Science.gov

Sample records for national synchrotron light

  1. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  2. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  3. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  4. National Synchrotron Light Source II

    SciTech Connect

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-04-25

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  5. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  6. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  7. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-07-12

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  8. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  9. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  10. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  11. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2004

    SciTech Connect

    MILLER,L.

    2005-05-01

    for the environmental science community, is also very important, as it will help to satisfy the large over subscription rate for this technique at the NSLS. Two other important upgrades that were initiated this past year are the replacement of the X25 wiggler with an undulator and the construction of the X9 undulator beamline for small-angle scattering, with an emphasis on nanoscience research. Another key activity that will benefit all users was the restoration of the x-ray ring lattice symmetry, which reduced the horizontal emittance and made the operational lattice more robust. Similarly, all users will benefit from the introduction of the PASS (Proposal Allocation Safety Scheduling) system this past year, which has greatly improved the process of proposal submission, review, allocation, and scheduling. This coming year we will work to add Rapid Access to the capabilities of PASS. Overall, the success of these and the many other projects that space does not permit listing is a testament to the dedication, hard work, and skill of the NSLS staff. Safety has always been an important issue at a large, complex scientific facility like the NSLS and in 2004 it received renewed attention. Safety is our highest priority and we spent a great deal of time reviewing and refining our safety practices and procedures. A new 'Safety Highlights' web page was created for safety news, and a large number of safety meetings and discussions were held. These reviews and meetings generated many ideas on how the NSLS might improve its safety practices, and we are committed to putting these in place and improving our already very good safety program. We had no lost-time accidents in 2004, which is a notable accomplishment. Our goal is to be best in class and I'm confident that by working together we can achieve that status. Several activities took place this past year to advance our proposal to replace the NSLS with a new National Synchrotron Light Source-II facility. These included a major

  12. National Synchrotron Light Source safety-analysis report

    SciTech Connect

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  13. Research by industry at the National Synchrotron Light Source

    SciTech Connect

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  14. The National Synchrotron Light Source, Part I: Bright Idea

    SciTech Connect

    Crease, R.

    2008-01-01

    The National Synchrotron Light Source (NSLS) was the first facility designed and built specifically for producing and exploiting synchrotron radiation. It was also the first facility to incorporate the Chasman-Green lattice for maximizing brightness. The NSLS was a $24-million project conceived about 1970. It was officially proposed in 1976, and its groundbreaking took place in 1978. Its construction was a key episode in Brookhaven's history, in the transition of synchrotron radiation from a novelty to a commodity, and in the transition of synchrotron-radiation scientists from parasitic to autonomous researchers. The way the machine was conceived, designed, promoted, and constructed illustrates much both about the tensions and tradeoffs faced by large scientific projects in the age of big science. In this article, the first of two parts, I cover the conception, design, and planning of the NSLS up to its groundbreaking. Part II, covering its construction, will appear in the next issue.

  15. Computerized microtomography using synchrotron radiation from the NSLS (National Synchrotron Light Source)

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1986-09-01

    Results of microtomography experiments that employ filtered radiation from the National Synchrotron Light Source X-26 Microprobe beam line are presented. These experiments have yielded images of a freeze-dried caterpillar with a spatial resolution of the order of 30 ..mu..m and show that the limit on the spatial resolution with the present apparatus will be 1 to 10 ..mu..m. Directions for improvement in synchrotron microtomography techniques and some possible applications are discussed. 14 refs., 3 figs.

  16. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided

  17. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    SciTech Connect

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  18. The national synchrotron light source and its applications

    SciTech Connect

    Williams, G.P.

    1989-01-01

    We describe the National Synchrotron Light Source facility including its beamlines and operational characteristics. Research results on selected beamlines on the VUV ring which highlight new experimental capabilities are described since they are more relevant to the program at HESYRL. Examples chosen are spin-polarized photoemission, infra-red surface science, high resolution core level spectroscopy, X- Ray lithography, photoelectron/Auger coincidence spectroscopy and high electron momentum resolution surface studies. 7 refs., 3 figs., 3 tabs.

  19. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, this paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  20. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  1. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  2. Synchrotron light

    SciTech Connect

    Craievich, A. )

    1990-01-01

    Several developed countries such as the USA, URSS, England, France, Italy, Sweden and Japan have one or more of these synchrotron light facilities operating or under construction. Some developing countries have constructed (China) or are building (Taiwan, India, Korea, Brazil) synchrotron light facilities. The construction of the Brazilian synchrotron source began in June, 1987. After two years of activities, the injector linac for the electron storage ring is in its final stage of construction. These Proceedings contain the Invited Lectures presented at the Workshop by specialists working on synchrotron light applications and related instrumentation and by members of LNLS regarding technical details of the Brazilian project. The II Workshop Synchrotron Light: Applications and Related Instrumentation was dedicated to oral presentations about applications of synchrotron light, most of which were not covered during the I Workshop, organized by LNLS in 1988, and the Proceedings of which were published by World Scientific. The II Workshop included discussions on the application possibilities for the newly designed LNLS 1.15 GeV storage ring, and on the modifications which would eventually be necessary for the work-station and instrumentation projects currently in progress at LNLS and at various external user laboratories.

  3. Status of the National Synchrotron Light Source control system

    SciTech Connect

    Bozoki, E.; Culwick, B.B.; Smith, J.D.

    1981-01-01

    The control system for the National Synchrotron Light Source is implemented using dual central computers and many remote microprocessors. This paper describes developments in four areas: (1) system organization; (2) hardware status, particularly control desk and operator support facilities; (3) central computer software system organization to support data base structures and access, and communication between application programs and hardware; and (4) high level control programs which allow the operator to examine and control the transport lines and rings in terms of beam and machine parameters using mathematical models of the system. The output of these programs can be viewed on a color graphical display.

  4. The ORNL beamline at the National Synchrotron Light Source

    SciTech Connect

    Habenschuss, A.; Ice, G.E.; Sparks, C.J.; Neiser, R.A.

    1987-06-16

    The Oak Ridge National Laboratory's (ORNL) beamline at the National Synchrotron Light Source (NSLS) incorporates several novel features including x-ray optics based on sagittal focusing with crystals and a cantilevered mirror whose center becomes the pivot for all downstream optical elements. Crystal focusing accepts a much larger horizontal divergence of radiation than a mirror while maintaining excellent momentum transfer and energy resolution. This sagittally bent crystal serves as the second element of a two-crystal, nondispersive monochromator. The cantilevered mirror provides a simple design for vertical focusing of the radiation. The beamline is suitable for both x-ray scattering and spectroscopy experiments requiring good energy resolution and high intensity in the energy range from 2.5 to 40 keV. This paper describes the optics of the ORNL beamline and reports their performance to date.

  5. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D. ); Jones, K.W.; Spanne, P.; Sweet, R.M. ); Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y. ); Singer, P.T.; Westbrook, E.M. )

    1992-01-01

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  6. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D.; Jones, K.W.; Spanne, P.; Sweet, R.M.; Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y.; Singer, P.T.; Westbrook, E.M.

    1992-12-31

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  7. National Synchrotron Light Source medical personnel protection interlock

    SciTech Connect

    Buda, S.; Gmuer, N.F.; Larson, R.; Thomlinson, W.

    1998-11-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated. This MPPI report is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system. The general overview is presented in Section 1.0, MPPI Operational Mode and Procedures. The various MPPI components are described in detail in Section 2.0. Section 3.0 presents some simplified logic diagrams and accompanying text. This section was written to allow readers to become familiar with the logic system without having to work through the entire set of detailed engineering drawings listed in the Appendix. Detailed logic specifications are given in Section 4.0. The Appendix also contains copies of the current MPPI interlock test procedures for Setup and Patient Modes.

  8. Ozone production at the National Synchrotron Light Source

    SciTech Connect

    Weilandics, C.; Rohrig, N.; Gmur, N.F.

    1987-01-01

    Ozone production by synchrotron radiation as a function of power density in air was investigated using a white beam at the BNL National Synchrotron Light Source (NSLS) x-ray ring. Power densities were calculated from the energy spectrum at 2.52 GeV. Ozone concentrations in small beam pipes were measured for power densities between I = 10/sup 12/ and 10/sup 15/ eV . cm/sup -3/ . sec/sup -1/. The measured ozone half-life was 37 +- 2 min. The measured G-value was 2.69 +- 0.14 mol/100 eV and the ozone destruction factor k was less than 7 x 10/sup -19/ cm/sup 3/ . eV/sup -1/. The random uncertainties stated are approximately one standard error. The large departure of the values for G and k from previous values suggest that some undiscovered systematic error may exist in the experiment. Ozone concentration in excess of the 0.1 ppM ACGIH TLV can be generated in the experimental hutches but can readily be controlled. Industrial hygiene aspects of operation and possible control measures will be discussed. 19 refs., 7 figs., 3 tabs.

  9. Biological infrared microspectroscopy at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-06-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c.

  10. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  11. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  12. Rf power systems for the national synchrotron light source

    SciTech Connect

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described.

  13. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  14. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    SciTech Connect

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  15. National Synchrotron Light Source angiography personnel protection interlock

    SciTech Connect

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  16. National Synchrotron Light Source angiography personnel protection interlock

    SciTech Connect

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  17. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    SciTech Connect

    Thomlinson, W.

    1992-10-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure.

  18. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    SciTech Connect

    Thomlinson, W.

    1992-01-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure.

  19. BNL National Synchrotron Light Source activity report 1997

    SciTech Connect

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  20. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  1. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring.

    PubMed

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; Cappadoro, Peter; Escallier, John; Harder, David; Hetzel, Charles; Hidas, Dean; Kitegi, Charles; Kosciuk, Bernard; Musardo, Marco; Kirkland, Johnny

    2017-09-01

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring, the transition region was redesigned. The control system was also updated to NSLS-II specifications. This paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.

  2. Diamond anvil cell radial x-ray diffraction program at the National Synchrotron Light Source.

    PubMed

    Hu, J Z; Mao, H K; Shu, J F; Guo, Q Z; Liu, H Z

    2006-06-28

    During the past decade, the radial x-ray diffraction method using a diamond anvil cell (DAC) has been developed at the X17C beamline of the National Synchrotron Light Source. The detailed experimental procedure used with energy dispersive x-ray diffraction is described. The advantages and limitations of using the energy dispersive method for DAC radial diffraction studies are also discussed. The results for FeO at 135 GPa and other radial diffraction experiments performed at X17C are discussed in this report.

  3. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  4. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  5. In-situ shearing interferometry of National Synchrotron Light Source mirrors

    SciTech Connect

    Qian, S.N.; Rarback, H.; Shu, D.; Takacs, P.Z.

    1987-01-01

    In situ mirror distortion measurements were made with a lateral shearing interferometer on three mirrors in beam line X17T at the National Syn203hrotron Light Source. Lateral shearing interference is insensitive to vibrational motion in five of the six degrees of freedom, so it is well-suited for investigations in the synchrotron radiation (SR) environment. No distortion was seen in an uncooled silicon carbide mirror and in a colled copper alloy mirror on X17TB, but a change in the radius of an uncooled electroless nickel-plated aluminium cylinder mirror of about 6.2% was observed on X17TA. Angular vibrations in the 2 to 3 arc second range were easily observed on one of the beam lines, as was an overall mirror rotation in the arc second range.

  6. A MODEL STUDY OF TRANSVERSE MODE COUPLING INSTABILITY AT NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II).

    SciTech Connect

    BLEDNYKH, A.; WANG, J.M.

    2005-05-15

    The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.

  7. Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.

    PubMed

    Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry

    2017-06-01

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.

  8. Computed tomography with monochromatic X rays from the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Dilmanian, F. A.; Garrett, R. F.; Thomlinson, W. C.; Berman, L. E.; Chapman, L. D.; Hastings, J. B.; Luke, P. N.; Oversluizen, T.; Siddons, D. P.; Slatkin, D. N.; Stojanoff, V.; Thompson, A. C.; Volkow, N. D.; Zeman, H. D.

    1991-05-01

    A multiple-energy computed tomography (MECT) system that employs monochromatic and tunable 33-100 keV X rays from a superconducting wiggler at the National Synchrotron Light Source is being developed at Brookhaven National Laboratory. The CT configuration is that of a fixed, horizontal fan-shape beam and a subject seated in a rotating chair. Two quantitative CT methods will be used: a) K-edge subtraction of intravenously administered iodine (or a heavier element) to image brain tumors, large blood vessels of the lower head and neck, and arteriovenous malformations; and b) dual photon absorptiometry to obtain two brain CT images that map the low- Z elements and the intermediate- Z elements (i.e. P, S, Cl, K, Ca, and Fe) separately. The system is expected to provide 0.5 mm spatial resolution, horizontally, with unprecedented image contrast and accuracy of quantification. The system will employ a two-crystal monochromator and a high-purity Ge linear array detector.

  9. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  10. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    SciTech Connect

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  11. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  12. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  13. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  14. Measurement of Photon Statistics of Wiggler Radiation from AN Electron Storage Ring at the National Synchrotron Light Source.

    NASA Astrophysics Data System (ADS)

    Tanabe, Toshiya

    1990-01-01

    The photon statistics of wiggler light from the vacuum ultraviolet (VUV) storage ring at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL) have been measured using an analog photon-counting technique. The linear wiggler produces fundamental wavelength light and the third harmonic light at 532 nm for ring energies ~650 MeV and 375 MeV, respectively. The average ring current was ~50 mA for one-electron-bunch operation. The bunch was ~480 psec long and the wiggler light was emitted every 170.2 nsec. The number of photons emitted by an electron bunch was repetitively measured for a given coherence volume. The photon counting distribution, which is the probability of finding n photons versus n, was obtained. The experimental results show that the wiggler radiation is consistent with multi-mode thermal radiation, whereas the bending magnet light gives rise to a distribution consistent with a Neyman Type-A distribution instead of Poisson when the light of large bandwith through a Pyrex window is collected. Near field and electron beam emittance effects have proven to have an important influence on the transverse coherence of the emitted radiation.

  15. Developing EnviroSuite Resources at the National Synchrotron Light Source

    SciTech Connect

    Paul Northrup; Jeffrey Fitts; Mark Fuhrmann; Paul Kalb

    2006-06-01

    The objective of Brookhaven National Laboratory's EnviroSuite Initiative is to develop the facilities, user support infrastructure, and techniques necessary to conduct world-class molecular environmental science research at the NSLS. This is intended to benefit the research of ERSD-supported scientists, both through direct access and assistance and through the indirect benefits of a broader network of environmental scientists as collaborators and users. Much of the EnviroSuite research involves close collaboration with members of the Center for Environmental Molecular Science (CEMS), an EMSI based at BNL and nearby Stony Brook University and jointly supported by ERSD (Project 1023761, P. Kalb) and NSF. This offers unique opportunities to benefit from both national laboratory facilities and university resources. Other collaborators, from around the US and the world, investigate various aspects of the underlying molecular-scale processes in complex natural systems. In general, synchrotron techniques are ideal for studying the molecular-scale structures, chemical/physical interactions, and transformations that govern the macroscopic properties and processes (e.g. transport, bioavailability) of contaminants in the environment. These techniques are element-specific, non-destructive, and sensitive to the very low concentrations found in real-world samples.

  16. Conceptual Design Report for a Phase 3 upgrade of the National Synchrotron Light Source

    SciTech Connect

    Foyt, W.; Krinsky, S.; Hastings, J.; Finlay, L.

    1994-03-01

    Considerable investment by both the Department of Energy and the facility`s Participating Research teams has permitted the NSLS to offer a national facility to a wide range of scientific pursuits. The purpose of the NSLS Phase III project is to maximize the scientific output of this premier 2nd generation synchrotron radiation facility through a number of distinct projects. Over the years the NSLS has made significant improvements in the area of beam reliability which has resulted in deliverable, reproducible beam during 98% and 97% of scheduled operations on the VUV and X-ray rings respectively. This project will focus on improving beam intensity and stability by upgrading the optics and detector systems on a number of beamlines as well as upgrading radio frequency (rf) and beam position monitoring systems in the storage rings. In addition, the project includes plans for the design and procurement of a utility isolation system that would guard against voltage transients that disrupt the facility`s electrical system. Also a new insertion device will be installed at beamline X25 and a 2nd floor will be constructed over the X6 -- X16 region which will provide sorely needed laboratory and office space for the user community. This project requests funding of 22.5 million dollars over a three year period: FY 1996 ($6.3M), FY 1997 ($13.4M) and FY 1998 ($2.8M).

  17. Spectrometer control subsystem with high level functionality for use at the National Synchrotron Light Source

    SciTech Connect

    Alberi, J.L.; Stubblefield, F.W.

    1980-11-01

    We have developed a subsystem capable of controlling stepping motors in a wide variety of vuv and x-ray spectrometers to be used at the National Sychrotron Light Source. The subsystem is capable of controlling up to 15 motors with encoder readback and ramped acceleration/deceleration. Both absolute and incremental encoders may be used in any mixture. Function commands to the subsystem are communicated via ASCII characters over an asynchronous serial link in a well-defined protocol in decipherable English. Thus the unit can be controlled via write statements in a high-level language. Details of hardware implementation will be presented.

  18. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  19. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    SciTech Connect

    Hsiao, Benjamin S

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  20. NSLS 2005 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2005).

    SciTech Connect

    MILLER, L.

    2006-05-01

    efforts on NSLS-II, the world-leading third-generation synchrotron planned for construction at BNL. NSLS-II passed a critical milestone in 2005 with the approval by the Department of Energy of CD-0. BNL has established the NSLS-II Project Organization within the Light Sources Directorate to put in place the management systems and infrastructure necessary to execute this complex undertaking. I will serve as NSLS-II Project Director and also retain my position as Associate Laboratory Director for Light Sources, with the NSLS reporting to me. Another exciting development is the planned establishment of the Joint Photon Sciences Institute (JPSI). JPSI will be devoted to cultivating and fostering collaborative, interdisciplinary R&D in areas of the physical sciences, engineering, and the life sciences that are united in employing synchrotron-based methods. JPSI will also develop new methods and applications that exploit the unique capabilities of NSLS-II and will serve as a gateway for NSLS-II users. JPSI will be a partnership between the Department of Energy and New York State, and I am delighted that New York State Governor George Pataki has pledged $30 million for the construction of the JPSI building. The building will be located adjacent to NSLS-II and will contain offices, meeting rooms, and specialized laboratories. The operating expenses of JPSI and funding for its research programs will be provided by the federal government. Until a permanent NSLS Director is selected, NSLS User Science Division Associate Chair Chi-Chang Kao will serve as the Interim NSLS Director. I couldn't be leaving the facility in more capable hands. Chi-Chang will lead NSLS staff and users this year in the development of a five-year strategic plan for the NSLS, scheduled for completion by the end of summer 2006. The plan will outline the course for the future operation and development of the NSLS, and will help ensure that the future of the NSLS remains as bright as its past.

  1. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  2. NSLS 2003 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2003)

    SciTech Connect

    MILLER,L.

    2004-05-01

    The scientific productivity of the NSLS continues to be outstanding and the research conducted here has high impact. 2003 was no exception and some of the many highlights from this year's research activity are included in this Activity Report. We are especially pleased that one of our users, Professor Roderick MacKinnon (Rockefeller University), was the co-recipient of the 2003 Nobel Prize in Chemistry for work, much of which was done at the NSLS, explaining how proteins known as ion channels help to generate nerve impulses. It is also a particular pleasure to note that NSLS accelerator physicist Li Hua Yu was awarded the 2003 International Free Electron Laser Prize in recognition of his outstanding achievements, especially demonstrating High Gain Harmonic Generation (HGHG) at the DUV-FEL. Our vision for the NSLS in the next five to 10 years is for it to continue to serve as a vital resource for the nation and especially for the strong Northeast research community. To accomplish this, we are working to preserve and enhance its outstanding scientific productivity by providing increased user support and upgrading beamline and endstation instrumentation. For example, this past year we collaborated with scientists from the Albert Einstein College of Medicine and the BNL Biology Department to develop a new undulator beamline, X29, to meet the needs of macromolecular crystallography for high brightness x-rays. A new endstation on the undulator beamline X13B is being equipped with optics and instrumentation for microdiffraction and microprobe experiments. The wiggler beamline, X21, is being upgraded to provide high intensity and increased capacity for small angle x-ray scattering experiments on nanotemplated soft matter, biomaterials, and other systems. We are collaborating with the BNL Center for Functional Nanomaterials to develop a beamline for LEEM/PEEM studies, which will add important new capabilities for nanoscience and catalysis research. A new high-speed, high

  3. THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II

    SciTech Connect

    Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

  4. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    SciTech Connect

    MILLER, L.

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget

  5. Design of a diagnostic area-type beam position monitor for x-ray beamlines at the National Synchrotron Light Source

    SciTech Connect

    Corridon, D.

    1996-10-01

    We have built a area-type beam position monitor for use as a diagnostic tool at the National Synchrotron Light Source. The device is compact and fits into a vacuum cross. We completed range and resolution tests of the device at beamline X-19A at the NSLS and concluded that such a monitor can be placed in the confines of the vacuum cross.

  6. Anticrossing spectrometry with synchrotron light

    NASA Astrophysics Data System (ADS)

    Žitnik, M.; Bučar, K.; Richter, R.; Coreno, M.; Kavčič, M.; Barba, Ž.; Mihelič, A.

    2017-07-01

    The anticrossing structure of the 1 s 7 l manifold of the helium atom in combined dc electric and magnetic fields is studied using a broadband photoexcitation with synchrotron light. The anticrossing signal is provided by the yield of atoms in the metastable 1 s 2 s states to which the 1 s 7 l states cascade. The mapping resolution depends solely on the homogeneity of the two fields in the target region, which is formed by the intersection of the synchrotron beam and the helium atom beam. The measured positions, as well as anticrossing intensities and widths, measured in the region of 1-1.5 kV/cm and 0-10 mT are in excellent agreement with the results of our extended theoretical simulations based on highly accurate zero-field wave functions. By centering the photoexcitation window to 65.110 and 65.130 eV, the same technique is applied to look for the anticrossings in the vicinity of the 7+1P1o-7 d 3D1o and 7 d 1P1o-8-1P1o pairs of doubly excited states, respectively.

  7. Beryllium window for synchrotron light sources

    SciTech Connect

    Lynch, D.R.; Berman, L.; Montanez, P.; Pjerov, S.; Stefan, P.; Woodle, M.

    1996-10-01

    As part of an on-going upgrade program at the National Synchrotron Light Source, a parametric study of rectangular flat and curved beryllium windows of varying thickness and heights and under varying thermal loading was undertaken. The study consisted of a series of 2D and 3D thermal stress finite element analyses to determine the relative benefit of various combinations of parameters with respect to the windows` ability to withstand thermal loads. This study includes evaluation of fixed versus flexible mounting of flat and curved beryllium windows. Buckling analyses for both types of mountings are also included.

  8. Proposals for synchrotron light sources

    SciTech Connect

    Teng, L.C.

    1985-06-01

    Ever since it was first applied in the 1960's synchrotron radiation from an accelerating electron beam has been gaining popularity as a powerful tool for research and development in a wide variety of fields of science and technology. By now there are some 20 facilities operating either parasitically or dedicatedly for synchrotron radiation research in different parts of the world. In addition there are another 20 facilities either in construction or in various stages of proposal and design. The experiences gained from the operating facilities and the recent development of insertion devices such as wigglers and undulators as radiation sources led to a new set of requirements on the design of synchrotron radiation storage rings for optimum utility. The surprisingly uniform applicability and unanimous acceptance of these criteria give assurance that they are indeed valid criteria derived form mature considerations and experiences. Instead of describing the design of each of these new facilities it is, thus, more effective to discuss these desirable design features and indicate how they are incorporated in the design using machines listed as examples. 9 refs., 7 figs., 2 tabs.

  9. Remote Synchrotron Light Instrumentation Using Optical Fibers

    SciTech Connect

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  10. Third-generation synchrotron light sources

    SciTech Connect

    Schlachter, A.S.; Wuilleumier, F.J.

    1993-09-01

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world`s brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences.

  11. The advanced photon source X-ray transmitting beam-position-monitor tests at the national synchrotron light source X-25 beamline

    NASA Astrophysics Data System (ADS)

    Shu, D.; Collins, J. T.; Barraza, J.; Kuzay, T. M.

    1994-08-01

    A synthetic-diamond-based X-ray transmitting beam-position monitor has been studied using focused white beam at the National Synchrotron Light Source X-25 wiggler beamline. Of particular interest are the possibilities to design an integral window and filter/photon beam-position monitor for the Advanced Photon Source high-heat-flux insertion-device beamlines. The preliminary measurements were taken using two synthetic-diamond blade samples with different thicknesses and cooling configurations. The monitor (consisting of a vacuum vessel, an ion pump, a water-cooling base, a blade mounting block, and electric feedthroughs) was mounted on a three-dimensional ( x, y, φ) stepping-motor-driven stage with a 0.064-μm stepping size and a 0.1-μm linear encoder resolution. An infrared camera system was used to monitor and record the diamond blade surface temperature field through a sapphire window and test results are presented.

  12. Small-gap insertion-device development at the National Synchrotron Light Source--performance of the new X13 mini-gap undulator.

    PubMed

    Ablett, J M; Berman, L E; Kao, C C; Rakowsky, G; Lynch, D

    2004-03-01

    The National Synchrotron Light Source (NSLS) 2.8 GeV electron storage ring continues to set high standards in insertion-device research and development. The Chasman-Green NSLS lattice design provides for dispersion-free long straight sections in addition to a very small vertical beta function. As the electron beam size is proportional to the square root of this function, a program to exploit this feature was undertaken more than a decade ago by implementing short-period small-gap insertion devices in the NSLS storage ring. The possibility of utilizing existing moderate-energy synchrotron radiation electron storage rings to produce high-brightness photon beams into the harder X-ray region have been realised using in-vacuum undulators. In this article the operation of a 1.25 cm-period mini-gap undulator, operating down to a gap of 3.3 mm within the NSLS X13 straight section, is reported. It is the brightest source of hard X-rays in the energy range approximately 3.7-16 keV at the NSLS, and replaces an in-vacuum undulator which had a more limited tunability.

  13. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  14. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  15. Status of SESAME Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tarawneh, Hamed

    2013-04-01

    During this presentation, I will talk about the current status of the SESAME synchrotron radiation source (SESAME: Synchrotron light for Experimental Science and Application in the Middle East). SESAME is an international research center located in Allan, Jordan and the accelerator complex consists of new storage ring of an energy of 2.5 GeV injected at 800 MeV and the injector is based on the upgraded 22.5 MeV Microtron and 800 MeV booster from the BESSY-I machine donated by Germany. The results of the design work and the optimizations of the beam optics for the SESAME storage ring and booster accelerators' lattices will be presented. I will also report on the status of the storage ring main sub-systems and the scientific case of the SESAME facility with the planned day-one beamlines.

  16. Synchrotron Light Interferometry at Jefferson Lab

    SciTech Connect

    Arne Freyberger; Pavel Chevtsov; Anthony Day; William Hicks

    2004-07-01

    The hyper-nuclear physics program at JLAB requires an upper limit on the RMS momentum spread of {delta}p/p < 3 x 10{sup -5}. The momentum spread is determined by measuring the beam width at a dispersive location (D {approx} 4m) in the transport line to the experimental halls. Ignoring the epsilon-beta contribution to the intrinsic beam size, this momentum spread corresponds to an upper bound on the beam width of {sigma}{sub beam} < 120 {micro}m. Typical techniques to measure and monitor the beam size are either invasive or do not have the resolution to measure such small beam sizes. Using interferometry of the synchrotron light produced in the dispersive bend, the resolution of the optical system can be made very small. The non-invasive nature of this measurement allows continuous monitoring of the momentum spread. Two synchrotron light interferometers have been built and installed at JLAB, one each in the Hall-A and Hall-C transport lines. The devices operate over a beam current range from 20 {micro}A to 120 {micro}A and have a spatial resolution of 10um. The structure of the interferometers, the experience gained during its installation, beam measurements and momentum spread stability are presented. The dependence of the measured momentum spread on beam current will be presented.

  17. Design and project status of the National Synchrotron Light Source; storage rings (2. 5 GeV, 0. 7 GeV) for the generation of bright synchrotron radiation sources

    SciTech Connect

    van Steenbergen, A

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given.

  18. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  19. Ferroelectrics under the Synchrotron Light: A Review

    PubMed Central

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  20. Ferroelectrics under the Synchrotron Light: A Review.

    PubMed

    Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis

    2015-12-30

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  1. Mircobeam X-ray total scattering experiments at the high-pressure beamline X17B3 at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2013-12-01

    Structure of minerals under extreme conditions of high pressure and temperature is very important in Geosciences. The total scattering pair distribution function (PDF) technique using high energy X-ray microbeam to access a large range of scattering vector, e.g. 20Å-1-40Å-1, is an emerging structural analysis method in high pressure research, which allows simultaneous probing of local, intermediate and long-range structure in crystalline, amorphous or complex materials[1-3]. Using high-energy X-rays of 80 keV at X17B3 beamline, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, PDF measurements has been carried out by users from multiple disciplines [4]. At this AGU meeting, we will present the current status of high-pressure total scattering pair distribution function (PDF) measurements and recent achievements on the availability of high energy X-ray microbeam at X17B3 beamline, NSLS. Accurate X-ray energy calibration is indispensable for X-ray energy-sensitive scattering and diffraction experiments, but there is still a lack of effective methods to precisely calibrate the high energy X-ray beam, because precise energy calibration XAS is problematic due to the lack of suitable X-ray absorption edges at the desired high energy. We have recently proposed an iterative method [5] for a precise and fast X-ray energy calibration over a wide range, including high energy X-ray beam for PDF measurements. Some PDF measurements on the geophysical important materials, such as GeO2 and SiO2 materials, under ambient and high-pressure using diamond anvil cell will be presented. References: 1. Billinge, S.J.L., The atomic pair distribution function: past and present. Zeitschrift für Kristallographie, 2004. 219(3-2004): p. 117-121. 2. Billinge, S.J. and I. Levin, The problem with determining atomic structure at the nanoscale. Science, 2007. 316(5824): p. 561-5. 3. Billinge, S.J.L., et al., Characterisation of amorphous and nanocrystalline molecular

  2. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  3. Stability and vibration control in synchrotron light source buildings

    SciTech Connect

    Godel, J.B.

    1991-12-31

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ``second generation`` storage rings that currently provide the world`s most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  4. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  5. COMPRES X-ray beamlines (X17B3 and X17C) for the diamond anvil cell at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Chen, Z.; Sengupta, A.; Goncharov, A. F.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2011-12-01

    The laser heated diamond anvil cell technique can readily achieve the pressure and temperature domain of Earth from upper mantle to outer core. The laser heating diamond anvil cell X-ray facilities (X17-DAC), consists of X17B3 and X17C stations on a superconducting wiggler beamline and a sample preparation/spectroscopy laboratory at the National Synchrotron Light Source). As the first dedicated high-pressure (HP) beamline in the world, X17-DAC has been a workhorse for HP research for two decades, and has led the way in many developments, Here we report current capabilities and recent developments at X17-DAC beamlines including a new double-side laser heating system . At the X17B3 station, high-temperature high-pressure X-ray diffraction experiments can be carried out either with monochromatic beam (~30 keV or ~80 keV), or with white beam for energy dispersive x-ray diffraction. In-situ laser heating system will be available for users in Geosciences starting from September, 2011. With a monochromatic beam at 30 keV, the X-ray beam can be focused to a beam size of ~10 μm. By combing with the laser heating technique, we can support in-situ X-ray diffraction experiments at the domain of temperature and pressure up to Earth's outer core. With high energy at 80 keV, total scattering pair distribution function (PDF) measurements are performed. Originally, this method was used to study amorphous and highly disordered materials, but more recently, it has been used for the analysis of crystalline and nanostructured materials. This novel technique provides useful information about the long- and short-range ordering of the atoms in the materials. It is promising to combine laser heating and total scattering PDF measurements so as to probe phase transitions and phase relations for geophysical important materials at X17B3 station. At X17C, we conduct angle and energy dispersive x-ray diffraction on polycrystalline samples in either axial or radial geometry. Energy dispersive

  6. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS.

  7. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-10-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 X 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target.

  8. Automated Image Quality Optimization for Synchrotron Light Interferometers

    SciTech Connect

    Pavel Chevtsov

    2005-10-10

    Jefferson Lab has been using Synchrotron Light Interferometers (SLI) for real time high resolution, non-invasive measurement of electron beam energy spread in two experimental halls for over two years. An SLI is a classic device, which generates synchrotron light interference patterns by means of a double slit. The beam energy spread is calculated on the basis of the visibility (contrast) of the interference pattern produced by the SLI. The results of the calculations are sensitive to the position of the double slit with respect to the synchrotron light beam illuminating it. Even small changes of the electron beam trajectory in the accelerator can significantly distort the shape of the interference pattern and decrease the reliability of these results. To improve this situation, we developed a state machine control application, which automatically adjusts the positions of the SLI double slits and the mirrors directing light on these slits. The paper describes the main ideas implemented in this application and its performance.

  9. National Institute of Standards and Technology Synchrotron Radiation Facilities for Materials Science

    PubMed Central

    Long, Gabrielle G.; Allen, Andrew J.; Black, David R.; Burdette, Harold E.; Fischer, Daniel A.; Spal, Richard D.; Woicik, Joseph C.

    2001-01-01

    Synchrotron Radiation Facilities, supported by the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, include beam stations at the National Synchrotron Light Source at Brookhaven National Laboratory and at the Advanced Photon Source at Argonne National Laboratory. The emphasis is on materials characterization at the microstructural and at the atomic and molecular levels, where NIST scientists, and researchers from industry, universities and government laboratories perform state-of-the-art x-ray measurements on a broad range of materials. PMID:27500070

  10. Brazilian Synchrotron Light Source: current results and future perspectives

    NASA Astrophysics Data System (ADS)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  11. Chemical Imaging of Biological Tissue with Synchrotron Infrared Light

    SciTech Connect

    Miller,L.; Dumas, P.

    2006-01-01

    Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-{mu}m pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

  12. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  13. Synchrotron light sources: A powerful tool for science and technology

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia.

  14. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  15. Light scattering of ultrafine silica particles by VUV synchrotron radiation.

    PubMed

    Shu, Jinian; Wilson, Kevin R; Arrowsmith, Alan N; Ahmed, Musahid; Leone, Stephen R

    2005-06-01

    Vacuum ultraviolet (VUV) light scattering from ultrafine silica particles is studied with an aerosol instrument recently established at the Advanced Light Source (ALS) in Berkeley. Silica particles, size-selected by a differential mobility analyzer, are introduced into vacuum through a set of aerodynamic lenses to form a particle beam. The scattered photons from the crossing area of the VUV synchrotron beam and particle beam are detected with a rotatable VUV photon detector. The angular distributions of scattered photons (ADSP) originating from 70, 100, 200 nm diameter silica particles are measured with 145.9 and 118.1 nm synchrotron radiation. These angular distributions show strong forward scattering. The measured ADSPs are consistent with simulation of Mie scattering. The refractive indices of silica particles, 2.6 + 1.1i and 1.6 + 0.0001i for 118.1 and 145.9 nm, respectively, are obtained by fitting the measured ADSPs; the least average percentage deviations are 18% and 6%, respectively. The scattered fluxes at widely different wavelengths (visible versus VUV) also exhibit clear size sensitivity. Under comparable experimental conditions of photon fluxes and detection efficiencies, limits of particle size detection of 70 and 250 nm are obtained, respectively, when using 118.1 and 532 nm illumination. As anticipated, VUV scattering is a more sensitive probe for ultrafine particles, which will find application in detection of these ubiquitous species beyond the confines of a laboratory.

  16. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, William C.

    1996-01-01

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

  17. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, W.C.

    1996-04-30

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

  18. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  19. National Synchrotron Light Source. Annual report 1992

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  20. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  1. SESAME, a Synchrotron Light Source for the Middle East Region

    SciTech Connect

    Einfeld, D.; Sarraf, R.H.; Attal, M.; Tavakoli, K.; Hashemi, H.; Hassanzadegan, H.; Elsisi, A.; Amro, A.; Foudeh, D.; Kalantari, B.; Aladwan, A.; Varnasery, S.; Al-Dmour, E.; Tarawneh, H.

    2003-08-26

    Developed under the auspices of UNESCO, SESAME (Synchrotron light for Experimental Science and Application in the Middle East) will be a major international research centre in the Middle East / Mediterranean region. Most of the applications require hard x-rays up to 20 keV photons. SESAME will be a 2GeV 3rd Generation Ligth Source with an emittance of 17 nmrad and 13 places for the installation of insertion devices with a length around 3 meter. The circumference of the machine will be 120m. As injector the 800 MeVBooster Synchrotron will be used with small changes. Furthermore also the BESSY I quadrupoles and sextupoles can be used. In a later stage these new ones will be replaced in order to increase the length of the straight sections and to introduce mini beta sections for the reduction of the beam cross section. At SESAME around 35 % of the circumference can be used for the installation of insertion devices.

  2. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  3. Commissioning and operation of the first brazilian synchrotron light source.

    PubMed

    Rodrigues, A R; Craievich, A F; Gonçalves Da Silva, C E

    1998-05-01

    The synchrotron light source designed and constructed at the LNLS is composed of a 1.37 GeV electron storage ring and a 120 MeV linac for low-energy injection. The storage ring has been commissioned and has already reached the designed electron-beam energy, current and emittance. The electron lifetime is now 6 h at 60 mA, and is steadily increasing. Seven beamlines (TGM, SGM, SXS, XAFS, XRD, SAXS, PCr) have been constructed in parallel with the electron accelerators and are at present in operation. Beam time was allocated to 129 approved research projects for the second semester of 1997. A number of them are currently under way.

  4. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  5. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  6. Synchrotron radiation

    SciTech Connect

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others.

  7. Structural biology research at the National Synchroton Light Source

    SciTech Connect

    1996-05-01

    The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

  8. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2016-07-12

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  9. Shedding Synchrotron Light on a Puzzle of Glasses

    SciTech Connect

    Chumakov, Aleksandr

    2007-12-05

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  10. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  11. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  12. CAMD: the new synchrotron light source in Louisiana

    NASA Astrophysics Data System (ADS)

    Scott, John; Bluem, Hans P.; Craft, Benjamin C.; Marceau-Day, L.; Mihill, A.; Morikawa, F.; Saile, Volker; Vladimirsky, Olga

    1993-02-01

    This is a facility report of the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, a new synchrotron-radiation laboratory at Louisiana State University. The accelerator system is described and the radiation characteristics are presented and compared with hypothetical ultra-bright synchrotron sources. The comparison is made to demonstrate the utility of a second-generation `work horse' in the world of the new very-low-emittance machines. In addition to these technical parameters, a brief history of the Center and an overview of the program are presented.

  13. Synchrotron light sources: The search for quantum chaos

    SciTech Connect

    Schlachter, Fred

    2001-02-01

    A storage ring is a specialized synchrotron in which a stored beam of relativistic electrons produces radiation in the vuv and x-ray regions of the spectrum. High-brightness radiation is used at the ALS to study doubly excited autoionizing states of the helium atom in the search for quantum chaos.

  14. X-RAY IRRADIATION OF H{sub 2}O + CO ICE MIXTURES WITH SYNCHROTRON LIGHT

    SciTech Connect

    Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.; Cecchi-Pestellini, C.; Chen, Y.-J.; Huang, C.-H. E-mail: ciarave@astropa.inaf.it E-mail: cecchi-pestellini@astropa.inaf.it E-mail: 101222023@cc.ncu.edu.tw

    2016-03-20

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  15. X-Ray Irradiation of H2O + CO Ice Mixtures with Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Jiménez-Escobar, A.; Chen, Y.-J.; Ciaravella, A.; Huang, C.-H.; Micela, G.; Cecchi-Pestellini, C.

    2016-03-01

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250-1200 eV) were employed. During the irradiation, the H2O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  16. Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light

    SciTech Connect

    Ozaki,S.

    2009-05-04

    The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

  17. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  18. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  19. OCELOT: A software framework for synchrotron light source and FEL studies

    NASA Astrophysics Data System (ADS)

    Agapov, I.; Geloni, G.; Tomin, S.; Zagorodnov, I.

    2014-12-01

    OCELOT is a novel multiphysics simulation toolkit, which has been in development at European XFEL in collaboration with NRC Kurchatov Institute and DESY since 2011. In this paper we describe its architecture, implementation, and applications in the area of synchrotron light sources and FELs.

  20. Application of electron linacs in medicine, food sterilization and synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Tran, Duc-Tien

    1989-04-01

    A review of the state of the art and new trends in electron linac technology is given with emphasis on three particular applications: radiotherapy, food sterilization and synchrotron light sources. The requirements on linac performances that these applications call for, namely energy variation flexibility, high power, high energy and low cost, will open linacs to new applications to come.

  1. Performance of a beam monitor in the Fermilab Tevatron using synchrotron light

    SciTech Connect

    Harry W.K. Cheung; Alan Hahn; Aimin Xiao

    2003-06-04

    Synclite, the beam monitor in the Fermilab Tevatron using synchrotron light is described. The calibration, monitoring and performance of the system is discussed. Observation of some effects of long range beam-beam interactions seen in the beam monitor will be presented as well as a measurement of DC beam in the Tevatron.

  2. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  3. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  4. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2016-07-12

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  5. Comment [on “Synchrotron sheds new light on geophysical materials”

    NASA Astrophysics Data System (ADS)

    Charlie, Wayne; Dumford, Deanna

    Thank you for the excellent synchrotron article (Eos, February 11, 1997, pp. 61-62). However, the “first light” experiments at the Advanced Photon Source (APS) at Argonne National Laboratory on December 20, 1996, do not “mark the dawn of a new era of rock and mineral physics.” Third-generation synchrotron radiation sources have been used at the Cornell CHESS facility for geoscience research for many years. For example, we used this facility with Barnes Bierck and Tammo Steenhuis to study consolidation and flow in geophysical materials in 1994.

  6. Experiences from nonevaporable getter-coated vacuum chambers at the MAX II synchrotron light source

    SciTech Connect

    Hansson, A.; Wallen, E.; Berglund, M.; Kersevan, R.; Hahn, M.

    2010-03-15

    Vacuum chambers coated with nonevaporable getter (NEG) materials have been used in straight sections of synchrotron light sources for the past 10 years. The MAX II storage ring, where four NEG-coated insertion device vacuum chambers and three NEG-coated dipole vacuum chambers have been installed, is the first synchrotron light source to also use NEG-coated dipole vacuum chambers. In connection with the installation of the latest two NEG-coated dipole chambers in April 2009, the evolution of the pressure and lifetime-limiting effects in MAX II has been determined from measurements with movable scrapers. The results have been compared with results from scraper measurements done in 2003, before any NEG-coated vacuum chambers were installed in the storage ring. Less than three months after the installation of the latest dipole chambers the vacuum system in MAX II was performing well with a pressure already lower than the pressure measured in 2003.

  7. Control system features of the argonne 6 GeV synchrotron light source

    SciTech Connect

    Knott, M.; Gunderson, G.; Lenkszus, F.; McDowell, W.

    1985-10-01

    The Argonne 6 GeV synchrotron light source design consists of an electron/positron linac, a fast-cycling 6 GeV synchrotron, and the storage ring itself. The design attributes are presented elsewhere in this conference. Three aspects of the overall design call for special attention in the control system design: First, the operation of a high energy positron accelerator in a fast cycling mode may demand high processing performance and high data throughput rates. Second, the high energy and small beam size projected (100 x 200 microns) will call for high resolution data processing and control precision in many areas. Finally, the necessity to provide independent, orthogonal control for each of up to 32 insertion device light beams both from the point of view of the experimental requirements and from the need to remove the effects of component vibration will require dedicated, high performance processors.

  8. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  9. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  10. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  11. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  12. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  13. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  14. Uses of synchrotron radiation

    SciTech Connect

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users.

  15. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  16. Magnetic properties of the ALS (Advanced Light Source) booster synchrotron engineering model magnets

    SciTech Connect

    Keller, R.; Green, M.I.; Hoyer, E.; Koo, Y.M.; Luchini, K.; Marks, S.; Milburn, J.; Nelson, D.H.

    1989-03-01

    The Advanced Light Source (ALS) at Lawrence Berkeley Laboratory is designed to be a third-generation electron storage ring producing high-brightness VUV and X-ray radiation from wiggler and undulator insertion devices. Engineering models of all lattice magnets that are to be installed in the storage ring and its booster synchrotron have been built and are being tested to verify their performance. This paper is concerned with the magnets that form the booster lattice: dipoles, quadrupoles, sextupoles, and corrector dipoles (steerers). After a brief outline of measurement techniques and equipment, the major design parameters of these magnets are listed. Measured effective lengths and multipole field errors are then given for each type. All engineering models meet the specifications, and tracking studies including the measured systematic field errors show acceptable performance of the booster synchrotron; hence the designs are qualified for production. 3 refs., 7 figs., 4 tabs.

  17. Fast mapping of terahertz bursting thresholds and characteristics at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Brosi, Miriam; Steinmann, Johannes L.; Blomley, Edmund; Bründermann, Erik; Caselle, Michele; Hiller, Nicole; Kehrer, Benjamin; Mathis, Yves-Laurent; Nasse, Michael J.; Rota, Lorenzo; Schedler, Manuel; Schönfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Weber, Marc; Müller, Anke-Susanne

    2016-11-01

    Dedicated optics with extremely short electron bunches enable synchrotron light sources to generate intense coherent THz radiation. The high degree of spatial compression in this so-called low-αc optics entails a complex longitudinal dynamics of the electron bunches, which can be probed studying the fluctuations in the emitted terahertz radiation caused by the microbunching instability ("bursting"). This article presents a "quasi-instantaneous" method for measuring the bursting characteristics by simultaneously collecting and evaluating the information from all bunches in a multibunch fill, reducing the measurement time from hours to seconds. This speed-up allows systematic studies of the bursting characteristics for various accelerator settings within a single fill of the machine, enabling a comprehensive comparison of the measured bursting thresholds with theoretical predictions by the bunched-beam theory. This paper introduces the method and presents first results obtained at the ANKA synchrotron radiation facility.

  18. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  19. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Å°lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  20. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  1. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  2. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    PubMed Central

    Collingwood, Joanna F.; Davidson, Mark R.

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis. PMID:25191270

  3. Single bunch and multi-bunch injection schemes for Iranian Light Source Facility booster synchrotron

    NASA Astrophysics Data System (ADS)

    Sadeghipanah, A.; Feghhi, S. A. H.; Rahighi, J.; Ghasem, H.

    2017-01-01

    In this paper, the design proposal for the Iranian Light Source Facility (ILSF) chopper is presented and the expected performance of both single bunch and multi-bunch modes of beam injection into the booster synchrotron is described. For the multi-bunch mode, a 100 MHz sub-harmonic pre-buncher is proposed to be employed next to the electron gun particularly to reduce the particle loss during the energy ramp of the booster. The results indicated significant improvement of the injection efficiency into the booster. The total particle loss rate for the multi-bunch injection is reduced from 35% to 4%.

  4. Multi-modal spectroscopic imaging with synchrotron light to study mechanisms of brain disease

    NASA Astrophysics Data System (ADS)

    Summers, Kelly L.; Fimognari, Nicholas; Hollings, Ashley; Kiernan, Mitchell; Lam, Virginie; Tidy, Rebecca J.; Takechi, Ryu; George, Graham N.; Pickering, Ingrid J.; Mamo, John C.; Harris, Hugh H.; Hackett, Mark J.

    2017-04-01

    The international health care costs associated with Alzheimer's disease (AD) and dementia have been predicted to reach $2 trillion USD by 2030. As such, there is urgent need to develop new treatments and diagnostic methods to stem an international health crisis. A major limitation to therapy and diagnostic development is the lack of complete understanding about the disease mechanisms. Spectroscopic methods at synchrotron light sources, such as FTIR, XRF, and XAS, offer a "multi-modal imaging platform" to reveal a wealth of important biochemical information in situ within ex vivo tissue sections, to increase our understanding of disease mechanisms.

  5. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.

    PubMed

    Sham, Tsun-Kong; Rosenberg, Richard A

    2007-12-21

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  6. Beam measurements using visible synchrotron light at NSLS2 storage ring

    SciTech Connect

    Cheng, Weixing Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper. A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.

  7. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  8. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect

    Fewell, N.

    1990-03-01

    This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling.

  9. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-12-31

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  10. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J. ); Murray, J. )

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  11. SUNY beam line X3, National Synchrotron Light Source

    SciTech Connect

    Not Available

    1991-01-01

    This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP).

  12. The tomography beamline at the National Synchrotron Light Source

    SciTech Connect

    Dilmanian, F.A.; Wu, X.Y.; Parsons, E.C.

    1996-12-31

    We compared the image contrast of a monochromatic CT, Multiple Energy Computed Tomography (MECT), and conventional CT scanner using phantoms. The experimental results indicate that monochromatic CT, with beam energy tuned just above the iodine K-edge, has about a 3 fold advantage in iodine contrast over conventional CT with a 120 kVp beam. Modeling using the same beams at a 3 rad dose and 3 mm slice height on an 18 cm diameter acrylic phantom, the simulations show a noise of 1.2 HU for MECT and 1.9 HU for CCT. Furthermore, despite the Cupping-effect corrections the bone contrast is lower in CCT and varies by 24 HU moving from the phantom`s center to the edge; this indicates an advantage for MECT in detecting and quantifying lesions differing from surrounding tissue by their mean atomic number.

  13. MULTIPLE FUNCTIONS LONG TRACE PROFILER (LTP-MF) FOR NATIONAL SYNCHROTRON RADIATION LABORATORY OF CHINA.

    SciTech Connect

    QIAN, S.; WANG, Q.; HONG, Y.; TAKACS, P.

    2005-07-31

    The Long Trace Profiler (LTP) is a useful optical metrology instrument for measuring the figure and slope error of cylindrical aspheres commonly used as synchrotron radiation (SR) optics. It is used extensively at a number of synchrotron radiation laboratories around the world. In order to improve SR beam line quality and resolution, the National Synchrotron Radiation Laboratory (NSRL) of China is developing a versatile LTP that can be used to measure both SR optics and more conventional ''normal'' optical surfaces. The optical metrology laboratories at Brookhaven National Laboratory (BNL) and NSRL are collaborating in developing a multiple functions LTP (LTP-MF). Characteristics of the LTP-MF are: a very compact and lightweight optical head, a large angular test range ({+-} 16 mad) and high accuracy. The LTP-MF can be used in various configurations: as a laboratory-based LTP, an in-situ LTP or penta-prism LTP, as an angle monitor, a portable LTP, and a small radius of curvature test instrument. The schematic design of the compact optical head and a new compact slide are introduced. Analysis of different measurements modes and systematic error correction methods are introduced.

  14. Analysis of Old Copper Synchrotron Light Absorbers from the Stanford Positron Electron Accelerating Ring

    SciTech Connect

    Marshall, S.R.; Scott, B.; /SLAC

    2005-12-15

    Synchrotron light absorbers intercept synchrotron radiation to protect chamber walls from excessive heat. When subjected to the high temperature of the beam, these absorbers undergo thermal stress. If the stress is too great or fatigues the material, the absorbers may fail. These absorbers are designed to last the lifetime of the machine. Any premature cracking could result in a leak and, consequently, loss of the ultra high vacuum environment. Using secondary and backscattered electron techniques, several sections of a used copper absorber were analyzed for material damage. Chemical analyses were performed on these samples as well. Comparing the unexposed sections to the sections exposed to the electron beam, few cracks were seen in the copper. However, the exposed samples showed heavy surface damage, in addition to crevices that could eventually result in material failure. Significant corrosion was also evident along the water cooling passage of the samples. These findings suggest that further investigation and periodic inspection of absorbers in SPEAR3 are necessary to control corrosion of the copper.

  15. Pseudo-single-bunch with adjustable frequency: a new operation mode for synchrotron light sources.

    PubMed

    Sun, C; Portmann, G; Hertlein, M; Kirz, J; Robin, D S

    2012-12-28

    We present the concept and results of pseudo-single-bunch (PSB) operation--a new operational mode at the advanced light source--that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel "kick-and-cancel" scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  16. Pseudo-Single-Bunch with Adjustable Frequency: A New Operation Mode for Synchrotron Light Sources

    NASA Astrophysics Data System (ADS)

    Sun, C.; Portmann, G.; Hertlein, M.; Kirz, J.; Robin, D. S.

    2012-12-01

    We present the concept and results of pseudo-single-bunch (PSB) operation—a new operational mode at the advanced light source—that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel “kick-and-cancel” scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  17. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  18. Synchrotron radiation shielding design for the Brockhouse sector at the Canadian light source

    NASA Astrophysics Data System (ADS)

    Bassey, Bassey; Moreno, Beatriz; Gomez, Ariel; Ahmed, Asm Sabbir; Ullrich, Doug; Chapman, Dean

    2014-05-01

    At the Canadian Light Source (CLS), the plans for the construction of three beamlines under the Brockhouse Project are underway. The beamlines, to be classified under the CLS Phase III beamlines, will comprise of a wiggler and an undulator, and will be dedicated to x-ray diffraction and scattering experiments. The energy range of these beamlines will be 7-22 keV (low energy wiggler beamline), 20-94 keV (high energy wiggler beamline), and 5-21 keV (undulator beamline). The beamlines will have a total of five hutches. Presented is the shielding design against target scattered white and monochromatic synchrotron radiations for these beamlines. The shielding design is based on: scatter target material-water, dose object-anthropomorphic phantom of the adult human (anteroposterior-AP geometry), and shielding thicknesses of steel and lead that will drop the radiation leakage from the hutches to below 0.5 μSv/h.

  19. A new synchrotron light source at Louisiana State University's Center for Advanced Microstructures and Devices

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Ajmera, Pratul; Poliakoff, Erwin D.; Craft, Ben C.; Saile, Volker

    1990-05-01

    A 1.2-GeV synchrotron light source is being constructed at the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The expressed purpose of the center, which has been funded by a grant from the US Department of Energy, is to develop X-ray lithography techniques for manufacturing microcircuits, although basic science programs are also being established. The storage ring will be optimized for the soft-X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnetic lattice is based on a design developed by Chasman and Green and will allow up to three insertion devices to be installed for higher-energy and higher-intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  20. Electron beam diagnostics using synchrotron radiation at the Advanced Light Source

    SciTech Connect

    Keller, R.; Renner, T.; Massoletti, D.J.

    1996-05-01

    Synchrotron light emitted from a bend magnet is being used to diagnose the electron beam stored in the main accelerator of the Advanced Light Source (ALS) at Berkeley Lab. The radiation has maximum intensity in the soft X-ray region and is imaged by a Kirkpatrick-Baez mirror pair from the source point inside the ring onto a Bismuth/Germanium-Oxide (BGO) crystal, converted into visible light and magnified by an attached microscope. The final image is captured by a TV camera-tube and digitized by a frame- grabber device to obtain records of parameters such as beam size, center location and profile. Data obtained from this Diagnostic Beam Line have been very useful in day-to-day operation of the ALS storage ring to assess the quality and repeatability of the stored beam. The line has further been utilized in several dedicated research activities to measure bunch lengths under various conditions and observe transverse beam instabilities. A summary of obtained results is given in this paper , together with a description of the technical features of the Diagnostic Beam Line.

  1. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    SciTech Connect

    Fisher, Alan; /SLAC

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.

  2. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  3. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  4. SESAME -- A third generation synchrotron light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-03-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. Members of the Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority,Turkey) provide the operations budget. Voluntary contributions by several Council Members that could amount to over 20 million over 5 years are now being finalized. This, plus funds from other sources, will enable acquisition of the technical components of the new ring and the upgrading of beamline equipment donated by several European and US labs. All concrete shielding is complete. The 0.8 GeV BESSY I injector system, a gift from Germany, is now being installed. A training program has been underway since 2000. SESAME is on track to start operation with four day-one beam lines in 2015.

  5. Design of a multi-bend achromat lattice for 3 GeV synchrotron light source

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2016-03-01

    We present a lattice design for a low-emittance and high-brilliance 3 GeV synchrotron light source that has been widely investigated in the world. We show the design results for a MBA (Multi-Bend Achromat) lattice with an emittance of 1.3 nm and 282.4 m circumference. Each cell has 5 bending magnets that consist of outer two with bending angle of 4.5° and inner three with bending angle of 7°. The lattice is designed to be flexible and consists of 12 straight sections in which one straight section has a length of 5.9 m. We have studied the dynamic aperture in the lattice with machine errors. It is shown that the designed low-emittance lattice provides sufficient dynamic aperture after COD correction. We present the results of variations of emittance, energy spread and dynamic aperture due to in-vacuum undulators in the straight sections. We performed particle tracking after the beam injection to investigate the efficiency of the injection scheme. We show the designed results of an injection scheme that shows the space allocation in injection section and the particle motions of injected beam. Our designed lattice provides a good optimization in terms of the emittance and brilliance as a light source for 3 GeV energy and circumference of 28 m.

  6. Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

    NASA Astrophysics Data System (ADS)

    Carlà, Michele; Benedetti, Gabriele; Günzel, Thomas; Iriso, Ubaldo; Martí, Zeus

    2016-12-01

    Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.

  7. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Einfeld, D.; Hasnain, S. S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-01

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference ˜125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  8. Physics and technology challenges of ultra low emittance synchrotron light sources

    SciTech Connect

    Krinsky, S.

    1991-01-01

    There is a great activity throughout the world in the development of synchrotron radiation facilities to serve as sources for basic and applied research. We discuss some of the the opportunities and challenges presented by the development of ever higher brightness synchrotron radiation sources. 39 refs.

  9. Design of a fast electron beam scanning system for compact synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Lehr, H.

    1989-07-01

    The design of an electron beam scanning system for compact storage ring synchrotron light sources is described. The main features are a scan frequency of 100 Hz and an angular amplitude of ±5 mrad. Different configurations of scan dipoles permit confining the scan to one cell using four dipoles or to repeat the scan periodically along the whole circumference by means of two scan dipoles per cell. Combinations of these basic configurations are possible. The location of the nodes of the pivoting electron beam can be optimized with respect to the maximum scan angle by slightly unbalancing the field strength in different scan dipoles. The scan dipoles are H-shaped magnets made from laminated iron. Their gap width is 68 mm. They are powered by fast transistor-bridge supplies which are controlled by freely programmable function generators capable of realizing a triangular current waveform with a deviation of less than 0.1% except for a 1% neighborhood of the apex. Estimates of the influence of the scanning on both quantum and Coulomb lifetime indicate acceptable lifetime reductions provided the minimum distance between distorted closed orbit and aperture exceeds about six standard deviations of the spatial electron distribution.

  10. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    NASA Astrophysics Data System (ADS)

    Bodey, A. J.; Rau, C.

    2017-06-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron.

  11. Industrial applications of micro/nanofabrication at Singapore Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Casse, B. D. F.; Heussler, S. P.; Kong, J. R.; Saw, B. T.; Mahmood, Shahrain bin; Moser, H. O.

    2006-04-01

    SSLS (Singapore Synchrotron Light Source) has set up a complete one-stop shop for micro/nanofabrication in the framework of the LIGA process. It is dubbed LiMiNT for Lithography for Micro and Nanotechnology and allows complete prototyping using the integral cycle of the LIGA process for producing micro/nanostructures from mask design/fabrication over X-ray lithography to electroplating in Ni, Cu, or Au, and, finally, hot embossing in a wide variety of plastics as one of the capabilities to cover a wide range of application fields and to go into higher volume production. The process chain also includes plasma cleaning and sputtering as well as substrate preparation processes including metal buffer layers, plating bases, and spin coating, polishing, and dicing. Furthermore, metrology using scanning electron microscopy (SEM), optical profilometry, and optical microscopy is available. LiMiNT is run as a research lab as well as a foundry. In this paper, several industrial applications will be presented, in which LiMiNT functions as a foundry to provide external customers the micro/nano fabrication services. These services include the fabrication of optical or X-ray masks, of micro/nano structures from polymers or from metals and of moulds for hot embossing or injection moulding.

  12. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  13. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  14. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  15. Grazing incidence synchrotron radiation optics: correlation of performance with metrology

    SciTech Connect

    Takacs, P.Z.; Hewitt, R.C.; Church, E.L.

    1986-06-01

    Image distortions produced by a cylinder mirror at the National Synchrotron Light Source are compared with performance predictions based on measurements of surface slope errors in the millimeter spatial period regime made with an optical surface profiler.

  16. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    PubMed

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline.

  17. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  18. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  19. Application of synchrotron radiation to elemental analysis

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 ..mu..m.

  20. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  1. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  2. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  3. Requirements for X-ray structure analysis with modern synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Laggner, Peter

    2000-11-01

    X-ray diffraction methods, including macromolecular crystallography, small-angle scattering from partly or noncrystalline systems, fiber and surface diffraction, are in the forefront of interest of a broad synchrotron user community from biomedical and technological fields. The main impact comes from the unsurpassed X-ray flux and brilliance of modern third-generation sources, facilitating on the one hand, a dramatic enhancement in sample throughput, and on the other hand, the transformation of X-ray diffraction analysis from a static to a cinematographic technique. In the present article some of the requirements for further development are being discussed.

  4. Functional micro-imaging of soft and hard tissue using synchrotron light

    NASA Astrophysics Data System (ADS)

    Thurner, Philipp J.; Wyss, Peter; Voide, Romain; Stauber, Martin; Muller, Bert; Stampanoni, Marco; Hubbell, Jeffrey A.; Muller, Ralph; Sennhauser, Urs

    2004-10-01

    In current biological and biomedical research, quantitative endpoints have become an important factor of success. Classically, such endpoints were investigated with 2D imaging, which is usually destructive and the 3D character of tissue gets lost. 3D imaging has gained in importance as a tool for both, qualitative and quantitative assessment of biological systems. In this context synchrotron radiation based tomography has become a very effective tool for opaque 3D tissue systems. Cell cultures and adherent scaffolds are visualized in 3D in a hydrated environment, even uncovering the shape of individual cells. Advanced morphometry allows to characterize the differences between the cell cultures of two distinct phenotypes. Moreover, a new device is presented enabling the 3D investigation of trabecular bone under mechanical load in a time-lapsed fashion. Using the highly brilliant X-rays from a synchrotron radiation source, bone microcracks and an indication for un-cracked ligament bridging are uncovered. 3D microcrack analysis proves that the classification of microcracks from 2D images is ambiguous. Fatigued bone was found to fail in burst-like fashion, whereas non-fatigued bone exhibited a distinct failure band. Additionally, a higher increase in microcrack volume was detected in fatigued in comparison to non-fatigued bone. The developed technologies prove to be very effective tools for advanced 3D imaging of both hard and soft tissue.

  5. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  6. Terahertz Coherent Synchrotron Radiation from Femtosecond LaserModulation of the Electron Beam at the Advanced Light Source

    SciTech Connect

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-05-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability.

  7. Shedding new light on historical metal samples using micro-focused synchrotron X-ray fluorescence and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grolimund, D.; Senn, M.; Trottmann, M.; Janousch, M.; Bonhoure, I.; Scheidegger, A. M.; Marcus, M.

    2004-10-01

    insights concerning the nature and origin of used raw materials as well as regarding employed processing techniques during historic iron fabrication and weapon manufacturing.The study demonstrates the potential of oxidation state and mineral phase mapping based on energy selective micro-XRF maps and spectroscopic phase identification. Such a spatially resolved recording of the chemical speciation is based on X-ray absorption spectroscopy. This analytical technique is exclusive to synchrotron light sources. However, the steadily increasing number of available synchrotron-based X-ray microprobes allows nowadays for more routine utilization of such micro-XAS techniques.

  8. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  9. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  10. Multifunctional synchrotron spectrometer of the National Research Center "Kurchatov Institute": I. EXAFS in dispersive mode

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Tyutyunnikov, S. I.; Shalyapin, V. N.; Belyaev, A. D.; Artemiev, A. N.; Artemiev, N. A.; Kirillov, B. F.; Kovalchiuk, M. V.; Demkiv, A. A.; Knyazev, G. A.

    2017-01-01

    The improved X-ray optical scheme, the system of registration, and the measurement procedure of the multifunctional synchrotron radiation spectrometer in the dispersive EXAFS mode are described. The results of the spectrometer energy resolution measurements are given. The advantages and disadvantages of traditional and dispersive EXAFS spectrometers are analyzed. Examples of EXAFS spectra measured in the dispersive mode are given.

  11. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  12. Chirality emergence in thin solid films of amino acids by polarized light from synchrotron radiation and free electron laser.

    PubMed

    Takahashi, Jun-ichi; Shinojima, Hiroyuki; Seyama, Michiko; Ueno, Yuko; Kaneko, Takeo; Kobayashi, Kensei; Mita, Hajime; Adachi, Mashahiro; Hosaka, Masahito; Katoh, Masahiro

    2009-07-07

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bioorganic compounds is that a kind of "chiral impulse" as an asymmetric excitation source induced asymmetric reactions on the surfaces of such materials such as meteorites or interstellar dusts prior to the existence of terrestrial life (Cosmic Scenario). To experimentally introduce chiral structure into racemic films of amino acids (alanine, phenylalanine, isovaline, etc.), we irradiated them with linearly polarized light (LPL) from synchrotron radiation and circularly polarized light (CPL) from a free electron laser. After the irradiation, we evaluated optical anisotropy by measuring the circular dichroism (CD) spectra and verified that new Cotton peaks appeared at almost the same peak position as those of the corresponding non-racemic amino acid films. With LPL irradiation, two-dimensional anisotropic structure expressed as linear dichroism and/or linear birefringence was introduced into the racemic films. With CPL irradiation, the signs of the Cotton peaks exhibit symmetrical structure corresponding to the direction of CPL rotation. This indicates that some kinds of chiral structure were introduced into the racemic film. The CD spectra after CPL irradiation suggest the chiral structure should be derived from not only preferential photolysis but also from photolysis-induced molecular structural change. These results suggest that circularly polarized light sources in space could be associated with the origin of terrestrial homochirality; that is, they would be effective asymmetric exciting sources introducing chiral structures into bio-organic molecules or complex organic compounds.

  13. Beam stability in a 6 GeV synchrotron light source

    SciTech Connect

    Norem, J.; Knott, M.; Rauchas, A.

    1985-01-01

    Future synchrotron radiation sources designed to produce low emittance electron beams for wigglers and undulators will present beam position control problems essentially similar to those encountered by users of existing accelerators, however tolerances will be tighter due to: (1) the small emittance (7 x 10/sup -9/ mrad) proposed for the electron beam and the correspondingly small emittances (sizes) of secondary photon beams, (2) the sensitivity of the electron beam closed orbit to quadrupole motion and dipole roll, (3) the high power levels associated with undulator and wiggler beams which will permit (and probably require) high precision and stability of the photon beam position measurements, in addition, (4) the large number of users on the roughly sixty beam lines will demand beams capable of producing the best experimental results. For the present paper, we assume the accelerator control function, which would initially involve making and coordinating all changes, would eventually evolve to setting and verifying the limits of user control: within these limits the beam position would be controlled by users. This paper describes the effects of motion of beam components (quads, rf cavities and dipoles) on the beam and considers the properties of a compensation system from the perspective of users. The system departs from standard practice in considering active perturbation of the electron beam to verify beam corrections. The effects of local closed orbit perturbations to direct undulator beams at different experimental setups are also considered. 8 refs., 3 figs.

  14. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  15. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  16. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  17. Synchrotron radiation and high pressure: new light on materials under extreme conditions.

    PubMed

    Hemley, Russell J; Mao, Ho-kwang; Struzhkin, Viktor V

    2005-03-01

    With the steady development of static high-pressure techniques in recent years, it is now possible to probe in increasing detail the novel behavior of materials subjected to extreme conditions of multimegabar pressures (>300 GPa) and temperatures from cryogenic states to thousands of degrees. By and large, the growth in this area has been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in high-pressure powder and single-crystal diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. A brief overview of selected highlights in each of these classes of experiments is presented that illustrate both the state-of-the-art as well as current technical and scientific challenges. The experiments have been made possible by the development of a spectrum of new techniques at both third- and second-generation high-energy sources together with key advances in high-pressure technology. The results have implications for a variety of problems in physics, chemistry, materials science, geoscience, planetary science, and biology.

  18. Lattice design for an ultra-low emittance synchrotron light source

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Jazayeri, S. M.; Rahighi, J.; Mollabashi, M.

    2017-09-01

    In this paper, we investigate a lattice design for an ultra-low emittance storage ring with intermediate energy of 3 GeV and circumference of 576 m. We present the design results for a seven-band achromat lattice with the natural emittance of 90 pm-rad. The base line is based on 20 straight sections with the length of 6 m. The minimum distance between different magnets is 10 cm and it has been tried to keep the lattice structure as simple as possible. The brilliance of radiated synchrotron radiation from a 2.24 m In-vacuum undulator installed in the lattice is 4 × 1021 [ photons s/mm2 mm2/2 0.1 % BW ] . We will address the challenging points of designed ultra-low emittance storage ring lattice such as strong nonlinearity and collective effects. The dynamic aperture of the lattice is comparatively sufficient for off-axis injection and the lifetime is relatively large without using any harmonic cavity. Since the proposed lattice structure in some aspects is similar to MAX IV storage ring, we will make some comparison between two lattices in different sections.

  19. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  20. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  2. Advancements and Application of Microsecond Synchrotron X-ray Footprinting at the Advanced Light Source

    SciTech Connect

    Gupta, Sayan; Celestre, Rich; Feng, Jun; Ralston, Corie

    2016-01-02

    The method of synchrotron X-ray protein footprinting (XF-MS) is used to determine protein conformational changes, folding, protein-protein and protein-ligand interactions, providing information which is often difficult to obtain using X-ray crystallography and other common structural biology methods [1 G. Xu and M.R. Chance, Chemical Reviews 107, 3514–3543 (2007). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] –3 V.N. Bavro, Biochem Soc Trans 43, 983–994 (2015). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] ]. The technique uses comparative in situ labeling of solvent-accessible side chains by highly reactive hydroxyl radicals (•OH) in buffered aqueous solution under different assay conditions. In regions where a protein is folded or binds a partner, these •OH susceptible sites are inaccessible to solvent, and therefore protected from labeling. The •OH are generated by the ionization of water using high-flux-density X-rays. High-flux density is a key factor for XF-MS labeling because obtaining an adequate steady-state concentration of hydroxyl radical within a short irradiation time is necessary to minimize radiation-induced secondary damage and also to overcome various scavenging reactions that reduce the yield of labeled side chains.

  3. Study of the interfacial structures and behavior of smectic liquid crystals using synchrotron light source

    NASA Astrophysics Data System (ADS)

    Hu, Yufei

    2003-10-01

    Grazing Incidence X-ray Scattering with a synchrotron X-ray source is used to study the depth dependence of the interfacial structure of smectic liquid crystal (8CB) hybrid films. The advancement and market potential of liquid crystal technologies lead to inventions of new materials and surface treatments. The knowledge of interfacial structures and behavior is very critical to these thin film devices such as Liquid Crystal Display. Photolithography in a clean room is adopted to make gratings on very thin glass, which offers better quality than conventional methods in terms of uniformity, reproducibility, reliability, and endurance. Liquid crystal thin films are bounded by a grated glass substrate and air, and have been studied as a function of both temperature and thickness. Experimental measurements indicate the existence of chevron, tilt, and bookshelf structure, as well as Twisted Grain Boundary (TGB) structure that has not previously been observed by X-ray in non-chiral smectic liquid crystals. These structures are a result of liquid crystal anchoring at two dissimilar competing confining surfaces, air-smectics and smectics-grating substrate. With deeper grating, smectic liquid crystals are more constrained in structure and more resilient to temperature change. The smectic phase also persisted at a higher temperature above the smectic-nematic transition point on a deeper grating substrate. When the thickness of liquid crystal samples is beyond a certain point, the smectic liquid crystal begins to form different layers. Chevron structures appear in most situations, which is consistent with previous research A TGB structure is not tamable in a thicker sample where liquid crystals tend to realign themselves in a more stable structure.

  4. The advanced light source at Lawrence Berkeley Laboratory—A high-brightness soft x-ray synchrotron-radiation facility

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1990-12-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets.

  5. A Four Cell Lattice for the UCLA Compact Light Source Synchrotron

    SciTech Connect

    Garren, A.A.; Green, M.A.

    1999-03-12

    The 1.5 GeV compact light source UCS proposed for UCLA must fit into a shielded vault that is 9.144 meters (30 feet) wide. In order for the machine to fit into the allowable space, the ring circumference must be reduced 36 meters, the circumference of the six cell lattice, to something like 26 or 27 meters. The four cell lattice described in this report has a ring circumference of 27.0 meters.

  6. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    SciTech Connect

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light.

  7. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  8. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.

  9. Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*

    NASA Astrophysics Data System (ADS)

    Belak, J.; Ilavsky, J.; Hessler, J. P.

    2005-07-01

    Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  10. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    SciTech Connect

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L. )

    2007-01-22

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10{sup 2} picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  11. Synchrotron Polarization in Blazars

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus

    2014-07-01

    We present a detailed analysis of time- and energy-dependent synchrotron polarization signatures in a shock-in-jet model for γ-ray blazars. Our calculations employ a full three-dimensional radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are handled with the two-dimensional Monte-Carlo/Fokker-Planck (MCFP) code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + synchrotron-self-Compton flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large polarization angle rotations by >~ 180°, as observed in connection with γ-ray flares in several blazars, without the need for bent or helical jet trajectories or other nonaxisymmetric jet features.

  12. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  13. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    SciTech Connect

    Yu,P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure {alpha}-helices, {beta}-sheets, and others such as {beta}-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted {alpha}-helices, {beta}-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm{sup -1}, the results show that barley protein consisted of approximately 18-34% of {alpha}-helices, 14-25% of {beta}-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P < 0.05) proportions of {alpha}-helices (30-34%) than Dolly and Valier ({alpha}-helices 18-23%). Harrington was in between which was 25%. For protein {beta}-sheets, AC Metcalfe, and LP955 consisted of higher proportions (22-25%) than Dolly and Valier (13-17%). Different barley varieties contained different {alpha}-helix to {beta}-sheet ratios, ranging from 1.4 to 2.0, although the difference were

  14. Metrology of reflection optics for synchrotron radiation

    SciTech Connect

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community.

  15. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve

    NASA Astrophysics Data System (ADS)

    Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  16. Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Dela Rosa, Alfredo; Sarma, Anupama V.; Le, Charles Q.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    It is necessary to minimize peripheral thermal damage during laser irradiation, since thermal damage to collagen and mineral compromises the bond strength to restorative materials in dentin and inhibits healing and osteointegration in bone. The overall objective of this study was to test the hypothesis that lasers resonant to the specific absorption of water, collagen, and hydroxyapatite with pulse durations less than the thermal relaxation times at each respective laser wavelength will efficiently remove dentin with minimal peripheral thermal damage. Precise incisions were produced in 3 x 3 mm2 blocks of human dentin using CO2 (9.6 μm), Er:YSGG (2.79 μm), and Nd:YAG (355 nm) lasers with and without a computer controlled water spray. Polarization-sensitive optical coherence tomography was used to obtain optical cross-sections of each incision to determine the rate and efficiency of ablation. The peripheral thermal damage zone around each incision was analyzed using polarized light microscopy (PLM) and Synchrotron-Radiation Fourier Transform Infrared Spectro-microscopy (SR-FTIR). Thermally induced chemical changes to both mineral and the collagen matrix was observed with SR-FTIR with a 10-μm spatial resolution and those changes were correlated with optical changes observed with PLM. Minimal (<10-μm) thermal damage was observed for pulse durations less than the thermal relaxation time (Tr ) of the deposited laser energy, with and without applied water at 9.6 um and only with applied water at 2.79 μm. For pulse durations greater than Tr, significantly greater peripheral thermal damage was observed for both IR laser wavelengths with and without the water spray. There was minimal thermal damage for 355-nm laser pulses, however extensive mechanical damage (cracks) was observed. High resolution SR-FTIR is well suited for characterization of the chemical changes that occur due to thermal damage peripheral to laser incisions in proteinaceous hard tissues. Sub

  17. Laser-synchrotron hybrid experiments: A photon to tickle, a photon to poke

    NASA Astrophysics Data System (ADS)

    Ederer, D. L.; Rubensson, J. E.; Mueller, D. R.; Shuker, R.; Obrien, W. L.; Jai, J.; Dong, Q. Y.; Callcott, T. A.; Carr, G. L.; Williams, G. P.

    1991-07-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  18. Laser-synchrotron hybrid experiments: ``A photon to tickle, a photon to poke``

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R.; Shuker, R.; O`Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A.; Carr, G.L.; Williams, G.P.; Hirschmugl, C.J.; Etemad, S.; Inam, A.; Tanner, D.B.

    1991-12-31

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  19. Laser-synchrotron hybrid experiments: A photon to tickle, a photon to poke''

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R. ); Shuker, R. ); O'Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A. ); Carr, G.L. . Corporate Research Center); Williams, G.P.; Hirschmugl, C.J

    1991-01-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  20. Laser-synchrotron hybrid experiments A photon to tickle - A photon to poke

    NASA Astrophysics Data System (ADS)

    Ederer, D. L.; Rubensson, J. E.; Mueller, D. R.; Shuker, R.; O'Brien, W. L.; Jai, J.; Dong, Q. Y.; Callcott, T. A.; Carr, G. L.; Williams, G. P.; Hirschmugl, C. J.; Etemad, S.; Inam, A.; Tanner, D. B.

    1992-08-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked Nd-YAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  1. Detail view of light fixture on south facade National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of light fixture on south facade - National Home for Disabled Volunteer Soldiers, Pacific Branch, Old Administration Building, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  2. Brookhaven highlights - Brookhaven National Laboratory 1995

    SciTech Connect

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  3. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  4. Shining a light on Jarosite: formation, alteration and stability studies using in situ experimental synchrotron and neutron techniques.

    NASA Astrophysics Data System (ADS)

    Brand, H. E. A.; Scarlett, N. V. Y.; Wilson, S. A.; Frierdich, A. J.; Grey, I. E.

    2016-12-01

    Jarosites and related minerals are critical to a range of mineral processing and research applications. They are used in the removal of iron species from smelting processes; they occur in metal bioleaching systems, and they are present in acid mine drainage environments. There has been a recent resurgence in interest in jarosites since their detection on Mars. In this context, the presence of jarosite has been recognised as a likely indicator of liquid water at the surface of Mars in the past & it is thought that their study will provide insight into the environmental history of Mars. Acid sulfate soils cover large areas of the Australian coastline and are likely to be a major constituent of the Martian environment. The oxidation of acid sulfate soils, coupled with potential release of heavy metals and acidic groundwaters, can have serious consequences for fragile ecosystems. Understanding these sediments will provide insight into the biogeochemical processes that affect the lifetimes of transient mineral species on Earth, and may be used to better understand soil acidification, contaminant mobility at sites affected by acid and metalliferous drainage, and even constrain past weathering and putative biosignatures on Mars. Knowledge of the behaviour of jarosite minerals under the actual conditions that they are found in is crucial to understanding their potential environmental impacts on both Earth and Mars. To this end, we are engaged in a program to study the formation, stability and alteration of natural and synthetic jarosite minerals using a complementary suite of in situ synchrotron and neutron techniques. There are 3 sections to this work that will introduce the experimental techniques and sample environments that make these measurements possible: Studying the nucleation and growth of jarosites under laboratory conditions. The experimentation consisted of time-resolved synchrotron small angle X-ray scattering and X-ray diffraction. Studying the stability of

  5. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  6. Biomolecular solution X-ray scattering at the National Synchrotron Light Source

    PubMed Central

    Allaire, Marc; Yang, Lin

    2011-01-01

    In recent years there has been a growing interest in the application of X-ray scattering techniques to biomolecules in solution. At NSLS, a new undulator-based beamline, X9, has been constructed to address the oversubscribed user demand for X-ray scattering. Beamline X9 has the capability to perform small/wide-angle X-ray scattering (SAXS/WAXS) all in one single instrument. This is accomplished by utilizing a vacuum sample/detector chamber that is an integral part of the SAXS scattering flight path. This vacuum chamber allows a WAXS detector to be positioned at a close distance from the sample, while not interfering with scattered X-rays at small angles from reaching the SAXS detector. A regular training program, the X9 workbench, has also been established to allow users to become familiar with beamline X9 for solution X-ray scattering. PMID:21169689

  7. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  8. National Synchrotron Light Source VUV and soft x-ray beam lines: performance characteristics

    SciTech Connect

    Klaffky, R.W.; Howells, M.R.; Williams, G.P.; Takacs, P.Z.; Godel, J.B.

    1981-01-01

    A total of five beam lines are currently being constructed and commissioned at the NSLS. They involve a 2.75/sup 0/ toroidal grating monochromator, a plane grating grazing monochromator, a large aperture modified Wadsworth monochromator, a Seya-Namioka instrument and a Czerny-Turner instrument. We present details of these beam lines and their anticipated operational characteristics.

  9. Considerations for the use of synchrotron radiation sources to measure sub-keV x-ray photoabsorption cross sections in transmission

    SciTech Connect

    Tirsell, K.G.; Del Grande, N.K.

    1988-02-01

    Sub-keV x-ray photoabsorption cross section measurements in transmission have been made using synchrotron radiation beam lines on the VUV storage ring at the National Synchrotron Light Source (NSLS) and on the SPEAR storage ring at Stanford. The experimental considerations associated with making absolute measurements are reviewed, along with techniques for resolving difficulties. Suggestions for future measurements are included.

  10. Applications of synchrotron x-ray fluorescence to extraterrestrial materials

    SciTech Connect

    Sutton, S.R.; Rivers, M.L.; Smith, J.V.

    1986-01-01

    Synchrotron x-ray fluorescence (SXRF) is a valuable technique for trace element analyses of extraterrestrial materials permitting minimum detection limits less than 1 ppM for 20 micrometer spots. SXRF measurements have been performed on iron meteorites and micrometeorites using white synchrotron radiation and an energy dispersive x-ray detector at the National Synchrotron Light Source (X-26C), Brookhaven National Laboratory (NY). Partitioning of Cu between troilite (FeS) and metal in the nine iron meteorites studied suggests sub-solidus re-equilibration in these objects. A technique has been developed for determining self-absorption corrections for filtered, continuum excitation of small specimens, such as stratospheric particles and refractory inclusions in meteorites.

  11. SYNCHROTRON RADIATION SOURCES

    SciTech Connect

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  12. Launching Light: Beyond the Bulb for the United Nations' International Year of Light 2015

    NASA Astrophysics Data System (ADS)

    Arcand, K. K.; Watzke, M.

    2015-09-01

    In astronomy, light is the language used to understand the Universe. From radio waves to gamma rays, light in all its forms delivers information that helps astronomers learn about the Universe. When the United Nations declared 2015 to be the International Year of Light and Light-based Technologies (IYL2015), it presented an opportunity to share the role that light plays in astronomy and beyond. The IYL2015 also offered a chance to build on experiences and sustain networks from the International Year of Astronomy in 2009. Light: Beyond the Bulb is an IYL2015 project that melds both of these goals. The project takes the form of an exhibit that showcases what light can do, from here on Earth and across the vastness of space, hosted by volunteer networks in public spaces for informal science learning.

  13. Induction synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Kishiro, Junichi

    2000-08-01

    A novel proton synchrotron employing induction cells instead of radio frequency cavities is proposed. The major feature of the barrier bucket acceleration, where acceleration and longitudinal focusing are independently achieved is theoretically discussed with the help of multi-particle simulations. It is proved that barrier bucket acceleration allows ultimate use of longitudinal phase-space and is quite effective to substantially increase the beam intensity in synchrotrons. Engineering aspects of key devices to realize the novel synchrotron, a ferri/ferro-magnetic material loaded induction cell and a modulator being rapidly switched in synchronization with beam acceleration are described in detail. The idea is applied to an existing machine (the KEK 12 GeV-PS) and high-intensity proton rings such as JHF, ESS, and SNS and their predicted improvement in machine performance is given with numerical values for each case.

  14. Commissioning of the medical synchrotron HIMAC

    SciTech Connect

    Yamada, S.

    1994-12-31

    A heavy ion synchrotron complex, HIMAC, has been constructed for medical use at National Institute of Radiological Sciences (NIRS), Japan. The heavy ion therapy is adopted because it has the merits of the excellent dose localization and the high biological effectiveness on both aerobic and anaerobic cancer cells. The maximum energy of the HIMAC synchrotron is designed to be 800 MeV/u for light ions with q/A=1/2 so that the residual range of silicon ions reaches about 30 cm in human body. There are three treatment rooms two of which have a vertical and a horizontal beam line, respectively. The third treatment room is equipped with both beams lines. The beam tests of the accelerator system started in last November and is successfully completed in February. After about four months tests of the irradiation system including the biological experiments, the clinical trials started on June 21 using a 290 MeV/u carbon beam.

  15. Misperceptions of "light" cigarettes abound: National survey data

    PubMed Central

    Wilson, Nick; Weerasekera, Deepa; Peace, Jo; Edwards, Richard; Thomson, George; Devlin, Miranda

    2009-01-01

    Background Many smokers believe that "light" cigarettes are less harmful than regular cigarettes, which is at variance with the scientific evidence. The Framework Convention on Tobacco Control (FCTC) aims to address this problem in Article 11 which deals with misleading labelling of tobacco products. In this study we aimed to determine smokers' use and beliefs concerning "light" and "mild" cigarettes ("lights"), including in relation to ethnicity, deprivation and other socio-demographic characteristics. Methods The New Zealand (NZ) arm of the International Tobacco Control Policy Evaluation Survey (ITC Project) uses as its sampling frame the NZ Health Survey. This is a national sample with boosted sampling of Maori, Pacific peoples and Asians. From this sample we surveyed adult smokers (n = 1376) about use and beliefs relating to "light" cigarettes. We assessed the associations with smoking "lights" after adjusting for socio-demographic variables, and smoking-related behaviours and beliefs. Results Many smokers of "lights" believed that smoking "lights" made it easier to quit smoking (25%), that "lights" are less harmful (42%), and that smokers of "lights" take in less tar (43%). Overall most "lights" smokers (60%) had at least one of these three beliefs, a proportion significantly higher than for smokers of "regular" cigarettes at 45% (adjusted odds ratio (aOR) = 1.96, 95% CI = 1.29 – 2.96). While "lights" smokers had significantly lower tobacco consumption and were more aware of smoking harms, they were no more likely to be intending to quit or have made a previous quit attempt. By ethnicity, both Maori and Pacific people were less likely to smoke "lights" than Europeans (aOR = 0.53, 95% CI = 0.35 – 0.80 and aOR = 0.14, 95% CI = 0.05 – 0.40 respectively). In contrast there was no significant difference by level of deprivation. Roll-your-own (RYO) tobacco smokers were less likely to smoke "light" forms of RYO tobacco while both older and women smokers were

  16. Misperceptions of "light" cigarettes abound: national survey data.

    PubMed

    Wilson, Nick; Weerasekera, Deepa; Peace, Jo; Edwards, Richard; Thomson, George; Devlin, Miranda

    2009-05-08

    Many smokers believe that "light" cigarettes are less harmful than regular cigarettes, which is at variance with the scientific evidence. The Framework Convention on Tobacco Control (FCTC) aims to address this problem in Article 11 which deals with misleading labelling of tobacco products. In this study we aimed to determine smokers' use and beliefs concerning "light" and "mild" cigarettes ("lights"), including in relation to ethnicity, deprivation and other socio-demographic characteristics. The New Zealand (NZ) arm of the International Tobacco Control Policy Evaluation Survey (ITC Project) uses as its sampling frame the NZ Health Survey. This is a national sample with boosted sampling of Maori, Pacific peoples and Asians. From this sample we surveyed adult smokers (n = 1376) about use and beliefs relating to "light" cigarettes. We assessed the associations with smoking "lights" after adjusting for socio-demographic variables, and smoking-related behaviours and beliefs. Many smokers of "lights" believed that smoking "lights" made it easier to quit smoking (25%), that "lights" are less harmful (42%), and that smokers of "lights" take in less tar (43%). Overall most "lights" smokers (60%) had at least one of these three beliefs, a proportion significantly higher than for smokers of "regular" cigarettes at 45% (adjusted odds ratio (aOR) = 1.96, 95% CI = 1.29 - 2.96). While "lights" smokers had significantly lower tobacco consumption and were more aware of smoking harms, they were no more likely to be intending to quit or have made a previous quit attempt. By ethnicity, both Maori and Pacific people were less likely to smoke "lights" than Europeans (aOR = 0.53, 95% CI = 0.35 - 0.80 and aOR = 0.14, 95% CI = 0.05 - 0.40 respectively). In contrast there was no significant difference by level of deprivation. Roll-your-own (RYO) tobacco smokers were less likely to smoke "light" forms of RYO tobacco while both older and women smokers were more likely to smoke "lights". Most

  17. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  18. X-Ray-induced Deuterium Enrichment of N-rich Organics in Protoplanetary Disks: An Experimental Investigation Using Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Remusat, Laurent; Roskosz, Mathieu; Popescu, Horia; Jaouen, Nicolas; Sandt, Christophe; Jäger, Cornelia; Henning, Thomas; Simionovici, Alexandre; Lemaire, Jean Louis; Mangin, Denis; Carrasco, Nathalie

    2017-05-01

    The deuterium enrichment of organics in the interstellar medium, protoplanetary disks, and meteorites has been proposed to be the result of ionizing radiation. The goal of this study is to simulate and quantify the effects of soft X-rays (0.1-2 keV), an important component of stellar radiation fields illuminating protoplanetary disks, on the refractory organics present in the disks. We prepared tholins, nitrogen-rich organic analogs to solids found in several astrophysical environments, e.g., Titan’s atmosphere, cometary surfaces, and protoplanetary disks, via plasma deposition. Controlled irradiation experiments with soft X-rays at 0.5 and 1.3 keV were performed at the SEXTANTS beamline of the SOLEIL synchrotron, and were immediately followed by ex-situ infrared, Raman, and isotopic diagnostics. Infrared spectroscopy revealed the preferential loss of singly bonded groups (N-H, C-H, and R-N≡C) and the formation of sp3 carbon defects with signatures at ˜1250-1300 cm-1. Raman analysis revealed that, while the length of polyaromatic units is only slightly modified, the introduction of defects leads to structural amorphization. Finally, tholins were measured via secondary ion mass spectrometry to quantify the D, H, and C elemental abundances in the irradiated versus non-irradiated areas. Isotopic analysis revealed that significant D-enrichment is induced by X-ray irradiation. Our results are compared to previous experimental studies involving the thermal degradation and electron irradiation of organics. The penetration depth of soft X-rays in μm-sized tholins leads to volume rather than surface modifications: lower-energy X-rays (0.5 keV) induce a larger D-enrichment than 1.3 keV X-rays, reaching a plateau for doses larger than 5 × 1027 eV cm-3. Synchrotron fluences fall within the expected soft X-ray fluences in protoplanetary disks, and thus provide evidence of a new non-thermal pathway to deuterium fractionation of organic matter.

  19. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    SciTech Connect

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  20. Photoionization spectroscopy of nucleobases and analogues in the gas phase using synchrotron radiation as excitation light source.

    PubMed

    Schwell, Martin; Hochlaf, Majdi

    2015-01-01

    We review here the photoionization and photoelectron spectroscopy of the gas phase nucleic acid bases adenine, thymine, uracil, cytosine, and guanine, as well as the three base analogues 2-hydroxyisoquinoline, 2-pyridone, and δ-valerolactam in the vacuum ultraviolet (VUV) spectral regime. The chapter focuses on experimental work performed with VUV synchrotron radiation and related ab initio quantum chemical calculations of higher excited states beyond the ionization energy. After a general part, where experimental and theoretical techniques are described in detail, key results are presented by order of growing complexity in the spectra of the molecules. Here we concentrate on (1) the accurate determination of ionization energies of isolated gas phase NABs and investigation of the vibrational structure of involved ionic states, including their mutual vibronic couplings, (2) the treatment of tautomerism after photoionization, in competition with other intramolecular processes, (3) the study of fragmentation of these molecular systems at low and high internal energies, and (4) the study of the evolution of the covalent character of hydrogen bonding upon substitution, i.e., examination of electronic effects (acceptor, donor, etc.).

  1. Transvenous coronary angiography in humans with synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  2. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light.

    PubMed

    Thurner, P J; Wyss, P; Voide, R; Stauber, M; Stampanoni, M; Sennhauser, U; Müller, R

    2006-08-01

    Synchrotron radiation micro-computed tomography (SRmicroCT) is a very useful technique when it comes to three-dimensional (3D) imaging of complex internal and external geometries. Being a fully non-destructive technique, SRmicroCT can be combined with other experiments in situ for functional imaging. We are especially interested in the combination of SRmicroCT with mechanical testing in order to gain new insights in the failure mechanism of trabecular bone. This interest is motivated by the immense costs in health care due to patients suffering from osteoporosis, a systemic skeletal disease resulting in decreased bone stability and increased fracture risk. To better investigate the different failure mechanisms on the microlevel, we have developed a novel in situ mechanical compression device, capable of exerting both static and dynamic displacements on experimental samples. The device was calibrated for mechanical testing using solid aluminum and bovine trabecular bone samples. To study different failure mechanisms in trabecular bone, we compared a fatigued and a non-fatigued bovine bone sample with respect to failure initiation and propagation. The fatigued sample failed in a burst-like fashion in contrast to the non-fatigued sample, which exhibited a distinct localized failure band. Moreover, microscopic cracks - microcracks and microfractures - were uncovered in a 3D fashion illustrating the failure process in great detail. The majority of these cracks were connected to a bone surface. The data also showed that the classification of microcracks and -fractures from 2D section can sometimes be ambiguous, which is also true for the distinction of diffuse and distinct microdamage. Detailed investigation of the failure mechanism in these samples illustrated that trabecular bone often fails in delamination, providing a mechanism for energy dissipation while conserving trabecular bone architecture. In the future, this will allow an even better understanding of bone

  3. National voluntary laboratory accreditation program: Energy efficient lighting products. Handbook

    SciTech Connect

    Galowin, L.S.; Hall, W.; Rossiter, W.J.

    1994-07-01

    The purpose of this handbook is to set out procedures and technical requirements for the National Voluntary Laboratory Accreditation Program (NVLAP) accreditation of laboratories which perform test methods covered by the Energy Efficient Lighting (EEL) Products program. It complements and supplements the NVLAP programmatic procedures and general requirements found in NIST Handbook 150 (PB94-178225). The interpretive comments and additional requirements contained in this handbook make the general NVLAP criteria specifically applicable to the EEL program.

  4. Transverse beam size measurement system using visible synchrotron radiation at HLS II

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Sun, Bao-Gen; Yang, Yong-Liang; Lu, Ping; Tang, Lei-Lei; Wu, Fang-Fang; Cheng, Chao-Cai; Zheng, Jia-Jun; Li, Hao

    2016-09-01

    An interferometer system and an imaging system using visible synchrotron radiation (SR) have been installed in the Hefei Light Source (HLS) II storage ring. Simulations of these two systems are given using Synchrotron Radiation Workshop (SRW) code. With these two systems, the beam energy spread and the beam emittance can be measured. A detailed description of these two systems and the measurement method is given in this paper. The measurement results of beam size, emittance and energy spread are given at the end. Supported by National Natural Science Foundation of China (11105141, 11175173) and Upgrade Project of Hefei Light Source

  5. The National Early Literacy Panel and Preschool Literacy Instruction: Green Lights, Caution Lights, and Red Lights

    ERIC Educational Resources Information Center

    Paciga, Kathleen A.; Hoffman, Jessica L.; Teale, William H.

    2011-01-01

    The high level of acceptance in US society of the preschool years as a critically important time for building early literacy skills has led to a flurry of activity in early childhood research and policy. The National Early Literacy Panel (NELP) report "Developing Early Literacy" (2008) is one example of this activity. The NELP report is…

  6. The National Early Literacy Panel and Preschool Literacy Instruction: Green Lights, Caution Lights, and Red Lights

    ERIC Educational Resources Information Center

    Paciga, Kathleen A.; Hoffman, Jessica L.; Teale, William H.

    2011-01-01

    The high level of acceptance in US society of the preschool years as a critically important time for building early literacy skills has led to a flurry of activity in early childhood research and policy. The National Early Literacy Panel (NELP) report "Developing Early Literacy" (2008) is one example of this activity. The NELP report is…

  7. X27A - A New Hard X-ray Micro-Spectroscopy Facility at the National Synchrtron Light Source

    SciTech Connect

    Ablett,J.; Kao, C.; Reeder, R.; Tang, Y.; Lanzirotti, A.

    2006-01-01

    A new hard X-ray micro-spectroscopy beamline has recently been installed at bending-magnet beamline X27A at the National Synchrotron Light Source, where the focus of research is primarily directed towards the environmental, geological and materials science communities. This instrument delivers moderate, {approx}10 {micro}m spatial resolution using achromatic dynamically bent Kirkpatrick-Baez mirrors, in addition to providing high X-ray flux throughput and selectable energy resolution. The balance between moderate spatial resolution and high flux throughput, in combination with a liquid nitrogen-cooled 13-element energy-dispersive high-purity germanium detector, is particularly well suited to the investigation of dilute and thin-film systems using the fluorescence X-ray absorption fine-structure mode of detection. In this paper, we report on the design and performance of this instrument and highlight a recent experimental study undertaken at this facility.

  8. Measurement of Light Pollution of Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Son Hosseini, S.; Nasiri, S.

    2006-08-01

    The problem of Light pollution became important mainly since 1960, by growth of urban development and using more artificial lights and lamps at the nighttimes. Optical telescopes share the same range of wavelengths as are used to provide illumination of roadways, buildings and automobiles. The light glow that emanates from man made pollution will scatter off the atmosphere and affects the images taken by the observatory instruments. A method of estimating the night sky brightness produced by a city of known population and distance is useful in site testing of the new observatories, as well as in studying the likely future deterioration of existing sites. Now with planning the Iranian National Observatory that will house a 2-meter telescope and on the way of the site selection project, studying the light pollution is propounded in Iran. Thus, we need a site with the least light pollution, beside other parameters, i.e. seeing, meteorological, geophysical and local parameters. The seeing parameter is being measured in our 4 preliminary selected sites at Qom, Kashan, Kerman and Birjand since 2 years ago using an out of focus Differential Image Motion Monitor. These sites are selected among 33 candidate sites by studying the meteorological data obtained from the local synoptic stations and the Meteosat. We use the Walker's law to estimate the Sky glow of these sites having the population and the distances of the nearby regions. The results are corrected by the methods introduced by Treanor and Berry using the atmospheric extinction coefficients. The data obtained using an 11 inch telescope with a ST7 CCD camera for above sites are consistent with the estimated values of the light pollution mentioned above.

  9. Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Cecilia, A.; Gerstl, S.; Glamann, N.; Grau, A. W.; Holubek, T.; Meuter, C.; de Jauregui, D. Saez; Voutta, R.; Boffo, C.; Gerhard, Th.; Turenne, M.; Walter, W.

    2016-11-01

    A new cryogen-free full scale (1.5 m long) superconducting undulator with a period length of 15 mm (SCU15) has been successfully tested in the ANKA storage ring. This represents a very important milestone in the development of superconducting undulators for third and fourth generation light sources carried on by the collaboration between the Karlsruhe Institute of Technology and the industrial partner Babcock Noell GmbH. SCU15 is the first full length device worldwide that with beam reaches a higher peak field than what expected with the same geometry (vacuum gap and period length) with an ideal cryogenic permanent magnet undulator built with the best material available PrFeB. After a summary on the design and main parameters of the device, we present here the characterization in terms of spectral properties and the long term operation of the SCU15 in the ANKA storage ring.

  10. Synchrotron resource of the Howard Hughes Medical Institute

    NASA Astrophysics Data System (ADS)

    Staudenmann, J.-L.; Hendrickson, W. A.; Abramowitz, R.

    1989-07-01

    The Synchrotron Resource of the Howard Hughes Medical Institute will be dedicated to structural analyses of biological macromolecules, primarily through crystallography. This facility is under construction at the X4 port of the National Synchrotron Light Source at Brookhaven National Laboratory, and it will comprise three beamlines. The first line to be built has been devised to apply the multiwavelength anomalous diffraction method which provides direct estimates for the phases of reflections. The second line will be devoted to rapid and essentially routine diffraction measurements, mainly through the rotation method. These two experimental stations are contained within refrigerated radiation enclosures that will maintain clean environments, narrowly defined constant temperatures, and protection against biohazard at biosafety level BL-2. At the same time as the second line will be developed, the swath center is planned to first serve as a monitor of the white x-ray beam vertical stability. This project will be done in collaboration with accelerator physicists of the National Synchrotron Light Source. Later, this third line will be equipped for Laue experiments to study, for instance, dynamical processes in proteins.

  11. Programmed improvements of the alternating gradient synchrotron complex at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    SciTech Connect

    1994-03-01

    The purpose and need for DOE to undertake the actions described in this document are to improve the efficiency of the Alternating Gradient Synchrotron (AGS) complex. Benefits would include optimization of the AGS scientific program, increased high-energy and nuclear physics experimentation, improved health and safety conditions for workers and users, reduced impact on the environment and the general public, energy conservation, decreased generation of hazardous and radioactive wastes, and completion of actions required to permit the AGS to be the injector to the Relativistic Heavy Ion Collider (RHIC)., Improved efficiency is defined as increasing the AGS`s capabilities to capture and accelerate the proton intensity transferred to the AGS from the AGS booster. Improved capture of beam intensity would reduce the beam losses which equate to lost scientific opportunity for study and increased potential for radiation doses to workers and the general public. The action would also refurbish magnets used in the transfer tunnel which connects the AGS complex to RHIC to permit smooth injection of beam into the RHIC accelerator. These magnets were previously used to direct beam to fixed targets for high energy physics studies but have hot received proper maintenance to be reliable as injectors to RHIC. The document describes alternative actions, the affected environment, and environmental impacts.

  12. Synchrotron radiation and biomedical imaging

    SciTech Connect

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs.

  13. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C.

    1991-12-31

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  14. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C. . Dept. of Applied Physics)

    1991-01-01

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  15. Three energy computed tomography with synchrotron radiation

    SciTech Connect

    Menk, R.H.; Thomlinson, W.; Zhong, Z.; Charvet, A.M.; Arfelli, F. |; Chapman, L.

    1997-09-01

    Preliminary experiments for digital subtraction computed tomography (CT) at the K-edge of iodine (33.1 keV) were carried out at SMERF (Synchrotron Medical Research Facility X17B2) at the National Synchrotron Light Source, Brookhaven National Laboratory. The major goal was to evaluate the availability of this kind of imaging for in vivo neurological studies. Using the transvenous coronary angiography system, CT images of various samples and phantoms were taken simultaneously at two slightly different energies bracketing the K-absorption edge of iodine. The logarithmic subtraction of the two images resulted in the contrast enhancement of iodine filled structures. An additional CT image was taken at 99.57 keV (second harmonic of the fundamental wave). The third energy allowed the calculation of absolute iodine, tissue and bone images by means of a matrix inversion. A spatial resolution of 0.8 LP/mm was measured in single energy images and iodine concentrations down to 0.082 mg/ml in a 1/4 diameter detail were visible in the reconstructed subtraction image.

  16. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  17. Performance of the undulator based ultraviolet and soft x-ray beamline for catalysis and surface science at National Synchrotron Radiation Laboratory

    NASA Astrophysics Data System (ADS)

    Du, Liangliang; Du, Xuewei; Wei, Shen; Li, Chaoyang; Pan, Congyuan; Ju, Huanxin; Wang, Qiuping; Zhu, Junfa

    2016-12-01

    The undulator based ultraviolet and soft x-ray beamline BL11U for catalysis and surface science at National Synchrotron Radiation Laboratory (NSRL) has been under opteration for months and the present performance is described. This beamline utilizes radiation from an in-vacuum undulator, which has 30 magnetic periods with the period length of 40 mm. A varied-line-spacing plane grating monochromator is employed tto cover the photon energy region of 20-600 eV by two gratings with nominal groove densities of 400 llmm and 1200 l/mm respectively. The energy resolution power E/ΔE is measured with a gas ionization chamber and the photon flux is measured by a photodiode. Results show that the resolution power is better than 10,000 at a photon energy of 29.2 eV. And the flux is higher than 1×1010 phs/s under 300 mA ring beam current for most of the covered photon energy.

  18. Applications of Synchrotron X-Rays in Microelectronics Industry Research

    SciTech Connect

    Jordan-Sweet, J.

    2005-01-10

    The high flux and density of x-rays produced at synchrotrons provide the microelectronics industry with a powerful probe of the structure and behavior of a wide array of solid materials that are being developed for use in devices of the future. They also are of great use in determining why currently-used materials and processes sometimes fail. This paper describes the X20 x-ray beamline facility operated by IBM at the National Synchrotron Light Source, and presents a series of three industry challenges and results that illustrate the variety of techniques used and problems addressed. The value of this research ranges from solving short-term, technically-specific problems to increasing our academic understanding of materials in general. Techniques discussed include high-resolution diffraction, time-resolved diffraction, texture measurements, and grazing-incidence diffraction.

  19. Future Synchrotron Radiation Sources

    SciTech Connect

    Winick, Herman

    2003-07-09

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, microfabrication, archaeometry and medical diagnostics. These rings span electron energies from a few hundred MeV to 8 GeV. Several facilities serve 2000 or more users on 30-60 simultaneously operational experimental stations. The largest rings are more than 1 km in circumference, cost about US$1B to build and have annual budgets of about US$100M. This growth is due to the remarkable properties of synchrotron radiation, including its high intensity, brightness and stability; wide spectral range extending from the infra-red to hard x-rays; variable polarization; pulsed time structure; and high vacuum environment. The ever-expanding user community and the increasing number of applications are fueling a continued growth in the number of facilities around the world. In the past few years new types of light sources have been proposed based on linear accelerators. Linac-based sources now being pursued include the free-electron laser (FEL) and energy recovery linac (ERL

  20. The tomography beamline ANATOMIX at Synchrotron SOLEIL

    NASA Astrophysics Data System (ADS)

    Weitkamp, T.; Scheel, M.; Giorgetta, JL; Joyet, V.; Le Roux, V.; Cauchon, G.; Moreno, T.; Polack, F.; Thompson, A.; Samama, JP

    2017-06-01

    ANATOMIX is a 200-m-long undulator beamline for full-field tomography techniques at photon energies from 5 to 25 keV. It is currently under construction at Synchrotron SOLEIL, the French national light source near Paris. ANATOMIX will feature experimental stations both for parallel-beam microtomography (with a beam of up to 40 mm width) and for zone-plate transmission X-ray microscopy (down to pixel sizes of 30 nm) in absorption and phase contrast. The location of ANATOMIX on a canted straight section of the SOLEIL storage ring implies specific challenges for the design and operation conditions of the beamline. In this paper we present general design aspects and the status of construction.

  1. Atomic pair distribution function at the Brazilian Synchrotron Light Laboratory: application to the Pb1-xLaxZr0.40Ti0.60O3 ferroelectric system.

    PubMed

    Saleta, M E; Eleotério, M; Mesquita, A; Mastelaro, V R; Granado, E

    2017-09-01

    This work reports the setting up of the X-ray diffraction and spectroscopy beamline at the Brazilian Synchrotron Light Laboratory for performing total scattering experiments to be analyzed by atomic pair distribution function (PDF) studies. The results of a PDF refinement for Al2O3 standard are presented and compared with data acquired at a beamline of the Advanced Photon Source, where it is common to perform this type of experiment. A preliminary characterization of the Pb1-xLaxZr0.40Ti0.60O3 ferroelectric system, with x = 0.11, 0.12 and 0.15, is also shown.

  2. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  3. GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research in GeoScience

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Sutton, S. R.; Prakapenka, V.; Wang, Y.; Newville, M.; Eng, P.; Dera, P. K.

    2009-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for geoscience research at Sector 13 of the Advanced Photon Source, Argonne National Laboratory. GSECARS provides the scientific community with access to high-brightness x-rays and supports a wide range of experimental techniques. The operation of the facility is funded by the NSF Earth Sciences Facilities and Instrumentation Program, and by the Department of Energy Geosciences Program. GSECARS is managed by the Consortium for Advanced Radiation Sources (CARS) at the University of Chicago, and provides access to resources for earth science research which no single university or other institution could provide. By operating beamlines that are specialized for earth science research, we are able to provide staff who understand and participate in the research being conducted, which is critical for productivity. GSECARS began operations in 1996, and currently operates 4 experimental stations, two on the bending magnet beamline and two on the undulator beamline. The two bending magnet stations operate independently and simultaneously, while the two undulator stations currently share the beam time. (An upgrade proposal has recently been funded by NSF, DOE and NASA to allow the undulator stations to also operate independently and simultaneously). The experimental techniques provided at the facility include: - Diamond Anvil Cell: Monochromatic diffraction and spectroscopy. Online laser heating is available on the undulator beamline, and external heating is available on the bending magnet beamline. - Multi-anvil Press: energy-dispersive and monochromatic diffraction and imaging. There is a 250 ton press on the bending magnet beamline, and a 1000 ton press on the undulator beamline; deformation experiments, acoustic velocity measurements, and computed tomography can all be performed in the press. - Microprobe: micro-XRF, micro-XAFS, fluorescence microCMT, micro-XRD - Microtomography: absorption and differential

  4. Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory

    SciTech Connect

    Edelstein, N.M.; Shuh, D.K.; Bucher, J.B.

    1995-04-01

    The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The {sup 237}Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination.

  5. Research at and Operation of the Materials Science Beamline (X-11) at the National Synchrotron Light Source. Final Report

    SciTech Connect

    Sayers, Dale E.

    2003-10-15

    This is the final report for DOE DE-FG02-89ER45384. An overview of the operational history and status of beamline X-11A at the end of the contract period, and a brief review of the core science program at NCSU and the scientific results of X-11A since the last progress report is also presented.

  6. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    SciTech Connect

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

  7. A 1200 element detector system for synchrotron-based coronary angiography

    SciTech Connect

    Thompson, A.C.; Lavender, W.M.; Rubenstein, E.; Giacomini, J.C.; Rosso, V.; Schulze, C.; Chapman, D.; Thomlinson, W.

    1993-08-23

    A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long {times} 11 mm high {times} 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. A Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.

  8. Infrared microspectroscopy with synchrotron radiation

    SciTech Connect

    Carr, G.L.; Williams, G.P.

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  9. Regenerative properties of collagenated porcine bone grafts in human maxilla: demonstrative study of the kinetics by synchrotron radiation microtomography and light microscopy.

    PubMed

    Giuliani, Alessandra; Iezzi, Giovanna; Mazzoni, Serena; Piattelli, Adriano; Perrotti, Vittoria; Barone, Antonio

    2017-06-02

    Recently, it has been reported that heterologous biomaterials, where the collagen matrix is preserved, seem to facilitate blood clotting and the subsequent invasion of repairing and regenerative cells. This study aimed at evaluating the healing of human extraction sockets grafted with a collagenated cortico-cancellous porcine bone (mp3®, OsteoBiol®, Tecnoss®, Giaveno, Italy) by synchrotron radiation X-ray microtomography (microCT) and histology in order to have a 3D quantitative characterization over time. Ridge preservation with porcine bone and collagen membrane was performed on 21 patients using a flapless approach and a secondary soft tissue closure. At the time of implant placement, six bone samples were harvested, two in the 3-month group, two in the 6-month group, one in the 12-month group post-surgery, and one spontaneously healed control, and evaluated by microCT and histology. MicroCT revealed that in the grafted sites there were a greater number of trabeculae, although they appeared thinner than in the control sites; these trabeculae homogenously filled the defects, suggesting an improved strength of the socket. Histology showed that over time, the amount of biomaterial decreased and the newly formed bone increased, while less dense bone with wider marrow spaces was detected in the control sample, supporting synchrotron findings. The morphometric data converge to indicate the suitability of porcine bone for the preservation of post-extraction sockets. The use of mp3 is encouraged to preserve and heal sockets.

  10. Elemental concentrations in skin of patients with fibroeptelial polip using synchrotron radiation total reflection x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Soares, Júlio C. A. C. R.; Anjos, Marcelino J.; Canellas, Catarine G. L.; Lopes, Ricardo T.

    2012-05-01

    In this work, the concentrations of trace elements were measured in acrochordon, a skin lesion also known as skin tag or fibroepithelial polyp, as well as in normal skin from the same patient. The samples were analyzed by Synchrotron Radiation Total Reflection X-ray Fluorescence (SRTXRF) in the Synchrotron Light National Laboratory (LNLS) in Campinas/São Paulo-Brazil. The collection of lesion and healthy skin samples, including papillary dermis and epidermis, has involved 17 patients. It was evaluated the presence of P, S, Cl, K, Ca, Fe, Cu and Zn in the paired samples, which were compared, and significant differences were found in some of them.

  11. A water-cooled mirror system for synchrotron radiation

    SciTech Connect

    DiGennaro, R.; Gee, B.; Guigli, J.; Hogrefe, H.; Howells, M.; Rarback, H.

    1987-06-01

    This paper describes the design and performance of a directly-cooled soft x-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance. Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T mini-undulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with peak absorbed power density of 520 W/cm/sup 2/. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. 11 refs., 8 figs.

  12. A water-cooled mirror system for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    DiGennaro, Richard; Gee, Bruce; Guigli, Jim; Hogrefe, Henning; Howells, Malcolm; Rarback, Harvey

    1988-04-01

    This paper describes the design and performance of a directly-cooled soft X-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance . Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T miniundulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with a peak absorbed power density of 520 W/cm 2. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract #DE-AC03-76SF00098.

  13. Symmetry and light stuffing of H o2T i2O7 , E r2T i2O7 , and Y b2T i2O7 characterized by synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.; Gaudet, Jonathan; Cava, R. J.

    2015-07-01

    The H o2T i2O7 , E r2T i2O7 , and Y b2T i2O7 pyrochlores were studied by synchrotron x-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group F d -3 m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from F d -3 m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and nonstoichiometric powders and a crushed floating zone crystal of H o2T i2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30 000 of the strongest x-ray diffraction peak. This indicates to high sensitivity that the space group of the crystal structure of these rare earth titanate pyrochlores is F d -3 m , and that, thus, the (002) peak observed in the neutron scattering experiments has a nonstructural origin. The cell parameters and internal strain for lightly stuffed H o2 +xT i2 -xO7 are also presented.

  14. National Term and Condition for Light Refreshments and Meals

    EPA Pesticide Factsheets

    Unless the event(s) are specified in the approved workplan, the recipient agrees to obtain prior approval from EPA for the use of grant funds for light refreshments and/or meals served at meetings, conferences, training workshops, and outreach activities.

  15. Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source

    SciTech Connect

    Barla, Alessandro; Nicolas, Josep; Cocco, Daniele; Valvidares, Secundino Manuel; Herrero-Martín, Javier; Gargiani, Pierluigi; Moldes, Jairo; Ruget, Claude; Pellegrin, Eric; Ferrer, Salvador

    2016-10-07

    The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X-ray absorption and scattering experiments using soft X-rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed-included-angle, variable-line-spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end-stations, one for X-ray magnetic circular dichroism and the other for resonant magnetic scattering. In conclusion, the commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.

  16. Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source

    DOE PAGES

    Barla, Alessandro; Nicolas, Josep; Cocco, Daniele; ...

    2016-10-07

    The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X-ray absorption and scattering experiments using soft X-rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed-included-angle, variable-line-spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end-stations, one for X-ray magnetic circular dichroism and the other for resonant magnetic scattering. In conclusion, the commissioning results show that the expected beamline performance ismore » achieved both in terms of energy resolution and of photon flux at the sample position.« less

  17. Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source

    SciTech Connect

    Barla, Alessandro; Nicolás, Josep; Cocco, Daniele; Valvidares, Secundino Manuel; Herrero-Martín, Javier; Gargiani, Pierluigi; Moldes, Jairo; Ruget, Claude; Pellegrin, Eric; Ferrer, Salvador

    2016-10-07

    The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X-ray absorption and scattering experiments using soft X-rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed-included-angle, variable-line-spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end-stations, one for X-ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.

  18. 3 GeV Booster Synchrotron Conceptual Design Report

    SciTech Connect

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  19. EBIS, an option for medical synchrotrons

    SciTech Connect

    Prelec, K.

    1993-12-31

    Light ion beams have been used for cancer therapy for about twenty years; several dedicated facilities are presently either planned or under construction. In addition, several synchrotrons designed for other purposes are now considered for medical applications as well. A medical synchrotron needs a preaccelerator to produce and inject a range of different light ions, preferably fully stripped, into the ring. The size, cost and complexity of the preaccelerator depend on the performance of its first element, the ion source, and these features will be optimized if the source itself produces fully stripped ions. An EBIS (Electron Beam Ion Source) is capable of producing fully stripped light ions up to argon with intensities sufficient for medical applications. As it has been pointed out in the past, this source option may require just one stage of preacceleration, an RFQ linac, thus making it very simple and compact. The AGS Department has a separate project already under way to develop a very high intensity EBIS for our nuclear physics program. It is, however, our plan first to construct and test an intermediate size device and then to proceed to the design of the final, full scale device. Parameters of that intermediate model are close to those that would be needed for a medical synchrotron. This paper describes the BNL program and considers parameters of EBIS devices for possible use in synchrotron facilities serving as sources of high energy light ions for cancer therapy.

  20. Residual Stress Analysis of Boronized AISI 1018 Steel by Synchrotron Radiation

    SciTech Connect

    Payne, J A; Petrova, R S; White, H J; Chauhan, A; Bai, Jianming

    2008-01-01

    AISI 1018 steel substrates were powder-pack, diffusion boronized at 850 C for 4 h, followed by air quenching. Optical microscopy in conjunction with color etching was used to obtain the average penetration depth of the iron monoboride layer (9 {micro}m) and the iron diboride layer (57 {micro}m). X-ray diffraction by synchrotron radiation, conducted at the National Synchrotron Light Source in Brookhaven National Laboratory, confirmed the presence of iron monoboride and iron diboride in the boronized plain steel substrates. The sin{sup 2} {Psi} technique was employed to calculate the residual stress found in the iron monoboride layer (-237 MPa) and in the substrate layer (-150 MPa) that is intertwined with the needle-like, iron diboride penetration.

  1. National Lighting Bureau Reports Dramatic Energy Savings Possible through Minor Lighting Modifications.

    ERIC Educational Resources Information Center

    College Store Journal, 1979

    1979-01-01

    Dramatic savings are possible by implementing minor modifications including: energy efficient light bulbs and tubes, ballasts, luminaires (fixtures), controls, operating practices, and revised maintenance. Many different changes can be made without affecting productivity, safety and security, visual comfort, aesthetic appeal, consumer discretion,…

  2. National Lighting Bureau Reports Dramatic Energy Savings Possible through Minor Lighting Modifications.

    ERIC Educational Resources Information Center

    College Store Journal, 1979

    1979-01-01

    Dramatic savings are possible by implementing minor modifications including: energy efficient light bulbs and tubes, ballasts, luminaires (fixtures), controls, operating practices, and revised maintenance. Many different changes can be made without affecting productivity, safety and security, visual comfort, aesthetic appeal, consumer discretion,…

  3. Melting-solidification transition of Zn nanoparticles embedded in SiO2: Observation by synchrotron x-ray and ultraviolet-visible-near-infrared light

    NASA Astrophysics Data System (ADS)

    Amekura, H.; Tanaka, M.; Katsuya, Y.; Yoshikawa, H.; Ohnuma, M.; Matsushita, Y.; Kobayashi, K.; Kishimoto, N.

    2010-11-01

    Melting-solidification transition of Zn nanoparticles (NPs) with the mean diameter of 11.5 nm, embedded in silica glass, was investigated by glancing incident x-ray diffraction (GIXRD) at high temperatures using synchrotron radiation (SR). With increasing temperature, 101Zn diffraction peak gradually decreases up to ˜360 °C and then steeply decreases. This is due to the melting of Zn NPs, which completes around 420 °C. With decreasing temperature, the solidification of the NPs begins around ˜310 °C. The temperature hysteresis with a width of ˜110 °C was observed. With temperature, the diffraction angle shows a shift without hysteresis, which is ascribed to thermal expansion of Zn NP lattice. Thermal expansion coefficient of Zn NPs was determined as 24.4×10-6 K-1 along the ⟨101⟩ direction. Optical absorption spectroscopy shows a broad ultraviolet (UV) peak which was observed at even higher temperatures than the melting temperature but shifts to the low-energy side with the melting. The energy shift in the UV peak also shows the temperature hysteresis which resembles with the melting-solidification hysteresis recorded by SR-GIXRD. The melting-solidification transition is also detectable by the optical absorption spectroscopy in the UV-visible-near-infrared region.

  4. Synchrotron light-based μCT to analyse the presence of dentinal microcracks post-rotary and reciprocating NiTi instrumentation.

    PubMed

    Pop, Ioana; Manoharan, Andiappan; Zanini, Franco; Tromba, Giuliana; Patel, Shanon; Foschi, Federico

    2015-01-01

    The purpose of this study was to determine in vitro using a synchrotron radiation-based μCT (SRCT) whether rotary and reciprocating nickel titanium (NiTi) instrumentations lead to the formation of dentine microcracks. Fourteen extracted human molars were obtained with ethical approval. Seven distobuccal roots of the maxillary molars and seven mesial roots of the mandibular molars were assigned to two experimental groups: (A) prepared with rotary Pro Taper instrumentation (n = 6) and (B) reciprocating WaveOne (n = 6). Irrigation with 1 % NaOCl and 17 % EDTA solutions was carried out. The remaining roots served as positive control with induced fractures (group C). SRCT was used to scan all samples pre and post-operatively. An imaging software was used to determine the number and length of microcracks. Statistical analyses weighed differences between pre and post-instrumentation and between shaping methods. A significant increase in the number and length of microcracks was detected post-shaping. No significant difference between rotary and reciprocating instrumentation was observed. Within the limitations of this in vitro study, an increased number and length of microcracks was induced by mechanical instrumentation. Reciprocating and rotary instrumentation are similar in terms of effect. Dentinal damage may occur following rotary and reciprocating instrumentation.

  5. Survey of surface roughness properties of synchrotron radiation optics

    SciTech Connect

    Takacs, P.Z.; Colbert, J.; Church, E.L.

    1986-03-01

    Measurements of surface roughness were made on a large number of grazing incidence mirrors delivered for use at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The measurements were made with a WYKO optical profiler using a 2.5X and a 10X objective and analyzed with our PROFILE code to generate an average periodogram representation for each surface. The data is presented in the form of representative profiles with all of the periodogram curves arranged according to figure type. Analysis of the periodograms allows one to compute bandwidth-limited values for RMS roughness and slope, to provide valuable feedback information to manufacturers regarding compliance with specifications, and to predict the performance of the optic at x-ray wavelengths.

  6. Observation of Multi-bunch Interference with Coherent Synchrotron Radiation

    SciTech Connect

    Billinghurst, B. E.; May, T.; Bergstrom, J.; DeJong, M.; Dallin, L.

    2010-02-03

    The observation of Multi-bunch interference with coherent synchrotron radiation at the Canadian Light Source is discussed along with the possibility that some of the spectral features are driven by the radiation impedance of the vacuum chamber.

  7. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  8. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    SciTech Connect

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab.

  9. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  10. A Classical Test Theory Analysis of the Light and Spectroscopy Concept Inventory National Study Data Set

    ERIC Educational Resources Information Center

    Schlingman, Wayne M.; Prather, Edward E.; Wallace, Colin S.; Brissenden, Gina; Rudolph, Alexander L.

    2012-01-01

    This paper is the first in a series of investigations into the data from the recent national study using the Light and Spectroscopy Concept Inventory (LSCI). In this paper, we use classical test theory to form a framework of results that will be used to evaluate individual item difficulties, item discriminations, and the overall reliability of the…

  11. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    SciTech Connect

    Wegner, P.; Hackel, L.; Feit, M.; Parham, T.; Kozlowski, M.; Whitman, P.

    2015-02-12

    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  12. Advanced light source

    NASA Astrophysics Data System (ADS)

    Sah, R. C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which was proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most of all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths.

  13. Synchrotron X-ray micro-tomography at the Advanced Light Source: Developments in high-temperature in-situ mechanical testing

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.

    2017-06-01

    At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.

  14. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  15. Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation.

    PubMed Central

    Moeller, K D; Williams, G P; Steinhauser, S; Hirschmugl, C; Smith, J C

    1992-01-01

    Using the National Synchrotron Light Source (NSLS) at Brookhaven far-infrared absorption in the frequency range 15-45 cm-1 was detected in samples of lysozyme at different hydrations and in water. The absorption is due to the presence of low-frequency (picosecond timescale) motion in the samples, such as are calculated in molecular dynamics simulations. The form of the transmission profile is temperature independent but varies significantly with the degree of hydration of the protein. At higher hydrations the profile resembles closely that of pure water in the region 20-45 cm-1. At a low hydration marked differences are seen with, in particular, the appearance of a transmission minimum at 19 cm-1. The possible origins of the hydration dependence are discussed. The results demonstrate the usefulness of long-wavelength synchrotron radiation for the characterisation of biologically-important low-frequency motions in protein samples. PMID:1540696

  16. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed.

  17. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    SciTech Connect

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  18. Multielemental analysis of samples from patients with dermatological pathologies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Soares, J. C. A. C. R.; Canellas, C. G. L.; Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Using synchrotron radiation total X-ray fluorescence (SRTXRF) technique, the concentrations of trace elements were measured in four skin lesions: seborrheic keratosis, fibroepithelial polyp, cherry angioma and dermatosis papulosa nigra. The concentrations of P, S, K, Ca, Fe, Cu, Zn and Rb were evaluated in 62 pairs of lesions and healthy samples, each one having been collected from the same patient. The results revealed significant differences of P, Ca, K, Fe and Cu levels as well as a common trend in their variations between lesion and control samples among the skin diseases. This study revealed a powerful tool that can be useful for skin disorders research. The measurements were conducted at Brazilian National Synchrotron Light Laboratory (LNLS).

  19. Characterization of the synchrotron-based 0.3-NA EUV microexposuretool at the ALS

    SciTech Connect

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik; Dean,Kim; Denham, Paul; Cain, Jason P.; Hoef, Brian; Jackson, Keith

    2005-06-01

    Synchrotron-based EUV exposure tools continue to play a crucial roll in the development of EUV lithography. Utilizing a programmable-pupil-fill illuminator, the 0.3-NA microexposure tool at Lawrence Berkeley National Laboratory's Advanced Light Source synchrotron radiation facility provides the highest resolution EUV projection printing capabilities available today. This makes it ideal for the characterization of advanced resist and mask processes. The Berkeley tool also serves as a good benchmarking platform for commercial implementations of 0.3-NA EUV microsteppers because its illuminator can be programmed to emulate the coherence conditions of the commercial tools. Here we present the latest resist and tool characterization results from the Berkeley EUV exposure station.

  20. Laboratory astrophysics with ion-beams: Cross sections for dielectronic recombination, photoionization and electron-impact ionization from heavy-ion storage-rings and synchrotron light-sources

    NASA Astrophysics Data System (ADS)

    Schippers, Stefan

    2010-03-01

    Laboratory experiments yield vitally needed benchmarks of atomic data for plasma modeling. An effort to provide rate coefficients for dielectronic recombination (DR) and electron impact ionization (EII) of highly charged atomic ions is being carried out at the Heidelberg heavy-ion storage ring TSRfootnotetextE. W. Schmidt et al., ApJL 641 (2006) L157; A&A 492 (2008) 265; M. Lestinsky et al., ApJ 698 (2009) 648 and references therein.. Popular compilations of DR data sometimes underestimate low-temperature DR rate coefficients by orders of magnitude as has already been suspected e.g. for Fe-M shell ions on the basis of the modeling of x-ray spectra from active galactic nucleifootnotetextH. Netzer, ApJ 604 (2004) 551; S. Kraemer et al., Apj 604 (2004) 556.. Even modern theoretical calculations often deviate strongly from our experimental results. This is due to the fundamental difficulty to calculate low-energy DR resonance positions of complex ions with sufficient accuracy. For these ions, storage-ring DR experiments are the only reliable source for low-temperature DR data. Astrophysically relevant results from storage-ring EII measurements and photon-ion experiments at synchrotron light sources will also be presented.

  1. Sirepo for Synchrotron Radiation Workshop

    SciTech Connect

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  2. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    achievable emittance in the synchrotron light sources for short bunches.

  3. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  4. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  5. National lighting product information program. Final technical report, October 1996--September 1997

    SciTech Connect

    Davis, R.G.

    1998-05-01

    The National Lighting Product Information Program (NLPIP) produces reports on specific lighting technologies and topics which enable energy end-users to better define and specify their lighting equipment needs. NLPIP was initiated in the fall of 1990 to provide an independent, objective source for performance information on lighting products. The mission statement adopted at the outset for the program and that continues to guide the program is: to rapidly provide the best information available on efficient lighting products. The sponsors to the program have continually required three primary criteria for NLPIP: the program must be objective, remaining free from any bis toward certain technologies or producers, it must be educational, helping the audience better understand the technologies and their applications, and it must provide manufacturer-specific performance information, differentiating NLPIP from other sources of lighting educational information. This mission statement and these criteria have guided the program throughout its existence. Information developed by NLPIP is published through the serials Specifier Reports, Specifier Reports Supplements, and Lighting Answers.

  6. Dynamics of synchrotron VUV-induced intracluster reactions

    SciTech Connect

    Grover, J.R.

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  7. Experiments in atomic and applied physics using synchrotron radiation

    SciTech Connect

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs.

  8. Orbit stability and feedback control in synchrotron radiation rings

    SciTech Connect

    Yu, L.H.

    1989-01-01

    Stability of the electron orbit is essential for the utilization of a low emittance storage ring as a high brightness radiation source. We discuss the development of the measurement and feedback control of the closed orbit, with emphasis on the activities as the National Synchrotron Light Source of BNL. We discuss the performance of the beam position detectors in use and under development: the PUE rf detector, split ion chamber detector, photo-emission detector, solid state detector, and the graphite detector. Depending on the specific experiments, different beamlines require different tolerances on the orbit motion. Corresponding to these different requirements, we discuss two approaches to closed orbit feedback: the global and local feedback systems. Then we describe a new scheme for the real time global feedback by implementing a feedback system based upon a harmonic analysis of both the orbit movements and the correction magnetic fields. 14 refs., 6 figs., 2 tabs.

  9. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  10. 6 GeV synchrotron x-ray source: Conceptual design report. Supplement B - conceptual design of proposed beam lines for the 6 GeV light source

    SciTech Connect

    1996-03-01

    In this document, preliminary conceptual designs are presented for ten sample beamlines for the 6 GeV Light Source. These beamlines will accommodate investigations in solid-state physics, materials science, materials technology, chemical technology, and biological and medical sciences. In future, the designs will be altered to include new developments in x-ray optics and hardware technologies. The research areas addressed by the samples beamlines are as follows: Topography and Radiography/Tomography (section 2); Inelastic Scattering with Ultrahigh Energy Resolution (Section 3); Surface and Bulk Studies Using High Momentum Resolution (Section 4); Inelastic Scattering from Charge and Spin (Section 5); Advanced X-Ray Photoelectron Spectroscopy Studies (Section 6); Small Angle X-Ray Scattering Studies (Section 7); General Purpose Scattering for Materials Studies (Section 8); Multiple-Energy Anomalous-Dispersion Studies of Proteins (Section 9); Protein Crystallography (Section 10); Time- and Space-resolved X-Ray Spectroscopy (Section 11); Medical Diagnostic Facility (Section 12); and Transuranium Research Facility (Section 13). The computer systems to be used on the beamlines are also discussed in Section 14 of this document.

  11. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    SciTech Connect

    Ajemian, Robert C.

    1995-01-01

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  12. Synchrotron radiation sources and research

    SciTech Connect

    Teng, L.C.

    1995-12-31

    This is an introduction and a review of Synchrotron Radiation sources and the research performed using synchrotron radiation. I will begin with a brief discussion of the two principal uses of particle storage rings: for colliding beams (Collider) and for synchrotron radiation (Radiator). Then I will concentrate on discussions of synchrotron radiation topics, starting with a historical account, followed by descriptions of the features of the storage ring and the features of the radiation from the simplest source -- the bending magnet. I will then discuss the special insertion device sources -- wigglers and undulators -- and their radiations, and end with a brief general account of the research and other applications of synchrotron radiation.

  13. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  14. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  15. Synchrotron powered FT-IR microspectroscopy enhances spatial resolution for probing and mapping of plant materials

    SciTech Connect

    Wetzel, David L.; Sweat, Joseph A.; Panzer, Dia D.

    1998-06-01

    Cross sections of grain kernels, leaves, other plant material, and their products have been examined routinely in our own laboratory with an integrated FT-IR microspectrometer equipped with a conventional (thermal) globar source. With plant material, scattering is often a problem. Representative (low density) mapping requires interpolation between spots on the tissue actually interrogated. High density (100%) mapping with a small pixel size is typically painstakingly done and requires coaddition of many scans. With the synchrotron source (National Synchrotron Light Source, Beamline U2B) of the U.S. Department of Energy's Brookhaven National Laboratory, Upton, New York, nearly all of these problems are solved. Low thermal noise and brightness of the beam provide high S/N. The non-divergence of the synchrotron microbeam allows the high S/N to be retained even with aperturing of 6 {mu}m or 12 {mu}m sizes. Diffraction influences the practical limit. Step sizes corresponding to the small aperture dimension reveal highly localized chemical differences between adjacent pixels of a tissue specimen.

  16. Synchrotron powered FT-IR microspectroscopy enhances spatial resolution for probing and mapping of plant materials

    SciTech Connect

    Wetzel, D.L.; Sweat, J.A.; Panzer, D.D.

    1998-06-01

    Cross sections of grain kernels, leaves, other plant material, and their products have been examined routinely in our own laboratory with an integrated FT-IR microspectrometer equipped with a conventional (thermal) globar source. With plant material, scattering is often a problem. Representative (low density) mapping requires interpolation between spots on the tissue actually interrogated. High density (100{percent}) mapping with a small pixel size is typically painstakingly done and requires coaddition of many scans. With the synchrotron source (National Synchrotron Light Source, Beamline U2B) of the U.S. Department of Energy{close_quote}s Brookhaven National Laboratory, Upton, New York, nearly all of these problems are solved. Low thermal noise and brightness of the beam provide high S/N. The non-divergence of the synchrotron microbeam allows the high S/N to be retained even with aperturing of 6 {mu}m or 12 {mu}m sizes. Diffraction influences the practical limit. Step sizes corresponding to the small aperture dimension reveal highly localized chemical differences between adjacent pixels of a tissue specimen. {copyright} {ital 1998 American Institute of Physics.}

  17. Determination of the occurrence of gold in an unoxidized Carlin-type ore sample using synchrotron radiation

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Bagby, W.C.; Rivers, M.L.; Sutton, S.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.

    1987-01-01

    The occurrence of the so-called invisible gold in two unoxidized Carlin-type gold samples from Nevada has been determined using synchrotron X-ray fluorescence (SXRF) analysis at the National Synchrotron Light Source, Brookhaven National Laboratory. A bedded sample from the East ore zone of the Carlin deposit and a breccia sample from Horse Canyon were analyzed. Preliminary results show that gold is found only in the Horse Canyon breccia sample. Experimental details including other X-ray line and diffraction peak interferences, standards used, and minimum detection limits (MDLs) are discussed. Gold, with a MDL range of 0.8 to 3 ppm, was not detected in euhedral pyrite crystals except in the interior porous portion of one grain. Gold was detected in some parts of the matrix. The phase which contains gold has not yet been identified. The highest content of gold so far analyzed is about 40 ppm. There are interesting implications of these new findings. ?? 1987.

  18. Role of Synchrotron infra red microspectroscopy in studying epidermotropism of cutaneous T-cell lymphoma

    SciTech Connect

    El Bedewi, A.; El Anany, G; El Mofty, M

    2010-01-01

    The molecular mechanisms of epidermotropism in mycosis fungoides (MF) are not well understood to date. The aim of this study was to differentiate between epidermal and dermal lymphocytes within the skin of MF patients. This study was done on 10 MF patients with a mean age of 50 years diagnosed clinically in the Department of Dermatology, Cairo University, Egypt. A 6 mm biopsy was taken from each patient in order to confirm the diagnosis. Skin biopsies were cut, put on low e-slides and then stained with H&E. Further examination with Synchrotron infrared (IR) microspectroscopy was done in National Synchrotron Light Source - Brookhaven National Laboratory, New York, USA. Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was also done. Statistical analysis was done by Student's t-test and cluster analysis. Both epidermal and dermal lymphocytes were clustered separately. Also, Amide I and RNA and DNA within the lymphocytes were significantly different between the epidermis and the dermis. The biochemical analysis of protein, RNA and DNA with Synchrotron IR microspectroscopy is a promising tool for studying epidermotropism in cutaneous T-cell lymphoma.

  19. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  20. Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.

    PubMed

    Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni

    2017-02-23

    The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.

  1. Radiometry using synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Saloman, E. B.; Ebner, S. C.; Hughey, L. R.

    1981-01-01

    It is possible to use synchrotron radiation from electron synchrotrons and electron storage rings as an absolute source, especially in the VUV and soft X-ray regions where other standards are difficult to find. At the NBS, an electron storage ring (SURF-II) has been used to calibrate spectrometers and photometers utilized in solar and aeronomy research and in fusion plasma diagnostics. The radiation incident on these spectrometers can be calculated to uncertainties of 3%, and a technique to exactly determine the number of electrons orbiting in the ring is currently being developed to reduce this uncertainty. Detector calibrations between 5 and 55 nm are routinely performed at SURF-II and transfer standard detectors with 6-10% uncertainties over the range 5-254 nm are supplied.

  2. Progress on the prevention of stray light and diffraction effects on the Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Prasit, Apirat; Leckngam, Apichat; Lépine, Thierry; Poshyajinda, Saran; Soonthornthum, Boonrucksar; Irawati, Puji; Richichi, Andrea; Sawangwit, Utane; Dhillon, Vik; Hardy, Liam K.

    2015-09-01

    The 2.4-m Thai National Telescope (TNT) is the main facility of the Thai National Observatory located on the Doi Inthanon, Thailand's highest mountain. The first astronomical images obtained at the TNT suffered from diffraction and stray light problems: bright spikes spread from bright stellar images over few arcminutes in the focal plane, and the images taken during observations in bright moon conditions were contaminated by high levels of stray light. We performed targeted investigations to identify the origin of these problems. In a first time, these investigations consisted of analyzing the irradiance distribution of defocused stellar images and of identifying the contributors. We concluded that these bright spikes around the bright stellar images were due to the chamfer and the wavefront error at the mirror edge. We thus installed an annular mask along the edge of the primary mirror that fully suppressed these spikes and we quantified the improvement by observing the double star Sirius. In a second time, we identified the contributors to the stray light by placing a pinhole camera at the TNT focal plane. Then, we designed a new baffle to improve the stray light rejection. The final design of the baffle comprises 21 diaphragms, is painted with an ordinary black paint and was designed, developed and installed on the TNT in less than 8 months. We assessed the improvement on the performance by measuring the variation of the stray light signal before and after installing the baffle in the telescope structure. These steps significantly improved the image quality and enhanced the rejection of the stray light at the focal plane level. In this paper, we present our investigations, we describe the method used to design the TNT baffle, and we present the improvement in quantitative terms.

  3. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  4. Direct-Drive Green Light Designs for the National Ignition Facility.

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Kruer, W. L.; Marinak, M. M.; Perkins, L. J.; Suter, L. J.; Tabak, M.

    2003-10-01

    The baseline direct-drive ignition design for the National Ignition Facility (NIF) is driven by a 1.5MJ shaped ultra-violet (λ = 0.35 μm) laser pulse [1]. In order to produce this wavelength light the 1-μm NIF laser is frequency tripled with a consequent reduction in on-target laser energy. Recent work suggests that the NIF might deliver 3.0 to 4.0 MJ of frequency doubled (λ = 0.53 μm) light, which has motivated this design study. We have developed a green-light direct-drive ignition design. We will present results from Hydra [2] simulations of this design and compare them to the baseline design, in particular the hydrodynamic efficiency, and stability and the sensitivity to laser-plasma instability will be described. The implications for inertial fusion energy production will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract W-7405-ENG-48. [1] C. P. Verdon, Bull. Am. Phys. Soc. 38, 2010 (1993). [2] M. M. Marinak et al., Phys. Plasmas 5, 1125 (1998).

  5. Design of the KHIMA synchrotron

    NASA Astrophysics Data System (ADS)

    Yim, Heejoong; An, Dong Hyun; Hahn, Garam; Park, Chawon; Kim, Geun-Beom

    2015-10-01

    The Korea Heavy Ion Medical Accelerator project (KHIMA) has been proposed as an ion-beam synchrotron facility for cancer therapy. The facility will be installed at Gijang, Busan with completion in 2017. The proposed maximum energy of the ions is 430 MeV/u (for carbon) to cover various tumor depths up to 30 cm. For the synchrotron design, we optimized the lattice configuration to fit the therapy. We discuss here the status of the synchrotron's design.

  6. A dedicated infrared synchrotron ring at the ALS

    NASA Astrophysics Data System (ADS)

    Barry, W.; Biocca, A.; Byrd, J. M.; Byrne, W.; Kwiatkowski, S.; Martin, Michael C.; McKinney, Wayne R.; Nishimura, H.; Sannibale, F.; Steier, C.; Rex, K.; Robin, D.; Stover, G.; Thur, W.; Wu, Y.

    2002-03-01

    We present preliminary plans for a storage ring dedicated to and optimized for the production of synchrotron radiation over the infrared wavelength range from 1 micron to > 1 mm. The site for the 66 m circumference ring is atop the existing ALS booster synchrotron shielding. This area provides enough floor space for both the ring and beamlines, and hutches. We plan to operate the ring in two modes: as a conventional light source and as a superradiant source in the far-IR. In the conventional mode, our design allows greater transmission of light in the far-infrared than typical light sources, and significantly improves beam stability. In the superradiant mode, we hope to achieve very intense coherent emission of synchrotron radiation over the 0.2 - 10 mm wavelength range by shortening the electron bunches. This mode will generate much higher flux & brightness than conventional far-IR and coherent THz sources.

  7. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  8. Synchrotron masers and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.

    2017-02-01

    Fast radio bursts, with a typical duration of 1 ms and 1 Jy flux density at gigahertz frequencies, have brightness temperatures exceeding 1033 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Maser emission is a possibility. Under certain conditions, the synchrotron-stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light-crossing time limits, since there is no simple relation between the actual size of the source and the observed variability time-scale.

  9. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  10. On the implementation of computed laminography using synchrotron radiation

    SciTech Connect

    Helfen, L.; Pernot, P.; Elyyan, M.; Myagotin, A.; Mikulik, P.; Voropaev, A.; Di Michiel, M.; Baruchel, J.; Baumbach, T.

    2011-06-15

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  11. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  12. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  13. Synchrotrons for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Pullia, Marco G.

    Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.

  14. Evaluation of assumptions for estimating chemical light extinction at U.S. national parks.

    PubMed

    Lowenthal, Douglas; Zielinska, Barbara; Samburova, Vera; Collins, Don; Taylor, Nathan; Kumar, Naresh

    2015-03-01

    Studies were conducted at Great Smoky Mountains National Park (NP) (GRSM), Tennessee, Mount Rainier NP (MORA), Washington, and Acadia NP (ACAD), Maine, to evaluate assumptions used to estimate aerosol light extinction from chemical composition. The revised IMPROVE equation calculates light scattering from concentrations of PM2.5 sulfates, nitrates, organic carbon mass (OM), and soil. Organics are assumed to be nonhygroscopic. Organic carbon (OC) is converted to OM with a multiplier of 1.8. Experiments were conducted to evaluate assumptions on aerosol hydration state, the OM/OC ratio, OM hygroscopicity, and mass scattering efficiencies. Sulfates were neutralized by ammonium during winter at GRSM (W, winter) and at MORA during summer but were acidic at ACAD and GRSM (S, summer) during summer. Hygroscopic growth was mostly smooth and continuous, rarely exhibiting hysteresis. Deliquescence was not observed except infrequently during winter at GRSM (W). Water-soluble organic carbon (WSOC) was separated from bulk OC with solid-phase absorbents. The average OM/OC ratios were 2.0, 2.7, 2.1, and 2.2 at GRSM (S), GRSM (W), MORA, and ACAD, respectively. Hygroscopic growth factors (GF) at relative humidity (RH) 90% for aerosols generated from WSOC extracts averaged 1.19, 1.06, 1.13, and 1.16 at GRSM (S), GRSM (W), MORA, and ACAD, respectively. Thus, the assumption that OM is not hygroscopic may lead to underestimation of its contribution to light scattering. Studies at IMPROVE sites conducted in U.S. national parks showed that aerosol organics comprise more PM2.5 mass and absorb more water as a function of relative humidity than is currently assumed by the IMPROVE equation for calculating chemical light extinction. Future strategies for reducing regional haze may therefore need to focus more heavily on understanding the origins and control of anthropogenic sources of organic aerosols.

  15. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network

    PubMed Central

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-01-01

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466

  16. Synchrotron Studies Under Extreme Conditions: Tackling the Multi-Phase with the Multi-Anvil

    NASA Astrophysics Data System (ADS)

    Whitaker, M. L.; Chen, H.; Vaughan, M. T.; Weidner, D. J.

    2012-12-01

    Understanding the properties and behaviors of materials and multi-phase aggregates under conditions of high pressure and temperature are vital to unraveling the mysteries that lie beneath the surface of the planet. Advances in in situ experimental techniques utilizing synchrotron radiation at these extreme conditions have helped to provide answers to many fundamental questions that were previously unattainable. In particular, the Multi-Anvil apparatus has proven to be an invaluable tool for studying the morphological characteristics and physical properties of materials under extreme conditions as a function of pressure, temperature, stress, strain, and time. Moreover, the science is still continuing to evolve, and we have begun to step outside the realm of the static into the study of dynamic processes and their real-time responses to changes in the aforementioned variables, and even to the frequency and rate of these changes. This presentation will discuss the evolution and present state of the art in synchrotron-based multi-anvil techniques at the COMPRES-funded X17MAC Facility at the National Synchrotron Light Source, of which Professor R.C. Liebermann has been an integral player during his scientific career, and particularly during his tenure as President of COMPRES.

  17. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.

    PubMed

    Lynch, Patrick T; Troy, Tyler P; Ahmed, Musahid; Tranter, Robert S

    2015-02-17

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T5 < 1700 K, 3 < P5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques.

  18. Mass-analyzed threshold ionization (MATI) spectroscopy of atoms and molecules using VUV synchrotron radiation.

    PubMed

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R; Ahmed, Musahid

    2009-12-31

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N(2), O(2), N(2)O, H(2)O, C(2)H(2), and C(6)H(6). MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N(2) and O(2) are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  19. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules using VUV Synchrotron Radiation

    SciTech Connect

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-01-28

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly-formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric-field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational stateresolved MATI spectra of N2 and O2 are reported and spectral characteristics are discussed in comparison with previously-reported threshold photoelectron spectroscopic studies. While MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser based sources, this work demonstrates that MATI spectroscopy performed with widely tunable VUV radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  20. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules Using VUV Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N2 and O2 are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  1. Progress in the development of two-dimensional multiwire detectors for X-ray synchrotron radiation experiments

    SciTech Connect

    Smith, G.C.; Yu, B.; Capel, M.

    1993-06-01

    A report is presented of the developments in two-dimensional, multiwire detectors for X-ray synchrotron radiation experiments, using delay line position readout. Advances have been made in methods of cathode design and fabrication, a description is given of the trade-off between position resolution and count rate capability, and the importance of low dead-time TDCs is illustrated. A detector has been operating successfully for well over a year at the time resolved, scattering station of the National Synchrotron Light Source; results are presented from this which illustrate the very good resolution (100 {mu}m FWHM), differential non-linearity ({plus_minus}4%) and absolute position stability of these devices, and the importance of low differential non-linearity for these types of experiment.

  2. GEO light imaging national testbed (GLINT) heliostat design and testing status

    NASA Astrophysics Data System (ADS)

    Thornton, Marcia A.; Oldenettel, Jerry R.; Hult, Dane W.; Koski, Katrina; Depue, Tracy; Cuellar, Edward L.; Balfour, Jim; Roof, Morey; Yarger, Fred W.; Newlin, Greg; Ramzel, Lee; Buchanan, Peter; Mariam, Fesseha G.; Scotese, Lee

    2002-01-01

    The GEO Light Imaging National Testbed (GLINT) will use three laser beams producing simultaneous interference fringes to illuminate satellites in geosynchronous earth orbit (GEO). The reflected returns will be recorded using a large 4,000 m2 'light bucket' receiver. This imaging methodology is termed Fourier Telescopy. A major component of the 'light bucket' will be an array of 40 - 80 heliostats. Each heliostat will have a mirrored surface area of 100 m2 mounted on a rigid truss structure which is supported by an A-frame. The truss structure attaches to the torque tube elevation drive and the A-frame structure rests on an azimuth ring that could provide nearly full coverage of the sky. The heliostat is designed to operate in 15 mph winds with jitter of less than 500 microradians peak-to- peak. One objective of the design was to minimize receiver cost to the maximum extent possible while maintaining GLINT system performance specifications. The mechanical structure weights approximately seven tons and is a simple fabricated steel framework. A prototype heliostat has been assembled at Stallion Range Center, White Sands Missile Range, New Mexico and is being tested under a variety of weather and operational conditions. The preliminary results of that testing will be presented as well as some finite element model analyses that were performed to predict the performance of the structure.

  3. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  4. Laser Synchrotron Source (LSS)

    NASA Astrophysics Data System (ADS)

    Sprangle, Philip; Ting, Antonio; Esarey, Eric; Fisher, Amon; Mourou, Gerald

    1993-02-01

    The Laser Synchrotron Source (LSS) utilizes a high peak power or high average power laser to generate within a vacuum chamber a laser beam travelling in one direction to interact with an electron beam traveling in an opposite direction in order to generate high-power x-rays. A ring resonator formed by a plurality of mirrors directs the laser beam in a closed loop to impact with the electron beam to produce x-rays. Concave mirrors in the ring resonator focus the laser beam upon the point where the laser beam interacts with the electron beam to intensify the laser energy at that point. When a Radio Frequency Linear Accelerator (RF linac) is used to produce the electron beam, x-rays having a short pulse length are generated. When a betatron is used as an electron source, x-rays having a long pulse length are generated.

  5. Transfiguration of extracting mirror in synchrotron radiation system at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, GuoQing; Zhou, WeiMin; Ye, KaiRong; Leng, YongBin

    2011-12-01

    The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.

  6. Transverse beam profile reconstruction using synchrotron radiation interferometry

    NASA Astrophysics Data System (ADS)

    Torino, L.; Iriso, U.

    2016-12-01

    Transverse beam size measurements in new generation of synchrotron light sources is a challenging task due to their characteristic small beam emittances and low couplings. Since the late 1990s, synchrotron radiation interferometry (SRI) has been used in many accelerators to measure the beam size through the analysis of the spatial coherence of the synchrotron light. However, the standard SRI using a double-aperture system provides the beam size projection in a given direction. For this reason, the beam shape is not fully characterized because information about possible transverse beam tilts is not determined. In this report, we describe a technique to fully reconstruct the transverse beam profile based on a rotating double-pinhole mask, together with experimental results obtained at ALBA under different beam couplings. We also discuss how this method allows us to infer ultrasmall beam sizes in case of limitations of the standard SRI.

  7. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  8. Synchrotron emission in air

    NASA Astrophysics Data System (ADS)

    Rafat, M. Z.; Melrose, D. B.

    2015-05-01

    A conventional astrophysical treatment of synchrotron emission is modified to include the refractive index of air, written as n = 1 + 1/(2γ 02), with γ0 ≫ 1. The angular distribution of emission by an electron with Lorentz factor γ is broadened, from a range of |θ - α| ≈ 1/γ in vacuo (θ = emission angle, α = pitch angle) to |θ - α| ≈ max{1/γ, 1/γ0} in air. The emission spectrum in air is almost unchanged from that in vacuo at sufficiently low frequencies and it is modified by extending to higher frequencies with increasing γ/γ0 < 1, and to arbitrarily high frequencies for γ/γ0 ≥ 1. We estimate the frequency at which this enhancement starts, and show that it decreases with increasing γ/γ0 > 1. We interpret the enhanced high-frequency emission as Cerenkov-like, and attribute it to the formation of caustic surfaces that sweep across the observer; we use a geometric model based on Huygens construction to support this interpretation. The geometric model predicts that the so-called Cerenkov ring present at high frequencies may be circular, elliptical, or crescent shaped. In the astrophysical treatment of synchrotron emission, the dependence on azimuthal angle is lost in the expression for emissivity. A motivation for this investigation is the application to extensive air showers, and for this purpose the loss of azimuthal dependence is a limitation. We comment on methods to overcome this limitation. We show that when an observer can see emission from inside the Cerenkov cone, emission from outside the Cerenkov cone, on either side of it, arrives simultaneously; there are three emission times for a given observation time.

  9. Spatial Coherence of Synchrotron Radiation

    SciTech Connect

    Marchesini, S; Coisson, R

    2003-10-30

    Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

  10. Coherent Synchrotron Radiation in Storage Rings

    SciTech Connect

    Venturini, Marco

    2002-12-05

    We take a detour from the main theme of this volume and present a discussion of coherent synchrotron radiation (CSR) in the context of storage rings rather than single-pass systems. Interest in this topic has been revived by a series of measurements carried out at several light source facilities. There is strong evidence that the observed coherent signal is accompanied by a beam instability, possibly driven by CSR itself. In this paper we review a ''self-consistent'' model of longitudinal beam dynamics in which CSR is the only agent of collective forces. The model yields numerical solutions that appear to reproduce the main features of the observations.

  11. The importance of the belief that "light" cigarettes are smoother in misperceptions of the harmfulness of "light" cigarettes in the Republic of Korea: a nationally representative cohort study.

    PubMed

    Green, Annika C; Fong, Geoffrey T; Borland, Ron; Quah, Anne C K; Seo, Hong Gwan; Kim, Yeol; Elton-Marshall, Tara

    2015-11-07

    A number of countries have banned misleading cigarette descriptors such as "light" and "low-tar" as called for by the WHO Framework Convention on Tobacco Control. These laws, however, do not address the underlying cigarette design elements that contribute to misperceptions about harm. This is the first study to examine beliefs about "light" cigarettes among Korean smokers, and the first to identify factors related to cigarette design that are associated with the belief that "light" cigarettes are less harmful. We analysed data from Wave 3 of the ITC Korea Survey, a telephone survey of a nationally representative sample of 1,753 adult smokers, conducted October - December 2010. A multinomial logistic regression was used to examine which factors were associated with the belief that "light" cigarettes are less harmful than regular cigarettes. One quarter (25.0 %) of smokers believed that "light" cigarettes are less harmful than regular cigarettes, 25.8 % believed that smokers of "light" brands take in less tar, and 15.5 % held both of these beliefs. By far the strongest predictor of the erroneous belief that "light" cigarettes are less harmful was the belief that "light" cigarettes are smoother on the throat and chest (p < 0.001, OR = 44.8, 95 % CI 23.6-84.9). The strong association between the belief that "light" cigarettes are smoother on the throat and chest and the belief that "light" cigarettes are less harmful, which is consistent with previous research, provides further evidence of the need to not only ban "light" descriptors, but also prohibit cigarette design and packaging features that contribute to the perception of smoothness.

  12. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  13. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing thismore » dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  14. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamlinefor photoelectron spectro-microscopies

    SciTech Connect

    Reininger R.; Hulbert L.; Johnson P.D.; Sadowski, J.T.; Starr, D.E.; Chubar, O.; Valla, T.; Vescovo, E.

    2012-02-13

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({micro}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {micro}m for ARPES and 0.5 {micro}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  15. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies

    SciTech Connect

    Reininger, R.; Hulbert, S. L.; Chubar, O.; Vescovo, E.; Johnson, P. D.; Valla, T.; Sadowski, J. T.; Starr, D. E.

    2012-02-15

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({mu}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {mu}m for ARPES and 0.5 {mu}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  16. (Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

  17. [Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report

    SciTech Connect

    Not Available

    1992-08-01

    This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

  18. Synchrotron-Radiation-based Investigationsof the Electronic Structure of Pu

    SciTech Connect

    Tobin, J; Chung, B; Terry, J; Schulze, R; Farr, J; Heinzelman, K; Rotenberg, E; Shuh, D

    2004-09-27

    Synchrotron radiation from the Advanced Light Source has been used to investigate the electronic structure of {alpha}-Pu and {delta}-Pu. Measurements include core level and valence band photoelectron spectroscopy, Resonant Photoelectron Spectroscopy (REPES), and X-ray Absorption Spectroscopy (XAS).

  19. Synchrotron Radiation Spectroscopy and Chemical Evolution of Biomolecules

    SciTech Connect

    Nakagawa, Kazumichi

    2007-03-30

    Owing to its continuous energy distribution and strong output, synchrotron radiation is a powerful tool to study spectroscopic nature and photochemical reaction of biomolecules. Here we report recent achievement in our trial to examine the chemical evolution of amino acids induced by ultraviolet light and soft X-ray in universe.

  20. SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline.

    PubMed

    Baud, A; Aymé, L; Gonnet, F; Salard, I; Gohon, Y; Jolivet, P; Brodolin, K; Da Silva, P; Giuliani, A; Sclavi, B; Chardot, T; Mercère, P; Roblin, P; Daniel, R

    2017-05-01

    Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of

  1. Development of partially-coherent wavefront propagation simulation methods for 3rd and 4th generation synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Fluerasu, Andrei; Hulbert, Steve; Idir, Mourad; Kaznatcheev, Konstantine; Shapiro, David; Shen, Qun; Baltser, Jana

    2011-09-01

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using "Synchrotron Radiation Workshop" (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.

  2. Complete time-resolved polarimetry of scattered light at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Turnbull, David; Ayers, Shannon; Bell, Perry; Chow, Robert; Frieders, Gene; Hibbard, Robin L.; Michel, Pierre; Ralph, Joseph E.; Ross, James S.; Stanley, Joel R.; Vickers, James L.; Zeid, Ziad M.; Moody, John D.

    2015-08-01

    The 3ω scattered light polarimetry diagnostic in the 30° incidence cone backscatter diagnostic at the National Ignition Facility (NIF) is being upgraded to measure the full time-resolved Stokes vector. Previously, the diagnostic had a single channel capable of diagnosing the time-integrated balance of the horizontal and vertical polarizations. Two additional channels were added - one that measures the balance of the 45° and 135° projections, and another that measures the right- and left-circular polarizations - and together the three complete the Stokes vector measurement. A division-of-aperture scheme is employed in which three nearby portions of the near field are sampled simultaneously. Time resolution is obtained by relaying an image of the measured regions onto a set of fibers coupled to diodes. The new diagnostic will be capable of measuring scattered light signals <≍ .1GW with ≍ 120ps time resolution. This will allow more rigorous evaluation of earlier indications that backscatter polarization can serve as a quantitative diagnostic of crossed-beam energy transfer in indirect-drive inertial confinement fusion experiments. It will also be used to diagnose Faraday rotation induced by magnetic fields in collisionless shock and turbulent dynamo experiments later this year.

  3. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  4. Single-bunch synchrotron shutter

    SciTech Connect

    Norris, J.R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, M.

    1991-12-31

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4 {times} {pi} {times} r {times} such that a single pulse is selected for transmission through an open position of the shutter.

  5. Cataclysmic Variables as Synchrotron Sources?

    SciTech Connect

    Harrison, Thomas E.

    2008-05-23

    Evidence is mounting that cataclysmic variables are weak sources of synchrotron emission. If true, it demonstrates that accretion powered interacting binaries produce such emission whether their primaries are white dwarfs, neutron stars, or black holes.

  6. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  7. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  8. Monochromatic computed tomography of the human brain using synchrotron x rays: Technical feasibility

    SciTech Connect

    Nachaliel, E.; Dilmanian, F.A.; Garrett, R.F.; Thomlinson, W.C.; Chapman, L.D.; Gmuer, N.F.; Lazarz, N.M.; Moulin, H.R.; Rivers, M.L.; Rarback, H.; Stefan, P.M.; Spanne, P.; Luke, P.N.; Pehl, R.; Thompson, A.C.; Miller, M.

    1991-12-31

    A monochromatic computed tomography (CT) scanner is being developed at the X17 superconducting wiggler beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, to image the human head and neck. The system configuration is one of a horizontal fan beam and an upright seated rotating subject. The purpose of the project are to demonstrate improvement in the image contrast and in the image quantitative accuracy that can be obtained in monochromatic CT and to apply the system to specific clinical research programs in neuroradiology. This paper describes the first phantom studies carried out with a prototype system, using the dual photon absorptiometry (DPA) method at energies of 20 and 39 Kev. The results show that improvements in image contrast and quantitative accuracy are possible with monochromatic DPA CT. Estimates of the clinical performance of the planned CT system are made on the basis of these initial results.

  9. In-situ Structural Studies during PBO Fiber Spinning by Synchrotron WAXD/SAXS

    NASA Astrophysics Data System (ADS)

    Ran, Shaofeng; Burger, Christian; Fang, Dufei; Zong, Xinhua; Cruz, Sharon; Hsiao, Benjamin; Chu, Benjamin; Bubeck, Robert; Yabuki, Kazuyuki; Teramoto, Yoshihiko; Martin, David; Johnson, Michael; Cunniff, Philip

    2001-03-01

    A spinning unit was adapted to the Advanced Polymers Beamline at X27C of the National Synchrotron Light Source (NSLS), Brookhaven National Lab (BNL) to perform in-situ fiber spinning studies. WAXD patterns indicated that the structure before coagulation had a lyotropic liquid-crystalline order that cannot be simply nematic. After the fiber had passed through the coagulation water bath, ranging from 25-60 C, a significant ordering had taken place. The meridian peaks showed streaks. Two models, a Pi-interacting sanidic lyotropic solution and a crystal with translational disorder, could be used to explain the structures before and after coagulation. SAXS patterns of the PBO fiber after coagulation showed equatorial streaks.

  10. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  11. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  12. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  13. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  14. Synchrotron topography project. Progress report, January 20, 1982-October 20, 1982

    SciTech Connect

    Bilello, J.C.; Chen, H.; Hmelo, A.B.; Liu, J.M.; Birnbaum, H.K.; Herley, P.J.; Green, R.E. Jr.

    1982-01-01

    The collaborators have participated in the Synchrotron Topography Project (STP) which has designed and developed instrumentation for an x-ray topography station at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The two principle instruments constructed consist of a White Beam Camera (WBC) and a Multiple Crystal Camera (MCC) with high planar collimation and wide area image coverage. It is possible to perform in-situ studies in a versatile environmental chamber equipped with a miniature mechanical testing stage for both the WBC and MCC systems. Real-time video imaging plus a rapid feed cassette holder for high resolution photographic plates are available for recording topographs. Provisions are made for other types of photon detection as well as spectroscopy. The facilities for the entire station have been designed for remote operation using a LSI-11/23 plus suitable interfacing. These instruments will be described briefly and the current status of the program will be reviewed. The Appendix of this report presents titles, authors and abstracts of other technical work associated with this project during the current period.

  15. Fluorescence dynamics of biological systems using synchrotron radiation

    SciTech Connect

    Gratton, E.; Mantulin, W.W.; Weber, G.; Royer, C.A.; Jameson, D.M.; Reininger, R.; Hansen, R.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes that can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}

  16. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  17. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  18. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    PubMed Central

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-01-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source. PMID:28181544

  19. Thermal imaging of synchrotron beams on silicon crystals

    SciTech Connect

    Smither, R.K.

    1992-06-01

    Advanced Photon source, a next generation synchrotron source, currently under construction at Argonne National Laboratory, will deliver large thermal loads of 1 to 10 kW to the first optical elements (usually a silicon crystal) in the synchrotron, x-ray beam lines. The first optical elements will distort and attenuate the x-ray beam if they are not extremely well cooled. An infrared camera is used to monitor the temperature distribution of the these first optical elements. This measurement is complicated because the silicon crystal is transparent to the infrared radiation and requires a special approach to the analysis of the data to get a meaningful temperature for the crystal.

  20. Spin echo in synchrotrons

    NASA Astrophysics Data System (ADS)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  1. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  2. Bystander Effects During Synchrotron Imaging Procedures?

    SciTech Connect

    Schueltke, Elisabeth; Nikkhah, Guido; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean

    2010-07-23

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP.Materials and Methods: Culture flasks containing either gold-loaded or naieve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source.Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  3. Bystander Effects During Synchrotron Imaging Procedures?

    NASA Astrophysics Data System (ADS)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  4. Project WEALTH (Water, Energy, Agriculture, Lighting, Training and Health): Harnessing the wealth of nations

    SciTech Connect

    Kashkari, C.

    1996-12-31

    Project WEALTH, hereafter referred to as WEALTH, is a global plan for the economic development of an estimated one million villages in the world, where one billion people live. The plan will focus on the provision of: Water, Energy, Agriculture, Lighting, Training and Health (WEALTH), by harnessing the natural resources of the villages and utilizing the technologies available in the industrialized countries. In the first phase of the project, one model village (WEALTH Center) will be established in every developing country of the world. The Center will serve as the training and demonstration center and promote the project in the country. WEALTH will provide economic opportunities for the industrialized and the developing countries. The Small Business Sector will play a major role in the implementation of the project. The project will be developed and implemented, not by governments, but by private sector, in cooperation with national governments. When fully operational, the project has the potential of generating business to the tune of billions of dollars every year. The Inner-cities of the US can participate in the project resulting in their own rapid development. WEALTH will spur global economic growth and lay the foundation for prosperity and peace in the twenty-first century.

  5. Light induced fluorescence lidar developed and employed at the National Aviation Academy of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Pashayev, Arif M.; Allahverdiyev, Kerim R.; Tagiyev, Bahadir G.; Sadikhov, Ilham A.

    2016-01-01

    A new laser induced fluorescence (LIF) KA-14 LIDAR (Light Identification Detection and Ranging) system for detecting of oil spills on the sea surface was developed and employed at the National Aviation Academy of Azerbaijan. Laser's parameters used in LIDAR are as follows: •laser CFR 200- type QUANTEL, λ = 355 nm, beam ∅ = 5.35 mm, f = 20 Hz, pulse duration and power τ = 7 ns and 60 mJ, respectively. The first results of measurements in the laboratory and the results of measurements at natural environment from distances up to 200 m revealed perspectives for using this LIDAR for detection of oil contaminations on sea as well as on earth surfaces (these measurements have been performed at Pirallahi Oil-Gas Production Company, Absheron peninsula, Baku, Azerbaijan). In the present work the results of emission spectra of crude oils taken from different regions of Absheron peninsula as well as the emission spectra of the oil spills on the surface of Caspian sea will be reported and discussed. These measurements open perspectives for using developed LIDAR for determination of place of oil-gas production company from which leakage takes place.

  6. Status of the crystallography beamlines at synchrotron SOLEIL⋆

    NASA Astrophysics Data System (ADS)

    Coati, A.; Chavas, L. M. G.; Fontaine, P.; Foos, N.; Guimaraes, B.; Gourhant, P.; Legrand, P.; Itie, J.-P.; Fertey, P.; Shepard, W.; Isabet, T.; Sirigu, S.; Solari, P.-L.; Thiaudiere, D.; Thompson, A.

    2017-04-01

    Synchrotron SOLEIL (www.synchrotron-soleil.fr) is the French national centre for synchrotron radiation research, and has been open, for user applications, since 2008. Operating at an energy of 2.75GeV, injected current of 500mA, with an excellent beam stability of < 1 micron at the source position and beam "top up", and with a high proportion of straight sections for the ring circumference, SOLEIL offers a wide range of possibilities for diffraction experiments. The beamlines serving crystallographic communities are listed, along with their area of expertise and available equipment. A detailed description of the design of the PROXIMA 1 beamline for macromolecular crystallography is given, and an example of an (unsuccessful but significant) experiment is given.

  7. CT imaging of small animals using monochromatized synchrotron x rays

    SciTech Connect

    Dilmanian, F.A.; Rarback, H.; Nachaliel, E.; Rivers, M.; Thomlinson, W.C.; Chapman, L.D.; Oversluizen, T.; Slatkin, D.N.; Spanne, P.; Spector, S.; Garrett, R.F.; Luke, P.N.; Pehl, R.; Thompson, A.C.; Appel, R.; Miller, M.H.

    1992-12-31

    Rats and chicken embryos were imaged in vivo with a prototype Multiple Energy Computed Tomography (MECT) system using monochromatized x rays from the X17 superconducting wiggler at the National Synchrotron Light Source. The CT configuration coated of a horizontal low-divergence, fan-shaped beam, 70 mm wide and 0.5 mm high, and a subject rotating about a vertical aids. A linear-array high-purity Ge detector with 140 elements, each 0.5 mm wide and 6 mm thick, was used with a data acquisition system that provides a linear response over almost six orders of magnitude of detector current. The dual photon absorptiometry (DPA) algorithm was applied to images of the rat head acquired at 20 and 45 keV to obtain two new images, one representing the low-Z, and the other the intermediate-Z clement group. The results indicate that the contrast resolution and the quantification accuracy of the images improve stepwise; first, with the monochromatic beam and, second, the DPA method. The system is a prototype for a brain scanner.

  8. CT imaging of small animals using monochromatized synchrotron x rays

    SciTech Connect

    Dilmanian, F.A.; Rarback, H.; Nachaliel, E.; Rivers, M.; Thomlinson, W.C.; Chapman, L.D.; Oversluizen, T.; Slatkin, D.N.; Spanne, P.; Spector, S. ); Garrett, R.F. ); Luke, P.N.; Pehl, R.; Thompson, A.C. ); Appel, R.; Miller, M.H. (A

    1992-01-01

    Rats and chicken embryos were imaged in vivo with a prototype Multiple Energy Computed Tomography (MECT) system using monochromatized x rays from the X17 superconducting wiggler at the National Synchrotron Light Source. The CT configuration coated of a horizontal low-divergence, fan-shaped beam, 70 mm wide and 0.5 mm high, and a subject rotating about a vertical aids. A linear-array high-purity Ge detector with 140 elements, each 0.5 mm wide and 6 mm thick, was used with a data acquisition system that provides a linear response over almost six orders of magnitude of detector current. The dual photon absorptiometry (DPA) algorithm was applied to images of the rat head acquired at 20 and 45 keV to obtain two new images, one representing the low-Z, and the other the intermediate-Z clement group. The results indicate that the contrast resolution and the quantification accuracy of the images improve stepwise; first, with the monochromatic beam and, second, the DPA method. The system is a prototype for a brain scanner.

  9. Optimized IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2015-09-01

    Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

  10. Limitation of the synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu; Yang, Jianming

    2001-06-01

    In recent years, owing to the great success of the synchrotron radiation in contemporary astrophysical research, the abusive use of synchrotron radiation has been emerged. In this paper, we show that the traditional idea, "electrons with a power-law energy distribution certainly yield a power-law radiation spectrum", should be changed. If the magnetic field of the radiation region is not flat and straight, the synchro-curvature radiation, instead of the synchrotron radiation, should be used to get a real description. In a curved magnetic field, the resulting spectrum of electrons could obviously distinct from a power-law one. This means that the way of only adding many other mechanisms to a pure power-law spectrum to get the expected spectrum might not be reasonable.

  11. Synchrotron radiation techniques for nanotoxicology.

    PubMed

    Li, Yu-Feng; Zhao, Jiating; Qu, Ying; Gao, Yuxi; Guo, Zhenghang; Liu, Zuoliang; Zhao, Yuliang; Chen, Chunying

    2015-08-01

    Nanotoxicology studies the interactions of engineered nanomaterials with biological systems. Traditional in vitro and in vivo toxicological assays have been successfully employed. However, the toxicological mechanisms of nanoparticles might not be the same as those incurred in traditional molecular toxicology. Furthermore, how to realize in situ and real time measurements especially in the biological microenvironment is still a challenge. Synchrotron radiation, which is highly polarized and tunable, has been proved to play an indispensible role for nanotoxicology studies. In this review, the role of synchrotron radiation techniques is summarized in screening physicochemical characteristics, in vitro and in vivo behaviors, and ecotoxicological effects of engineered nanomaterials. The rapid gain in popularity of nanomaterials has also raised the concern of nanotoxicity, which needs to be assessed and addressed. In this comprehensive review, the authors outlined the underlying principles of using synchrotron radiation techniques for nanotoxicology studies and also in other scientific fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Towards synchrotron-based nanocharacterization

    NASA Astrophysics Data System (ADS)

    Bleuet, Pierre; Arnaud, Lucile; Biquard, Xavier; Cloetens, Peter; Doyen, Lise; Gergaud, Patrice; Lamontagne, Patrick; Lavayssière, Maylis; Micha, Jean-Sébastien; Renault, Olivier; Rieutord, François; Susini, Jean; Ulrich, Olivier

    2009-09-01

    The advent of 3rd generation synchrotron sources coupled with high efficiency x-ray focusing optics opened new nanocharacterization possibilities. This paper is an overview of synchrotron-based techniques that may be of interest for nanotechnology researchers. Although not exhaustive, it includes a general background of synchrotron principle and main x-ray interactions before addressing nanoimaging possibilities. Three-dimensional (3D) hard x-ray multimodal tomography is now doable that allows producing 3D morphological, chemical and crystalline images with a sub-100 nm resolution. Although the resolution is still limited with respect to electron imaging, it presents attractive features like depth resolution and non-destructive exam. Besides imaging, diffraction also allows strain determination within microstructures and is illustrated here on 100 nm copper lines. Surface analysis is illustrated through X-ray Photoelectron Emission Microscopy (XPEEM).

  13. Contact microscopy with synchrotron radiation

    SciTech Connect

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  14. The lure of synchrotrons

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-11-01

    Shortly after he was sworn in as US energy secretary earlier this year, the Nobel-prizewinning physicist Steven Chu discussed what he called the "energy challenge" during a visit to the Brookhaven National Laboratory on Long Island. The challenge, according to Chu, is threefold. First, US national security as well as economic prosperity depends on the availability of clean and affordable energy. Second, competition for energy resources threatens to spark geopolitical conflict. Third, the development of alternative energy sources that do not depend on fossil fuels is critical to address climate change.

  15. Understanding the Differences in Molecular Conformation of Carbohydrate and Protein in Endosperm Tissues of Grains with Different Biodegradation Kinetics Using Advanced Synchrotron Technology

    SciTech Connect

    Yu, P.; Block, H; Doiron, K

    2009-01-01

    Conventional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capable of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). These results suggest that SR-FTIRM plus

  16. Impact system for ultrafast synchrotron experiments

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Iverson, A. J.; Luo, S. N.; Fezzaa, K.; Hooks, D. E.

    2013-01-01

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  17. Impact system for ultrafast synchrotron experiments

    SciTech Connect

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-15

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 {+-} 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  18. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2015-03-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Although South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give thousands of African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several sub-Saharan African countries. An interim Steering Committee has been formed. SESAME, now nearing completion in Jordan as a collaboration of 9 countries in the Middle East (www.sesame.org.jo) may be the example followed. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions''. It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  19. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Evans-Lutterodt, Kenneth; Mtingwa, Sekazi; Wague, Ahmadou; Tessema, Guebre; Winick, Herman

    2015-04-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Even though South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give many more African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several African countries. An interim Steering Committee has been formed, with a mandate to plan a conference. SESAME, now nearing completion in Jordan, is a collaboration of 9 countries in the Middle East (www.sesame.org.jo) is an example to follow. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions.'' It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  20. Looking Back at International Synchrotron Radiation Instrumentation

    SciTech Connect

    Williams, Gwyn

    2012-03-01

    With the 11th International Synchrotron Radiation Instrumentation coming up in July 2012 in Lyons, France, we thought it might be of interest to our readers to review all the past meetings in this series. We thank Denny Mills of the APS, Argonne for putting the list together. Prior to these larger meetings, and in the early days, facilities held their own meetings similar to the user meetings of today. However, the meeting held at ACO in Orsay, France in 1977 was the first such meeting with an international flavor and so it is on the list. However it is not counted as number 1 since it was agreed way back to start the numbering with the 1982 DESY meeting. The 2005 USA National Meeting scheduled at CAMD in Baton Rouge had to be canceled due to Hurricane Katrina. It was ultimately held in 2007, with the CLS hosted meeting the following year. And a personal note from the magazine - Synchrotron Radiation News was born at the 1987 meeting in Madison, Wisconsin with a proposal that was put to a special session of the meeting organized by Susan Lord. Initial proposals were to model it after the CERN Courier, but it soon adopted its own distinct flavor.

  1. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  2. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  3. Synchrotron Radiation Mammography: Clinical Experimentation

    SciTech Connect

    Arfelli, Fulvia; Dreossi, Diego; Longo, Renata; Rokvic, Tatjana; Castelli, Edoardo; Abrami, Alessandro; Chenda, Valentina; Menk, Ralf-Hendrik; Quai, Elisa; Tromba, Giuliana; Bregant, Paola; De Guarrini, Fabio; Cova, Maria A.; Tonutti, Maura; Zanconati, Fabrizio

    2007-01-19

    For several years a large variety of in-vitro medical imaging studies were carried out at the SYRMEP (Synchrotron Radiation for Medical Physics) beamline of the synchrotron radiation facility ELETTRA (Trieste, Italy) utilizing phase sensitive imaging techniques. In particular low dose Phase Contrast (PhC) in planar imaging mode and computed tomography were utilized for full field mammography. The results obtained on in-vitro samples at the SYRMEP beamline in PhC breast imaging were so encouraging that a clinical program on a limited number of patients selected by radiologists was launched to validate the improvements of synchrotron radiation in mammography. PhC mammography with conventional screen-film systems is the first step within this project. A digital system is under development for future applications. During the last years the entire beamline has been deeply modified and a medical facility dedicated to in-vivo mammography was constructed. The facility for PhC synchrotron radiation mammography is now operative in patient mode. The system reveals a prominent increase in image quality with respect to conventional mammograms even at lower delivered dose.

  4. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  5. RCMS - A SECOND GENERATION MEDICAL SYNCHROTRON.

    SciTech Connect

    PEGGS,S.; CARDONA,J.; BRENNAN,M.; KEWISCH,J.; MCINTYRE,G.; TSOUPAS,N.; SCHILLO,M.; TOD,A.; LUDEWIG,B.; LOCKYER,N.; PENN

    2001-06-18

    The Loma Linda University Medical Center treats more than 100 patients per day using a weak focusing slow cycling synchrotron with passive scattering nozzles at the end of rotatable gantries [1,2,3]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron which will achieve the performance listed in Table 1, including rapid 3-D Pulsed Beam Scanning [4,5].

  6. Levitation apparatus for structural studies of high temperature liquids using synchrotron radiation

    SciTech Connect

    Krishnan, S.; Felten, J.J.; Rix, J.E.; Weber, J.K.; Nordine, P.C.; Beno, M.A.; Ansell, S.; Price, D.L.

    1997-09-01

    A new levitation apparatus coupled to a synchrotron-derived x-ray source has been developed to study the structure of liquids at temperatures up to 3000 K. The levitation apparatus employs conical nozzle levitation using aerodynamic forces to stably position solid and liquid specimens at high temperatures. A 270 W CO{sub 2} laser was used to heat the specimens to desired temperatures. Two optical pyrometers were used to record the specimen temperature, heating curves, and cooling curves. Three video cameras and a video recorder were employed to obtain and record specimen views in all three dimensions. The levitation assembly was supported on a three-axis translation stage to facilitate precise positioning of the specimen in the synchrotron radiation beam. The levitation system was enclosed in a vacuum chamber with Be windows, connections for vacuum and gas flow, ports for pyrometry, video, and pressure measurements. The vacuum system included automatic pressure control and multi-channel gas flow control. A phosphor screen coupled to a high-resolution video microscope provided images of the x-ray beam and specimen shadow which were used to establish the specimen position. The levitation apparatus was integrated with x-ray diffractometers located at X-6B and X-25 beamlines at the National Synchrotron Light Source. X-ray structural measurements have been obtained on a number of materials including Al{sub 2}O{sub 3}, Ni, Si, Ge, and other metallic and ceramic materials in the liquid state. {copyright} {ital 1997 American Institute of Physics. }

  7. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  8. SYNCHROTRON X-RAY MICROPROBE AND COMPUTED MICROTOMOGRAPHY FOR CHARACTERIZATION OF NANOCATALYSTS.

    SciTech Connect

    JONES, K.W.; FENG, H.; LANZIROTTI, A.; MAHAJAN, D.

    2004-06-01

    Gas-to-liquids (GTL) is a viable pathway for synthesis of clean fuels from natural gas. One of the attractive synthesis options is the Fischer-Tropsch (F-T) method using an iron catalyst to yield a broad range of hydrocarbons. We collected catalyst samples during three separate F-T runs that utilized nanophase (mean particle diameter (MPD): 3 nm and 20-80 nm) and micrometer-sized (32.5 ? m) Fe{sub 2}O{sub 3} that served as catalyst precursors. The collected samples were characterized with micro x-ray fluorescence and computed Microtomography at the National Synchrotron Light Source (NSLS). Results found with two different measurement techniques indicated that there was heterogeneity on a spatial scale corresponding to volumes of roughly 10{sup 3} {micro}m{sup 3}.

  9. Synchrotron X-ray microprobe and computed microtomography for characterization of nanocatalysts

    NASA Astrophysics Data System (ADS)

    Jones, K. W.; Feng, H.; Lanzirotti, A.; Mahajan, D.

    2005-12-01

    Gas-to-liquids (GTL) is a viable pathway for synthesis of clean fuels from natural gas. One of the attractive synthesis options is the Fischer-Tropsch (F-T) method using an iron catalyst to yield a broad range of hydrocarbons. We collected catalyst samples during three separate F-T runs that utilized nanophase (mean particle diameter (MPD): 3 nm and 20-80 nm) and micrometer-sized (32.5 μm) Fe2O3 that served as catalyst precursors. The collected samples were characterized with micro-X-ray fluorescence and computed microtomography at the National Synchrotron Light Source (NSLS). Results found with two different measurement techniques indicated that there was heterogeneity on a spatial scale corresponding to volumes of roughly 103 μm3.

  10. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C.; Vis, R.D.; Sutton, S.R.; Rivers, M.L.; Jones, K.W.; Bowen, D.K.

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  11. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. ); Vis, R.D. ); Sutton, S.R.; Rivers, M.L. ); Jones, K.W. ); Bowen, D.K. )

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  12. Reflectometer end station for synchrotron calibrations of Advanced X-ray Astrophysics Facility flight optics and for spectrometric research applications

    SciTech Connect

    Graessle, D.E.; Fitch, J.J.; Ingram, R.; Zhang Juda, J. ); Blake, R.L. )

    1995-02-01

    Preparations have been underway to construct and test a facility for grazing incidence reflectance calibrations of flat mirrors at the National Synchrotron Light Source. The purpose is to conduct calibrations on witness flats to the coating process of the flight mirrors for NASA's Advanced X-ray Astrophysics Facility (AXAF). The x-ray energy range required is 50 eV--12 keV. Three monochromatic beamlines (X8C, X8A, U3A) will provide energy tunability over this entire range. The goal is to calibrate the AXAF flight mirrors with uncertainties approaching 1%. A portable end station with a precision-positioning reflectometer has been developed for this work. We have resolved the vacuum cleanliness requirements to preserve the coating integrity of the flats with the strict grazing-angle certainty requirements placed on the rotational control system of the reflectometer. A precision positioning table permits alignment of the system to the synchrotron beam to within 10 arcsec; the reflectometer's rotational control system can then produce grazing angle accuracy to within less than 2 arcsec, provided that the electron orbit is stable. At 10--12 keV, this degree of angular accuracy is necessary to achieve the calibration accuracy required for AXAF. However the most important energy regions for the synchrotron calibration are in the 2000--3200 eV range, where the [ital M]-edge absorption features of the coating element, iridium, appear, and the 300--700 eV range of the Ir [ital N] edges. The detail versus energy exhibited in these features cannot be traced adequately without a tunable energy source, which necessitates a synchrotron for this work. We present the mechanical designs, motion control systems, detection and measurement capabilities, and selected procedures for our measurements, as well as reflectance data.

  13. All flash, No light: the kabuki dance opposing a national renewable portfolio standard

    SciTech Connect

    Cooper, Christopher; Sovacool, Benjamin K.

    2008-11-15

    We don't know what is driving Professor Michaels, but his case against a national RPS is little more than a Kabuki dance of factual distortions and flawed analysis. His persistence cannot substitute for facts, more and more of which, as we have shown, build a strong case for adopting a national RPS and establishing a national market for renewable energy. (author)

  14. X-ray microfluorescence with synchrotron radiation applied in the analysis of pigments from ancient Egypt

    NASA Astrophysics Data System (ADS)

    Calza, C.; Anjos, M. J.; Mendonça de Souza, S. M. F.; Brancaglion, A., Jr.; Lopes, R. T.

    2008-01-01

    In this work, X-ray microfluorescence with the synchrotron radiation technique was applied in the analysis of pigments found in decorative paintings in the sarcophagus of an Egyptian mummy. This female mummy, from the Roman Period, which was embalmed with the arms and legs swathed separately is considered one of the most important pieces of the Egyptian Collection from the National Museum (Rio de Janeiro, Brazil). The measurements were performed at the XRF beamline D09B of the Brazilian Synchrotron Light Laboratory (LNLS), using the white beam and a Si(Li) detector with resolution of 165 eV at 5.9 keV. The possible pigments found in the samples were: Egyptian blue, Egyptian green frit, green earth, verdigris, malachite, ochre, realgar, chalk, gypsum, bone white, ivory black and magnetite. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were applied to the results in order to verify if the samples belong to the same period of a linen wrapping fragment, whose provenance was well established.

  15. The advanced light source at the Lawrence Berkeley laboratory

    NASA Astrophysics Data System (ADS)

    Jackson, Alan

    1991-05-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  16. Optical components and systems for synchrotron radiation: an introduction

    SciTech Connect

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance.

  17. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring.

    PubMed

    Byrd, J M; Leemans, W P; Loftsdottir, A; Marcelis, B; Martin, Michael C; McKinney, W R; Sannibale, F; Scarvie, T; Steier, C

    2002-11-25

    Bursts of coherent synchrotron radiation at far-infrared and millimeter wavelengths have been observed at several storage rings. A microbunching instability has been proposed as the source for the bursts. However, the microbunching mechanism has yet to be elucidated. We provide the first evidence that the bursts are due to a microbunching instability driven by the emission of synchrotron radiation in the bunch. Observations made at the Advanced Light Source are consistent with the values predicted by the proposed microbunching model. These results demonstrate a new instability regime for high energy synchrotron radiation sources and could impact the design of future sources.

  18. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring

    SciTech Connect

    Byrd, J.M.; Leemans, W.; Loftsdottir, A.; Marcelis, B.; Martin, Michael C.; McKinney, W.R.; Sannibale, F.

    2002-05-30

    Bursts of coherent synchrotron radiation at far-infrared and millimeter wavelengths have been observed at several storage rings. A microbunching instability has been proposed as the source for the bursts. However,the microbunching mechanism has yet to be elucidated. We provide the first evidence that the bursts are due to a microbunching instability driven by the emission of synchrotron radiation in the bunch. Observations made at the Advanced Light Source are consistent with the values predicted by a model for the microbunching proposed by Heifets and Stupakov. These results demonstrate a new instability regime for high energy synchrotron radiation sources and will impact the design of future sources.

  19. Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility

    SciTech Connect

    Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E

    2004-11-18

    A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  20. Polymer research at synchrotron radiation sources: symposium proceedings

    SciTech Connect

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  1. Advanced Synchrotron Techniques at High Pressure Collaborative Access Team (HPCAT)

    NASA Astrophysics Data System (ADS)

    Shen, G.; Sinogeikin, S. V.; Chow, P.; Kono, Y.; Meng, Y.; Park, C.; Popov, D.; Rod, E.; Smith, J.; Xiao, Y.; Mao, H.

    2012-12-01

    High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation for studies of structure and materials properties at extreme conditions.. HPCAT consists of four active independent beamlines performing a large range of various experiments at extreme conditions. 16BM-B beamline is dedicated to energy dispersive and white Laue X-ray diffraction. The majority of experiments are performed with a Paris-Edinburgh large volume press (to 7GPa and 2500K) and include amorphous and liquid structure measurement, white beam radiography, elastic sound wave velocity measurement of amorphous solid materials, with viscosity and density measurement of liquid being under development. 16BM-D is a monochromatic diffraction beamline for powder and single crystal diffraction at high pressure and high (resistive heating) / low (cryostats) temperature. The additional capabilities include high-resolution powder diffraction and x-ray absorption near edge structure (XANES) spectroscopy. The insertion device beamline of HPCAT has two undulators in canted mode (operating independently) and LN cooled Si monochromators capable of providing a large range of energies. 16IDB is a microdiffraction beamline mainly focusing on high-pressure powder and single crystal diffraction in DAC at high temperatures (double-sided laser heating and resistive heating) and low temperature (various cryostats). The modern instrumentation allows high-quality diffraction at megabar pressures from light element, fast experiments with pulsed laser heating, fast dynamic experiments with Pilatus detector, and so on. 16ID-D beamline is dedicated to x-ray scattering and spectroscopy research

  2. Scientific opportunities at the advanced light source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.

    1989-04-01

    The Advanced Light Source (ALS) is a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. Now under construction at the Lawrence Berkeley Laboratory with a projected completion date of September 1992, the ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in eleven long straight sections. It will also have up to 48 bending-magnet ports. Scientific opportunities in materials science, surface science, chemistry, atomic and molecular physics, life science and other fields are reflected in Letters of Interest received for the establishment of beamlines.

  3. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  4. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  5. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  6. Medical applications of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thomlinson, W.

    1992-08-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotheraphy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatc needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  7. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  8. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  9. Color changes in modern and fossil teeth induced by synchrotron microtomography.

    PubMed

    Richards, Gary D; Jabbour, Rebecca S; Horton, Caroline F; Ibarra, Caitlin L; MacDowell, Alastair A

    2012-10-01

    Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.

  10. Laser undulated synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Baine, Michael A. J.

    2000-07-01

    This work will address the practicality of using lasers to undulate electron beams for the production of tunable, short pulsed, monochromatic, synchrotron radiation. An x-ray source based on this mechanism, referred to as a Laser Synchrotron Source (LSS), has several attractive features: (1)x-rays can be generated with an electron beam whose energy is a factor of 100 smaller than competing synchrotron sources that use magnetic undulators, (2)the pulse length can be made extremely short (<100fs) by using short pulsed lasers, (3)the polarization can be controlled by changing the polarization of the incident laser, (4)the bandwidth can be quite narrow (<1%), and (5)the resultant x-rays are well collimated (θ < .1 rad for γ > 10) in the direction of the electron beam. These factors combine to produce one of the brightest (>1018 J/s mrad mm2 1%BW) sources of x-rays available. The most attractive feature, however, is its compact size and low cost, which suit it well for applications in Medicine, Biology, and Physics. The problem will be treated in two parts: analysis of nonlinear Thomson scattering for arbitrary interaction geometry of intense lasers and relativistic electron beams, and description of a proof-of-principle experiment carried out at the Naval Research Laboratory.

  11. Synchrotron/crystal sample preparation

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  12. Application of pixel array detectors at x-ray synchrotrons.

    SciTech Connect

    Miceli, N.; X-Ray Science Division

    2009-03-01

    Pixel array detectors have only recently been seriously used at x-ray synchrotrons. We describe the application of a digital pixel array detector (Pilatus100k) to a variety of synchrotron experiments at the Advanced Photon Source at Argonne National Laboratory. The Pilatus100k was developed at the Paul Scherrer Institut (PSI). It has been commercialized by a PSI spinoff (Dectrics Ltd.) This is the first commercially available pixel array detector for x-ray synchrotron applications. The APS synchrotron provides tunable x-ray pulses with duration of {approx}80 ps and a repetition period of 153 ns (24-bunch mode). The Pilatus100k is a direct detection x-ray detector where each 172 micron pixel counts individual x-ray pulses above a lower threshold. It consists of {approx}100k pixels each of which is capable of single-photon counting (>3 keV) at count rates up to {approx}1 MHz. In addition, the Pilatus100k is an electronically gateable detector. We present data showing that the Pilatus100k is capable of isolating a single x-ray bunch at the APS in 24 bunch mode. We will also present a variety of different experiments exploiting the unique capabilities of the Pilatus100k.

  13. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  14. Transmission grating goniometer elements for use at synchrotron radiation facilities

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Lindau, I.

    1982-04-01

    In this paper we show analytically that accurate detection of the positions of the diffracted orders from a holographic transmission grating can be used to compute the angle of incidence of the light onto the grating, irrespective of the light's frequency. Since such a device may be employed as a goniometer, and since beam height may be measured independently, we show that such grating may be employed as beam attitude/altitude detectors at synchrotron radiation facilities where beam steering and positioning are problematical.

  15. A Remote and Virtual Synchrotron Beamline

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Alp, E.; Sturhahn, W.

    2012-12-01

    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for Earth science studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup. Students may also access the virtual aspects these experiments by simulating certain conditions with our newly developed software. We evaluate such a tool by giving "before" and "after" assignments to students at different levels. These levels include high-school students from the Pasadena and greater Los Angeles area school districts, undergraduate students from Caltech's SURF/MURF program, and graduate students at Caltech. We specifically target underrepresented groups. Our results thus far show that the capabilities offered by our remote and virtual beamline show improved knowledge and understanding of applying experimental-based studies at the synchrotron to solve problems in the Earth sciences.

  16. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  17. National Ignition Facility computational fluid dynamics modeling and light fixture case studies

    SciTech Connect

    Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

    1998-02-01

    This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

  18. Synchrotron Environmental Science-I Workshop Report.

    SciTech Connect

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  19. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  20. Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy.

    PubMed

    Yu, Peiqiang

    2005-09-07

    Synchrotron technology based Fourier transform infrared microspectroscopy (S-FTIR) is a recently emerging bioanalytical microprobe capable of exploring the molecular chemistry within microstructures of feed tissues at a cellular or subcellular level. To date there has been very little application of hierarchical cluster analysis (CLA) and principal component analysis (PCA) to the study of feed inherent microstructures and feed molecular chemistry between feeds and/or between different structures within a feed, in relation to feed quality and nutrient availability using S-FTIR. In this paper, multivariate statistical methods--CLA and PCA--were used to analyze synchrotron-based FTIR individual spectra obtained from feed inherent microstructures within intact tissues by using the S-FTIR as a novel approach. The S-FTIR spectral data of three feed inherent structures (strucutre 1, feed pericarp; structure 2, feed aleurone; structure 3, feed endosperm) and different varieties of feeds within cellular dimensions were collected at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), U.S. Department of Energy (NSLS-BNL, New York). Both PCA and CLA methods gave satisfactory analytical results and are conclusive in showing that they can discriminate and classify inherent structures and molecular chemistry between and among the feed tissues. They also can be used to identify whether differences exist between the varieties. These statistical analyses place synchrotron-based FTIR microspectroscopy at the forefront of those new potential techniques that could be used in rapid, nondestructive, and noninvasive screening of feed intrinsic microstructures and feed molecular chemistry in relation to the quality and nutritive value of feeds.

  1. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  2. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    SciTech Connect

    Fiorito, R. B.; Zhang, H. D.; Corbett, W. J.; Fisher, A. S.; Mok, W. Y.; Tian, K.; Douglas, D.; Wilson, F. G.; Zhang, S.; Mitsuhashi, T. M.; Shkvarunets, A. G.

    2012-11-01

    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  3. New synchrotron powder diffraction facility for long-duration experiments.

    PubMed

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  4. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  5. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  6. VUV synchrotron radiation: a new activation technique for tandem mass spectrometry.

    PubMed

    Milosavljević, Aleksandar R; Nicolas, Christophe; Gil, Jean-Francois; Canon, Francis; Réfrégiers, Matthieu; Nahon, Laurent; Giuliani, Alexandre

    2012-03-01

    A novel experimental technique for tandem mass spectrometry and ion spectroscopy of electrosprayed ions using vacuum-ultraviolet (VUV) synchrotron radiation is presented. Photon activation of trapped precursor ions has been performed by coupling a commercial linear quadrupole ion trap (Thermo scientific LTQ XL), equipped with the electrosprayed ions source, to the DESIRS beamline at the SOLEIL synchrotron radiation facility. The obtained results include, for the first time on biopolymers, photodetachment spectroscopy using monochromated synchrotron radiation of multi-charged anions and the single photon ionization of large charge-selected polycations. The high efficiency and signal-to-noise ratio achieved by the present set-up open up possibilities of using synchrotron light as a new controllable activation method in tandem mass spectrometry of biopolymers and VUV-photon spectroscopy of large biological ions.

  7. IKNO, a user facility for coherent terahertz and UV synchrotron radiation.

    PubMed

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-11-01

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing third-generation light sources. Simultaneously to the CSR operation, broadband incoherent synchrotron radiation up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent synchrotron radiation are described in this paper. The proposed location for the infrastructure facility is Sardinia, Italy.

  8. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability

    SciTech Connect

    Stanislavchuk, T. N.; Kang, T. D.; Rogers, P. D.; Standard, E. C.; Basistyy, R.; Nita, G.; Zhou, T.; Sirenko, A. A.; Kotelyanskii, A. M.; Carr, G. L.; Kotelyanskii, M.

    2013-02-15

    We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm{sup -1}. Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of {theta}-2{theta} angular rotation, {chi} tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 Multiplication-Sign 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability {mu}{ne} 1. A nonlinear regression of the rotating analyzer ellipsometry and/or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with {mu}{ne} 1 are illustrated with experimental results and simulations for TbMnO{sub 3} and Dy{sub 3}Fe{sub 5}O{sub 12} single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO{sub 3}.

  9. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability.

    PubMed

    Stanislavchuk, T N; Kang, T D; Rogers, P D; Standard, E C; Basistyy, R; Kotelyanskii, A M; Nita, G; Zhou, T; Carr, G L; Kotelyanskii, M; Sirenko, A A

    2013-02-01

    We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm(-1). Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of θ-2θ angular rotation, χ tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 × 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability μ ≠ 1. A nonlinear regression of the rotating analyzer ellipsometry and∕or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with μ ≠ 1 are illustrated with experimental results and simulations for TbMnO3 and Dy3Fe5O12 single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO3.

  10. Multiple energy synchrotron biomedical imaging system

    NASA Astrophysics Data System (ADS)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  11. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  12. Computed tomography using synchrotron radiation

    SciTech Connect

    Thompson, A.C.; Llacer, J.; Finman, L.C.; Hughes, E.B.; Otis, J.N.; Wilson, S.; Zeman, H.D.

    1983-09-01

    X-ray computed tomography (CT) is a widely used method of obtaining cross-sectional views of objects. The high intensity, natural collimation, monochromaticity and energy tunability of synchrotron x-ray sources could potentially be used to provide CT images of improved quality. The advantages of these systems would be that images could be produced more rapidly with better spatial resolution and reduced beam artifacts. In addition, images, in some cases, could be acquired with elemental sensitivity. As a demonstration of the capability of such a system, CT images were obtained of four slices of an excised pig heart in which the arteries and the cardiac chambers were filled with an iodinated medium. Images were taken with incident x-rays tuned successively to energies just above and below the iodine K edge. Iodine specific images were obtained by logarithmically subtracting the low energy image data from the high energy data and then reconstructing the image. CT imaging using synchrotron radiation may become a convenient and non-destructive method of imaging samples difficult to study by other methods.

  13. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Wetzel, D.; Bonwell, E; Fritz, T; Fritz, A

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the {alpha}-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of {alpha}-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm{sup -1} was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}mX5{mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the {alpha}-helix population relative to other secondary protein structures from the position and shape of the amide I

  14. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Bonwell,E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of a-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}m x 5 {mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current

  15. Synchrotron applications in wood preservation and deterioration

    Treesearch

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  16. The Advanced Light Source at Lawrence Berkeley Laboratory

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Perera, R. C. C.; Schlachter, A. S.

    1992-01-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a U.S. Department of Energy national user facility, will be a next-generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for microstructures and nanostructures, as well as for characterizing them.

  17. Synchrotron X-ray Tests of an L-Shaped Laterally Graded Multilayer Mirror for the Analyzer System of the Ultra-High Resolution IXS Spectrometer at NSLS-II

    SciTech Connect

    Honnicke, M.G.; Takacs, P.; Keister, J.W.; Conley, R.; Kaznatcheev, K.; Coburn, D.S.; Reffi, L.; Cai, Y.Q.

    2011-08-02

    Characterization and testing of an L-shaped laterally graded multilayer mirror are presented. This mirror is designed as a two-dimensional collimating optics for the analyzer system of the ultra-high-resolution inelastic X-ray scattering (IXS) spectrometer at National Synchrotron Light Source II (NSLS-II). The characterization includes point-to-point reflectivity measurements, lattice parameter determination and mirror metrology (figure, slope error and roughness). The synchrotron X-ray test of the mirror was carried out reversely as a focusing device. The results show that the L-shaped laterally graded multilayer mirror is suitable to be used, with high efficiency, for the analyzer system of the IXS spectrometer at NSLS-II.

  18. Imaging using synchrotron radiation for forensic science

    NASA Astrophysics Data System (ADS)

    Cervelli, F.; Carrato, S.; Mattei, A.; Jerian, M.; Benevoli, L.; Mancini, L.; Zanini, F.; Vaccari, L.; Perucchi, A.; Aquilanti, G.

    2011-03-01

    Forensic science is already taking benefits from synchrotron radiation (SR) sources in trace evidence analysis. In this contribution we show a multi-technique approach to study fingerprints from the morphological and chemical point of view using SR based techniques such as Fourier transform infrared microspectroscopy (FTIRMS), X-ray fluorescence (XRF), X-ray absorption structure (XAS), and phase contrast microradiography. Both uncontaminated and gunshot residue contaminated human fingerprints were deposited on lightly doped silicon wafers and on poly-ethylene-terephthalate foils. For the uncontaminated fingerprints an univariate approach of functional groups mapping to model FT-IRMS data was used to get the morphology and the organic compounds map. For the gunshot residue contaminated fingerprints, after a preliminary elemental analysis using XRF, microradiography just below and above the absorption edge of the elements of interest has been used to map the contaminants within the fingerprint. Finally, XAS allowed us to determine the chemical state of the different elements. The next step will be fusing the above information in order to produce an exhaustive and easily understandable evidence.

  19. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  20. Spatial resolution limits for synchrotron-based infrared spectromicroscopy

    SciTech Connect

    Levenson, Erika; Lerch, Philippe; Martin, Michael C.

    2007-10-15

    Detailed spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source synchrotron facility in Berkeley, CA. The high-brightness synchrotron source is coupled at this beamline to a Thermo-Electron Continumum XL infrared microscope. Two types of resolution tests in both the mid-IR (using a KBr beamsplitter and an MCT-A* detector) and in the near-IR (using a CaF2 beamsplitter and an InGaAS detector) were performed and compared to a simple diffraction-limited spot size model. At the shorter wavelengths in the near-IR the experimental results begin to deviate from only diffraction-limited. The entire data set is fit using a combined diffraction-limit and demagnified electron beam source size model. This description experimentally verifies how the physical electron beam size of the synchrotron source demagnified to the sample stage on the endstation begins to dominate the focussed spot size and therefore spatial resolution at higher energies. We discuss how different facilities, beamlines, and microscopes will affect the achievable spatial resolution.

  1. Status of the IUCF Cooler Injector Synchrotron Construction Project

    NASA Astrophysics Data System (ADS)

    Friesel, D. L.; Lee, S. Y.

    1997-05-01

    Construction of a 2.24 T-m, rapid-cycling booster synchrotron is nearing completion at IUCF. The synchrotron is designed to accelerate protons to 220 MeV and will replace the IUCF isochronous cyclotrons as an injector of polarized light ion beams into the 3.6 T-m electron-cooled storage ring. CIS (Cooler Injector Synchrotron), with a circumference of 1/5th the Cooler ring, will fill the Cooler to about 10^11 protons via ``boxcar" stacking in a few seconds for research. The compact booster design, which can accelerate protons to energies between 60 and 220 MeV, is also well suited for use in proton therapy applications. At 28 months into the construction program, all major ring elements (dipoles, quads, injector linac, RF system) are fabricated, assembled, installed and in some cases, commissioned. Ring beam injection and ramping studies are scheduled to start in May, 1997 and Cooler injection studies are planned for late 1997. The booster design properties, component commissioning results and construction completion schedule will be summarized.

  2. Synchrotron radiation and industrial research

    NASA Astrophysics Data System (ADS)

    Townsend, Rodney P.

    1995-05-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described.

  3. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  4. Synchrotron micro-X-ray fluorescence analysis of natural diamonds: First steps in identification of mineral inclusions in situ

    SciTech Connect

    Sitepu, Husin; Kopylova, Maya G.; Quirt, David H.; Cutler, Jeffrey N.; Kotzer, Thomas G.

    2008-06-09

    Diamond inclusions are of particular research interest in mantle petrology and diamond exploration as they provide direct information about the chemical composition of upper and lower mantle and about the petrogenetic sources of diamonds in a given deposit. The objective of the present work is to develop semi-quantitative analytical tools for non-destructive in situ identification and characterization of mineral inclusions in diamonds using synchrotron micro-X-ray Fluorescence ({mu}SXRF) spectroscopy and micro-X-ray Absorption Near Edge Structure ({mu}XANES) spectroscopy at a focused spot size of 4 to 5 micrometers. The data were collected at the Pacific Northwest Consortium (PNC-CAT) 20-ID microprobe beamline at the Advanced Photon Source, located at the Argonne National Laboratory, and yielded the first high-resolution maps of Ti, Cr, Fe, Ni, Cu, and Zn for natural diamond grains, along with quantitative {mu}SXRF analysis of select chemical elements in exposed kimberlite indicator mineral grains. The distribution of diamond inclusions inside the natural diamond host, both visible and invisible using optical transmitted-light microscopy, can be mapped using synchrotron {mu}XRF analysis. Overall, the relative abundances of chemical elements determined by {mu}SXRF elemental analyses are broadly similar to their expected ratios in the mineral and therefore can be used to identify inclusions in diamonds in situ. Synchrotron {mu}XRF quantitative analysis provides accurate estimates of Cr contents of exposed polished minerals when calibrated using the concentration of Fe as a standard. Corresponding Cr K-edge {mu}XANES analyses on selected inclusions yield unique information regarding the formal oxidation state and local coordination of Cr.

  5. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    SciTech Connect

    Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T.

    2012-05-17

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  6. CIRCE, the Proposed Coherent Infrared Center at the LawrenceBerkeley National Laboratory

    SciTech Connect

    Byrd, John M.; Martin, Michael M.; Sannibale, Fernando

    2005-07-12

    At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL), we are proposing the construction of CIRCE (Coherent InfraRed Center), a ring-based photon source completely optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range [1]. CIRCE exploits the full complement of the CSR-production mechanisms presently available for obtaining top performance, including a photon flux exceeding by more than nine orders of magnitude that of existing ''conventional'' broadband terahertz sources.

  7. Analysis of Human Activities in Nature Reserves Based on Nighttime Light Remote Sensing and Microblogging Data - by the Case of National Nature Reserves in Jiangxi Province

    NASA Astrophysics Data System (ADS)

    Shi, F.; Li, X.; Xu, H.

    2017-09-01

    The study used the mainstream social media in china - Sina microblogging data combined with nighttime light remote sensing and various geographical data to reveal the pattern of human activities and light pollution of the Jiangxi Provincial National Nature Reserves. Firstly, we performed statistical analysis based on both functional areas and km-grid from the perspective of space and time, and selected the key areas for in-depth study. Secondly, the relationship between microblogging data and nighttime light remote sensing, population, GDP, road coverage, road distance and road type in nature reserves was analyzed by Spearman correlation coefficient method, so the distribution pattern and influencing factors of the microblogging data were explored. Thirdly, a region where the luminance value was greater than 0.2 was defined as a light region. We evaluated the management status by analyzing the distribution of microblogging data in both light area and non-light area. Final results showed that in all nature reserves, the top three were the Lushan Nature Reserve, the Jinggangshan Nature Reserve, the Taohongling National Nature Reserve of Sikas both on the total number and density of microblogging ; microblogging had a significant correlation with nighttime light remote sensing , the GDP, population, road and other factors; the distribution of microblogging near roads in protected area followed power laws; luminous radiance of Lushan Nature Reserve was the highest, with 43 percent of region was light at night; analysis combining nighttime light remote sensing with microblogging data reflected the status of management of nature reserves.

  8. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  9. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  10. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    SciTech Connect

    Blank, David Andrew

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  11. Optical synchrotron radiation beam imaging with a digital mask

    SciTech Connect

    Zhang, Hao; Fiorito, Ralph; Corbett, Jeff; Shkvarunets, Anatoly; Tian, Kai; Fisher, Alan; Douglas, D.; Wilson, F.; Zhang, S.; Mok, W.; Mitsuhashi, T.

    2016-01-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  12. The Advanced Light Source at the Lawrence Berkeley Laboratory (ALS, LBL)

    SciTech Connect

    Jackson, A.

    1990-08-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  13. Calculations of synchrotron radiation emission in the transverse coherent limit

    SciTech Connect

    Hulbert, S.L.; Williams, G.P.

    2009-10-14

    We present approximations for the synchrotron radiation emission for low emittance light sources, which provide a connection between user needs and the electron beam parameters. The results and calculations are a consequence of the phase coherence in the emission from the electrons. We derive the remarkable result that if the electron beam is energetic enough, the emitted flux is independent of the photon energy, electron beam energy, or bending radius in the transverse coherent limit. Similarly the brightness is identical for all machines at a given current.

  14. Electron correlation explored through electron spectrometry using synchrotron radiation

    SciTech Connect

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G. . Dept. of Physics); Krause, M.O. )

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs.

  15. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  16. An X-ray microprobe facility using synchrotron radiation.

    PubMed

    Gordon, B M; Jones, K W; Hanson, A L; Pounds, J G; Rivers, M L; Spanne, P; Sutton, S R

    1990-01-01

    An X-ray microprobe for trace elemental analysis at micrometer spatial resolutions, using synchrotron radiation (SR), is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present, "white light" is used for excitation of the characteristic X-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 microns2 areas in 5 min irradiation times. Scanning techniques, as well as microtomography and chemical speciation, are discussed. Application to a specific biomedical study is included.

  17. An x-ray microprobe facility using synchrotron radiation

    SciTech Connect

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Spanne, P.; Sutton, S.R.

    1989-01-01

    A x-ray microprobe for trace elemental analysis at micrometer spatial resolutions using synchrotron radiation (SR) is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present ''white light''' is used for excitation of the characteristic x-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 ..mu..m/sup 2/ areas in 5 min irradiation times. Scanning techniques as well as microtomography and chemical speciation are discussed. Application to a specific biomedical study is included. 13 refs., 2 figs.

  18. a Far Infrared Synchrotron-Based Investigation of 3-OXETANONE

    NASA Astrophysics Data System (ADS)

    Chen, Ziqiu; van Wijngaarden, Jennifer

    2011-06-01

    The four membered ester ring 3-oxetanone is a precursor for adding oxetane subunits into pharmaceuticals which then block metabolically exposed sites in the bioactive molecule without increasing its lipophilicity. The high resolution (0.00096 cmCm-1) rovibrational spectrum of 3-oxetanone was recorded for the first time using far infrared radiation from the Canadian Light Source (CLS) synchrotron facility coupled to a Bruker IFS125HR FTIR spectrometer. A total of six rotationally-resolved vibrational bands were observed between 360 and 1150 cmCm-1 at room temperature. The assignment of the dense spectrum is currently underway and the progress will be discussed in this talk.

  19. Prospects for high-gain, high yield National Ignition Facility targets driven by 2(omega) (green) light

    SciTech Connect

    Suter, L J; Glenzer, S; Haan, S; Hammel, B; Manes, K; Meezan, N; Moody, J; Spaeth, M; Divol, L; Oades, K; Stevenson, M

    2003-12-16

    The National Ignition Facility (NIF), operating at green (2{omega}) light, has the potential to drive ignition targets with significantly more energy than the 1.8 MJ it will produce with its baseline, blue (3{omega}) operations. This results in a greatly increased 'target design space', providing a number of exciting opportunities for fusion research. These include the prospect of ignition experiments with capsules absorbing energies in the vicinity of 1 MJ. This significant increase in capsule absorbed energy over the original designs at {approx}150 kJ could allow high-gain, high yield experiments on NIF. This paper reports the progress made exploring 2{omega} for NIF ignition, including potential 2{omega} laser performance, 2{omega} ignition target designs and 2{omega} Laser Plasma Interaction (LPI) studies.

  20. CCD-based detector for protein crystallography with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.; Stanton, M.

    1990-11-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 109 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512×512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of a 4×4 pixel resolution element, comparable in size to a diffraction peak, was 104. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1° frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1° frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a = 275 Å) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources.

  1. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  2. Third user workshop on high-power lasers at the Linac Coherent Light Source

    SciTech Connect

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at the LCLS-Matter in Extreme Conditions (MEC) endstation.

  3. Skateboard-related injuries: not to be taken lightly. A National Trauma Databank Analysis.

    PubMed

    Lustenberger, Thomas; Talving, Peep; Barmparas, Galinos; Schnüriger, Beat; Lam, Lydia; Inaba, Kenji; Demetriades, Demetrios

    2010-10-01

    With the increasing popularity of skateboarding, trauma centers are experiencing increased number of skateboard injuries. The incidence and type of injuries and the effect of age on these variables are poorly described in the literature. Data from National Trauma Databank during a 5-year period was used for this study. Injury Severity Score (ISS), injured body area, specific injuries, and outcomes were calculated according to age groups (younger than 10 years, 10-16 years, and older than 16 years). During the study period, there were 2,270 admissions due to skateboard-related injuries (0.1% of all trauma admissions). There were 187 patients (8%) younger than 10 years, 1,314 patients (58%) 10 years to 16 years, and 769 patients (34%) older than 16 years. The overall mortality was 1.1% and ranged from 0% in the age group younger than 10 years to 0.3% in the group 10 years to 16 years and 2.6% in the group older than 16 years (p < 0.001). The incidence of severe trauma (Injury Severity Score ≥ 16) in the three age groups was 5.4%, 13.5%, and 23.7%, respectively (p < 0.001). The incidence of traumatic brain injury in the three age groups was 24.1%, 32.6%, and 45.5%, respectively (p < 0.001). The younger age group (younger than 10 years) was significantly more likely to suffer femur fractures and less likely to suffer tibia fractures than the older age groups. Helmets and use of a skateboard park were significant factors protecting against head injury. Skateboard-related injuries are associated with a high incidence of traumatic brain injury and long bone fractures. Age plays an important role in the anatomic distribution of injuries, injury severity, and outcomes. Our findings demonstrate that helmet utilization and designated skateboard areas significantly reduce the incidence of serious head injuries.

  4. Management of unconverted light for the National Ignition Facility target chamber

    SciTech Connect

    Anderson, A. T.; Bletzer, K.; Burnham, A. K.; Dixit, S; Genin, F. Y.; Hibbard, W.; Norton, J.; Scott, J. M.; Whitman, P. K.

    1998-07-08

    The NIF target chamber beam dumps must survive high x-ray, laser, ion, and shrapnel exposures without excessive generation of vapors or particulate that will contaminate the final optics debris shields, thereby making the debris shields susceptible to subsequent laser damage. The beam dumps also must be compatible with attaining and maintaining the required target chamber vacuum and must not activate significantly under high neutron fluxes. Finally, they must be developed, fabricated, and maintained for a reasonable cost. The primary challenge for the beam dump is to survive up to 20 J/cm{sup 2} of lpm light and 1 - 2 J/cm{sup 2} of nominally 200 - 350 eV blackbody temperature x rays. Additional threats include target shrapnel, and other contamination issues. Designs which have been evaluated include louvered hot-pressed boron carbide (B{sub 4}C) or stainless steel (SS) panels, in some cases covered with transparent Teflon film, and various combinations of inexpensive low thermal expansion glasses backed by inexpensive absorbing glass. Louvered designs can recondense a significant amount of ablated material that would otherwise escape into the target chamber. Transparent Teflon was evaluated as an alternative way to capture ablated material. The thin Teflon sheet would need to be replaced after each shot since it exhibits both laser damage and considerable x- ray ablation with each shot. Uncontaminated B{sub 4}C, SS, and low thermal expansion glasses have reasonably small x-ray and laser ablation rates, although the glasses begin to fail catastrophically after 100 high fluence shots. Commercially available absorbing glasses require a pre-shield of either Teflon or low thermal expansion glass to prevent serious degradation by the x-ray fluence. Advantages of the hot-pressed B{sub 4}C and SS over glass are their performance against microshrapnel, their relative indifference to contamination, and their ability to be refurbished by aggressive cleaning using CO{sub 2

  5. Search for new scintillators by studying the fluorescence properties of powdered compounds with synchrotron radiation.

    PubMed

    Dewu, W; Jianfei, L; Yaning, X; Yifan, G; Yu, C; Hancheng, S; Jiashan, Z; Zuqi, Z

    1995-03-01

    This paper describes a method for investigating the properties of powdered compounds using synchrotron X-radiation. The fluorescence decay times of bismuth germanate, BaF(2), CeF(3) and CsI, as well as the light yields of several samples of gadolinium silicate, prepared in different ways, have been measured.

  6. Observation of Synchrotron Sidebands in a Storage-Ring-Based Seeded Free-Electron Laser

    SciTech Connect

    Labat, M.; Hosaka, M.; Yamamoto, N.; Shimada, M.; Katoh, M.; Couprie, M. E.

    2009-01-09

    Seeded free-electron lasers (FELs) are among the future fourth-generation light sources in the vacuum ultraviolet and x-ray spectral regions. We analyze the seed temporal coherence preservation in the case of coherent harmonic generation FELs, including spectral narrowing and structure degradation. Indeed, the electron synchrotron motion driven by the seeding laser can cause sideband growth in the FEL spectrum.

  7. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  8. Picosecond x-ray diagnostics for third and fourth generation synchrotron sources

    SciTech Connect

    DeCamp, Matthew

    2016-03-30

    In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies at a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.

  9. Metrology laboratory requirements for third-generation synchrotron radiation sources

    SciTech Connect

    Takacs, P.Z.; Quian, Shinan

    1997-11-01

    New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

  10. Angle-dispersive diffraction with synchrotron radiation at Laboratório Nacional de Luz Síncrotron (Brazil): potential for use in biomedical imaging.

    PubMed

    Barroso, R C; Lopes, R T; Gonçalves, O D; de Jesus, E F

    2000-01-01

    At low angles the scattering of X-rays in the diagnostic energy range (low-momentum transfer), it is probable that the scattering interaction will be coherent. This coherence gives rise to interference effects resulting in X-ray diffraction patterns that are characteristic of the scattering material. The usefulness of coherent scattering is not limited to crystallography. It can provide information about biological material as well. The interatomic and intermolecular co-operative effects which modify the free-atom coherent scattering process are well known for highly ordered structures such as crystalline materials but are important for amorphous solids and liquids where short-range ordering occurs. X-ray diffraction using synchrotron radiation has became a well established technique. This work introduces a non-destructive synchrotron radiation X-ray diffraction imaging technique. The feasibility of the X-ray diffraction computed microtomography using synchrotron radiation has been investigated. This research was carried out at the X-ray diffraction beam line of the National Synchrotron Light Laboratory supported by the National Council for Scientific and Technological Development (LNLS/CNPq) in Brazil. These experimental patterns were carried out with a 500 microm slit in front of the detector and an 11.101 keV beam (lambda = 1.117 A) monochromatic beam from the double crystal monochromator. The diffracted beam was detected by a fast scintillation detector (10(6) counts s(-1)) designed specifically to meet the needs of high quality X-ray diffraction and synchrotron radiation experiments. The data were recorded at rates of one second per degree of 2theta (angular steps equal to 0.05 +/- 0.01 degrees) and registered by a multichannel analyzer. These experimental data could be used to evaluate the scattering properties of different tissue-substitute (water, lucite, nylon, plastic and polystyrene) and bone-substitute (hydroxyapatite and aluminum) materials. The data

  11. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  12. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  13. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  14. Simulations of synchrotron loss in hotspots

    NASA Astrophysics Data System (ADS)

    Matthews, Alan P.

    Simulations of the radio emission and polarization of hot spots are presented in which synchrotron losses have been taken into account. The hot spots were modeled on the basis of simulations of an axisymetric nonrelativistic jet into which a passive, initial randomly oriented magnetic field is introduced. The magnetic field configuration is then distorted by the flow. The simulations illustrate that synchrotron loss takes its toll not only in old parts of a source, but also in regions of enhanced magnetic fields.

  15. Empirical deadtime corrections at synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  16. Empirical deadtime corrections for synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  17. High-energy thermal synchrotron emission

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-01-01

    It is shown how the thermal synchrotron emission spectrum is modified when the photon energy is greater than the mean energy of the radiating particles. The effect if applying this energy conservation constraint is to produce spectra which have less high-energy photon emission than had been previously estimated. The thermal synchrotron spectra provide satisfactory fits to recently observed very high energy gamma ray spectra of certain burst sources.

  18. Nanoparticles and nanowires: synchrotron spectroscopy studies

    SciTech Connect

    Sham, T.K.

    2008-08-11

    This paper reviews the research in nanomaterials conducted in our laboratory in the last decade using conventional and synchrotron radiation techniques. While preparative and conventional characterisation techniques are described, emphasis is placed on the analysis of nanomaterials using synchrotron radiation. Materials of primary interests are metal nanoparticles and semiconductor nanowires and nanoribbons. Synchrotron techniques based on absorption spectroscopy such as X-ray absorption fine structures (XAFS), which includes X-ray absorption near edge structures (XANES) and extended X-ray absorption fine structures (EXFAS), and de-excitation spectroscopy, including X-ray excited optical luminescence (XEOL), time-resolved X-ray excited optical luminescence (TRXEOL) and X-ray emission spectroscopy (XES) are described. We show that the tunability, brightness, polarisation and time structure of synchrotron radiation are providing unprecedented capabilities for nanomaterials analysis. Synchrotron studies of prototype systems such as gold nanoparticles, 1-D nanowires of group IV materials, C, Si and Ge as well as nanodiamond, and compound semiconductors, ZnS, CdS, ZnO and related materials are used to illustrate the power and unique capabilities of synchrotron spectroscopy in the characterisation of local structure, electronic structure and optical properties of nanomaterials.

  19. Extended one-dimensional method for coherent synchrotron radiation including shielding

    NASA Astrophysics Data System (ADS)

    Sagan, David; Hoffstaetter, Georg; Mayes, Christopher; Sae-Ueng, Udom

    2009-04-01

    Coherent synchrotron radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on energy recovery LINAC or free-electron lasers, and bunch compressors for linear colliders. In order to better simulate coherent synchrotron radiation, a one-dimensional formalism due to Saldin, Schneidmiller, and Yurkov has been implemented in the general beam dynamics code Bmad. Wide vacuum chambers are simulated by means of vertical image charges. Results from Bmad are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code elegant and the code of Agoh and Yokoya.

  20. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.