe long-term complications. The complications of these infections in women include pelvic inflammatory disease, chronic pelvic pain, tubal infertility, ectopic pregnancy, and infertility. Moreover, infection during pregnancy is associated with premature rupture of the membranes, low birth weight and miscarriage.In Italy, Chlamydia trachomatis and Trichomonas vaginalis infections are not subject to mandatory reporting; while gonorrhoea is subject to mandatory reporting.To extend surveillance to STIs that are widespread yet often asymptomatic and to improve the knowledge on the epidemiology of these infections in Italy, in 2009 the "Centro Operativo AIDS of the Istituto Superiore di SanitÁ", in collaboration with the Association of Italian Clinical Microbiologists (AMCLI, Associazione Microbiologi Clinici Italiani), launched the sentinel STIs surveillance system based on a network of 13 clinical microbiology laboratories.The main objective of the surveillance was to assess the prevalence and risk factors associated with Chlamydia trachomatis, Trichomonas vaginalis and Neisseria gonorrhoea infections among individuals attending microbiology laboratories in Italy.

  14. Evaluation of Three MALDI-TOF Mass Spectrometry Libraries for the Identification of Filamentous Fungi in Three Clinical Microbiology Laboratories in Manitoba, Canada.

    PubMed

    Stein, Markus; Tran, Vanessa; Nichol, Kimberly A; Lagacé-Wiens, Philippe; Pieroni, Peter; Adam, Heather J; Turenne, Christine; Walkty, Andrew J; Normand, Anne-Cécile; Hendrickx, Marijke; Piarroux, Renaud; Karlowsky, James A

    2018-06-12

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is commonly used by clinical microbiology laboratories to identify bacterial pathogens and yeasts, but not for the identification of moulds. Recent progress in extraction protocols and the composition of comparative libraries support potential application of MALDI-TOF MS for mould identification in clinical microbiology laboratories. We evaluated the performance of the Bruker Microflex ™ MALDI-TOF MS instrument (Billerica, MA, USA) to identify clinical isolates and reference strains of moulds using three libraries, the Bruker mould library, the National Institutes of Health (NIH) library, and the Mass Spectrometry Identification (MSI) online library, and compared those results to conventional (morphological) and molecular (18S/ITS; gold standard) identification methods. All three libraries demonstrated greater accuracy in genus identification (≥94.9%) than conventional methods (86.4%). MALDI-TOF MS identified 73.3% of isolates to species-level compared to only 31.7% by conventional methods. The MSI library demonstrated the highest rate of species-level identification (72.0%) compared to NIH (19.5%) and Bruker (13.6%) libraries. Greater than 20% of moulds remained unidentified to species-level by all three MALDI-TOF MS libraries primarily because of library limitations or imperfect spectra. The overall identification rate of each MALDI-TOF MS library depended on the number of species and the number of spectra representing each species in the library. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Individuality, phenotypic differentiation, dormancy and ‘persistence’ in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology

    PubMed Central

    Kell, Douglas; Potgieter, Marnie; Pretorius, Etheresia

    2015-01-01

    For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically ‘nonculturable’ on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as ‘persisters’. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one’s bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit. PMID:26629334

  16. A Comprehensive Survey of Preclinical Microbiology Curricula Among US Medical Schools.

    PubMed

    Melber, Dora J; Teherani, Arianne; Schwartz, Brian S

    2016-07-15

    A strong foundational understanding of microbiology is crucial for the 21st century physician. Given recent major advances in medical microbiology, curricular changes will likely be needed. Before transforming curricula, we must first obtain a comprehensive understanding of contemporary medical student microbiology education. We disseminated a 38-question survey to microbiology course directors and curriculum deans at 142 US medical schools accredited by the Liason Committee on Medical Education. Survey questions focused on course leadership, curricular structure, course content, and educator perceptions about microbiology education locally and nationally. One hundred and four (73%) of 142 schools completed the survey. Ninety-four (90%) schools identified a course director. Of these, 48% were led by microbiologists alone, 23% co-led by a microbiologist and a clinician, 20% by a clinician alone, and 8% by a laboratory medicine physician with or without a co-director. At 55 (53%) schools, the curricula were organized in a single block or course and at 47 (45%) it was integrated into other curricula. Areas of emerging importance, such as antimicrobial stewardship, global health, infection control, and the microbiome, were addressed at 66%, 65%, 64%, and 47% of institutions, respectively. Respondents reported the following concerns: challenges integrating microbiology into other courses, reduced total teaching hours, and difficulty balancing basic and clinical science topics. Preclinical microbiology course directors report significant challenges in meeting the needs of changing curriculum structure and content. Enhanced local collaboration between microbiologists and clinicians, as well as national collaboration among relevant societies to design best practices and support research, may be strategies for future success. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e

  17. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  18. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  19. The need for European professional standards and the challenges facing clinical microbiology.

    PubMed

    Humphreys, H; Nagy, E; Kahlmeter, G; Ruijs, G J H M

    2010-06-01

    Microorganisms spread across national boundaries and the professional activities of clinical (medical) microbiologists are critical in minimising their impact. Clinical microbiologists participate in many activities, e.g. diagnosis, antibiotic therapy, and there is a need for a set of professional standards for Europe with a common curriculum, to build upon the current strengths of the specialty and to facilitate the free movement of specialists within the European Union. Such standards will also better highlight the important contribution of clinical microbiologists to healthcare. There is a move to larger centralised microbiology laboratories often located off-site from an acute hospital, driven by the concentration of resources, amalgamation of services, outsourcing of diagnostics, automation, an explosion in the range of staff competencies and accreditation. Large off-site centralised microbiology laboratories are often distant to the patient and may not facilitate the early detection of microbial spread. Ultimately, the needs of patients and the public are paramount in deciding on the future direction of clinical microbiology. Potential conflicts between integration on an acute hospital site and centralisation can be resolved by a common set of professional standards and a team-based approach that puts patients first.

  20. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  1. The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives.

    PubMed

    Endimiani, Andrea; Jacobs, Michael R

    2016-06-01

    The evolution of resistance in Gram-negatives has challenged the clinical microbiology laboratory to implement new methods for their detection. Multidrug-resistant strains present major challenges to conventional and new detection methods. More rapid pathogen identification and antimicrobial susceptibility testing have been developed for use directly on specimens, including fluorescence in situ hybridization tests, automated polymerase chain reaction systems, microarrays, mass spectroscopy, next-generation sequencing, and microfluidics. Review of these methods shows the advances that have been made in rapid detection of resistance in cultures, but limited progress in direct detection from specimens. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  3. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  4. Revolutionizing clinical microbiology laboratory organization in hospitals with in situ point-of-care.

    PubMed

    Cohen-Bacrie, Stéphan; Ninove, Laetitia; Nougairède, Antoine; Charrel, Rémi; Richet, Hervé; Minodier, Philippe; Badiaga, Sékéné; Noël, Guilhem; La Scola, Bernard; de Lamballerie, Xavier; Drancourt, Michel; Raoult, Didier

    2011-01-01

    Clinical microbiology may direct decisions regarding hospitalization, isolation and anti-infective therapy, but it is not effective at the time of early care. Point-of-care (POC) tests have been developed for this purpose. One pilot POC-lab was located close to the core laboratory and emergency ward to test the proof of concept. A second POC-lab was located inside the emergency ward of a distant hospital without a microbiology laboratory. Twenty-three molecular and immuno-detection tests, which were technically undemanding, were progressively implemented, with results obtained in less than four hours. From 2008 to 2010, 51,179 tests yielded 6,244 diagnoses. The second POC-lab detected contagious pathogens in 982 patients who benefited from targeted isolation measures, including those undertaken during the influenza outbreak. POC tests prevented unnecessary treatment of patients with non-streptococcal tonsillitis (n = 1,844) and pregnant women negative for Streptococcus agalactiae carriage (n = 763). The cerebrospinal fluid culture remained sterile in 50% of the 49 patients with bacterial meningitis, therefore antibiotic treatment was guided by the molecular tests performed in the POC-labs. With regard to enterovirus meningitis, the mean length-of-stay of infected patients over 15 years old significantly decreased from 2008 to 2010 compared with 2005 when the POC was not in place (1.43±1.09 versus 2.91±2.31 days; p = 0.0009). Altogether, patients who received POC tests were immediately discharged nearly thrice as often as patients who underwent a conventional diagnostic procedure. The on-site POC-lab met physicians' needs and influenced the management of 8% of the patients that presented to emergency wards. This strategy might represent a major evolution of decision-making regarding the management of infectious diseases and patient care.

  5. Revolutionizing Clinical Microbiology Laboratory Organization in Hospitals with In Situ Point-of-Care

    PubMed Central

    Cohen-Bacrie, Stéphan; Ninove, Laetitia; Nougairède, Antoine; Charrel, Rémi; Richet, Hervé; Minodier, Philippe; Badiaga, Sékéné; Noël, Guilhem; La Scola, Bernard; de Lamballerie, Xavier; Drancourt, Michel; Raoult, Didier

    2011-01-01

    Background Clinical microbiology may direct decisions regarding hospitalization, isolation and anti-infective therapy, but it is not effective at the time of early care. Point-of-care (POC) tests have been developed for this purpose. Methods and Findings One pilot POC-lab was located close to the core laboratory and emergency ward to test the proof of concept. A second POC-lab was located inside the emergency ward of a distant hospital without a microbiology laboratory. Twenty-three molecular and immuno-detection tests, which were technically undemanding, were progressively implemented, with results obtained in less than four hours. From 2008 to 2010, 51,179 tests yielded 6,244 diagnoses. The second POC-lab detected contagious pathogens in 982 patients who benefited from targeted isolation measures, including those undertaken during the influenza outbreak. POC tests prevented unnecessary treatment of patients with non-streptococcal tonsillitis (n = 1,844) and pregnant women negative for Streptococcus agalactiae carriage (n = 763). The cerebrospinal fluid culture remained sterile in 50% of the 49 patients with bacterial meningitis, therefore antibiotic treatment was guided by the molecular tests performed in the POC-labs. With regard to enterovirus meningitis, the mean length-of-stay of infected patients over 15 years old significantly decreased from 2008 to 2010 compared with 2005 when the POC was not in place (1.43±1.09 versus 2.91±2.31 days; p = 0.0009). Altogether, patients who received POC tests were immediately discharged nearly thrice as often as patients who underwent a conventional diagnostic procedure. Conclusions The on-site POC-lab met physicians' needs and influenced the management of 8% of the patients that presented to emergency wards. This strategy might represent a major evolution of decision-making regarding the management of infectious diseases and patient care. PMID:21811599

  6. Do English NHS Microbiology laboratories offer adequate services for the diagnosis of UTI in children? Healthcare Quality Improvement Partnership (HQIP) Audit of Standard Operational Procedures

    PubMed Central

    Verlander, Neville Q.; Moore, Philippa C. L.; Larcombe, James; Dudley, Jan; Banerjee, Jaydip; Jadresic, Lyda

    2015-01-01

    The National Institute of Care Excellence (NICE) 2007 guidance CG54, on urinary tract infection (UTI) in children, states that clinicians should use urgent microscopy and culture as the preferred method for diagnosing UTI in the hospital setting for severe illness in children under 3 years old and from the GP setting in children under 3 years old with intermediate risk of severe illness. NICE also recommends that all ‘infants and children with atypical UTI (including non-Escherichia coli infections) should have renal imaging after a first infection’. We surveyed all microbiology laboratories in England with Clinical Pathology Accreditation to determine standard operating procedures (SOPs) for urgent microscopy, culture and reporting of children's urine and to ascertain whether the SOPs facilitate compliance with NICE guidance. We undertook a computer search in six microbiology laboratories in south-west England to determine urine submissions and urine reports in children under 3 years. Seventy-three per cent of laboratories (110/150) participated. Enterobacteriaceae that were not E. coli were reported only as coliforms (rather than non-E. coli coliforms) by 61 % (67/110) of laboratories. Eighty-eight per cent of laboratories (97/110) provided urgent microscopy for hospital and 54 % for general practice (GP) paediatric urines; 61 % of laboratories (confidence interval 52–70 %) cultured 1 μl volume of urine, which equates to one colony if the bacterial load is 106 c.f.u. l− 1. Only 22 % (24/110) of laboratories reported non-E. coli coliforms and provided urgent microscopy for both hospital and GP childhood urines; only three laboratories also cultured a 5 μl volume of urine. Only one of six laboratories in our submission audit had a significant increase in urine submissions and urines reported from children less than 3 years old between the predicted pre-2007 level in the absence of guidance and the 2008 level following publication

  7. Assessing Clinical Microbiology Practice Guidelines: American Society for Microbiology Ad Hoc Committee on Evidence-Based Laboratory Medicine Practice Guidelines Assessment

    PubMed Central

    Kirn, Thomas J.; Westblade, Lars F.; Humphries, Romney

    2017-01-01

    ABSTRACT As part of the American Society for Microbiology (ASM) Evidence-Based Laboratory Medicine Practice Guidelines Committee of the Professional Practice Committee, an ad hoc committee was formed in 2014 to assess guidelines published by the committee using an assessment tool, Appraisal of Guidelines for Research Evaluation II (AGREE II). The AGREE II assessment helps reviewers determine whether published guidelines are robust, transparent, and clear in presenting practice recommendations in a standardized manner. Identifying strengths and weaknesses of practice guidelines by ad hoc assessments helps with improving future guidelines through the participation of key stakeholders. This minireview describes the development of the ad hoc committee and results from their review of several ASM best practices guidelines and a non-ASM practice guideline from the Emergency Nurses Association. PMID:28835476

  8. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  9. [Resistance of gonococci in the Netherlands; results of a survey of medical microbiology laboratories].

    PubMed

    van Loo, I H M; Spaargaren, J; van de Laar, M J W

    2005-05-28

    To collect information about the incidence ofgonorrhoea and gonococcal resistance in the Netherlands. A questionnaire was sent to 39 medical microbiology laboratories to obtain information on current diagnostics and the susceptibility testing method, and on the number of positive results and the susceptibility pattern of gonococcal isolates in 2002 and 2003 (up to and including November). 32 laboratories participated in this survey. 13 laboratories used culture alone and 19 laboratories used culture and/or a molecular test. Gonorrhoea was diagnosed 2,666 times in 2002 and 2,190 times in 2003, with an incidence of 33.5 and 27.0 per 100,000 inhabitants, respectively. The rate of resistance to beta-lactam antibiotics (penicillin and amoxicillin) was 12.2% and 10.7% in 2002 and 2003, respectively, and the rates of resistance to tetracycline were 18.5% and 20.6%. An increase in the resistance to quinolones was observed from 6.6% in 2002 to 9.5% in 2003. Resistance to cephalosporins was low (0.5% in 2002 and 1.2% in 2003). Furthermore, regional differences in susceptibility were found within the Netherlands. The observed gonococcal incidence and resistance form the basis for a gonorrhoea prevention and treatment programme in the Netherlands.

  10. Whole genome sequencing in clinical and public health microbiology

    PubMed Central

    Kwong, J. C.; McCallum, N.; Sintchenko, V.; Howden, B. P.

    2015-01-01

    SummaryGenomics and whole genome sequencing (WGS) have the capacity to greatly enhance knowledge and understanding of infectious diseases and clinical microbiology. The growth and availability of bench-top WGS analysers has facilitated the feasibility of genomics in clinical and public health microbiology. Given current resource and infrastructure limitations, WGS is most applicable to use in public health laboratories, reference laboratories, and hospital infection control-affiliated laboratories. As WGS represents the pinnacle for strain characterisation and epidemiological analyses, it is likely to replace traditional typing methods, resistance gene detection and other sequence-based investigations (e.g., 16S rDNA PCR) in the near future. Although genomic technologies are rapidly evolving, widespread implementation in clinical and public health microbiology laboratories is limited by the need for effective semi-automated pipelines, standardised quality control and data interpretation, bioinformatics expertise, and infrastructure. PMID:25730631

  11. Whole genome sequencing in clinical and public health microbiology.

    PubMed

    Kwong, J C; McCallum, N; Sintchenko, V; Howden, B P

    2015-04-01

    Genomics and whole genome sequencing (WGS) have the capacity to greatly enhance knowledge and understanding of infectious diseases and clinical microbiology.The growth and availability of bench-top WGS analysers has facilitated the feasibility of genomics in clinical and public health microbiology.Given current resource and infrastructure limitations, WGS is most applicable to use in public health laboratories, reference laboratories, and hospital infection control-affiliated laboratories.As WGS represents the pinnacle for strain characterisation and epidemiological analyses, it is likely to replace traditional typing methods, resistance gene detection and other sequence-based investigations (e.g., 16S rDNA PCR) in the near future.Although genomic technologies are rapidly evolving, widespread implementation in clinical and public health microbiology laboratories is limited by the need for effective semi-automated pipelines, standardised quality control and data interpretation, bioinformatics expertise, and infrastructure.

  12. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  13. Centralization of a regional clinical microbiology service: The Calgary experience

    PubMed Central

    Church, Deirdre L; Hall, Paula

    1999-01-01

    Diagnostic laboratory services in Alberta have been dramatically restructured over the past five years. In 1994, Alberta Health embarked on an aggressive laboratory restructuring that cut back approximately 30% of the overall monies previously paid to the laboratory service sector in Calgary. A unique service delivery model consolidated all institutional and community-based diagnostic testing in a company called Calgary Laboratory Services (CLS) in late 1996. CLS was formed by a public/private partnership between the Calgary Regional Health Care Authority (CRHA) and MDS-Kasper Laboratories. By virtue of its customer service base and scope of testing, CLS provides comprehensive regional laboratory services to the entire populace. Regional microbiology services within CLS have been successfully consolidated over the past three years into a centralized high volume laboratory (HVL). Because the HVL is not located in a hospital, rapid response laboratories (RRLs) are operated at each acute care site. Although the initial principle behind the proposed test menus for the RRLs was that only procedures requiring a clinical turnaround time of more than 2 h stay on-site, many other principles had to be used to develop and implement an efficient and clinically relevant RRL model for microbiology. From these guiding principles, a detailed assessment of the needs of each institution and extensive networking with user groups, the functions of the microbiology RRLs were established and a detailed implementation plan drawn up. The experience at CLS with regards to restructuring a regional microbiology service is described herein. A post-hoc analysis provides the pros and cons of directing and operating a regionalized microbiology service. PMID:22346397

  14. Community | Argonne National Laboratory

    Science.gov Websites

    occupies 1,500 wooded acres 25 miles southwest of Chicago in DuPage County, Ill. Our highly collaborative Experience at Argonne National Laboratory Chicago Tribune New UChicago Program Teaches Data Science for

  15. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  16. Microbiology Made Relevant

    ERIC Educational Resources Information Center

    Cronholm, Lois S.; Metz, Mildred C.

    1976-01-01

    Described are two hospital-based laboratory exercises which helped students perceive the relationship between the principles of microbiology and the practice of nursing. The exercises involved an environmental study focusing on problems of nosocomial infection and a study of patients hospitalized with infectious diseases. (Author/MS)

  17. [Microbiological diagnosis of HIV infection].

    PubMed

    López-Bernaldo de Quirós, Juan Carlos; Delgado, Rafael; García, Federico; Eiros, José M; Ortiz de Lejarazu, Raúl

    2007-12-01

    Currently, there are around 150,000 HIV-infected patients in Spain. This number, together with the fact that this disease is now a chronic condition since the introduction of antiretroviral therapy, has generated an increasing demand on the clinical microbiology laboratories in our hospitals. This increase has occurred not only in the diagnosis and treatment of opportunistic diseases, but also in tests related to the diagnosis and therapeutic management of HIV infection. To meet this demand, the Sociedad de Enfermedades Infecciosas y Microbiología Clinica (Spanish Society of Infectious Diseases and Clinical Microbiology) has updated its standard Procedure for the microbiological diagnosis of HIV infection. The main advances related to serological diagnosis, plasma viral load, and detection of resistance to antiretroviral drugs are reviewed in this version of the Procedure.

  18. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  19. Recent advances in diagnostic microbiology.

    PubMed

    Bravo, Lulette Tricia C; Procop, Gary W

    2009-07-01

    The past decade has seen a surge in the development of a variety of molecular diagnostics designed to rapidly identify or characterize medically important microorganisms. We briefly review important advances in molecular microbiology, and then discuss specific assays that have been implemented in clinical microbiology laboratories throughout the country. We also discuss emerging methods and technologies that will soon be more widely used for the prompt and accurate detection of the agents of infectious diseases.

  20. Generation and composition of medical wastes from private medical microbiology laboratories.

    PubMed

    Komilis, Dimitrios; Makroleivaditis, Nikolaos; Nikolakopoulou, Eftychia

    2017-03-01

    A study on the generation rate and the composition of solid medical wastes (MW) produced by private medical microbiology laboratories (PMML) was conducted in Greece. The novelty of the work is that no such information exists in the literature for this type of laboratories worldwide. Seven laboratories were selected with capacities that ranged from 8 to 88 examinees per day. The study lasted 6months and daily recording of MW weights was done over 30days during that period. The rates were correlated to the number of examinees, examinations and personnel. Results indicated that on average 35% of the total MW was hazardous (infectious) medical wastes (IFMW). The IFMW generation rates ranged from 11.5 to 32.5g examinee -1 d -1 while an average value from all 7 labs was 19.6±9.6g examinee -1 d -1 or 2.27±1.11g examination -1 d -1 . The average urban type medical waste generation rate was 44.2±32.5g examinee -1 d -1 . Using basic regression modeling, it was shown that the number of examinees and examinations can be predictors of the IFMW generation, but not of the urban type MW generation. The number of examinations was a better predictor of the MW amounts than the number of examinees. Statistical comparison of the means of the 7PMML was done with standard ANOVA techniques after checking the normality of the data and after doing the appropriate transformations. Based on the results of this work, it is approximated that 580 tonnes of infectious MW are generated annually by the PMML in Greece. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hood College, Frederick National Laboratory Will Renew Popular Scientific Symposium | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hood College and the Frederick National Laboratory for Cancer Research have partnered to cohost an annual scientific symposium in the tradition of the landmark Oncogene Meeting, a national fixture in Frederick for more than 20 year

  2. [Current panorama of the teaching of microbiology and parasitology in Spain].

    PubMed

    Cantón, Rafael; Sánchez-Romero, María Isabel; Gómez-Mampaso, Enrique

    2010-10-01

    The training program of residents in microbiology and parasitology in Spain includes clinical skills, ranging from the diagnostic approach to the patient and adequate sample collection for diagnosis of infectious diseases to antimicrobial therapy and infection control measures. Training also includes new challenges in clinical microbiology that ensure residents' participation in infection control programs of health-care associated infections, training in the resolution of public health problems, and application of new molecular microbiology methods. Specialization in clinical microbiology may be undertaken by graduates in Medicine, Biology, Biochemistry and Chemistry. The training is performed in accredited microbiology laboratories at different hospitals (n = 61) across the country through 4-year residency programs. In the last few years, there has been a major imbalance between the number of intended residents (0.17 per 100,000 inhabitants) and those graduating as specialists in clinical microbiology (0.13 per 100,000 inhabitants), with wide variations across the country. The current tendency in Europe is to strengthen the role of clinical microbiologists as key figures in the diagnosis of infectious diseases and in public health microbiology. Training programs have been hampered by the practice of sending samples for microbiological tests to external, centralized multipurpose laboratories with few clinical microbiologists and without a core curriculum. Essential elements in the training of specialists in clinical microbiology are a close relationship between the laboratory and the clinical center and collaboration with other specialists. Copyright © 2010 Elsevier España S.L. All rights reserved.

  3. Individualized Quality Control Plan (IQCP): Is It Value-Added for Clinical Microbiology?

    PubMed

    Sharp, Susan E; Miller, Melissa B; Hindler, Janet

    2015-12-01

    The Center for Medicaid and Medicare Services (CMS) recently published their Individualized Quality Control Plan (IQCP [https://www.cms.gov/regulations-and-guidance/legislation/CLIA/Individualized_Quality_Control_Plan_IQCP.html]), which will be the only option for quality control (QC) starting in January 2016 if laboratories choose not to perform Clinical Laboratory Improvement Act (CLIA) [U.S. Statutes at Large 81(1967):533] default QC. Laboratories will no longer be able to use "equivalent QC" (EQC) or the Clinical and Laboratory Standards Institute (CLSI) standards alone for quality control of their microbiology systems. The implementation of IQCP in clinical microbiology laboratories will most certainly be an added burden, the benefits of which are currently unknown. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Privacy Policy | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  5. News | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events News & Events -4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  6. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  7. BiOutils: an interface to connect university laboratories with microbiology classes in schools.

    PubMed

    Caine, Massimo; Zuchuat, Sandrine; Weber, Aurélia; Ducret, Verena; Linder, Patrick; Perron, Karl

    2015-10-01

    The contribution of microbiology to the scientific advances of modern experimental biology has very often made the difference. Despite this, its role as an independent discipline has slowly started to fade away. This situation has been worsening due to (i) a marginal role of microbiology in academic curricula and (ii) a low or misplaced interest by the public at large towards this field of study. In order to counter this phenomenon, microbiology researchers and passionate scientists have made several efforts to engage and inform the broad public and academic policymakers about the importance of microbiology as an independent discipline. One of the approaches used in this direction is to support the teaching of microbiology in schools. BiOutils, a science communication platform based within a microbiology lab, has been committed to this goal since its creation in 2007. In this article, we describe how the platform is able to work in synergy with school teachers, providing engaging activities that can be performed in schools' classrooms. Our aim is to provide a perspective on how every microbiology lab with little costs and efforts can support the teaching of a discipline that will remain independent thanks to the fascination that they will be able to transmit. © FEMS 2015. All rights reserved.

  8. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  9. Application of the MALDI Biotyper to clinical microbiology: progress and potential.

    PubMed

    Kostrzewa, Markus

    2018-03-01

    The introduction of the MALDI Biotyper in laboratories substantially changed microbiology practice, this has been called a revolution. The system accelerated diagnostic while costs were reduced and accuracy was increased. In just a few years MALDI-TOF MS became the first-line identification tool for microorganisms. Ten years after its introduction, more than 2000 MALDI Biotyper systems are installed in laboratories which are performing routine diagnostic, and the number is still increasing. Areas covered: This article summarises changes in clinical microbiology introduced by the MALDI Biotyper and its effects, as it has been published in peer reviewed articles found in PubMed. Further, the potential of novel developments to increase the value of the system is described. Expert commentary: The MALDI Biotyper has significantly improved clinical microbiology in the area of microorganism identification. Now new developments and applications, e.g. for typing and resistance testing, might further increase its value in clinical microbiology. The systems might get the central diagnostic analyser which is getting integrated into the widely automated microbiology laboratories of the future.

  10. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  11. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  12. [Microbiology--laboratory examinations for bacterias].

    PubMed

    Hen, Renjun; Imafuku, Yuji; Yoshida, Hiroshi

    2002-11-01

    As it has been required to identify pathogenic microbes in shorter times, simple and rapid methods have been developed and used. Here, we summarized the present situation of rapid diagnostic testing in clinical microbiology in Japan, and also presented our results on PBP2' detection. The rapid test kits available in Japan for E. coli, Helicobacter pylori, Salmonella, Streptococcus and Staphylococcus aureus were described. Rapid examination methods are based mainly on immunologic reactions, which included slide agglutination using latex particle, immunochromatography and ELISA. Times required for the identification are 10 to 15 minutes. Moreover, rapid test kits employing PCR are also marketed. Further, we evaluated MRSA-LA "Seiken" which is a rapid detection kit for PBP2' produced by MRSA. The test was shown to be highly sensitive and specific. For the rapid identification of pathogenic microbes, simple and rapid test kits described here will be used more in clinical diagnosis.

  13. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  14. Frederick National Laboratory, National Cancer Institute of Mexico to Offer Training Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- The Frederick National Laboratory for Cancer Research will extend its scientific mentoring across international borders for the first time by offering postdoctoral research fellowships to scientists under an agreement with the Nati

  15. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  16. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  17. The Effects of an Independent Laboratory Investigation on the Critical Thinking Ability and Scientific Attitude of Students in a General Microbiology Class.

    ERIC Educational Resources Information Center

    Norton, Sylvia; And Others

    To demonstrate that properly designed laboratory instruction does provide affective and higher order learning benefits, an experiment was carried out in two replications. The subjects were 80 students enrolled in General Microbiology at Wallace Community College, Alabama. Students were randomly assigned to experimental and control groups. The…

  18. Microbiological Food Safety Surveillance in China

    PubMed Central

    Pei, Xiaoyan; Li, Ning; Guo, Yunchang; Liu, Xiumei; Yan, Lin; Li, Ying; Yang, Shuran; Hu, Jing; Zhu, Jianghui; Yang, Dajin

    2015-01-01

    Microbiological food safety surveillance is a system that collects data regarding food contamination by foodborne pathogens, parasites, viruses, and other harmful microbiological factors. It helps to understand the spectrum of food safety, timely detect food safety hazards, and provide relevant data for food safety supervision, risk assessment, and standards-setting. The study discusses the microbiological surveillance of food safety in China, and introduces the policies and history of the national microbiological surveillance system. In addition, the function and duties of different organizations and institutions are provided in this work, as well as the generation and content of the surveillance plan, quality control, database, and achievement of the microbiological surveillance of food safety in China. PMID:26343705

  19. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  20. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  1. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  2. Evolution across the Curriculum: Microbiology

    PubMed Central

    Burmeister, Alita R.; Smith, James J.

    2016-01-01

    An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306

  3. Design Criteria for Microbiological Facilities at Fort Detrick. Volume I: Introduction.

    ERIC Educational Resources Information Center

    Army Biological Labs., Fort Detrick, MD. Industrial Health and Safety Div.

    Volume I of a two volume manual serves as an introduction to design criteria for microbiological facilities. It is addressed to management personnel responsible for planning, budgeting, and making policy decisions for construction or remodeling of microbiological research laboratories. This volume is also concerned with--(1) microbiological safety…

  4. External quality assessment of national public health laboratories in Africa, 2002–2009

    PubMed Central

    Perovic, Olga; Fensham, Vivian; McCarthy, Kerrigan; von Gottberg, Anne; de Gouveia, Linda; Poonsamy, Bhavani; Dini, Leigh; Rossouw, Jenny; Keddy, Karen; Alemu, Wondimagegnehu; Yahaya, Ali; Pierson, Antoine; Dolmazon, Virginie; Cognat, Sébastien; Ndihokubwayo, Jean Bosco

    2012-01-01

    Abstract Objective To describe findings from an external quality assessment programme involving laboratories in Africa that routinely investigate epidemic-prone diseases. Methods Beginning in 2002, the Regional Office for Africa of the World Health Organization (WHO) invited national public health laboratories and related facilities in Africa to participate in the programme. Three surveys comprising specimens and questionnaires associated with bacterial enteric diseases, bacterial meningitis, plague, tuberculosis and malaria were sent annually to test participants’ diagnostic proficiency. Identical surveys were sent to referee laboratories for quality control. Materials were prepared, packaged and shipped in accordance with standard protocols. Findings and reports were due within 30 days. Key methodological decisions and test results were categorized as acceptable or unacceptable on the basis of consensus feedback from referees, using established grading schemes. Findings Between 2002 and 2009, participation increased from 30 to 48 Member States of the WHO and from 39 to 78 laboratories. Each survey was returned by 64–93% of participants. Mean turnaround time was 25.9 days. For bacterial enteric diseases and meningitis components, bacterial identification was acceptable in 65% and 69% of challenges, respectively, but serotyping and antibiotic susceptibility testing and reporting were frequently unacceptable. Microscopy was acceptable for 73% of plague challenges. Tuberculosis microscopy was satisfactorily performed, with 87% of responses receiving acceptable scores. In the malaria component, 82% of responses received acceptable scores for species identification but only 51% of parasite quantitation scores were acceptable. Conclusion The external quality assessment programme consistently identified certain functional deficiencies requiring strengthening that were present in African public health microbiology laboratories. PMID:22461714

  5. Undergraduates | Argonne National Laboratory

    Science.gov Websites

    Directory Argonne National Laboratory Educational Programs Connecting today's world-class research to which you can use to change the world." -Nelson Mandela Undergrads are just beginning their journey into the world of science and engineering. Here at Argonne, we work to make the world a better place

  6. Visiting Scholars Program | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Visiting Scholars Program (VSP) provides a unique opportunity for scientists to collaborate with the Frederick National Laboratory for Cancer Research (FNLCR), the only federal national laboratory in the United States devoted exclusively to b

  7. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  8. Graduates | Argonne National Laboratory

    Science.gov Websites

    Staff Directory Argonne National Laboratory Educational Programs Connecting today's world-class research , Argonne is the place to be if you are a graduate student. With access to world-class facilities and world -reknowned researchers, graduate students at Argonne can taste the best of the research and development world

  9. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  10. Inverter testing at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg

    1997-02-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  11. Validation and Implementation of Clinical Laboratory Improvements Act-Compliant Whole-Genome Sequencing in the Public Health Microbiology Laboratory

    PubMed Central

    Kozyreva, Varvara K.; Truong, Chau-Linda; Greninger, Alexander L.; Crandall, John; Mukhopadhyay, Rituparna

    2017-01-01

    ABSTRACT Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits. PMID:28592550

  12. Validation and Implementation of Clinical Laboratory Improvements Act-Compliant Whole-Genome Sequencing in the Public Health Microbiology Laboratory.

    PubMed

    Kozyreva, Varvara K; Truong, Chau-Linda; Greninger, Alexander L; Crandall, John; Mukhopadhyay, Rituparna; Chaturvedi, Vishnu

    2017-08-01

    Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits. Copyright © 2017 Kozyreva et al.

  13. A Blended Learning Experience for Teaching Microbiology

    PubMed Central

    Sancho, Pilar; Corral, Ricardo; Rivas, Teresa; González, María Jesús; Chordi, Andrés

    2006-01-01

    Objectives To create a virtual laboratory system in which experimental science students could learn required skills and competencies while overcoming such challenges as time limitations, high cost of resources, and lack of feedback often encountered in a traditional laboratory setting. Design A blended learning experience that combines traditional practices and e-learning was implemented to teach microbiological methods to pharmacy students. Virtual laboratory modules were used to acquire nonmanual skills such as visual and mental skills for data reading, calculations, interpretation of the results, deployment of an analytical protocol, and reporting results. Assesment Learning achievement was evaluated by questions about microbiology case-based problems. Students' perceptions were obtained by assessment questionnaire. Conclusion By combining different learning scenarios, the acquisition of the necessary but otherwise unreachable competences was achieved. Students achieved similar grades in the modules whose initiation was in the virtual laboratory to the grades they achieved with the modules whose complete or partial initiation took place in the laboratory. The knowledge acquired was satisfactory and the participants valued the experience. PMID:17149449

  14. Microbiologic Testing for 503A Sterile-Compounding Pharmacies.

    PubMed

    Mixon, William; Roth, Abby

    2017-01-01

    Compounding pharmacists must ensure that the sterile preparations they dispense are free of microbiologic contamination. Working in a cleanroom under controlled conditions (proper differential air pressure, temperature, and humidity; acceptable levels of viable and nonviable airborne particles and surface counts, etc.) and testing the efficacy of cleaning and disinfecting practices via environmental monitoring (viable-air and surface testing, glove-fingertip-thumb testing, etc.) are essential to preparing contamination-free medications. Sterile-compounding pharmacists must understand how to monitor their cleanroom environment and, if they perform testing in house, to interpret the results of simple microbiologic tests (a skill helpful even when tests are outsourced to a contract laboratory). In this article, which pertains to 503A sterile compounding, and is based on the current version of United States Pharmacopeia (USP) Chapter <797>, basic concepts in microbiology and the microbial tests that can be performed and interpreted in house and those that must be outsourced are discussed. Streamlining communication with contract laboratory personnel is reviewed. Requirements for an inhouse microbiology laboratory are presented, and the advantages and disadvantages of inhouse and outsourced testing are examined. A list of suggested reading is provided for easy reference. In a subsequent article, environmental monitoring and analysis will be addressed in detail. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  15. Partnering at the National Laboratories: Catalysis as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national researchmore » enterprise.« less

  16. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  17. A review of current and future molecular diagnostic tests for use in the microbiology laboratory.

    PubMed

    Jannes, Geert; De Vos, Daniel

    2006-01-01

    Nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratories. Similar to conventional tests, the first-generation deoxyribonucleic acid assays determined only a single analyte. Recent improvements in detection technologies have paved the way for the development of multiparameter assays using macroarrays or micro-arrays, while the introduction of closed-tube real-time polymerase chain reaction systems has resulted in the development of rapid microbial diagnostics with a reduced contamination risk. The use of these new molecular technologies is not restricted to detection and identification of microbial pathogens but also can be used for genotyping, allowing one to determine antibiotic resistance or to perform microbial fingerprinting.

  18. HEP Division Argonne National Laboratory

    Science.gov Websites

    Argonne National Laboratory Environmental Safety & Health DOE Logo Home Division ES&H ... Search Argonne Home >High Energy Physics> Environmental Safety & Health Environmental Safety & Health New Employee Training */ ?> Office Safety: Checklist (Submitted Checklists) Submitted

  19. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  20. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    PubMed

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  1. 60 Years of Great Science (Oak Ridge National Laboratory)

    DOE R&D Accomplishments Database

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  2. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  3. [Applications of MALDI-TOF technology in clinical microbiology].

    PubMed

    Suarez, S; Nassif, X; Ferroni, A

    2015-02-01

    Until now, the identification of micro-organisms has been based on the cultural and biochemical characteristics of bacterial and fungal species. Recently, Mass Spectrometry type Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF MS) was developed in clinical microbiology laboratories. This new technology allows identification of micro-organisms directly from colonies of bacteria and fungi within few minutes. In addition, it can be used to identify germs directly from positive blood culture bottles or directly from urine samples. Other ways are being explored to expand the use of MALDI-TOF in clinical microbiology laboratories. Indeed, some studies propose to detect bacterial antibiotic resistance while others compare strains within species for faster strain typing. The main objective of this review is to update data from the recent literature for different applications of MALDI-TOF technique in microbiological diagnostic routine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study.

    PubMed

    Birnie, Kate; Hay, Alastair D; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O'Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C; Sterne, Jonathan A C

    2017-01-01

    To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test"), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service laboratories should consider adopting procedures used in

  5. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    PubMed Central

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  6. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  7. Increase Workshop | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Faculty Visiting Us Argonne Educational Programs is committed to providing a learning environment that emphasizes the

  8. Quality of blood culture testing - a survey in intensive care units and microbiological laboratories across four European countries

    PubMed Central

    2013-01-01

    Introduction Blood culture (BC) testing before initiation of antimicrobial therapy is recommended as a standard of care in international sepsis guidelines and has been shown to reduce intensive care unit (ICU) stay, antibiotic use, and costs in hospitalized patients. Whereas microbiological laboratory practice has been highly standardized, shortfalls in the preanalytic procedures in the ICU (that is indication, time-to-incubation, blood volume and numbers of BC sets) have a significant effect on the diagnostic yield. The objective of this study was to gain insights into current practices regarding BC testing in intensive care units. Methods Qualitative survey, data collection by 138 semi-structured telephone interviews in four European countries (Italy, UK, France and Germany) between September and November 2009 in 79 clinical microbiology laboratories (LABs) and 59 ICUs. Results Whereas BC testing is expected to remain the gold standard for sepsis diagnostics in all countries, there are substantial differences regarding preanalytic procedures. The decision to launch BC testing is carried out by physicians vs. ICU nurses in the UK in 92 vs. 8%, in France in 75 vs. 25%, in Italy in 88 vs. 12% and in Germany in 92 vs. 8%. Physicians vs. nurses collect BCs in the UK in 77 vs. 23%, in France in 0 vs. 100%, in Italy in 6 vs. 94% and in Germany in 54 vs. 46%. The mean time from blood collection to incubation in the UK is 2 h, in France 3 h, in Italy 4 h, but 20 h in German remote LABs (2 h in in-house LABs), due to the large number of remote nonresident microbiological laboratories in Germany. There were major differences between the perception of the quality of BC testing between ICUs and LABs. Among German ICU respondents, 62% reported that they have no problems with BC testing, 15% reported time constraints, 15% cost pressure, and only 8% too long time to incubation. However, the corresponding LABs of these German ICUs reported too many false positive results due

  9. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  10. Microbiology Education in Nursing Practice.

    PubMed

    Durrant, Robert J; Doig, Alexa K; Buxton, Rebecca L; Fenn, JoAnn P

    2017-01-01

    Nurses must have sufficient education and training in microbiology to perform many roles within clinical nursing practice (e.g., administering antibiotics, collecting specimens, preparing specimens for transport and delivery, educating patients and families, communicating results to the healthcare team, and developing care plans based on results of microbiology studies and patient immunological status). It is unclear whether the current microbiology courses required of nursing students in the United States focus on the topics that are most relevant to nursing practice. To gauge the relevance of current microbiology education to nursing practice, we created a confidential, web-based survey that asked nurses about their past microbiology education, the types of microbiology specimens they collect, their duties that require knowledge of microbiology, and how frequently they encounter infectious diseases in practice. We used the survey responses to develop data-driven recommendations for educators who teach microbiology to pre-nursing and nursing students. Two hundred ninety-six Registered Nurses (RNs) completed the survey. The topics they deemed most relevant to current practice were infection control, hospital-acquired infections, disease transmission, and collection and handling of patient specimens. Topics deemed least relevant were the Gram stain procedure and microscope use. In addition, RNs expressed little interest in molecular testing methods. This may reflect a gap in their understanding of the uses of these tests, which could be bridged in a microbiology course. We now have data in support of anecdotal evidence that nurses are most engaged when learning about microbiology topics that have the greatest impact on patient care. Information from this survey will be used to shift the focus of microbiology courses at our university to topics more relevant to nursing practice. Further, these findings may also support an effort to evolve national recommendations for

  11. Microbiology Education in Nursing Practice†

    PubMed Central

    Durrant, Robert J.; Doig, Alexa K.; Buxton, Rebecca L.; Fenn, JoAnn P.

    2017-01-01

    Nurses must have sufficient education and training in microbiology to perform many roles within clinical nursing practice (e.g., administering antibiotics, collecting specimens, preparing specimens for transport and delivery, educating patients and families, communicating results to the healthcare team, and developing care plans based on results of microbiology studies and patient immunological status). It is unclear whether the current microbiology courses required of nursing students in the United States focus on the topics that are most relevant to nursing practice. To gauge the relevance of current microbiology education to nursing practice, we created a confidential, web-based survey that asked nurses about their past microbiology education, the types of microbiology specimens they collect, their duties that require knowledge of microbiology, and how frequently they encounter infectious diseases in practice. We used the survey responses to develop data-driven recommendations for educators who teach microbiology to pre-nursing and nursing students. Two hundred ninety-six Registered Nurses (RNs) completed the survey. The topics they deemed most relevant to current practice were infection control, hospital-acquired infections, disease transmission, and collection and handling of patient specimens. Topics deemed least relevant were the Gram stain procedure and microscope use. In addition, RNs expressed little interest in molecular testing methods. This may reflect a gap in their understanding of the uses of these tests, which could be bridged in a microbiology course. We now have data in support of anecdotal evidence that nurses are most engaged when learning about microbiology topics that have the greatest impact on patient care. Information from this survey will be used to shift the focus of microbiology courses at our university to topics more relevant to nursing practice. Further, these findings may also support an effort to evolve national recommendations for

  12. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, H.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had nomore » discernible impact on the general public or on the environment.« less

  13. Microbiological study of ready-to-eat salad vegetables from retail establishments uncovers a national outbreak of salmonellosis.

    PubMed

    Sagoo, S K; Little, C L; Ward, L; Gillespie, I A; Mitchell, R T

    2003-03-01

    The increasing availability of bagged prepared salad vegetables reflects consumer demand for fresh, healthy, convenient, and additive-free foods that are safe and nutritious. During May and June 2001 a study of retail bagged prepared ready-to-eat salad vegetables was undertaken to determine the microbiological quality of these vegetables. Examination of the salad vegetables revealed that the vast majority (3,826 of 3,852 samples; 99.3%) were of satisfactory or acceptable microbiological quality according to Public Health Laboratory Service microbiological guidelines, while 20 (0.5%) samples were of unsatisfactory microbiological quality. Unsatisfactory quality was due to Escherichia coli and Listeria spp. (not Listeria monocytogenes) levels in excess of 10(2) CFU/g. However, six (0.2%) samples were of unacceptable microbiological quality because of the presence of Salmonella (Salmonella Newport PT33 [one sample], Salmonella Umbilo [three samples], and Salmonella Durban [one sample]) or because of a L. monocytogenes level of 660 CFU/g, which indicates a health risk. In each case, the retailer involved and the UK Food Standards Agency were immediately informed, and full investigations were undertaken. Nineteen cases of Salmonella Newport PT33 infection were subsequently identified throughout England and Wales. The outbreak strain of Salmonella Newport PT33 isolated from the salad and from humans had a unique plasmid profile. Campylobacter spp. and E. coli O157 were not detected in any of the samples examined. The presence of Salmonella, as well as high levels of L. monocytogenes, is unacceptable. However, minimally processed cut and packaged salad is exposed to a range of conditions during growth, harvest, preparation, and distribution, and it is possible that these conditions may increase the potential for microbial contamination, highlighting the necessity for the implementation of good hygiene practices from farm to fork to prevent contamination and/or bacterial

  14. Microbiology studies in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1976-01-01

    Past space microbiology studies have evaluated three general areas: microbe detection in extraterrestrial materials; monitoring of autoflora and medically important species on crewmembers, equipment, and cabin air; and in vitro evaluations of isolated terrestrial species carried on manned and unmanned spaceflights. These areas are briefly reviewed to establish a basis for presenting probable experiment subjects applicable to the Space Shuttle era. Most extraterrestrial life detection studies involve visitations to other heavenly bodies. Although this is not applicable to the first series of Shuttle flights, attempts to capture meteors and spores in space could be important. Human pathogen and autoflora monitoring will become more important with increased variety among crewmembers. Inclusion of contaminated animal and plant specimens in the space lab will necessitate inflight evaluation of cross-contamination and infection potentials. The majority of Shuttle microbiology studies will doubtless fall into the third study area. Presence of a space lab will permit a whole range of experimentation under conditions similar to these experienced in earth-based laboratories. The recommendations of various study groups are analyzed, and probable inflight microbiological experiment areas are identified for the Life Sciences Shuttle Laboratory.

  15. Internship Opportunities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning -class research to tomorrow's STEM problem solvers Home Learning Center Undergraduates Graduates Faculty ) 252-4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  16. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  17. ORNL (Oak Ridge National Laboratory) 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  18. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  19. Bioterrorism: a Laboratory Who Does It?

    PubMed Central

    Lee, Philip A.; Rowlinson, Marie-Claire

    2014-01-01

    In October 2001, the first disseminated biological warfare attack was perpetrated on American soil. Initially, a few clinical microbiology laboratories were testing specimens from acutely ill patients and also being asked to test nasal swabs from the potentially exposed. Soon after, a significant number of clinical microbiology and public health laboratories received similar requests to test the worried well or evaluate potentially contaminated mail or environmental materials, sometimes from their own break rooms. The role of the clinical and public health microbiology laboratory in response to a select agent event or act of bioterrorism is reviewed. PMID:24648550

  20. Visitor's Guide | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research headquarters are located at the Advanced Technology and Research Facility (ATRF), located at 8560 Progress Drive, Frederick Maryland. Additional offices and laboratories are locatedon the NC

  1. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  2. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  3. [Influence of new technologies in modern microbiology].

    PubMed

    Pumarola, Tomás

    2010-10-01

    The influence of new technologies in modern microbiology is directly related to their automation, the real driving force of change. Automation has occurred since the beginning of clinical microbiology, but from the 1980s has experienced huge development, which is being projected through the immediate future to all areas of the speciality. Automation has become a prime organizational tool. However, its main disadvantage is that it has no limits, which in association with the current economicallyoriented criteria, is encouraging initiatives to integrate the various laboratory specialities into one production center and, eventually, to outsource its activity. This process could significantly reduce the quality of clinical microbiology and the training of future specialists, or even worst, lead to the eventual disappearance of the speciality, at least as it is known today. The future development of highly automated and integrated laboratories is an irreversible process. To preserve the quality of the speciality and of specialist training, rather than fight directly against this process, we must, as microbiologists, actively participate with creativity and leadership. Copyright © 2010 Elsevier España S.L. All rights reserved.

  4. Preface: 5th International Symposium on the Interface between Analytical Chemistry and Microbiology - April 19th to 21st, 2004: Hosted at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allmaier, Guenter; Wunschel, David S.; Wahl, Karen L.

    2004-04-19

    This is an introduction to a special issue of the Journal of microbiological Methods based on a recent meeting held at PNNL: the 5th International Symposium on the Interface between Analytical Chemistry and Microbiology.

  5. Control of Infectious Diseases in the Era of European Clinical Microbiology Laboratory Consolidation: New Challenges and Opportunities for the Patient and for Public Health Surveillance.

    PubMed

    Vandenberg, Olivier; Kozlakidis, Zisis; Schrenzel, Jacques; Struelens, Marc Jean; Breuer, Judith

    2018-01-01

    Many new innovative diagnostic approaches have been made available during the last 10 years with major impact on patient care and public health surveillance. In parallel, to enhance the cost-effectiveness of the clinical microbiology laboratories (CMLs), European laboratory professionals have streamlined their organization leading to amalgamation of activities and restructuring of their professional relationships with clinicians and public health specialists. Through this consolidation process, an operational model has emerged that combines large centralized clinical laboratories performing most tests on one high-throughput analytical platform connected to several distal laboratories dealing locally with urgent analyses at near point of care. The centralization of diagnostic services over a large geographical region has given rise to the concept of regional-scale "microbiology laboratories network." Although the volume-driven cost savings associated with such laboratory networks seem self-evident, the consequence(s) for the quality of patient care and infectious disease surveillance and control remain less obvious. In this article, we describe the range of opportunities that the changing landscape of CMLs in Europe can contribute toward improving the quality of patient care but also the early detection and enhanced surveillance of public health threats caused by infectious diseases. The success of this transformation of health services is reliant on the appropriate preparation in terms of staff, skills, and processes that would be inclusive of stakeholders. In addition, rigorous metrics are needed to set out more concrete laboratory service performance objectives and assess the expected benefits to society in terms of saving lives and preventing diseases.

  6. Control of Infectious Diseases in the Era of European Clinical Microbiology Laboratory Consolidation: New Challenges and Opportunities for the Patient and for Public Health Surveillance

    PubMed Central

    Vandenberg, Olivier; Kozlakidis, Zisis; Schrenzel, Jacques; Struelens, Marc Jean; Breuer, Judith

    2018-01-01

    Many new innovative diagnostic approaches have been made available during the last 10 years with major impact on patient care and public health surveillance. In parallel, to enhance the cost-effectiveness of the clinical microbiology laboratories (CMLs), European laboratory professionals have streamlined their organization leading to amalgamation of activities and restructuring of their professional relationships with clinicians and public health specialists. Through this consolidation process, an operational model has emerged that combines large centralized clinical laboratories performing most tests on one high-throughput analytical platform connected to several distal laboratories dealing locally with urgent analyses at near point of care. The centralization of diagnostic services over a large geographical region has given rise to the concept of regional-scale “microbiology laboratories network.” Although the volume-driven cost savings associated with such laboratory networks seem self-evident, the consequence(s) for the quality of patient care and infectious disease surveillance and control remain less obvious. In this article, we describe the range of opportunities that the changing landscape of CMLs in Europe can contribute toward improving the quality of patient care but also the early detection and enhanced surveillance of public health threats caused by infectious diseases. The success of this transformation of health services is reliant on the appropriate preparation in terms of staff, skills, and processes that would be inclusive of stakeholders. In addition, rigorous metrics are needed to set out more concrete laboratory service performance objectives and assess the expected benefits to society in terms of saving lives and preventing diseases. PMID:29457001

  7. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less

  8. Annual Report on the State of the DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this firstmore » report.« less

  9. Microbiology as a High-School Elective

    ERIC Educational Resources Information Center

    Peterson, Priscilla

    1973-01-01

    Describes a course in microbiology offered as a high school science elective. The laboratory-oriented course has proved to be very popular and provides students with the basic techniques for handling equipment and working safely with bacteria. (JR)

  10. [Isolation of anaerobes during a 30-month observation at a hospital microbiology laboratory].

    PubMed

    Pistono, P G; Rapetti, I; Stacchini, E; Vironda, N; D'Usi, M P; Guasco, C

    1989-01-01

    The authors evaluate retrospectively the results obtained from the research of anaerobial bacteria on 1313 samples received at the Microbiology Laboratory of the "Ospedale Civile di Ivrea" over a period of 31 months (6/1/86-12/31/88). From this evaluation, high percentages of detection of anaerobic bacteria are emerging in the following infections: appendiculare abscesses (60%), intestinal operations (71%), wounds (57%), tubovarian abscesses (100%), as well as thoracic empyema (50%). Also relevant are the isolations from skin and subcutaneous tissues: breast infections (50%) preputial infections (60%), perineal and perirectal abscesses (60%). The incident of anaerobic bacteria in bacteriemia is 17%. The most representative anaerobic bacteria group are: Bacteroides spp. (56%), Peptostreptococcus spp. (12%), Propionibacterium spp. (9%), Fusobacterium spp. (7%) Clostridium spp. (6%), Veillonella spp. and Eubacterium spp. (3%). In the intraabdominal infections prevails the Bacteroides group, particularly fragilis species, while in the skin and subcutaneous infections prevails the Peptostreptococcus group.

  11. Individualized Quality Control Plan (IQCP): Is It Value-Added for Clinical Microbiology?

    PubMed Central

    Miller, Melissa B.; Hindler, Janet

    2015-01-01

    The Center for Medicaid and Medicare Services (CMS) recently published their Individualized Quality Control Plan (IQCP [https://www.cms.gov/regulations-and-guidance/legislation/CLIA/Individualized_Quality_Control_Plan_IQCP.html]), which will be the only option for quality control (QC) starting in January 2016 if laboratories choose not to perform Clinical Laboratory Improvement Act (CLIA) [U.S. Statutes at Large 81(1967):533] default QC. Laboratories will no longer be able to use “equivalent QC” (EQC) or the Clinical and Laboratory Standards Institute (CLSI) standards alone for quality control of their microbiology systems. The implementation of IQCP in clinical microbiology laboratories will most certainly be an added burden, the benefits of which are currently unknown. PMID:26447112

  12. Medical Laboratory Technician--Microbiology (AFSC 90470).

    ERIC Educational Resources Information Center

    Thompson, Joselyn H.

    This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for medical laboratory technicians. Covered in the individual volumes are laboratory procedures in clinical bacteriology (the history of bacteriology; aseptic techniques and sterilization procedures; bacterial morphology and…

  13. Frederick National Laboratory and Georgetown University Launch Research and Education Collaboration | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f

  14. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  15. A regional centralized microbiology service in Calgary for the rapid diagnosis of malaria.

    PubMed

    Church, Deirdre L; Lichtenfeld, Angelika; Elsayed, Sameer; Kuhn, Susan; Gregson, Daniel B

    2003-06-01

    A regional centralized laboratory service for the rapid diagnosis of malaria was implemented 3 years ago in May 1999 within the Division of Microbiology, Calgary Laboratory Services. To describe the design and performance of this unique microbiology laboratory service. Blood specimens must arrive at the central laboratory within 2 hours of collection. Thin blood smears are read and reported from suspected acute cases within 1 hour of receipt, 24 hours per day, 7 days a week, by trained and experienced microbiology technologists. All positive malaria smears are reviewed by a medical microbiologist and confirmed by polymerase chain reaction at a reference laboratory. Calgary Laboratory Services provides integrated laboratory services to the Calgary Health Region, an urban area of more than 1 million people. Performance of the service has been continuously monitored by measuring preanalytic and analytic test turnaround times, test accuracy, clinical relevance, and the results of proficiency testing. More than 90% of blood specimens for malaria from community locations have consistently arrived within 2 hours of collection, and hospitals have reached this target within the past year. Although polymerase chain reaction was more sensitive at detecting the presence of malaria, the expert microscopists were as accurate at determining the type of Plasmodium infection. More than 95% of all positive smear results are consistently reported within 2 hours of receipt of a blood specimen. Implementation of a regional centralized microbiology service has improved our ability to make a rapid and accurate diagnosis of malaria in this region.

  16. Technology Innovation at the National Renewable Energy Laboratory (Text

    Science.gov Websites

    market, new processes out in the fields, and to make an impact." A photo montage of six different Version) | NREL Technology Innovation at the National Renewable Energy Laboratory (Text Version ) Technology Innovation at the National Renewable Energy Laboratory (Text Version) This is the text version for

  17. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most support of this mission, Sandia National Laboratories has a significant role in advancing the "state

  18. The International Space Station: A National Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  19. Critical Infrastructure Protection- Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  20. Global Impact | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  1. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  2. Introduction to Clinical Microbiology for the General Dentist.

    PubMed

    Rams, Thomas E; van Winkelhoff, Arie J

    2017-04-01

    Clinical oral microbiology may help dental professionals identify infecting pathogenic species and evaluate their in vitro antimicrobial susceptibility. Saliva, dental plaque biofilms, mucosal smears, abscess aspirates, and soft tissue biopsies are sources of microorganisms for laboratory testing. Microbial-based treatment end points may help clinicians better identify patients in need of additional or altered dental therapies before the onset of clinical treatment failure, and help improve patient oral health outcomes. Microbiological testing appears particularly helpful in periodontal disease treatment planning. Further research and technological advances are likely to increase the availability and clinical utility of microbiological analysis in modern dental practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Manual Laboratorio de Microbiologia. Documento de trabajo Programa de Educacion en Ocupaciones de Salud (Microbiology Laboratory Manual. Curriculum Document. Program of Education in Health Occupations).

    ERIC Educational Resources Information Center

    Puerto Rico State Dept. of Education, Hato Rey. Area for Vocational and Technical Education.

    This laboratory manual on microbiology begins with an introduction relating the study of microorganisms to health occupations education and stressing the importance of teaching critical thinking. The introduction is followed by general instructions for the use of the manual and an illustration of hand washing procedures. The 13 laboratory…

  4. Interactive tele-education applied to a distant clinical microbiology specialization university course.

    PubMed

    Andreazzi, Denise B; Rossi, Flávia; Wen, Chao L

    2011-09-01

    The microbiology laboratory provides a strategic support for infectious disease diagnosis and also alerts the medical community about bacterial resistance to antibiotics. The microbiologists' training is a challenge in Brazil, a country with an extensive territory, a diverse population, and disparity of resource allocation. The aim of this study was to implement an interactive tele-educational course in clinical microbiology to reach distant laboratory workers and to improve their professional skills. The course scientific content was defined according to competences associated, distributed in 560 h, with laboratory practices (knowledge matrix-contextual education). The 11-module course structure comprised 70% distance learning, 22% on campus (integrated modules), and 8% monographs. The group included 7 physicians and 21 microbiologists from 20 different Brazilian cities. The time flexibility and location were the two main reasons for student participation, thus decreasing absences to the workplace, different from the traditional teaching methodologies. The group performance was measured by monthly evaluations, and 1 year postcourse, the researcher visited their workplace. There was significant improvement in microbiological practices performed before compared with after group participation. Therefore, 76.9% of laboratory practices were modified because of the knowledge acquired in the course. Students showed behavioral changes in relation to performance in infection control as well as on the dissemination of their knowledge. This specialization course using distance education did not compromise the quality. This educational methodology represents an alternative to teach clinical microbiology to laboratory workers from remote hospitals, as a nationwide continuing educational strategy.

  5. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  6. Frederick National Laboratory Scientists to Present Advanced Technologies in Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hundreds of science and business professionals are expected to attend the second annual Technology Showcase at the Frederick National Laboratory for Cancer Research, scheduled for June 13.  The event will feature technologies bei

  7. [Accreditation of medical laboratories].

    PubMed

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  8. Federating clinical data from six pediatric hospitals: process and initial results for microbiology from the PHIS+ consortium.

    PubMed

    Gouripeddi, Ramkiran; Warner, Phillip B; Mo, Peter; Levin, James E; Srivastava, Rajendu; Shah, Samir S; de Regt, David; Kirkendall, Eric; Bickel, Jonathan; Korgenski, E Kent; Precourt, Michelle; Stepanek, Richard L; Mitchell, Joyce A; Narus, Scott P; Keren, Ron

    2012-01-01

    Microbiology study results are necessary for conducting many comparative effectiveness research studies. Unlike core laboratory test results, microbiology results have a complex structure. Federating and integrating microbiology data from six disparate electronic medical record systems is challenging and requires a team of varied skills. The PHIS+ consortium which is partnership between members of the Pediatric Research in Inpatient Settings (PRIS) network, the Children's Hospital Association and the University of Utah, have used "FURTHeR' for federating laboratory data. We present our process and initial results for federating microbiology data from six pediatric hospitals.

  9. A cost-effective interdisciplinary approach to microbiologic send-out test use.

    PubMed

    Aesif, Scott W; Parenti, David M; Lesky, Linda; Keiser, John F

    2015-02-01

    Use of reference laboratories for selected laboratory testing (send-out tests) represents a significant source of laboratory costs. As the use of more complex molecular analyses becomes common in the United States, strategies to reduce costs in the clinical laboratory must evolve in order to provide high-value, cost-effective medicine. To report a strategy that employs clinical pathology house staff and key hospital clinicians in the effective use of microbiologic send-out testing. The George Washington University Hospital is a 370-bed academic hospital in Washington, DC. In 2012 all requisitions for microbiologic send-out tests were screened by the clinical pathology house staff prior to final dispensation. Tests with questionable utility were brought to the attention of ordering clinicians through the use of interdisciplinary rounds and direct face-to-face consultation. Screening resulted in a cancellation rate of 38% of send-out tests, with proportional cost savings. Nucleic acid tests represented most of the tests screened and the largest percentage of cost saved through screening. Following consultation, requested send-out tests were most often canceled because of a lack of clinical indication. Direct face-to-face consultation with ordering physicians is an effective, interdisciplinary approach to managing the use of send-out testing in the microbiology laboratory.

  10. Exposure of Laboratory Workers to Francisella tularensis despite a Bioterrorism Procedure

    PubMed Central

    Shapiro, Daniel S.; Schwartz, Donald R.

    2002-01-01

    A rapidly fatal case of pulmonary tularemia in a 43-year-old man who was transferred to a tertiary care facility is presented. The microbiology laboratory and autopsy services were not notified of the clinical suspicion of tularemia by the service caring for the patient. Despite having a laboratory bioterrorism procedure in place and adhering to established laboratory protocol, 12 microbiology laboratory employees were exposed to Francisella tularensis and the identification of the organism was delayed due to lack of notification of the laboratory of the clinical suspicion of tularemia. A total of 11 microbiology employees and two persons involved in performing the patient's autopsy received prophylactic doxycycline due to concerns of transmission. None of them developed signs or symptoms of tularemia. One microbiology laboratory employee was pregnant and declined prophylactic antibiotics. As a result of this event, the microbiology laboratory has incorporated flow charts directly into the bench procedures for several highly infectious agents that may be agents of bioterrorism. This should permit more rapid recognition of an isolate for referral to a Level B laboratory for definitive identification and should improve laboratory safety. PMID:12037110

  11. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  12. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  13. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  14. Hair sheep blood, citrated or defibrinated, fulfills all requirements of blood agar for diagnostic microbiology laboratory tests.

    PubMed

    Yeh, Ellen; Pinsky, Benjamin A; Banaei, Niaz; Baron, Ellen Jo

    2009-07-03

    Blood agar is used for the identification and antibiotic susceptibility testing of many bacterial pathogens. In the developing world, microbiologists use human blood agar because of the high cost and inhospitable conditions for raising wool sheep or horses to supply blood. Many pathogens either fail to grow entirely or exhibit morphologies and hemolytic patterns on human blood agar that confound colony recognition. Furthermore, human blood can be hazardous to handle due to HIV and hepatitis. This study investigated whether blood from hair sheep, a hardy, low-maintenance variety of sheep adapted for hot climates, was suitable for routine clinical microbiology studies. Hair sheep blood obtained by jugular venipuncture was anticoagulated by either manual defibrination or collection in human blood bank bags containing citrate-phosphate-dextrose. Trypticase soy 5% blood agar was made from both forms of hair sheep blood and commercial defibrinated wool sheep blood. Growth characteristics, colony morphologies, and hemolytic patterns of selected human pathogens, including several streptococcal species, were evaluated. Specialized identification tests, including CAMP test, reverse CAMP test, and satellite colony formation with Haemophilus influenzae and Abiotrophia defectiva were also performed. Mueller-Hinton blood agar plates prepared from the three blood types were compared in antibiotic susceptibility tests by disk diffusion and E-test. The results of all studies showed that blood agar prepared from citrated hair sheep blood is suitable for microbiological tests used in routine identification and susceptibility profiling of human pathogens. The validation of citrated hair sheep blood eliminates the labor-intensive and equipment-requiring process of manual defibrination. Use of hair sheep blood, in lieu of human blood currently used by many developing world laboratories and as an alternative to cost-prohibitive commercial sheep blood, offers the opportunity to

  15. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  16. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less

  17. The USDA Forest Service National Seed Laboratory

    Treesearch

    Robert P. Karrfalt

    2006-01-01

    The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the lab’s evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...

  18. Federating Clinical Data from Six Pediatric Hospitals: Process and Initial Results for Microbiology from the PHIS+ Consortium

    PubMed Central

    Gouripeddi, Ramkiran; Warner, Phillip B.; Mo, Peter; Levin, James E.; Srivastava, Rajendu; Shah, Samir S.; de Regt, David; Kirkendall, Eric; Bickel, Jonathan; Korgenski, E. Kent; Precourt, Michelle; Stepanek, Richard L.; Mitchell, Joyce A.; Narus, Scott P.; Keren, Ron

    2012-01-01

    Microbiology study results are necessary for conducting many comparative effectiveness research studies. Unlike core laboratory test results, microbiology results have a complex structure. Federating and integrating microbiology data from six disparate electronic medical record systems is challenging and requires a team of varied skills. The PHIS+ consortium which is partnership between members of the Pediatric Research in Inpatient Settings (PRIS) network, the Children’s Hospital Association and the University of Utah, have used “FURTHeR’ for federating laboratory data. We present our process and initial results for federating microbiology data from six pediatric hospitals. PMID:23304298

  19. Computer Modeling of Microbiological Experiments in the Teaching Laboratory: Animation Techniques.

    ERIC Educational Resources Information Center

    Tritz, Gerald J.

    1987-01-01

    Discusses the use of computer assisted instruction in the medical education program of the Kirksville College of Osteopathic Medicine (Missouri). Describes the animation techniques used in a series of simulations for microbiology. (TW)

  20. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...

  1. 78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...

  2. Internships and Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory hasmany exciting opportunities for scientists and biotechnology professionalsthrough numerous post-doctoral and pre-doctoral fellowship positions sponsored by the National Cancer Institute (NCI) at Freder

  3. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  4. Outbreak!: Teaching Clinical and Diagnostic Microbiology Methodologies with an Interactive Online Game

    ERIC Educational Resources Information Center

    Clark, Sherri; Smith, Geoffrey Battle

    2004-01-01

    Outbreak! is an online, interactive educational game that helps students and teachers learn and evaluate clinical microbiology skills. When the game was used in introductory microbiology laboratories, qualitative evaluation by students showed very positive responses and increased learning. Outbreak! allows students to design diagnostic tests and…

  5. [Analysis of proposals received and funded in discipline of microbiology of the National Natural Science Foundation of China from 2011 to 2015].

    PubMed

    Zhang, Xin; Li, Weimin; He, Jianwei; Wen, Mingzhang; Du, Quansheng

    2016-02-04

    Based on a wrap-up of the research proposals received and awards made during 2011 through 2015 in the discipline of microbiology of the Department of Life Sciences, National Natural Science Foundation of China, this article presents a statistic analysis of award recipient institutions and main research trends, and attempts a prospective prioritization of the funding areas from the points of encouraging interdisciplinary research, optimizing funding instruments and strengthening talent training, with a view to providing reference for scientists and researchers in the field of microbiology.

  6. [Analysis on 2011 quality control results on aerobic plate count of microbiology laboratories in China].

    PubMed

    Han, Haihong; Li, Ning; Li, Yepeng; Fu, Ping; Yu, Dongmin; Li Zhigang; Du, Chunming; Guo, Yunchang

    2015-01-01

    To test the aerobic plate count examining capability of microbiology laboratories, to ensure the accuracy and comparability of quantitative bacteria examination results, and to improve the quality of monitoring. The 4 different concentration aerobic plate count piece samples were prepared and noted as I, II, III and IV. After homogeneity and stability tests, the samples were delivered to monitoring institutions. The results of I, II, III samples were logarithmic transformed, and evaluated with Z-score method using the robust average and standard deviation. The results of IV samples were evaluated as "satisfactory" when reported as < 10 CFU/piece or as "not satisfactory" otherwise. Pearson χ2 test was used to analyze the ratio results. 309 monitoring institutions, which was 99.04% of the total number, reported their results. 271 institutions reported a satisfactory result, and the satisfactory rate was 87.70%. There was no statistical difference in satisfactory rates of I, II and III samples which were 81.52%, 88.30% and 91.40% respectively. The satisfactory rate of IV samples was 93.33%. There was no statistical difference in satisfactory rates between provincial and municipal CDC. The quality control program has provided scientific data that the aerobic plate count capability of the laboratories meets the requirements of monitoring tasks.

  7. Does bacteriology laboratory automation reduce time to results and increase quality management?

    PubMed

    Dauwalder, O; Landrieve, L; Laurent, F; de Montclos, M; Vandenesch, F; Lina, G

    2016-03-01

    Due to reductions in financial and human resources, many microbiological laboratories have merged to build very large clinical microbiology laboratories, which allow the use of fully automated laboratory instruments. For clinical chemistry and haematology, automation has reduced the time to results and improved the management of laboratory quality. The aim of this review was to examine whether fully automated laboratory instruments for microbiology can reduce time to results and impact quality management. This study focused on solutions that are currently available, including the BD Kiestra™ Work Cell Automation and Total Lab Automation and the Copan WASPLab(®). Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments Database

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  9. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  10. Use, location, and timeliness of clinical microbiology testing in Georgia for select infectious diseases.

    PubMed

    Brzozowski, Amanda K; Silk, Benjamin J; Berkelman, Ruth L; Loveys, Deborah A; Caliendo, Angela M

    2012-01-01

    Although clinical microbiology testing facilitates both public health surveillance of infectious diseases and patient care, research on testing patterns is scant. We surveyed hospital laboratories in Georgia to assess their diagnostic testing practices. Using e-mail, all directors of hospital laboratories in Georgia were invited to participate. The survey focused on timing and location of diagnostic testing in 2006 for 6 reportable diseases: giardiasis, legionellosis, meningococcal disease, pertussis, Rocky Mountain spotted fever, and West Nile virus disease. Of 141 laboratories, 62 (44%) responded to the survey. Hospitals varied widely in their use of diagnostic testing in 2006, with 95.1% testing for meningococcal disease, but only 66.1% and 63.3% testing for legionellosis and West Nile virus disease, respectively. Most laboratories (91%) performed gram stain/culture to diagnose meningococcal disease in-house and 23% performed ova and parasite panels for giardiasis were conducted in-house. Fewer than 11% of laboratories performed in-house testing for the remaining diseases. Laboratories affiliated with small hospitals (≤100 beds) were more likely to send specimens for outside testing compared with laboratories associated with large hospitals (>250 beds). Median turnaround time for ova and parasite panel testing for giardiasis was significantly shorter for in-house testing (1.0 days) than within-system (2.25 days) or outside laboratory (3.0 days) testing (P = .0003). No laboratories reported in-house testing for meningococcal disease, pertussis, or Rocky Mountain spotted fever using polymerase chain reaction. Many hospitals did not order diagnostic tests for important infectious diseases during 2006, even for relatively common diseases. In addition, hospital laboratories were unlikely to perform diagnostic testing in-house; sending specimens to an outside laboratory may result in substantial delays in receiving results. These unsettling findings have adverse

  11. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    PubMed Central

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-01-01

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296

  12. Pollution Microbiology, A Laboratory Manual.

    ERIC Educational Resources Information Center

    Finstein, Melvin S.

    This manual is designed for use in the laboratory phase of courses dealing with microbial aspects of pollution. It attempts to cover the subject area broadly in four major categories: (1) microorganisms in clean and polluted waters, (2) carbonaceous pollutants, (3) nitrogen, phosphorus, iron, and sulfur as pollutants, and (4) sanitary…

  13. Performance of Kiestra Total Laboratory Automation Combined with MS in Clinical Microbiology Practice

    PubMed Central

    Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.

    2014-01-01

    Background Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This fully automated sample processing system, equipped with digital imaging technology, allows superior detection of microbial growth. Combining this approach with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) (Bruker Daltonik, Germany) is expected to enable more rapid identification of pathogens. Methods Early growth detection by digital imaging using Kiestra TLA combined with MS was compared to conventional methods (CM) of detection. Accuracy and time taken for microbial identification were evaluated for the two methods in 219 clinical blood culture isolates. The possible clinical impact of earlier microbial identification was assessed according to antibiotic treatment prescription. Results Pathogen identification using Kiestra TLA combined with MS resulted in a 30.6 hr time gain per isolate compared to CM. Pathogens were successfully identified in 98.4% (249/253) of all tested isolates. Early microbial identification without susceptibility testing led to an adjustment of antibiotic regimen in 12% (24/200) of patients. Conclusions The requisite 24 hr incubation time for microbial pathogens to reach sufficient growth for susceptibility testing and identification would be shortened by the implementation of Kiestra TLA in combination with MS, compared to the use of CM. Not only can this method optimize workflow and reduce costs, but it can allow potentially life-saving switches in antibiotic regimen to be initiated sooner. PMID:24624346

  14. The Czech External Quality Control system in medical microbiology and parasitology.

    PubMed

    Slosárek, M; Kríz, B

    2000-11-01

    The External Quality Control (EQC) system in activities of laboratories engaged in medical microbiology and parasitology was established in the Czech Republic in 1993 when to the first laboratories which applied coded serum samples were sent for diagnosis of viral hepatitis and bacterial strains for identification. In the course of years the number of control areas increased and in 2000 there were 31 and the number of those interested in participation in EQC increased from 79 in 1993 to 434 in 2000. This year a total of 13,239 samples will be sent to laboratories. Gradually thus almost all microbiological and parasitological laboratories concerned with examination of clinical material became involved. Seven-year experience with EQC in the Czech Republic revealed that gradually the results of various examinations became more accurate, that methods became standardized and the most suitable examination sets are used.

  15. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…

  16. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. Thismore » network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.« less

  17. Occurrence and distribution of microbiological indicators in groundwater and stream water

    USGS Publications Warehouse

    Francy, D.S.; Helsel, D.R.; Nally, R.A.

    2000-01-01

    A total of 136 stream water and 143 groundwater samples collected in five important hydrologic systems of the United States were analyzed for microbiological indicators to test monitoring concepts in a nationally consistent program. Total coliforms were found in 99%, Escherichia coli in 97%, and Clostridium perfringens in 73% of stream water samples analyzed for each bacterium. Total coliforms were found in 20%, E. coli in less than 1%, and C. perfringens in none of the groundwater samples analyzed for each bacterium. Although coliphage analyses were performed on many of the samples, contamination in the laboratory and problems discerning discrete plaques precluded quantification. Land use was found to have the most significant effect on concentrations of bacterial indicators in stream water. Presence of septic systems on the property near the sampling site and well depth were found to be related to detection of coliforms in groundwater, although these relationships were not statistically significant. A greater diversity of sites, more detailed information about some factors, and a larger dataset may provide further insight to factors that affect microbiological indicators.

  18. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  19. Development and Evaluation of Problem-Solving Skills in Microbiology.

    ERIC Educational Resources Information Center

    Schuytema, Eunice C.; And Others

    A problem solving, laboratory experience was devised in which first-year medical students were given a case description and then required to make judgments about what microbiology specimens should be collected and to analyze the results of laboratory tests in terms of implications for patient care. Over a four-year period revisions were made in…

  20. Microbiology laboratory and the management of mother-child varicella-zoster virus infection

    PubMed Central

    De Paschale, Massimo; Clerici, Pierangelo

    2016-01-01

    Varicella-zoster virus, which is responsible for varicella (chickenpox) and herpes zoster (shingles), is ubiquitous and causes an acute infection among children, especially those aged less than six years. As 90% of adults have had varicella in childhood, it is unusual to encounter an infected pregnant woman but, if the disease does appear, it can lead to complications for both the mother and fetus or newborn. The major maternal complications include pneumonia, which can lead to death if not treated. If the virus passes to the fetus, congenital varicella syndrome, neonatal varicella (particularly serious if maternal rash appears in the days immediately before or after childbirth) or herpes zoster in the early years of life may occur depending on the time of infection. A Microbiology laboratory can help in the diagnosis and management of mother-child infection at four main times: (1) when a pregnant woman has been exposed to varicella or herpes zoster, a prompt search for specific antibodies can determine whether she is susceptible to, or protected against infection; (2) when a pregnant woman develops clinical symptoms consistent with varicella, the diagnosis is usually clinical, but a laboratory can be crucial if the symptoms are doubtful or otherwise unclear (atypical patterns in immunocompromised subjects, patients with post-vaccination varicella, or subjects who have received immunoglobulins), or if there is a need for a differential diagnosis between varicella and other types of dermatoses with vesicle formation; (3) when a prenatal diagnosis of uterine infection is required in order to detect cases of congenital varicella syndrome after the onset of varicella in the mother; and (4) when the baby is born and it is necessary to confirm a diagnosis of varicella (and its complications), make a differential diagnosis between varicella and other diseases with similar symptoms, or confirm a causal relationship between maternal varicella and malformations in a newborn

  1. The microbiology "unknown" misadventure.

    PubMed

    Boyer, B; DeBenedictis, K J; Master, R; Jones, R S

    1998-06-01

    A 19-year-old nursing student was hospitalized after several days of nausea, vomiting, diarrhea, and fevers. Salmonella paratyphi A was isolated from multiple blood cultures. Because this is an unlikely isolate in the United States, an investigation ensued. Two and a half weeks earlier, the student had been working on a microbiology laboratory exercise "unknown." Both the "unknown" organism and the patient's blood culture isolates were identified as S. paratyphi A, with the same biochemical reactions and antimicrobial susceptibility results. The patient's condition improved with antibiotic therapy, and she was discharged after 9 days in the hospital. Conclusions related to our investigation are as follows: (1) relatively virulent organisms were unnecessary to fulfill the laboratory objectives, (2) pipetting by mouth must never be allowed, (3) proper labeling of specimens is imperative, (4) instructors should have knowledge of laboratory safety regulations, and (5) it is the obligation of laboratory directors and administrators to provide a safe academic environment.

  2. Follow-Up of External Quality Controls for PCR-Based Diagnosis of Whooping Cough in a Hospital Laboratory Network (Renacoq) and in Other Hospital and Private Laboratories in France.

    PubMed

    Guillot, Sophie; Guiso, Nicole

    2016-08-01

    The French National Reference Centre (NRC) for Whooping Cough carried out an external quality control (QC) analysis in 2010 for the PCR diagnosis of whooping cough. The main objective of the study was to assess the impact of this QC in the participating laboratories through a repeat analysis in 2012. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Risa; Jones, Rebecca; Bersell, Bridget

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps.more » Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.« less

  4. Location | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  5. Collaborations | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory has a range of contractual agreement options available which offer flexibility to facilitate the formation of partnerships. The appropriate business mechanism is considered based on the scope and objectives of the pa

  6. Selective testing of women based on age for genital Chlamydia trachomatis and Neisseria gonorrhoeae infection in a centralized regional microbiology laboratory.

    PubMed

    Church, Deirdre L; Amante, L; Semeniuk, H; Gregson, D B

    2007-04-01

    Calgary Laboratory Services, Alberta, Canada, provides microbiology services via a centralized laboratory to the Calgary Health Region. A selective genital Chlamydia trachomatis (CT)/Neisseria gonorrhoeae (GC) testing policy for women >35 years was implemented. The changes in physician ordering practice, the rate of detection of infections, and the test turnaround times were monitored. The volume of tests, the cost/test, and the total service costs accrued in the year before and after this policy change were compared. An immediate impact was a 30% decrease in tests performed due to the laboratory rejecting samples from older women. Subsequently, physicians' practice changed so that tests were ordered when test criteria were met. Detection rates did not change in any age group. A 27.9% decrease in the total service costs resulted in a labor reduction of 0.2 FTE. Selective testing of women >35 years with a low prevalence of CT/GC infection is clinically relevant and cost-effective.

  7. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Science.gov Websites

    Environmental Management: Sandia Sandia National Laboratories Exceptional service in the Environmental Responsibility Environmental Management System Pollution Prevention History 60 impacts Diversity ; Verification Research Research Foundations Bioscience Computing & Information Science Electromagnetics

  8. Changes, disruption and innovation: An investigation of the introduction of new health information technology in a microbiology laboratory.

    PubMed

    Toouli, George; Georgiou, Andrew; Westbrook, Johanna

    2012-01-01

    It is expected that health information technology (HIT) will deliver a safer, more efficient and effective health care system. The aim of this study was to undertake a qualitative and video-ethnographic examination of the impact of information technologies on work processes in the reception area of a Microbiology Department, to ascertain what changed, how it changed and the impact of the change. The setting for this study was the microbiology laboratory of a large tertiary hospital in Sydney. The study consisted of qualitative (interview and focus group) data and observation sessions for the period August 2005 to October 2006 along with video footage shot in three sessions covering the original system and the two stages of the Cerner implementation. Data analysis was assisted by NVivo software and process maps were produced from the video footage. There were two laboratory information systems observed in the video footage with computerized provider order entry introduced four months later. Process maps highlighted the large number of pre data entry steps with the original system whilst the newer system incorporated many of these steps in to the data entry stage. However, any time saved with the new system was offset by the requirement to complete some data entry of patient information not previously required. Other changes noted included the change of responsibilities for the reception staff and the physical changes required to accommodate the increased activity around the data entry area. Implementing a new HIT is always an exciting time for any environment but ensuring that the implementation goes smoothly and with minimal trouble requires the administrator and their team to plan well in advance for staff training, physical layout and possible staff resource reallocation.

  9. Laboratory security and emergency response guidance for laboratories working with select agents. Centers for Disease Control and Prevention.

    PubMed

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna L

    2002-12-06

    In recent years, concern has increased regarding use of biologic materials as agents of terrorism, but these same agents are often necessary tools in clinical and research microbiology laboratories. Traditional biosafety guidelines for laboratories have emphasized use of optimal work practices, appropriate containment equipment, well-designed facilities, and administrative controls to minimize risk of worker injury and to ensure safeguards against laboratory contamination. The guidelines discussed in this report were first published in 1999 (U.S. Department of Health and Human Services/CDC and National Institutes of Health. Biosafety in microbiological and biomedical laboratories [BMBL]. Richmond JY, McKinney RW, eds. 4th ed. Washington, DC: US Department of Health and Human Services, 1999 [Appendix F]). In that report, physical security concerns were addressed, and efforts were focused on preventing unauthorized entry to laboratory areas and preventing unauthorized removal of dangerous biologic agents from the laboratory. Appendix F of BMBL is now being revised to include additional information regarding personnel risk assessments, and inventory controls. The guidelines contained in this report are intended for laboratories working with select agents under biosafety-level 2, 3, or 4 conditions as described in Sections II and III of BMBL. These recommendations include conducting facility risk assessments and developing comprehensive security plans to minimize the probability of misuse of select agents. Risk assessments should include systematic, site-specific reviews of 1) physical security; 2) security of data and electronic technology systems; 3) employee security; 4) access controls to laboratory and animal areas; 5) procedures for agent inventory and accountability; 6) shipping/transfer and receiving of select agents; 7) unintentional incident and injury policies; 8) emergency response plans; and 9) policies that address breaches in security. The security plan

  10. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  11. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  12. Diagnosis of vulvovaginitis: comparison of clinical and microbiological diagnosis.

    PubMed

    Esim Buyukbayrak, Esra; Kars, Bulent; Karsidag, Ayse Yasemin Karageyim; Karadeniz, Bernan Ilkay; Kaymaz, Ozge; Gencer, Serap; Pirimoglu, Zehra Meltem; Unal, Orhan; Turan, Mehmet Cem

    2010-11-01

    The purpose of the present study was to compare the current diagnostic clinical and laboratory approaches to women with vulvovaginal discharge complaint. The secondary outcomes were to determine the prevalence of infections in our setting and to look for the relation between vulvovaginal infections and predisposing factors if present. Premenopausal women applying to our gynecology outpatient clinic with vaginal discharge complaint were enrolled prospectively into the study. Each patient evaluated clinically with direct observation of vaginal secretions, wet mount examination, whiff test, vaginal pH testing and chlamydia rapid antigen test. Each patient also evaluated microbiologically with vaginal discharge culture and gram staining. Clinical diagnosis was compared with the microbiological diagnosis (the gold standard). Diagnostic accuracy was measured with sensitivity, specificity, positive (ppv) and negative predictive values (npv). 460 patients were included in the study. 89.8% of patients received a clinical diagnosis whereas only 36% of them had microbiological diagnosis. The sensitivity, specificity, ppv, npv of clinical diagnosis over microbiological culture results were 95, 13, 38, 82%, respectively. The most commonly encountered microorganisms by culture were Candida species (17.4%) and Gardnerella vaginalis (10.2%). Clinically, the most commonly made diagnoses were mixed infection (34.1%), bacterial vaginosis (32.4%) and fungal infection (14.1%). Symptoms did not predict laboratory results. Predisposing factors (DM, vaginal douching practice, presence of IUD and usage of oral contraceptive pills) were not found to be statistically important influencing factors for vaginal infections. Clinical diagnosis based on combining symptoms with office-based testing improves diagnostic accuracy but is insufficient. The most effective approach also incorporates laboratory testing as an adjunct when a diagnosis is in question or treatment is failing.

  13. International External Quality Assurance for Laboratory Diagnosis of Diphtheria ▿

    PubMed Central

    Neal, S. E.; Efstratiou, A.

    2009-01-01

    The diphtheria surveillance network (DIPNET) encompassing National Diphtheria Reference Centers from 25 European countries is a Dedicated Surveillance Network recognized by the European Commission. A key DIPNET objective is the quality assessment of microbiological procedures for diphtheria across the European Union and beyond. A detailed questionnaire on the level of reference laboratory services and an external quality assessment (EQA) panel comprising six simulated throat specimens were sent to 34 centers. Twenty-three centers are designated National Diphtheria Reference Centers, with the laboratory in the United Kingdom being the only WHO Collaborating Centre. A variety of screening and identification tests were used, including the cysteinase test (20/34 centers), pyrazinamidase test (17/34 centers), and commercial kits (25/34 centers). The classic Elek test for toxigenicity testing is mostly used (28/34 centers), with variations in serum sources and antitoxin concentrations. Many laboratories reported problems obtaining Elek reagents or media. Only six centers produced acceptable results for all six specimens. Overall, 21% of identification and 13% of toxigenicity reports were unacceptable. Many centers could not isolate the target organism, and most found difficulties with the specimens that contained Corynebacterium striatum as a commensal contaminant. Nineteen centers generated either false-positive or negative toxigenic results, which may have caused inappropriate medical management. The discrepancies in this diphtheria diagnostics EQA alarmingly reflect the urgent need to improve laboratory performance in diphtheria diagnostics in Europe, standardize feasible and robust microbiological methods, and build awareness among public health authorities. Therefore, DIPNET recommends that regular workshops and EQA distributions for diphtheria diagnostics should be supported and maintained. PMID:19828749

  14. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  15. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    PubMed

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  16. Microbiological methods for the water recovery systems test, revision 1.1

    NASA Technical Reports Server (NTRS)

    Rhoads, Tim; Kilgore, M. V., Jr.; Mikell, A. T., Jr.

    1990-01-01

    Current microbiological parameters specified to verify microbiological quality of Space Station Freedom water quality include the enumeration of total bacteria, anaerobes, aerobes, yeasts and molds, enteric bacteria, gram positives, gram negatives, and E. coli. In addition, other parameters have been identified as necessary to support the Water Recovery Test activities to be conducted at the NASA/MSFC later this year. These other parameters include aerotolerant eutrophic mesophiles, legionellae, and an additional method for heterotrophic bacteria. If inter-laboratory data are to be compared to evaluate quality, analytical methods must be eliminated as a variable. Therefore, each participating laboratory must utilize the same analytical methods and procedures. Without this standardization, data can be neither compared nor validated between laboratories. Multiple laboratory participation represents a conservative approach to insure quality and completeness of data. Invariably, sample loss will occur in transport and analyses. Natural variance is a reality on any test of this magnitude and is further enhanced because biological entities, capable of growth and death, are specific parameters of interest. The large variation due to the participation of human test subjects has been noted with previous testing. The resultant data might be dismissed as 'out of control' unless intra-laboratory control is included as part of the method or if participating laboratories are not available for verification. The purpose of this document is to provide standardized laboratory procedures for the enumeration of certain microorganisms in water and wastewater specific to the water recovery systems test. The document consists of ten separate cultural methods and one direct count procedure. It is not intended nor is it implied to be a complete microbiological methods manual.

  17. Accessibility | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is making every effort to ensure that the information available on our website is accessible to all. If you use special adaptive equipment to access the web and encounter problems when usin

  18. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT

    EPA Science Inventory

    The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...

  19. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  20. [External quality control system in medical microbiology and parasitology in the Czech Republic].

    PubMed

    Slosárek, M; Petrás, P; Kríz, B

    2004-11-01

    The External Quality Control System (EQAS) of laboratory activities in medical microbiology and parasitology was implemented in the Czech Republic in 1993 with coded sera samples for diagnosis of viral hepatitis and bacterial strains for identification distributed to first participating laboratories. The number of sample types reached 31 in 2003 and the number of participating laboratories rised from 79 in 1993 to 421 in 2003. As many as 15.130 samples were distributed to the participating laboratories in 2003. Currently, almost all microbiology and parasitology laboratories in the Czech Republic involved in examination of clinical material participate in the EQAS. Based on the 11-year experience gained with the EQAS in the Czech Republic, the following benefits were observed: higher accuracy of results in different tests, standardisation of methods and the use of most suitable test kits.

  1. Medical microbiology training needs and trainee experience.

    PubMed

    Seale, Josephine; Elamin, Wael; Millar, Michael

    2014-02-01

    Training in microbiology is continuing to evolve. Standardisation of this process has, in part, been achieved through the development of a training curriculum by the Royal College of Pathologists (RCPath). A substantial proportion of microbiology training occurs through telephone consultations. To ascertain the content of these interactions and the extent to which the necessary skills outlined by the curriculum are attainable via these consultations. Records of telephone consultations made by microbiology registrars (SpR) on the Laboratory Information Management System (LIMS) over a 6 month period were analysed with regard to who initiated contact and the type of advice provided. An average of 426 SpR entries per month were made on the LIMS following telephone consultations. These consultations were predominantly initiated by fellow clinicians as opposed to the SpR. The majority (79%) of advice entailed guidance as to the use of antimicrobials which resulted in an alteration of the current regimen in 54% of cases. This study represents the first attempt to quantify the telephone consultations of microbiology trainees. It is concluded that although such interactions provide a means of attaining some of the competencies outlined by the RCPath curriculum, the bias towards antimicrobial advice reflects a discrepancy between the needs of the service users and the broad skill set advocated by the current microbiology training programme. Future modifications will need to take this into account to ensure both the training of SpRs and the microbiology service is fit for purpose.

  2. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  3. Procedures For Microbial-Ecology Laboratory

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Microbial Ecology Laboratory Procedures Manual provides concise and well-defined instructions on routine technical procedures to be followed in microbiological laboratory to ensure safety, analytical control, and validity of results.

  4. Sandia National Laboratories: Research: Research Foundations: Radiation

    Science.gov Websites

    Effects and High Energy Density Science Sandia National Laboratories Exceptional service in the Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy

  5. History | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma

  6. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  7. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  8. Artificial Urine for Teaching Urinalysis Concepts and Diagnosis of Urinary Tract Infection in the Medical Microbiology Laboratory.

    PubMed

    Khan, Latifa B; Read, Hannah M; Ritchie, Stephen R; Proft, Thomas

    2017-01-01

    Dipstick urinalysis is an informative, quick, cost-effective and non-invasive diagnostic tool that is useful in clinical practice for the diagnosis of urinary tract infections (UTIs), kidney diseases, and diabetes. We used dipstick urinalysis as a hands-on microbiology laboratory exercise to reinforce student learning about UTIs with a particular focus on cystitis, which is a common bacterial infection. To avoid exposure to potentially contaminated human urine samples, we prepared artificial urine using easily acquired and affordable ingredients, which allowed less-experienced students to perform urinalysis without the risk of exposure to pathogenic organisms and ensured reliable availability of the urine samples. This practical class taught medical students how to use urinalysis data in conjunction with medical history to diagnose diseases from urine samples and to determine a treatment plan for clinical scenarios.

  9. 76 FR 17367 - National Voluntary Laboratory Accreditation Program; Operating Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology 15 CFR Part 285 [Docket No: 110125063-1062-02] RIN 0693-AB61 National Voluntary Laboratory Accreditation Program; Operating Procedures AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice of proposed...

  10. The Danish Microbiology Database (MiBa) 2010 to 2013.

    PubMed

    Voldstedlund, M; Haarh, M; Mølbak, K

    2014-01-09

    The Danish Microbiology Database (MiBa) is a national database that receives copies of reports from all Danish departments of clinical microbiology. The database was launched in order to provide healthcare personnel with nationwide access to microbiology reports and to enable real-time surveillance of communicable diseases and microorganisms. The establishment and management of MiBa has been a collaborative process among stakeholders, and the present paper summarises lessons learned from this nationwide endeavour which may be relevant to similar projects in the rapidly changing landscape of health informatics.

  11. NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls

    Science.gov Websites

    | News | NREL NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls April 1, 2016 Researchers at wind turbine modeling. The NREL controls team have been evaluating their control theory in simulations

  12. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  13. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  14. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  15. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  16. Smoking patterns among Los Alamos National Laboratory employees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, M.C.; Wilkinson, G.S.

    Smoking patterns among 5507 employees at Los Alamos National Laboratory were investigated for those who underwent physical examinations by occupational physicians from 1978 to 1983. More male than female employees smoked, although differences in smoking rates between the sexes were not as large as differences observed for national smoking rates. Employees over 40 were more likely to smoke than younger employees, males consumed more cigarettes than did females, and Anglo employees smoked more cigarettes than did Hispanic employees. Highly educated employees smoked less than did less-educated workers, and staff members exhibited the lowest rates of smoking. Smoking cessation programs formore » Laboratory employees should be directed toward those subpopulations with the highest rates of smoking. 31 refs., 8 figs., 1 tab.« less

  17. National assessment of capacity in public health, environmental, and agricultural laboratories--United States, 2011.

    PubMed

    2013-03-08

    In 2011, the University of Michigan's Center of Excellence in Public Health Workforce Studies and the Association of Public Health Laboratories (APHL) assessed the workforce and program capacity in U.S. public health, environmental, and agricultural laboratories. During April-August 2011, APHL sent a web-based questionnaire to 105 public health, environmental, and agricultural laboratory directors comprising all 50 state public health laboratories, 41 local public health laboratories, eight environmental laboratories, and six agricultural laboratories. This report summarizes the results of the assessment, which inquired about laboratory capacity, including total number of laboratorians by occupational classification and self-assessed ability to carry out functions in 19 different laboratory program areas. The majority of laboratorians (74%) possessed a bachelor's degree, associate's degree, or a high school education or equivalency; 59% of all laboratorians were classified as laboratory scientists. The greatest percentage of laboratories reported no, minimal, or partial program capacity in toxicology (45%), agricultural microbiology (54%), agricultural chemistry (50%), and education and training for their employees (51%). Nearly 50% of laboratories anticipated that more than 15% of their workforce would retire, resign, or be released within 5 years, lower than the anticipated retirement eligibility rate of 27% projected for state public health workers. However, APHL and partners in local, state, and federal public health should collaborate to address gaps in laboratory capacity and rebuild the workforce pipeline to ensure an adequate future supply of public health laboratorians.

  18. Implementation of a National Reference Laboratory for Buruli Ulcer Disease in Togo

    PubMed Central

    Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl–Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation

  19. Implementation of a national reference laboratory for Buruli ulcer disease in Togo.

    PubMed

    Beissner, Marcus; Huber, Kristina Lydia; Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl-Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions "Maritime" and "Central," standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78

  20. The value of case-based teaching vignettes in clinical microbiology rounds.

    PubMed

    Spicer, Jennifer O; Kraft, Colleen S; Burd, Eileen M; Armstrong, Wendy S; Guarner, Jeannette

    2014-03-01

    To describe the implementation and evaluation of a case-based microbiology curriculum during daily microbiology rounds. Vignettes consist of short cases with images and questions that facilitate discussion among microbiologists, pathologists, infectious disease physicians, and trainees (residents and fellows). We performed a survey to assess the value of these vignettes to trainees. Motivation to come to rounds on time increased from 60% to 100%. Trainees attending rounds after implementation of the vignettes perceived the value of microbiology rounds to be significantly higher compared with those who attended rounds before implementation (P = .04). Pathology residents found that vignettes were helpful for retaining knowledge (8.3 of 10 points). The vignettes have enhanced the value of microbiology rounds by serving as a formalized curriculum exposing trainees from multiple specialties to various microbiology topics. Emphasis on interdisciplinary interactions between clinical and laboratory personnel was highlighted with this case-based curriculum.

  1. Water Microbiology Kit/Microbial Capture Devices (WMK MCD)

    NASA Image and Video Library

    2009-08-04

    ISS020-E-027318 (4 Aug. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, performs a subsequent in-flight analysis with a Water Microbiology Kit/Microbial Capture Devices (WMK MCD) for microbial traces in the Destiny laboratory of the International Space Station.

  2. Collaboration Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A Collaboration Agreement is appropriate for research collaboration involving intellectual and material contributions by the Frederick National Laboratory and external partner(s). It is useful for proof-of-concept studies. Includes brief re

  3. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  4. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments Database

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  5. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  6. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  7. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  8. Assessment of Accuracy of Identification of Pathogenic Yeasts in Microbiology Laboratories in the United Kingdom

    PubMed Central

    Szekely, Adrien; Palmer, Michael D.; Johnson, Elizabeth M.

    2012-01-01

    Rapid, accurate identification of yeast isolates from clinical samples has always been important given their innately variable antifungal susceptibility profiles. Recently, this has become paramount with the proposed introduction of species-specific interpretive breakpoints for MICs obtained in yeast antifungal susceptibility tests (M. A. Pfaller, D. Andes, D. J. Diekema, A. Espinel–Ingroff, D. Sheehan, and CLSI Subcommittee for Antifungal Susceptibility Testing, Drug Resist. Updat. 13:180–195, 2010). Here, we present the results of a 12-month evaluation of the accuracy of identifications that accompany yeast isolates submitted to the Mycology Reference Laboratory (United Kingdom) for either confirmation of identity or susceptibility testing. In total, 1,781 yeast isolates were analyzed, and the robustness of prior identifications obtained in microbiology laboratories throughout the United Kingdom was assessed using a combination of culture on chromogenic agar, morphology on cornmeal agar, and molecular identification by pyrosequencing. Over 40% of isolates (755) were submitted without any suggested identification. Of those isolates with a prior identification, 100 (9.7%) were incorrectly identified. Error rates ranged from 5.2% (for organisms submitted for antifungal susceptibility testing) to 18.2% (for organisms requiring confirmation of identity) and varied in a strictly species-specific manner. At least 50% of identification errors would be likely to affect interpretation of MIC data, with a possible impact on patient management. In addition, 2.3% of submitted cultures were found to contain mixtures of at least two yeast species. The vast majority of mixtures had gone undetected in the referring laboratory and would have impacted the interpretation of antifungal susceptibility profiles and patient management. Some of the more common misidentifications are discussed according to the identification method employed, with suggestions for avoiding such

  9. Assessment of accuracy of identification of pathogenic yeasts in microbiology laboratories in the United kingdom.

    PubMed

    Borman, Andrew M; Szekely, Adrien; Palmer, Michael D; Johnson, Elizabeth M

    2012-08-01

    Rapid, accurate identification of yeast isolates from clinical samples has always been important given their innately variable antifungal susceptibility profiles. Recently, this has become paramount with the proposed introduction of species-specific interpretive breakpoints for MICs obtained in yeast antifungal susceptibility tests (M. A. Pfaller, D. Andes, D. J. Diekema, A. Espinel-Ingroff, D. Sheehan, and CLSI Subcommittee for Antifungal Susceptibility Testing, Drug Resist. Updat. 13:180-195, 2010). Here, we present the results of a 12-month evaluation of the accuracy of identifications that accompany yeast isolates submitted to the Mycology Reference Laboratory (United Kingdom) for either confirmation of identity or susceptibility testing. In total, 1,781 yeast isolates were analyzed, and the robustness of prior identifications obtained in microbiology laboratories throughout the United Kingdom was assessed using a combination of culture on chromogenic agar, morphology on cornmeal agar, and molecular identification by pyrosequencing. Over 40% of isolates (755) were submitted without any suggested identification. Of those isolates with a prior identification, 100 (9.7%) were incorrectly identified. Error rates ranged from 5.2% (for organisms submitted for antifungal susceptibility testing) to 18.2% (for organisms requiring confirmation of identity) and varied in a strictly species-specific manner. At least 50% of identification errors would be likely to affect interpretation of MIC data, with a possible impact on patient management. In addition, 2.3% of submitted cultures were found to contain mixtures of at least two yeast species. The vast majority of mixtures had gone undetected in the referring laboratory and would have impacted the interpretation of antifungal susceptibility profiles and patient management. Some of the more common misidentifications are discussed according to the identification method employed, with suggestions for avoiding such

  10. Contact Us | Frederick National Laboratory for Cancer Research

    Cancer.gov

    E-mail:fnlwebsite@nih.gov Phone:(301) 846-1000 Postal Mail: Frederick National Laboratory for Cancer Research P.O. Box B Frederick, MD 21702-1201 Human Resources Office of Recruitment (301) 846-5362 Jim

  11. [Validation and verfication of microbiology methods].

    PubMed

    Camaró-Sala, María Luisa; Martínez-García, Rosana; Olmos-Martínez, Piedad; Catalá-Cuenca, Vicente; Ocete-Mochón, María Dolores; Gimeno-Cardona, Concepción

    2015-01-01

    Clinical microbiologists should ensure, to the maximum level allowed by the scientific and technical development, the reliability of the results. This implies that, in addition to meeting the technical criteria to ensure their validity, they must be performed with a number of conditions that allows comparable results to be obtained, regardless of the laboratory that performs the test. In this sense, the use of recognized and accepted reference methodsis the most effective tool for these guarantees. The activities related to verification and validation of analytical methods has become very important, as there is continuous development, as well as updating techniques and increasingly complex analytical equipment, and an interest of professionals to ensure quality processes and results. The definitions of validation and verification are described, along with the different types of validation/verification, and the types of methods, and the level of validation necessary depending on the degree of standardization. The situations in which validation/verification is mandatory and/or recommended is discussed, including those particularly related to validation in Microbiology. It stresses the importance of promoting the use of reference strains as controls in Microbiology and the use of standard controls, as well as the importance of participation in External Quality Assessment programs to demonstrate technical competence. The emphasis is on how to calculate some of the parameters required for validation/verification, such as the accuracy and precision. The development of these concepts can be found in the microbiological process SEIMC number 48: «Validation and verification of microbiological methods» www.seimc.org/protocols/microbiology. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Report to the President and Congress on the Third Assessment of The National Nanotechnology Initiative

    DTIC Science & Technology

    2010-03-12

    Sandia National Laboratory Distinguished and Regents Professor of Chemical and Nuclear Engineering and Molecular Genetics and Microbiology...its second decade, and after the Federal Government has spent $12 billion under the NNI rubric , it is important to review the progress that has been

  13. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  14. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    NASA Astrophysics Data System (ADS)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  15. Kathleen Igo | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Directorate: Clinical Research Program Department or lab: Clinical Monitoring Research Program (CMRP) How many years have you worked at the Frederick National Laboratory? I am in my 7th year of employment.

  16. Locations Accessible | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland.Operations and Technical Support contractor Leidos Biomedical Resea

  17. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  18. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  19. Brewing for Students: An Inquiry-Based Microbiology Lab.

    PubMed

    Sato, Brian K; Alam, Usman; Dacanay, Samantha J; Lee, Amanda K; Shaffer, Justin F

    2015-12-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education.

  20. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era.

    PubMed

    Best, Michele; Sakande, Jean

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.

  1. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era

    PubMed Central

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137

  2. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of programmore » promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.« less

  3. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  4. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  5. [Epidemiology and laboratories: the missing link on the plans to study and prevent infectious diseases in Chile].

    PubMed

    Cabello C, Felipe

    2008-02-01

    Viral meningitis, hantavirus and Vibrio parahaemolyticus infections are used as examples to demonstrate that important shortcomings and limitations exist in Chile to study the epidemiology of infectious diseases with modern methods. The lack of a national network of well-connected local and national microbiology laboratories is one of these important shortcomings. The author summarizes the evolution of the systems and institutions that deal with the infectious diseases in the world and in Chile.

  6. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    PubMed Central

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  7. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov Websites

    -energy density lithium-ion batteries, while using our fundamental science capabilities to develop storage ), headquartered at Argonne National Laboratory, seeks to develop new technologies that move beyond lithium-ion Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  8. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  9. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress

    PubMed Central

    Alemnji, G. A.; Zeh, C.; Yao, K.; Fonjungo, P. N.

    2016-01-01

    OBJECTIVES Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public–private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. PMID:24506521

  10. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands.

    PubMed

    Altorf-van der Kuil, Wieke; Schoffelen, Annelot F; de Greeff, Sabine C; Thijsen, Steven Ft; Alblas, H Jeroen; Notermans, Daan W; Vlek, Anne Lm; van der Sande, Marianne Ab; Leenstra, Tjalling

    2017-11-01

    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data.

  11. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    PubMed Central

    Altorf-van der Kuil, Wieke; Schoffelen, Annelot F; de Greeff, Sabine C; Thijsen, Steven FT; Alblas, H Jeroen; Notermans, Daan W; Vlek, Anne LM; van der Sande, Marianne AB; Leenstra, Tjalling

    2017-01-01

    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data. PMID:29162208

  12. Beverly Hayes | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Employee name: Bev Hayes Directorate: Management Operations Department or lab: Contracts and Acquisitions How many years have you worked at the Frederick National Laboratory? Four months going on one year! Job responsibilities: With the C&A manageme

  13. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, andmore » analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.« less

  14. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Sackschewsky, Michael R.; Tilden, Harold T.

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  15. Interpretation of Blood Microbiology Results - Function of the Clinical Microbiologist.

    PubMed

    Kristóf, Katalin; Pongrácz, Júlia

    2016-04-01

    The proper use and interpretation of blood microbiology results may be one of the most challenging and one of the most important functions of clinical microbiology laboratories. Effective implementation of this function requires careful consideration of specimen collection and processing, pathogen detection techniques, and prompt and precise reporting of identification and susceptibility results. The responsibility of the treating physician is proper formulation of the analytical request and to provide the laboratory with complete and precise patient information, which are inevitable prerequisites of a proper testing and interpretation. The clinical microbiologist can offer advice concerning the differential diagnosis, sampling techniques and detection methods to facilitate diagnosis. Rapid detection methods are essential, since the sooner a pathogen is detected, the better chance the patient has of getting cured. Besides the gold-standard blood culture technique, microbiologic methods that decrease the time in obtaining a relevant result are more and more utilized today. In the case of certain pathogens, the pathogen can be identified directly from the blood culture bottle after propagation with serological or automated/semi-automated systems or molecular methods or with MALDI-TOF MS (matrix-assisted laser desorption-ionization time of flight mass spectrometry). Molecular biology methods are also suitable for the rapid detection and identification of pathogens from aseptically collected blood samples. Another important duty of the microbiology laboratory is to notify the treating physician immediately about all relevant information if a positive sample is detected. The clinical microbiologist may provide important guidance regarding the clinical significance of blood isolates, since one-third to one-half of blood culture isolates are contaminants or isolates of unknown clinical significance. To fully exploit the benefits of blood culture and other (non- culture

  16. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories.

  17. [Development of a microbiology data warehouse (Akita-ReNICS) for networking hospitals in a medical region].

    PubMed

    Ueki, Shigeharu; Kayaba, Hiroyuki; Tomita, Noriko; Kobayashi, Noriko; Takahashi, Tomoe; Obara, Toshikage; Takeda, Masahide; Moritoki, Yuki; Itoga, Masamichi; Ito, Wataru; Ohsaga, Atsushi; Kondoh, Katsuyuki; Chihara, Junichi

    2011-04-01

    The active involvement of hospital laboratory in surveillance is crucial to the success of nosocomial infection control. The recent dramatic increase of antimicrobial-resistant organisms and their spread into the community suggest that the infection control strategy of independent medical institutions is insufficient. To share the clinical data and surveillance in our local medical region, we developed a microbiology data warehouse for networking hospital laboratories in Akita prefecture. This system, named Akita-ReNICS, is an easy-to-use information management system designed to compare, track, and report the occurrence of antimicrobial-resistant organisms. Participating laboratories routinely transfer their coded and formatted microbiology data to ReNICS server located at Akita University Hospital from their health care system's clinical computer applications over the internet. We established the system to automate the statistical processes, so that the participants can access the server to monitor graphical data in the manner they prefer, using their own computer's browser. Furthermore, our system also provides the documents server, microbiology and antimicrobiotic database, and space for long-term storage of microbiological samples. Akita-ReNICS could be a next generation network for quality improvement of infection control.

  18. [Role of medium-sized independent laboratories in control of healthcare-associated infection].

    PubMed

    Anzai, Eiko; Fukui, Toru

    2009-05-01

    In 2006, the Ministry of Health and Welfare revised the regulations regarding the Medical Service Law. The amendments stipulate that all healthcare institutions are required to implement infection control programs. However, small hospitals and clinics have no clinical microbiology laboratories, whereas medium-sized hospitals have few medical technologists and the outsourcing of microbiology tests to independent laboratories is common. The decreasing number of laboratories and recent outsourcing tendency reflect the increasing commercialization, and, with it, the escalating number of commercially operating chains. Each independent laboratory is responsible for supporting activities related to the surveillance, control, and prevention of healthcare-associated infections in the associated small and medium-sized hospitals. The people responsible for infection control in these hospitals usually do not have a background in microbiology. The evaluation of communication between independent laboratory staff and hospital personnel, and rapid turnaround time of microbiology laboratory test reports are important elements ensuring the quality of independent laboratory work. With the pressures of financial constraints in the Japanese medical insurance system, the development of a cost-effective and practical protocol for quality assurance is a real dilemma.

  19. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmentalmore » restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  20. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  1. Introduction to the National Information Display Laboratory

    NASA Technical Reports Server (NTRS)

    Carlson, Curtis R.

    1992-01-01

    The goals of the National Information Display Laboratory (NIDL) are described in viewgraph form. The NIDL is a Center of Excellence in softcopy technology with the overall goal to develop new ways to satisfy government information needs through aggressive user support and the development of advanced technology. Government/industry/academia participation, standards development, and various display technologies are addressed.

  2. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  3. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  4. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  5. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History

  6. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-008)] National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY: National Aeronautics and Space Administration (NASA...). SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq...

  7. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  8. NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...

  9. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  10. Beta-Testing Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Beta-Testing Agreements are appropriate forlimited term evaluation and applications development of new software, technology, or equipment platforms by the Frederick National Laboratory in collaboration with an external commercial partner. It ma

  11. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    PubMed

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  12. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    PubMed Central

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  13. Technology Innovation for the CTBT, the National Laboratory Contribution

    NASA Astrophysics Data System (ADS)

    Goldstein, W. H.

    2016-12-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) and its Protocol are the result of a long history of scientific engagement and international technical collaboration. The U.S. Department of Energy National Laboratories have been conducting nuclear explosive test-ban research for over 50 years and have made significant contributions to this legacy. Recent examples include the RSTT (regional seismic travel time) computer code and the Smart Sampler—both of these products are the result of collaborations among Livermore, Sandia, Los Alamos, and Pacific Northwest National Laboratories. The RSTT code enables fast and accurate seismic event locations using regional data. This code solves the long-standing problem of using teleseismic and regional seismic data together to locate events. The Smart Sampler is designed for use in On-site Inspections to sample soil gases to look for noble gas fission products from a potential underground nuclear explosive test. The Smart Sampler solves the long-standing problem of collecting soil gases without contaminating the sample with gases from the atmosphere by operating only during atmospheric low-pressure events. Both these products are being evaluated by the Preparatory Commission for the CTBT Organization and the international community. In addition to R&D, the National Laboratories provide experts to support U.S. policy makers in ongoing discussions such as CTBT Working Group B, which sets policy for the development of the CTBT monitoring and verification regime.

  14. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  15. National laboratory policies and plans in sub-Saharan African countries: gaps and opportunities

    PubMed Central

    van der Broek, Ankie; Jansen, Christel; de Bruijn, Hilde; Schultsz, Constance

    2017-01-01

    Background The 2008 Maputo Declaration calls for the development of dedicated national laboratory policies and strategic plans supporting the enhancement of laboratory services in response to the long-lasting relegation of medical laboratory systems in sub-Saharan Africa. Objectives This study describes the extent to which laboratories are addressed in the national health policies and plans created directly following the 2008 momentum for laboratory strengthening. Method National health policies and plans from 39 sub-Saharan African countries, valid throughout and beyond 31 December 2010 were collected in March 2012 and analysed during 2013. Results Laboratories were addressed by all countries. Human resources were the most addressed topic (38/39) and finances and budget were the least addressed (< 5/39). Countries lagging behind in national laboratory strategic planning at the end of 2013 (17/39) were more likely to be francophone countries located in West-Central Africa (13/17) and have historically low HIV prevalence. The most common gaps anticipated to compromise the implementation of the policies and plans were the disconnect between policies and plans, under-developed finance sections and monitoring and evaluating frameworks, absence of points of reference to define gaps and shortages, and inappropriate governance structure. Conclusion The availability of laboratory policy and plan implementation can be improved by strictly applying a more standardised methodology for policy development, using harmonised norms to set targets for improvement and intensifying the establishment of directorates of laboratory services directly under the authority of Ministries of Health. Horizontal programmes such as the Global Health Security Agenda could provide the necessary impulse to take the least advanced countries on board. PMID:28879152

  16. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  17. Lawrence Livermore National Laboratory Environmental Report 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  18. Lawrence Livermore National Laboratory Environmental Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, C. A.; Jones, H. E.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  19. What We Offer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Opportunities We recognize that employee benefit programs are an important part of the total compensation package, and are committed to providing you with comprehensive benefit options. The Frederick National Laboratory's prime contractor, Leidos

  20. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  1. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.

    PubMed

    Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N

    2014-04-01

    Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.

  2. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  3. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  4. [Information system of the national network of public health laboratories in Peru (Netlab)].

    PubMed

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  5. The pressing energy innovation challenge of the US National Laboratories

    NASA Astrophysics Data System (ADS)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  6. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  7. Clinical microbiology laboratories do not always detect resistance of Haemophilus influenzae with disk or tablet diffusion methods. Finnish Study Group for Antimicrobial Resistance (FiRe).

    PubMed

    Manninen, R; Huovinen, P; Nissinen, A

    1998-04-01

    The performance of disk diffusion testing of Haemophilus influenzae was evaluated in 20 laboratories. Thirteen disk-medium-breakpoint-inoculum modifications were used in Finnish clinical microbiology laboratories. The performance of various methods was evaluated by testing a susceptible control strain and one with non-beta-lactamase-mediated ampicillin resistance 10 times in 16 laboratories. Gaps in millimeters were measured between these two groups of results. The strains were separated by a gap of at least 5 mm in 8/16 laboratories testing ampicillin, in 7/15 laboratories testing cefaclor, in 5/ 16 laboratories testing cefuroxime, and in 15/16 laboratories testing trimethoprim-sulfa. Detection of ampicillin resistance was better with 2.5 microg tablets than with 10 microg disks or 33 microg tablets. For MIC-determinations, 785 isolates and their disk diffusion results were collected. None of the 12 clinical isolates with non-beta-lactamase-mediated ampicillin resistance was detected as resistant in the participating laboratories. The ampicillin and cefaclor results of the isolates were no better even when a laboratory was able to separate the control strains. Cefaclor results were unreliable because of poor disk diffusion-MIC correspondence and incoherent breakpoint references. Interlaboratory variation of the zone diameters caused false intermediate results of cefuroxime-susceptible strains. When ampicillin, cefaclor and cefuroxime were tested, the discrimination of laboratories using disks and tablets was equal, whereas the laboratories using paper disks were better able to detect trimethoprim-sulfa resistance.

  8. Cost of gentamicin assays carried out by microbiology laboratories.

    PubMed Central

    Vacani, P F; Malek, M M; Davey, P G

    1993-01-01

    AIMS--To assess the current range of prices charged for gentamicin assays in United Kingdom laboratories; and to examine the laboratories' likely response to increases or decreases in the demand for the service. METHODS--A postal survey of the 420 members of the Association of Medical Microbiologists was used to establish the range of prices charged for aminoglycoside assays. Additionally, eight private institutions were contacted to determine what the private sector was charging for aminoglycoside assays. Reagent costs in the NHS laboratories were calculated by dividing the total cost of all aminoglycoside assay kits by the number of samples analysed. RESULTS--The NHS and the private institutions both showed a wide price variation. Prices charged to an in-hospital requester for a peak and trough assay ranged from 5.00 pounds to 68.20 pounds (n = 44), and to an external private hospital, under a bulk service contract, from 5.00 pounds to 96.00 pounds (n = 47). Prices charged by private laboratories ranged from 49.00 pounds to 84.00 pounds (n = 8). There was a log linear correlation in the NHS laboratories between the reagent costs per assay and the number of assays performed per year, and most laboratories thought that their price per assay would be sensitive to increases or decreases in demand. Laboratories which had purchased their assay machines had lower reagent costs per assay but higher repair and maintenance costs. Overall, number of assays performed and method of payment for assay machinery only accounted for 44.8% of the observed variation in assay kit costs. CONCLUSIONS--The price range for gentamicin assays in the United Kingdom is wide and is only partially explained by the number of assays performed. Most laboratories believe that they would experience a reduction in unit cost as output increases. The currently offered range of prices is, in part, due to variation in the laboratories' approach to costing the service provided and some laboratories

  9. [Laboratory management fee in national health insurance; what is required from clinical laboratory physicians? --message from Chairpersons].

    PubMed

    Kimura, Satoshi; Koshiba, Masahiro

    2013-06-01

    The laboratory management fee (LMF) in national health insurance ("Kentai-Kensa-Kanri-Kasan" in Japanese) has had a major impact on Japanese clinical laboratories, especially in recent years. In 2012, the fee was raised to approximately 5,000 yen per admitted patient. In order to address this national support, clinical pathologists are required to increase their knowledge and skills. On the other hand, there are insufficient clinical pathologists in Japan. In order to solve this problem, the Japanese Society of Laboratory Medicine (JSLM) approved a new license for Qualified Clinical Laboratory Managing Physicians (CLMPs), in addition to Certified Clinical Laboratory Physicians (CCLPs). The requirements to become a CLMP are less strict than for CCLP. There are approximately 500 CLMPs and 600 CCLPs in this country. The aim of this symposium was to offer opportunities to increase attendees' clinical skills, especially CLMPs and young clinical pathologists. Four CCLPs were chosen as speakers from a university hospital, a major city hospital, a medium-sized acute care hospital, and a university hospital anatomical pathologist, together with a chief medical technologist from a university hospital. All the speakers presented their ideal role models of clinical pathologists matching LMF requirements. JSLM together with the Japanese Association of Clinical Laboratory Physicians (JACLaP) sponsored this symposium. It was a successful meeting with more than two hundred attendees.

  10. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  11. The Role of a National Biocontainment Laboratory in Emergencies.

    PubMed

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  12. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration...

  13. The evolution of teaching and learning medical microbiology and infectious diseases at NUS.

    PubMed

    Taylor, M B; Chow, V T K

    2005-07-01

    Infectious diseases were rife during the early years of the Singapore Medical College, which was established in 1905. The current Department of Microbiology in the National University of Singapore (NUS) has its historical roots in the Departments of Bacteriology and Parasitology, which were established in 1925 and 1950 respectively. With the achievements since its inception, and with its present research focus on Infectious Diseases, Immunology, Applied and Environmental Microbiology, it is poised to face the microbiological challenges of the 21st century. Over the decades, the structure of the medical microbiology course in NUS has modernised, culminating in the current emphasis on its practical utility in clinical practice. Coordinated by the Department of Microbiology, the Microbiology and Infectious Diseases module and the Immunology module both adopt integrated multidisciplinary approaches that aim to introduce students to the language and fundamental concepts in microbiology, infectious diseases and immunology.

  14. Perceptions of Prospective Biology Teachers on Scientific Argumentation in Microbiology Inquiry Lab Activities

    NASA Astrophysics Data System (ADS)

    Roviati, E.; Widodo, A.; Purwianingsih, W.; Riandi, R.

    2017-09-01

    Inquiry laboratory activity and scientific argumentation in science education should be promoted and explicitly experienced by prospective biology teacher students in classes, including in microbiology courses. The goal of this study is to get information about perceptions of prospective biology teachers on scientific argumentation in microbiology inquiry lab activities. This study reported the result of a survey research to prospective biology teachers about how their perception about microbiology lab classes and their perception about inquiry and argumentation in microbiology lab activities should be. The participants of this study were 100 students of biology education department from an institute in Cirebon, West Java taking microbiology lecture during the fifth semester. The data were collected using questionnaire to explore the perceptions and knowledge of prospective biology teachers about microbiology, inquiry lab activities and argumentation. The result showed that students thought that the difficulties of microbiology as a subject were the lack of references and the way lecturer teaching. The students’ perception was that argumentation and inquiry should be implemented in microbiology courses and lab activities. Based on the data from questionnaire, It showed that prospective biology teacher students had very little knowledge about scientific argumentation and its implementation in science education. When the participants made arguments based on the problems given, they showed low quality of arguments.

  15. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  17. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  18. Who We Are | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is addressing some of the most urgent problems in the biomedical sciences – in cancer and AIDS, drug development and first-in-human clinical trials, applications of nanotechnology in medicine, and rapid response to

  19. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  20. Laboratory Identity: A Linguistic Landscape Analysis of Personalized Space within a Microbiology Laboratory

    ERIC Educational Resources Information Center

    Hanauer, David I.

    2010-01-01

    This study provides insights into what constitutes a laboratory identity and the ways in which it is spatially constructed. This article explores students' professional identities as microbiologists as manifest in their usage of representational space in a laboratory and as such extends understandings of science identity and spatial identity. The…

  1. Sampling and Data Analysis for Environmental Microbiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Christopher J.

    2001-06-01

    A brief review of the literature indicates the importance of statistical analysis in applied and environmental microbiology. Sampling designs are particularly important for successful studies, and it is highly recommended that researchers review their sampling design before heading to the laboratory or the field. Most statisticians have numerous stories of scientists who approached them after their study was complete only to have to tell them that the data they gathered could not be used to test the hypothesis they wanted to address. Once the data are gathered, a large and complex body of statistical techniques are available for analysis ofmore » the data. Those methods include both numerical and graphical techniques for exploratory characterization of the data. Hypothesis testing and analysis of variance (ANOVA) are techniques that can be used to compare the mean and variance of two or more groups of samples. Regression can be used to examine the relationships between sets of variables and is often used to examine the dependence of microbiological populations on microbiological parameters. Multivariate statistics provides several methods that can be used for interpretation of datasets with a large number of variables and to partition samples into similar groups, a task that is very common in taxonomy, but also has applications in other fields of microbiology. Geostatistics and other techniques have been used to examine the spatial distribution of microorganisms. The objectives of this chapter are to provide a brief survey of some of the statistical techniques that can be used for sample design and data analysis of microbiological data in environmental studies, and to provide some examples of their use from the literature.« less

  2. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a).

    PubMed

    Baron, Ellen Jo; Miller, J Michael; Weinstein, Melvin P; Richter, Sandra S; Gilligan, Peter H; Thomson, Richard B; Bourbeau, Paul; Carroll, Karen C; Kehl, Sue C; Dunne, W Michael; Robinson-Dunn, Barbara; Schwartzman, Joseph D; Chapin, Kimberle C; Snyder, James W; Forbes, Betty A; Patel, Robin; Rosenblatt, Jon E; Pritt, Bobbi S

    2013-08-01

    The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.

  3. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  4. Energy Secretary Rick Perry Visits Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Energy Secretary Rick Perry visited Oak Ridge National Laboratory on May 22, 2017. During his visit, the secretary not only toured the lab's premier research facilities, but also had some fun with two of its 3D-printed vehicles.

  5. Diagnostic methods to determine microbiology of postpartum endometritis in South Asia: laboratory methods protocol used in the Postpartum Sepsis Study: a prospective cohort study.

    PubMed

    Shakoor, Sadia; Reller, Megan E; LeFevre, Amnesty; Hotwani, Aneeta; Qureshi, Shahida M; Yousuf, Farheen; Islam, Mohammad Shahidul; Connor, Nicholas; Rafiqullah, Iftekhar; Mir, Fatima; Arif, Shabina; Soofi, Sajid; Bartlett, Linda A; Saha, Samir

    2016-02-25

    The South Asian region has the second highest risk of maternal death in the world. To prevent maternal deaths due to sepsis and to decrease the maternal mortality ratio as per the World Health Organization Millenium Development Goals, a better understanding of the etiology of endometritis and related sepsis is required. We describe microbiological laboratory methods used in the maternal Postpartum Sepsis Study, which was conducted in Bangladesh and Pakistan, two populous countries in South Asia. Postpartum maternal fever in the community was evaluated by a physician and blood and urine were collected for routine analysis and culture. If endometritis was suspected, an endometrial brush sample was collected in the hospital for aerobic and anaerobic culture and molecular detection of bacterial etiologic agents (previously identified and/or plausible). The results emanating from this study will provide microbiologic evidence of the etiology and susceptibility pattern of agents recovered from patients with postpartum fever in South Asia, data critical for the development of evidence-based algorithms for management of postpartum fever in the region.

  6. American Society for Microbiology resources in support of an evidence-based approach to teaching microbiology.

    PubMed

    Merkel, Susan M

    2016-08-01

    Numerous national reports have addressed the need for changing how science courses in higher education are taught, so that students develop a deeper understanding of critical concepts and the analytical and cognitive skills needed to address future challenges. This review presents some evidence-based approaches to curriculum development and teaching. Results from discipline-based education research indicate that it is critically important for educators to formulate learning goals, provide frequent and authentic assessments and actively engage students in their learning. Professional societies can play a role in helping to put these changes into practice. To this end, the American Society for Microbiology has developed a number of educational programs and resources, which are described here to encourage the implementation of student-centered learning in microbiology education. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  8. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  9. Sandia National Laboratories Institutional Plan FY1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less

  10. Microbiological findings of vulvovaginitis in prepubertal girls.

    PubMed

    Bumbulienė, Žana; Venclavičiūtė, Karolina; Ramašauskaite, Diana; Arlauskiene, Audrone; Bumbul, Elžbieta; Drąsutiene, Gražina

    2014-01-01

    To compare vaginal culture results between prepubertal girls with and without vulvovaginitis, and obtain an overview of the most commonly encountered microbes. Prospective descriptive study. Outpatient clinic of Vilnius University Hospital Santariskiu Klinikos during September 2011-December 2012. 115 prepubertal girls with vulvovaginitis symptoms and additionally 20 age-matched asymptomatic girls. Each girl had a vaginal smear carried out using a sterile swab from the introitus or lower third of the vagina. All samples were referred to the microbiology laboratory where standard microbiological diagnostic procedures were performed. Positive microbiological findings were seen in all 115 (100%) symptomatic girls and in 12 (60%) control group girls (p<0.001). Pathogenic bacteria were found only in symptomatic girls. Statistically significant differences in bacteria culture results (pure or mixed) and growth of isolated bacteria colonies between patients versus healthy girls were found (p<0.05). The dominant bacteria in the target group, accounting for 66% of all isolated microbes, were Escherichia coli, Enterococcus faecalis, Staphylococcus coagulase negative, Streptococcus α haemolyticus and A group Streptococcus β haemolyticus. The bacteria of faecal origin were isolated from 61 (53%) girls with vulvovaginitis and from 5 (25%) girls without vaginal inflammation (p<0.05). Instances of Candida species were extremely rare (2.6%). Positive microbiological findings, mixed bacteria cultures and a high growth of bacteria colonies are found significantly more often in girls with vulvovaginitis. The main causative premenarchal vulvovaginitis agents are faecal in origin.

  11. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  12. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... Network (NAHLN) for public review and comment. The NAHLN is a nationally coordinated network and... Coordinator, National Animal Health Laboratory Network, Veterinary Services, APHIS, 2140 Centre Avenue...

  13. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  14. [The journal of the Spanish Society of Microbiology, 1945-1995].

    PubMed

    Isamat, D; Navarrete, A; Fernández de Castillo, A

    1996-03-01

    The official journal of the Spanish Society for Microbiology (SEM) was first published in 1947, under the name Microbiología Española. Until 1984 the journal was published by the SEM jointly with the Institute (from the National Research Council, CSIC). In 1985 SEM started by itself to publish a new journal named Microbiología SEM, which may be considered the continuation of the former. From 1985 on the journal has increased both the quality and variety of its articles. At the beginning, most articles were in Spanish. Gradually, articles in English have been majority, to increase international readership. Currently the journal is published quarterly, with more than 500 pages per year.

  15. Brewing for Students: An Inquiry-Based Microbiology Lab †

    PubMed Central

    Sato, Brian K.; Alam, Usman; Dacanay, Samantha J.; Lee, Amanda K.; Shaffer, Justin F.

    2015-01-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education PMID:26753030

  16. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  17. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  18. Total Laboratory Automation and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Improve Turnaround Times in the Clinical Microbiology Laboratory: a Retrospective Analysis.

    PubMed

    Theparee, Talent; Das, Sanchita; Thomson, Richard B

    2018-01-01

    Technological advances have changed the practice of clinical microbiology. We implemented Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and BD Kiestra total laboratory automation (TLA) 4 and 3 years ago, respectively. To assess the impact of these new technologies, we compared turnaround times (TATs) for positive and negative urine cultures before and after implementation. In comparison I, TATs for 61,157 urine cultures were extracted for two periods corresponding to pre-TLA and post-TLA, both using MALDI-TOF MS for organism identification. In comparison II, time to organism identification (ID) and antimicrobial susceptibility (AST) reports were calculated for 5,402 positive culture reports representing four different periods: (i) manual plating and conventional biochemical identification (CONV), (ii) manual plating and MALDI-TOF MS identification (MALDI), (iii) MALDI-TOF MS identification and early phase implementation of TLA (TLA1), and (iv) MALDI-TOF MS identification and late phase implementation of TLA (TLA2). By the comparison I results, median pre- and post-TLA TATs to organism IDs (18.5 to 16.9 h), AST results (41.8 to 40.8 h), and preliminary results for negative cultures (17.7 to 13.6 h), including interquartile ranges for all comparisons, were significantly decreased post-TLA ( P < 0.001). By the comparison II results, MALDI significantly improved TAT to organism ID compared to CONV (21.3 to 18 h). TLA further improved overall TAT to ID (18 to 16.5 h) and AST (42.3 to 40.7 h) results compared to MALDI ( P < 0.001). In summary, TLA significantly improved TAT to organism ID, AST report, and preliminary negative results. MALDI-TOF MS significantly improved TAT for organism ID. Use of MALDI-TOF MS and TLA individually and together results in significant decreases in microbiology report TATs. Copyright © 2017 Theparee et al.

  19. Total Laboratory Automation and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Improve Turnaround Times in the Clinical Microbiology Laboratory: a Retrospective Analysis

    PubMed Central

    Theparee, Talent; Das, Sanchita

    2017-01-01

    ABSTRACT Technological advances have changed the practice of clinical microbiology. We implemented Bruker matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and BD Kiestra total laboratory automation (TLA) 4 and 3 years ago, respectively. To assess the impact of these new technologies, we compared turnaround times (TATs) for positive and negative urine cultures before and after implementation. In comparison I, TATs for 61,157 urine cultures were extracted for two periods corresponding to pre-TLA and post-TLA, both using MALDI-TOF MS for organism identification. In comparison II, time to organism identification (ID) and antimicrobial susceptibility (AST) reports were calculated for 5,402 positive culture reports representing four different periods: (i) manual plating and conventional biochemical identification (CONV), (ii) manual plating and MALDI-TOF MS identification (MALDI), (iii) MALDI-TOF MS identification and early phase implementation of TLA (TLA1), and (iv) MALDI-TOF MS identification and late phase implementation of TLA (TLA2). By the comparison I results, median pre- and post-TLA TATs to organism IDs (18.5 to 16.9 h), AST results (41.8 to 40.8 h), and preliminary results for negative cultures (17.7 to 13.6 h), including interquartile ranges for all comparisons, were significantly decreased post-TLA (P < 0.001). By the comparison II results, MALDI significantly improved TAT to organism ID compared to CONV (21.3 to 18 h). TLA further improved overall TAT to ID (18 to 16.5 h) and AST (42.3 to 40.7 h) results compared to MALDI (P < 0.001). In summary, TLA significantly improved TAT to organism ID, AST report, and preliminary negative results. MALDI-TOF MS significantly improved TAT for organism ID. Use of MALDI-TOF MS and TLA individually and together results in significant decreases in microbiology report TATs. PMID:29118171

  20. Gran Sasso National Laboratory: Outreach and communication activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  1. Professional challenges and opportunities in clinical microbiology and infectious diseases in Europe.

    PubMed

    Read, Robert C; Cornaglia, Giuseppe; Kahlmeter, Gunnar

    2011-05-01

    The two closely linked specialties of clinical microbiology and infectious diseases face important challenges. We report the consensus of clinical microbiologists and infectious disease physicians assembled by the European Society for Clinical Microbiology and Infectious Diseases. Both specialties have different training requirements in different European countries and are not universally recognised as professions. The specialties are rapidly evolving as they adapt to the changing demands within hospital practice, including the need to deal with emerging infections, rapidly increasing internationalisation, and immigration. Clinical microbiology needs to develop and master technological advances such as laboratory automation and an avalanche of new methods for rapid diagnostics. Simultaneously, the pressure for concentration, amalgamation, and out-sourcing of laboratory services is ever-increasing. Infectious disease physicians have to meet the professional challenge of subspecialisation and the continual need to find new niches for their skills. Despite these challenges, each of these specialties continues to thrive in Europe and will enjoy important opportunities over the next few years. The recently formed European Centre for Disease Prevention and Control in Stockholm, Sweden, will increase demands in areas of surveillance of infectious diseases and antimicrobial resistance on both specialties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Microbiological Challenge Testing for Listeria Monocytogenes in Ready-to-Eat Food: A Practical Approach.

    PubMed

    Spanu, Carlo; Scarano, Christian; Ibba, Michela; Pala, Carlo; Spanu, Vincenzo; De Santis, Enrico Pietro Luigi

    2014-12-09

    Food business operators (FBOs) are the primary responsible for the safety of food they place on the market. The definition and validation of the product's shelf-life is an essential part for ensuring microbiological safety of food and health of consumers. In the frame of the Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs, FBOs shall conduct shelf-life studies in order to assure that their food does not exceed the food safety criteria throughout the defined shelf-life. In particular this is required for ready-to-eat (RTE) food that supports the growth of Listeria monocytogenes . Among other studies, FBOs can rely on the conclusion drawn by microbiological challenge tests. A microbiological challenge test consists in the artificial contamination of a food with a pathogen microorganism and aims at simulating its behaviour during processing and distribution under the foreseen storage and handling conditions. A number of documents published by international health authorities and research institutions describes how to conduct challenge studies. The authors reviewed the existing literature and described the methodology for implementing such laboratory studies. All the main aspects for the conduction of L. monocytogenes microbiological challenge tests were considered, from the selection of the strains, preparation and choice of the inoculum level and method of contamination, to the experimental design and data interpretation. The objective of the present document is to provide an exhaustive and practical guideline for laboratories that want to implement L. monocytogenes challenge testing on RTE food.

  3. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  4. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  5. Infections in British clinical laboratories, 1986-87.

    PubMed

    Grist, N R; Emslie, J A

    1989-07-01

    During 1986-87 this continuing survey showed 15 specific infections in the staff of 235 laboratories, representing 28,524 person years of exposure. The community was the probable source of four of the five cases of tuberculosis and one of the five cases of salmonellosis. Occupational exposure was the probable cause of four infections by Shigella flexneri, three by Salmonella typhimurium, and one by S typhi, all affecting medical laboratory scientific officers (MLSOs) in microbiology. Occupational exposure was also the probable cause of one case of tuberculosis in a mortuary technician and one of probable non-A, non-B hepatitis in a medical laboratory scientific officer haematology worker. The overall incidence of reported infections was 52.6/100,000 person years (35/100,000 for infections of probable occupational origin). The highest rates of laboratory acquired infections related to MLSO microbiology workers and mortuary technicians. No additional infections were seen as a result of extending the survey to forensic laboratories.

  6. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  7. Rocky Mountain spotted fever: a disease in need of microbiological concern.

    PubMed Central

    Walker, D H

    1989-01-01

    Rocky Mountain spotted fever, a life-threatening tick-transmitted infection, is the most prevalent rickettsiosis in the United States. This zoonosis is firmly entrenched in the tick host, which maintains the rickettsiae in nature by transovarian transmission. Although the incidence of disease fluctuates in various regions and nationwide, the problems of a deceptively difficult clinical diagnosis and little microbiologic diagnostic effort persist. Many empiric antibiotic regimens lack antirickettsial activity. There is neither an effective vaccine nor a generally available assay that is diagnostic during the early stages of illness, when treatment is most effective. Microbiology laboratories that offer only the archaic retrospective Weil-Felix serologic tests should review the needs of their patients. Research microbiologists who tackle these challenging organisms have an array of questions to address regarding rickettsial surface composition, structure-function analysis, and pathogenic and immune mechanisms, as well as laboratory diagnosis. PMID:2504480

  8. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  9. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  10. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  11. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  12. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    PubMed

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  13. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  14. One Small Step for the Gram Stain, One Giant Leap for Clinical Microbiology.

    PubMed

    Thomson, Richard B

    2016-06-01

    The Gram stain is one of the most commonly performed tests in the clinical microbiology laboratory, yet it is poorly controlled and lacks standardization. It was once the best rapid test in microbiology, but it is no longer trusted by many clinicians. The publication by Samuel et al. (J. Clin. Microbiol. 54:1442-1447, 2016, http://dx.doi.org/10.1128/JCM.03066-15) is a start for those who want to evaluate and improve Gram stain performance. In an age of emerging rapid molecular results, is the Gram stain still relevant? How should clinical microbiologists respond to the call to reduce Gram stain error rates? Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  16. Commutability of food microbiology proficiency testing samples.

    PubMed

    Abdelmassih, M; Polet, M; Goffaux, M-J; Planchon, V; Dierick, K; Mahillon, J

    2014-03-01

    Food microbiology proficiency testing (PT) is a useful tool to assess the analytical performances among laboratories. PT items should be close to routine samples to accurately evaluate the acceptability of the methods. However, most PT providers distribute exclusively artificial samples such as reference materials or irradiated foods. This raises the issue of the suitability of these samples because the equivalence-or 'commutability'-between results obtained on artificial vs. authentic food samples has not been demonstrated. In the clinical field, the use of noncommutable PT samples has led to erroneous evaluation of the performances when different analytical methods were used. This study aimed to provide a first assessment of the commutability of samples distributed in food microbiology PT. REQUASUD and IPH organized 13 food microbiology PTs including 10-28 participants. Three types of PT items were used: genuine food samples, sterile food samples and reference materials. The commutability of the artificial samples (reference material or sterile samples) was assessed by plotting the distribution of the results on natural and artificial PT samples. This comparison highlighted matrix-correlated issues when nonfood matrices, such as reference materials, were used. Artificially inoculated food samples, on the other hand, raised only isolated commutability issues. In the organization of a PT-scheme, authentic or artificially inoculated food samples are necessary to accurately evaluate the analytical performances. Reference materials, used as PT items because of their convenience, may present commutability issues leading to inaccurate penalizing conclusions for methods that would have provided accurate results on food samples. For the first time, the commutability of food microbiology PT samples was investigated. The nature of the samples provided by the organizer turned out to be an important factor because matrix effects can impact on the analytical results. © 2013

  17. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  18. Report on the Project for Establishment of the Standardized Korean Laboratory Terminology Database, 2015.

    PubMed

    Jung, Bo Kyeung; Kim, Jeeyong; Cho, Chi Hyun; Kim, Ju Yeon; Nam, Myung Hyun; Shin, Bong Kyung; Rho, Eun Youn; Kim, Sollip; Sung, Heungsup; Kim, Shinyoung; Ki, Chang Seok; Park, Min Jung; Lee, Kap No; Yoon, Soo Young

    2017-04-01

    The National Health Information Standards Committee was established in 2004 in Korea. The practical subcommittee for laboratory test terminology was placed in charge of standardizing laboratory medicine terminology in Korean. We aimed to establish a standardized Korean laboratory terminology database, Korea-Logical Observation Identifier Names and Codes (K-LOINC) based on former products sponsored by this committee. The primary product was revised based on the opinions of specialists. Next, we mapped the electronic data interchange (EDI) codes that were revised in 2014, to the corresponding K-LOINC. We established a database of synonyms, including the laboratory codes of three reference laboratories and four tertiary hospitals in Korea. Furthermore, we supplemented the clinical microbiology section of K-LOINC using an alternative mapping strategy. We investigated other systems that utilize laboratory codes in order to investigate the compatibility of K-LOINC with statistical standards for a number of tests. A total of 48,990 laboratory codes were adopted (21,539 new and 16,330 revised). All of the LOINC synonyms were translated into Korean, and 39,347 Korean synonyms were added. Moreover, 21,773 synonyms were added from reference laboratories and tertiary hospitals. Alternative strategies were established for mapping within the microbiology domain. When we applied these to a smaller hospital, the mapping rate was successfully increased. Finally, we confirmed K-LOINC compatibility with other statistical standards, including a newly proposed EDI code system. This project successfully established an up-to-date standardized Korean laboratory terminology database, as well as an updated EDI mapping to facilitate the introduction of standard terminology into institutions. © 2017 The Korean Academy of Medical Sciences.

  19. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  20. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-06-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  1. New Visiting Scholars Program at Frederick National Laboratory | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is now accepting Expressions of Interest to its new Visiting Scholars Program (VSP). VSP is a unique opportunity for researchers to work on important cancer and AIDS projects with teams of scientists at the only federal national laboratory in the United States devoted exclusively to biomedical research.

  2. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  3. Site environmental report for 2009 : Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into tenmore » chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  4. Site Environmental Report for 2010 Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chaptermore » 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  5. [Advantages and limits of the surveillance of nosocomial infections from the microbiology laboratory: experience of Meaux hospital].

    PubMed

    Botterel, F; Faibis, F; Chevalier, C; Delisse, C; Fiacre, A; Dubois, A; Demachy, M C

    2004-10-01

    To estimate the incidence of nosocomial infections (NI) in our hospital and to increase healthcare professionals' awareness of hygiene, a prospective study was performed between January and December 2002 from the microbiology laboratory data. On 1334 suspicions of NI, corresponding to 1062 patients, sent to the hygiene correspondents in each medical care unit, the infection control team received 853 answers (64% of sendings) with 430 NI validated. The incidence rate of NI validated was 1.7 NI/1000 days of hospitalisation and 1.6 NI/100 inpatients. The NI were predominantly related to urinary tract (47%), bloodstream (14%), and lower respiratory tract (12%). Transmission of these informations to medical information department permitted a valorisation of additional 16,000 ISA points. This prospective study permitted to develop a network of hygiene correspondents in every medical care units. None of the medical care units was unharmed by NI but the exhaustive declaration of NI seems difficult to realise. This study permitted to point out some dysfunctionments in the management of invasive procedures and to improve these practices.

  6. An audit of the laboratory diagnosis of cryptosporidiosis in England and Wales.

    PubMed

    Chalmers, Rachel M; Atchison, Christina; Barlow, Katrina; Young, Yvonne; Roche, Anita; Manuel, Rohini

    2015-07-01

    To assess the level of practice consistent with UK national standards for Cryptosporidium testing, an audit was performed of 156 publicly funded clinical microbiology laboratories in England and Wales between August 2013 and April 2014. Responses were received from 85 (54 %) laboratories. First line diagnostic methods used were mainly microscopy with modified Ziehl-Neelsen (mZN) or auramine phenol (AP) staining (68/85, 80 %), enzyme immunoassays (EIAs) (16/85, 19 %) or in-house PCR (1/85, 1 %). The use of EIAs was more widespread than reported previously. Various methods were used for confirmation of positive EIA reactions and laboratories frequently resorted to sending samples to the national reference laboratory for this purpose, indicating that guidance is required for performance monitoring and confirmation of positive reactions. Laboratory positivity rates were related to the diagnostic test used, with highest median rates reported by those using PCR, EIAs or AP microscopy, and the lowest by those using mZN microscopy. One-third of responding laboratories (28/85, 33 %) routinely tested all stools for Cryptosporidium. However, 16 (19 %) laboratories used stool consistency to decide whether to test for this parasite. Other selection criteria included patient age (n = 18; 21 % laboratories), history or clinical details (n = 40; 47 %), duration of hospitalization (n = 18; 21 %) or clinician requests (n = 25; 29 %). To encourage laboratories to test all stools submitted for the investigation of diarrhoeal illness for Cryptosporidium, revision of the guidance in the national standards is under way. This will enable improved assessment of the burden of illness and ability to monitor outbreaks, and measure changes in reported cases.

  7. Comparison of Three Commercial Systems for Identification of Yeasts Commonly Isolated in the Clinical Microbiology Laboratory

    PubMed Central

    Wadlin, Jill K.; Hanko, Gayle; Stewart, Rebecca; Pape, John; Nachamkin, Irving

    1999-01-01

    We evaluated three commercial systems (RapID Yeast Plus System; Innovative Diagnostic Systems, Norcross, Ga.; API 20C Aux; bioMerieux-Vitek, Hazelwood, Mo.; and Vitek Yeast Biochemical Card, bioMerieux-Vitek) against an auxinographic and microscopic morphologic reference method for the ability to identify yeasts commonly isolated in our clinical microbiology laboratory. Two-hundred one yeast isolates were compared in the study. The RapID Yeast Plus System was significantly better than either API 20C Aux (193 versus 167 correct identifications; P < 0.0001) or the Vitek Yeast Biochemical Card (193 versus 173 correct identifications; P = 0.003) for obtaining correct identifications to the species level without additional testing. There was no significant difference between results obtained with API 20C Aux and the Vitek Yeast Biochemical Card system (P = 0.39). The API 20C Aux system did not correctly identify any of the Candida krusei isolates (n = 23) without supplemental testing and accounted for the major differences between the API 20C Aux and RapID Yeast Plus systems. Overall, the RapID Yeast Plus System was easy to use and is a good system for the routine identification of clinically relevant yeasts. PMID:10325356

  8. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... management in the areas of environmental restoration, waste management, and related activities. Tentative...

  9. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a

    PubMed Central

    Baron, Ellen Jo; Miller, J. Michael; Weinstein, Melvin P.; Richter, Sandra S.; Gilligan, Peter H.; Thomson, Richard B.; Bourbeau, Paul; Carroll, Karen C.; Kehl, Sue C.; Dunne, W. Michael; Robinson-Dunn, Barbara; Schwartzman, Joseph D.; Chapin, Kimberle C.; Snyder, James W.; Forbes, Betty A.; Patel, Robin; Rosenblatt, Jon E.; Pritt, Bobbi S.

    2013-01-01

    The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients. PMID:23845951

  10. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  11. [Microbiological diagnosis of infections of the skin and soft tissues].

    PubMed

    Burillo, Almudena; Moreno, Antonio; Salas, Carlos

    2007-11-01

    Skin and soft tissue infections are often seen in clinical practice, yet their microbiological diagnosis is among the most complex of laboratory tasks. The diagnosis of a skin and a soft tissue infection is generally based on clinical criteria and not microbiological results. A microbiological diagnosis is reserved for cases in which the etiology of infection is required, e.g., when the infection is particularly severe, when less common microorganisms are suspected as the causative agent (e.g. in immunocompromised patients), when response to antimicrobial treatment is poor, or when a longstanding wound does not heal within a reasonable period of time. We report the indications, sampling and processing techniques, and interpretation criteria for various culture types, including quantitative cultures from biopsy or tissue specimens and semiquantitative and qualitative cultures performed on all types of samples. For non-invasive samples taken from open wounds, application of the Q index to Gram stains is a cost-effective way to standardize sample quality assessment and interpretation of the pathogenic involvement of the different microorganisms isolated from cultures. All these issues are covered in the SEIMC microbiological procedure number 22: Diagnóstico microbiológico de las infecciones de piel y tejidos blandos (Microbiological diagnosis of infections of the skin and soft tissues) (2nd ed., 2006, www.seimc.org/protocolos/microbiologia).

  12. Inflammation, suppuration, putrefaction, fermentation: Joseph Lister's microbiology

    PubMed Central

    Richardson, Ruth

    2013-01-01

    This paper focuses on Lister's inaugural lecture at King's College, London, in October 1877. As the new Professor of Clinical Surgery, Lister had much to report, including impressively high survival rates from complex operations previously regarded as foolhardy. Instead, he chose to address the processes of fermentation in wine, blood and milk. His reasons are not obvious to a modern audience, just as they probably were not to those who heard him in the Great Hall at King's. Having brought microbiological apparatus from his laboratory to the lecture theatre and presented proof of bacterial variety and specificity, Lister publicly demonstrated the creation of the first pure bacterial culture in the history of microbiology. It was an ingenious and well-thought-out strategy designed to generate a frame of mind among his new colleagues and future students, receptive to the causative role of bacteria in septic diseases. His timing was impeccable.

  13. [Microbiological diagnosis of human immunodeficiency virus infection].

    PubMed

    Álvarez Estévez, Marta; Reina González, Gabriel; Aguilera Guirao, Antonio; Rodríguez Martín, Carmen; García García, Federico

    2015-10-01

    This document attempts to update the main tasks and roles of the Clinical Microbiology laboratory in HIV diagnosis and monitoring. The document is divided into three parts. The first deals with HIV diagnosis and how serological testing has changed in the last few years, aiming to improve diagnosis and to minimize missed opportunities for diagnosis. Technological improvements for HIV Viral Load are shown in the second part of the document, which also includes a detailed description of the clinical significance of low-level and very low-level viremia. Finally, the third part of the document deals with resistance to antiretroviral drugs, incorporating clinical indications for integrase and tropism testing, as well as the latest knowledge on minority variants. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  15. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... November 14, 2011, of the Environmental Management Site-Specific Advisory Board, Idaho National Laboratory...: Robert L. Pence, Federal Coordinator, Department of Energy, Idaho Operations Office, 1955 Fremont Avenue...

  16. Surface water data at Los Alamos National Laboratory: 2009 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  17. Surface water data at Los Alamos National Laboratory: 2008 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  18. Frederick National Laboratory Advisory Committee Welcomes New FNL, NCI Leaders | Poster

    Cancer.gov

    The Frederick National Laboratory Advisory Committee recently met to discuss the future of several high-profile Frederick National Lab initiatives in a meeting that included a chance to meet the new NCI and FNLCR leaders. Here is a look at a few of the highlights from the last of the 2017 FNLAC meetings.

  19. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    EPA Science Inventory

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  20. Natural Gas Storage Research at Savannah River National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  1. Four Argonne National Laboratory scientists receive Early Career Research

    Science.gov Websites

    Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing

  2. Careers in Microbiology...Horizons Unlimited

    ERIC Educational Resources Information Center

    Goldschmidt Millicent C.; Whitt, Dixie

    1978-01-01

    A broad range of present microbiological work is discussed in order to indicate the many possible careers now open in microbiology. Some areas are immunology, environmental microbiology, agricultural, industrial, and food microbiology, and space microbiology. An employment outlook is also given. (MDR)

  3. 75 FR 24685 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402. FOR...

  4. 76 FR 39080 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  5. Clinical Application Projects (CAPs) for Health Science Students in Introductory Microbiology.

    ERIC Educational Resources Information Center

    Halyard, Rebecca A.

    Clinical Application Projects (CAPs) have been developed that allow dental hygiene and nursing students to apply introductory microbiology principles and skills learned in lecture and laboratory to a problem in an appropriate clinical situation. CAPs therefore substitute for the traditional study of "unknowns". Principles and processes emphasized…

  6. Sandia National Laboratories: Sandia National Laboratories: News: Events

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  7. [Applications of MALDI-TOF-MS in clinical microbiology laboratory].

    PubMed

    Carbonnelle, Etienne; Nassif, Xavier

    2011-10-01

    For twenty years, mass spectrometry (MS) has emerged as a particularly powerful tool for analysis and characterization of proteins in research. It is only recently that this technology, especially MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight) has entered the field of routine microbiology. This method has proven to be reliable and safe for the identification of bacteria, yeasts, filamentous fungi and dermatophytes. MALDI-TOF-MS is a rapid, precise and cost-effective method for identification, compared to conventional phenotypic techniques or molecular biology. Its ability to analyse whole microorganisms with few sample preparation has greatly reduced the time to identification (1-2 min). Furthermore, this technology can be used to identify bacteria directly from clinical samples as blood culture bottles or urines. Future applications will be developed in order to provide direct information concerning virulence or resistance protein markers. © 2011 médecine/sciences – Inserm / SRMS.

  8. The National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Gelbke, C. Korad; Morrissey, D. J.; York, R. C.

    1996-10-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.

  9. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  10. 75 FR 56527 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Coeur d'Alene Resort, 115 South Second Street, Coeur d'Alene, Idaho...

  11. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  12. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard.

    PubMed

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  13. Natural Gas Storage Research at Savannah River National Laboratory

    ScienceCinema

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2018-01-16

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  14. National Media Laboratory media testing results

    NASA Technical Reports Server (NTRS)

    Mularie, William

    1993-01-01

    The government faces a crisis in data storage, analysis, archive, and communication. The sheer quantity of data being poured into the government systems on a daily basis is overwhelming systems ability to capture, analyze, disseminate, and store critical information. Future systems requirements are even more formidable: with single government platforms having data rate of over 1 Gbit/sec, greater than Terabyte/day storage requirements, and with expected data archive lifetimes of over 10 years. The charter of the National Media Laboratory (NML) is to focus the resources of industry, government, and academia on government needs in the evaluation, development, and field support of advanced recording systems.

  15. Microbiological Challenge Testing for Listeria Monocytogenes in Ready-to-Eat Food: A Practical Approach

    PubMed Central

    Scarano, Christian; Ibba, Michela; Pala, Carlo; Spanu, Vincenzo; De Santis, Enrico Pietro Luigi

    2014-01-01

    Food business operators (FBOs) are the primary responsible for the safety of food they place on the market. The definition and validation of the product’s shelf-life is an essential part for ensuring microbiological safety of food and health of consumers. In the frame of the Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs, FBOs shall conduct shelf-life studies in order to assure that their food does not exceed the food safety criteria throughout the defined shelf-life. In particular this is required for ready-to-eat (RTE) food that supports the growth of Listeria monocytogenes. Among other studies, FBOs can rely on the conclusion drawn by microbiological challenge tests. A microbiological challenge test consists in the artificial contamination of a food with a pathogen microorganism and aims at simulating its behaviour during processing and distribution under the foreseen storage and handling conditions. A number of documents published by international health authorities and research institutions describes how to conduct challenge studies. The authors reviewed the existing literature and described the methodology for implementing such laboratory studies. All the main aspects for the conduction of L. monocytogenes microbiological challenge tests were considered, from the selection of the strains, preparation and choice of the inoculum level and method of contamination, to the experimental design and data interpretation. The objective of the present document is to provide an exhaustive and practical guideline for laboratories that want to implement L. monocytogenes challenge testing on RTE food. PMID:27800369

  16. Executive summary: a guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a).

    PubMed

    Baron, Ellen Jo; Miller, J Michael; Weinstein, Melvin P; Richter, Sandra S; Gilligan, Peter H; Thomson, Richard B; Bourbeau, Paul; Carroll, Karen C; Kehl, Sue C; Dunne, W Michael; Robinson-Dunn, Barbara; Schwartzman, Joseph D; Chapin, Kimberle C; Snyder, James W; Forbes, Betty A; Patel, Robin; Rosenblatt, Jon E; Pritt, Bobbi S

    2013-08-01

    The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.

  17. Change in argonne national laboratory: a case study.

    PubMed

    Mozley, A

    1971-10-01

    , William B. Cannon, who is vice president of programs and projects of the University of Chicago, and a small selection of staff members believe that the Laboratory is going through a natural and inevitable process of change consonant with altered missions and objectives in an atomic energy laboratory. The general mood, however, demonstrates the Jeffersonian insight, as relevant in science as in politics, that only democratic governance provides salutary checks and balances when things go wrong. The point deserves close scrutiny when Argonne's tripartite contract comes up for renegotiation in October 1971. Fundamentally Argonne's relations with its sponsoring agency remain at the center of its progress and future plans. Despite administrative and management changes, there is little doubt that he who pays the piper calls the tune. In common with other federal contract research and development adjuncts, Argonne has undoubtedly undergone tightening and winnowing away of flexibility in the past 6 years. In the nuclear reactor program the consequences have been strongly felt, and stringent national budgets have widened the tendency in the research domain. The impact of these changes and of AEC's attitude to basic research raise large questions for the future of the national laboratories. Few doubt that these "major national assets," with their outstanding scientific and technical personnel and equipment, fulfill a unique function and are here to stay, though their missions may undergo some change; the question of their most effective direction and handling, however, remains crucial for those concerned with priorities and decision-making for science. A recent review of 40 national federal adjuncts (30,31) has indicated that the primary sponsoring agency obtains better performance from a center that has a relatively high degree of independence than from one that is tightly controlled. The point is confirmed at Argonne where the present tendency (particularly on the nuclear reactor

  18. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Shaull; D. Ortiz; M.R. Alexander

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  19. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  20. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  1. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  2. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  3. Technological Microbiology: Development and Applications

    PubMed Central

    Vitorino, Luciana C.; Bessa, Layara A.

    2017-01-01

    Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services. PMID:28539920

  4. 75 FR 11872 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... Site- Specific Advisory Board, Idaho National Laboratory to be held on March 16, 2010 75 FR 9590. In that notice, the meeting address was Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402...

  5. Development and analysis of a meteorological database, Argonne National Laboratory, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.

    2010-01-01

    A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential

  6. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  7. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    PubMed Central

    Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Background Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. Scorecard for laboratory networks We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen. PMID:28879141

  8. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories

    PubMed Central

    van Veen, S. Q.; Claas, E. C. J.; Kuijper, Ed J.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory. PMID:20053859

  9. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review.

    PubMed

    Tagini, F; Greub, G

    2017-11-01

    In recent years, whole-genome sequencing (WGS) has been perceived as a technology with the potential to revolutionise clinical microbiology. Herein, we reviewed the literature on the use of WGS for the most commonly encountered pathogens in clinical microbiology laboratories: Escherichia coli and other Enterobacteriaceae, Staphylococcus aureus and coagulase-negative staphylococci, streptococci and enterococci, mycobacteria and Chlamydia trachomatis. For each pathogen group, we focused on five different aspects: the genome characteristics, the most common genomic approaches and the clinical uses of WGS for (i) typing and outbreak analysis, (ii) virulence investigation and (iii) in silico antimicrobial susceptibility testing. Of all the clinical usages, the most frequent and straightforward usage was to type bacteria and to trace outbreaks back. A next step toward standardisation was made thanks to the development of several new genome-wide multi-locus sequence typing systems based on WGS data. Although virulence characterisation could help in various particular clinical settings, it was done mainly to describe outbreak strains. An increasing number of studies compared genotypic to phenotypic antibiotic susceptibility testing, with mostly promising results. However, routine implementation will preferentially be done in the workflow of particular pathogens, such as mycobacteria, rather than as a broadly applicable generic tool. Overall, concrete uses of WGS in routine clinical microbiology or infection control laboratories were done, but the next big challenges will be the standardisation and validation of the procedures and bioinformatics pipelines in order to reach clinical standards.

  10. Definite (microbiologically confirmed) tuberculous meningitis: predictors and prognostic impact.

    PubMed

    Jha, Sneh Kumar; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Verma, Rajesh; Sharma, Praveen Kumar

    2015-12-01

    Microbiological confirmation cannot be obtained in approximately two-third patients with tuberculous meningitis. In this study, we sought to identify epidemiological, clinical, cerebrospinal fluid, and imaging parameters that could indicate the possibility of microbiological confirmation among patients with suspected tuberculous meningitis. In this prospective observational study, patients with tuberculous meningitis were evaluated for clinical, laboratory (cerebrospinal fluid microscopy, culture, and polymerase chain reaction), and neuroimaging parameters. All patients received anti-tuberculosis drugs and corticosteroids. The patients were followed for a period of 6 months. Among 118 cases of tuberculous meningitis, there were 43 (36 %) definite (microbiologically confirmed) cases, 59 (50 %) probable and 16 (14 %) possible cases. Among 43 definite cases, tuberculosis polymerase chain reaction (PCR) was positive in 42 (35 %) patients, culture was positive in 1 case and microscopy, after Ziehl-Neelsen staining, was positive in 3 cases. Three factors, modified Barthel index score at admission ≤12 (p = 0.008), cerebrospinal fluid total cell count >100/mm(3) (p = 0.016), and basal exudates on imaging (p = 0.015), were significantly associated with definite tuberculous meningitis. Among 20 patients who died within 6 months, 13 belonged to definite tuberculous meningitis group (p < 0.001). Stage III tuberculous meningitis (p = 0.004), baseline-modified Barthel index score ≤12 (p = 0.013), and positive tuberculosis PCR (p = 0.007) were independently associated with poor outcome on multivariate analysis. Severe disability, cerebrospinal fluid cells >100 mm(3), and basal exudates are significantly related to the presence of microbiologically confirmed definite tuberculous meningitis. Microbiologically confirmed tuberculous meningitis is associated with poorer outcome.

  11. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  12. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  13. Utility of Gram stain for the microbiological analysis of burn wound surfaces.

    PubMed

    Elsayed, Sameer; Gregson, Daniel B; Lloyd, Tracie; Crichton, Marilyn; Church, Deirdre L

    2003-11-01

    Surface swab cultures have attracted attention as a potential alternative to biopsy histology or quantitative culture methods for microbiological burn wound monitoring. To our knowledge, the utility of adding a Gram-stained slide in this context has not been evaluated previously. To determine the degree of correlation of Gram stain with culture for the microbiological analysis of burn wound surfaces. Prospective laboratory analysis. Urban health region/centralized diagnostic microbiology laboratory. Burn patients hospitalized in any Calgary Health Region burn center from November 2000 to September 2001. Gram stain plus culture of burn wound surface swab specimens obtained during routine dressing changes or based on clinical signs of infection. Degree of correlation (complete, high, partial, none), including weighted kappa statistic (kappa(w)), of Gram stain with culture based on quantitative microscopy and degree of culture growth. A total of 375 specimens from 50 burn patients were evaluated. Of these, 239 were negative by culture and Gram stain, 7 were positive by Gram stain only, 89 were positive by culture only, and 40 were positive by both methods. The degree of complete, high, partial, and no correlation of Gram stain with culture was 70.9% (266/375), 1.1% (4/375), 2.4% (9/375), and 25.6% (96/375), respectively. The degree of correlation for all 375 specimens, as expressed by the weighted kappa statistic, was found to be fair (kappa(w) = 0.32).Conclusion.-The Gram stain is not suitable for the microbiological analysis of burn wound surfaces.

  14. Simulating Laboratory Procedures.

    ERIC Educational Resources Information Center

    Baker, J. E.; And Others

    1986-01-01

    Describes the use of computer assisted instruction in a medical microbiology course. Presents examples of how computer assisted instruction can present case histories in which the laboratory procedures are simulated. Discusses an authoring system used to prepare computer simulations and provides one example of a case history dealing with fractured…

  15. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  16. Methods for microbiological and immunological studies of space flight crews

    NASA Technical Reports Server (NTRS)

    Taylor, G. R. (Editor); Zaloguev, S. N. (Editor)

    1978-01-01

    Systematic laboratory procedures compiled as an outgrowth of a joint U.S./U.S.S.R. microbiological-immunological experiment performed during the Apollo-Soyuz Test Project space flight are presented. Included are mutually compatible methods for the identification of aerobic and microaerophilic bacteria, yeast and yeastlike microorganisms, and filamentous fungi; methods for the bacteriophage typing of Staphylococcus aureus; and methods for determining the sensitivity of S. aureus to antibiotics. Immunological methods using blood and immunological and biochemical methods using salivary parotid fluid are also described. Formulas for media and laboratory reagents used are listed.

  17. International Safeguards and the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less

  18. Comparison of different incubation conditions for microbiological environmental monitoring.

    PubMed

    Gordon, Oliver; Berchtold, Manfred; Staerk, Alexandra; Roesti, David

    2014-01-01

    Environmental monitoring represents an integral part of the microbiological quality control system of a pharmaceutical manufacturing operation. However, guidance documents differ regarding recommendation of a procedure, particularly regarding incubation time, incubation temperature, or nutrient media. Because of these discrepancies, many manufacturers decide for a particular environmental monitoring sample incubation strategy and support this decision with validation data. Such validations are typically laboratory-based in vitro studies, meaning that these are based on comparing incubation conditions and nutrient media through use of cultured microorganisms. An informal survey of the results of these in vitro studies performed at Novartis or European manufacturing sites of different pharmaceutical companies highlighted that no consensus regarding the optimal incubation conditions for microbial recovery existed. To address this question differently, we collected a significant amount of samples directly from air, inanimate surfaces, and personnel in pharmaceutical production and packaging rooms during manufacturing operation (in situ study). Samples were incubated under different conditions suggested in regulatory guidelines, and recovery of total aerobic microorganisms as well as moulds was assessed. We found the highest recovery of total aerobic count from areas with personnel flow using a general microbiological growth medium incubated at 30-35 °C. The highest recovery of moulds was obtained with mycological medium incubated at 20-25 °C. Single-plate strategies (two-temperature incubation or an intermediate incubation temperature of 25-30 °C) also yielded reasonable recovery of total aerobic count and moulds. However, recovery of moulds was found to be highly inefficient at 30-35 °C compared to lower incubation temperatures. This deficiency could not be rectified by subsequent incubation at 20-25 °C. A laboratory-based in vitro study performed in parallel was

  19. Economic impact of rapid diagnostic methods in Clinical Microbiology: Price of the test or overall clinical impact.

    PubMed

    Cantón, Rafael; Gómez G de la Pedrosa, Elia

    2017-12-01

    The need to reduce the time it takes to establish a microbiological diagnosis and the emergence of new molecular microbiology and proteomic technologies has fuelled the development of rapid and point-of-care techniques, as well as the so-called point-of-care laboratories. These laboratories are responsible for conducting both techniques partially to response to the outsourcing of the conventional hospital laboratories. Their introduction has not always been accompanied with economic studies that address their cost-effectiveness, cost-benefit and cost-utility, but rather tend to be limited to the unit price of the test. The latter, influenced by the purchase procedure, does not usually have a regulated reference value in the same way that medicines do. The cost-effectiveness studies that have recently been conducted on mass spectrometry in the diagnosis of bacteraemia and the use of antimicrobials have had the greatest clinical impact and may act as a model for future economic studies on rapid and point-of-care tests. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Strategies for laboratory cost containment and for pathologist shortage: centralised pathology laboratories with microwave-stimulated histoprocessing and telepathology.

    PubMed

    Leong, Anthony S Y; Leong, F Joel W M

    2005-02-01

    The imposition of laboratory cost containment, often from external forces, dictates the necessity to develop strategies to meet laboratory cost savings. In addition, the national and worldwide shortage of anatomical pathologists makes it imperative to examine our current practice and laboratory set-ups. Some of the strategies employed in other areas of pathology and laboratory medicine include improvements in staff productivity and the adoption of technological developments that reduce manual intervention. However, such opportunities in anatomical pathology are few and far between. Centralisation has been an effective approach in bringing economies of scale, the adoption of 'best practices' and the consolidation of pathologists, but this has not been possible in anatomical pathology because conventional histoprocessing takes a minimum of 14 hours and clinical turnaround time requirements necessitate that the laboratory and pathologist be in proximity and on site. While centralisation of laboratories for clinical chemistry, haematology and even microbiology has been successful in Australia and other countries, the essential requirements for anatomical pathology laboratories are different. In addition to efficient synchronised courier networks, a method of ultra-rapid tissue processing and some expedient system of returning the prepared tissue sections to the remote laboratory are essential to maintain the turnaround times mandatory for optimal clinical management. The advent of microwave-stimulated tissue processing that can be completed in 30-60 minutes and the immediate availability of compressed digital images of entire tissue sections via telepathology completes the final components of the equation necessary for making centralised anatomical pathology laboratories a reality.