Science.gov

Sample records for national user facility

  1. National Ignition Facility User Guide

    SciTech Connect

    Keane, C J

    2014-09-03

    This user manual is intended to provide sufficient information to allow researchers to become familiar with NIF and develop preliminary plans for NIF experiments. It also provides references to further detail that will allow detailed experiment planning.

  2. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher

    2012-10-01

    The 192-beam National Ignition Facility (NIF) at LLNL, operational since March 2009, is conducting experiments in ICF ignition and other scientific areas. The NIF ignition program is conducted by the National Ignition Campaign (NIC). In addition to execution of the ignition program, the NIC is providing the necessary infrastructure for operation of NIF as a user facility open to both US and international scientists. NIF has made significant progress towards operation as a user facility. The NIF laser has demonstrated the necessary performance, including energy, power, precision, and reproducibility, to support NIC and other experiments. NIF has demonstrated full energy and power (1.8 MJ, 500 TW) operation at 0.35-μm. Over 50 diagnostics are operational, and a broad range of target fabrication capabilities is in place. Initial experiments by university users and other scientists external to the National Nuclear Security Administration (NNSA) national laboratory system have been conducted, and additional experiments developed by the broader user community are in process and planned. A governance model has been established, and a NIF User Group has been formed. This presentation will discuss implementation of NIF as a user facility, with emphasis on activities at NIF in fundamental science and other areas carried out in addition to the NIC.

  3. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  4. National Scientific User Facility Purpose and Capabilities

    SciTech Connect

    K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

    2010-09-01

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

  5. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  6. ATR National Scientific User Facility 2013 Annual Report

    SciTech Connect

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  7. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  8. Users Guide for the National Transonic Facility Research Data System

    NASA Technical Reports Server (NTRS)

    Foster, Jean M.; Adcock, Jerry B.

    1996-01-01

    The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

  9. DOE national user facility in the Tropical Western Pacific.

    SciTech Connect

    Jones, L. A.; Porch, W. M.; Sisterson, Doug L.; Mather, J. H.; Long, C. N.

    2004-01-01

    In July 2003, the Department of Energy's Office of Biological and Environmental Research designated the Atmospheric Radiation Measurement sites as National User Facilities and renamed them the ARM Climate Research Facility (ACRF). As a result, the former ARM Cloud and Radiation Test bed (CART) sites are now collectively called Climate Research Sites. Part of the conditions associated with funding for ACRF is that the ARM program must attract new users. Located in Australia, and the island nations of Papua New Guinea and the Republic of Nauru, the three Tropical Western Pacific (TWP) research facilities offer unique scientific opportunities to prospective users. Although the locations of the facilities pose significant logistical challenges, particularly the two island sites, the TWP Office addresses these issues so that prospective users can focus on their research. The TWP Office oversees the operation of these sites by collaborating with the governments of Australia, Papua New Guinea, and the Republic of Nauru. Local observers are trained to effectively operate and maintain the facilities, and the state-side TWP Office offers supporting resources including daily instrument monitoring; equipment shipping, inventory tracking; customs coordination; and a readily deployable technical maintenance team at relatively minimal cost to prospective users. Satellite communications allow continuous, near-real time data from all three stations. The TWP Office also works diligently to maintain good local government and community relations with active outreach programs. This paper presents the TWP research facilities as the valuable resources they are to the scientific community.

  10. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  11. ATR NATIONAL SCIENTIFIC USER FACILITY INSTRUMENTATION ENHANCEMENT EFFORTS

    SciTech Connect

    Joy L. Rempe; Mitchell K. Meyer

    2009-04-01

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to enhance instrumentation techniques available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing ‘real-time’ measurements of key irradiation parameters is emphasized because of their potential to offer increased fidelity data and reduced post-test examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing several new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide users improved in-pile instrumentation.

  12. User Interface Framework for the National Ignition Facility (NIF)

    SciTech Connect

    Fisher, J M; Bowers, G A; Carey, R W; Daveler, S A; Herndon Ford, K B; Ho, J C; Lagin, L J; Lambert, C J; Mauvais, J; Stout, E A; West, S L

    2007-10-01

    A user interface (UI) framework supports the development of user interfaces to operate the National Ignition Facility (NIF) using the Integrated Computer Control System (ICCS). [1] This framework simplifies UI development and ensures consistency for NIF operators. A comprehensive, layered collection of UIs in ICCS provides interaction with system-level processes, shot automation, and subsystem-specific devices. All user interfaces are written in Java, employing CORBA to interact with other ICCS components. ICCS developers use these frameworks to compose two major types of user interfaces: broadviews and control panels. Broadviews provide a visual representation of the NIF beamlines through interactive schematic drawings. Control panels provide status and control at a device level. The UI framework includes a suite of display components to standardize user interaction through data entry behaviors, common connection and threading mechanisms, and a common appearance. With these components, ICCS developers can more efficiently address usability issues in the facility when needed. The ICCS UI framework helps developers create consistent and easy-to-understand user interfaces for NIF operators.

  13. Guide for users of the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Fuller, D. E.; Gloss, B. B.; Nystrom, D.

    1981-01-01

    The National Transonic Facility (NTF) is a fan-driven, closed-circuit, continuous flow, pressurized wind tunnel. The test section is 2.5 m x 2.5 m and 7.62 m long with a slotted-wall configuration. The NTF will have a Mach number range from 0.2 to 1.2, with Reynolds number up to 120 10 to the sixth power at Mach 1 (based on a reference length of 0.25 m). The pressure range for the facility will be from 1 to about 9 bars (1 ban = 100 kPa), and the temperature can be varied from 340 to 78 K. This report provides potential users of the NTF with the information required for preliminary planning to test programs and for preliminary layout of models and model supports which may be used in such programs.

  14. ATR National Scientific User Facility 2009 Annual Report

    SciTech Connect

    Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

    2010-11-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  15. ATR National Scientific User Facility 2015 Annual Report

    SciTech Connect

    Sarah Robertson; James Lane; Doug Copsey

    2015-09-01

    This is the 2015 Annual Report for the Nuclear Science User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  16. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  17. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  18. ICStatus and progress of the National Ignition Facility as ICF and HED user facility

    NASA Astrophysics Data System (ADS)

    Van Wonterghem, B. M.; Kauffman, R. L.; Larson, D. W.; Herrmann, M. C.

    2016-05-01

    Since its completion in 2009, the National Ignition Facility has been operated in support of NNSA's Stockpile Stewardship mission, providing unique experimental data in the high energy density regime. We will describe the progress made by the National Ignition facility in the user office and management, facility capabilities, target diagnostics and diagnostics development. We will also discuss the results of a major effort to increase the shot rate on NIF. An extensive set of projects, developed in conjunction with the HED community and drawing on best practices at other facilities, improved shot rate by over 80% and recently enabled us to deliver 356 target experiments in FY15 in support of the users. Through an updated experimental set-up and review process, computer controlled set-up of the laser and diagnostics and disciplined operations, NIF also continued to deliver experimental reliability, precision and repeatability. New and complex platforms are introduced with a high success rate. Finally we discuss how new capabilities and further efficiency improvements will enable the successful execution of ICF and HED experimental programs required to support the quest for Ignition and the broader Science Based Stockpile Stewardship mission

  19. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    SciTech Connect

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  20. NENIMF: Northeast National Ion Microprobe Facility - A Multi-User Facility for SIMS Microanalysis

    NASA Astrophysics Data System (ADS)

    Layne, G. D.; Shimizu, N.

    2002-12-01

    The MIT-Brown-Harvard Regional Ion Microprobe Facility was one of the earliest multi-user facilities enabled by Dan Weill's Instrumentation and Facilities Program - and began with the delivery of a Cameca IMS 3f ion microprobe to MIT in 1978. The Northeast National Ion Microprobe Facility (NENIMF) is the direct descendant of this original facility. Now housed at WHOI, the facility incorporates both the original IMS 3f, and a new generation, high transmission-high resolution instrument - the Cameca IMS 1270. Purchased with support from NSF, and from a consortium of academic institutions in the Northeast (The American Museum of Natural History, Brown University, The Lamont-Doherty Earth Observatory, MIT, Rensselaer Polytechnic Institute, WHOI) - this latest instrument was delivered and installed during 1996. NENIMF continues to be supported by NSF EAR I&F as a multi-user facility for geochemical research. Work at NENIMF has extended the original design strength of the IMS 1270 for microanalytical U-Pb zircon geochronology to a wide variety of novel and improved techniques for geochemical research. Isotope microanalysis for studies in volcanology and petrology is currently the largest single component of facility activity. This includes the direct measurement of Pb isotopes in melt inclusions, an application developed at NENIMF, which is making an increasingly significant contribution to our understanding of basalt petrogenesis. This same technique has also been extended to the determination of Pb isotopes in detrital feldspar grains, for the study of sedimentary provenance and tectonics of the Himalayas and other terrains. The determination of δ11B in volcanic melt inclusions has also proven to be a powerful tool in the modeling of subduction-related magmatism. The recent development of δ34S and δ37Cl determination in glasses is being applied to studies of the behavior of these volatile elements in both natural and experimental systems. Other recent undertakings

  1. Future User Facilities

    NASA Astrophysics Data System (ADS)

    Riedinger, Lee

    2002-10-01

    The southeastern part of the U.S. is blessed with an array of national user facilities that are accessible to scientists in the region. The Oak Ridge National Laboratory (ORNL) operates 17 officially designated user facilities for the Department of Energy, the Jefferson Lab operates the Continuous Electron Beam Accelerator Facility (CEBAF), and a number of universities have forefront experimental facilities that are widely accessible. The long lead time necessary to originate and construct new user facilities makes it imperative to consider the needs of the physical sciences 10 to 20 years in the future. The construction of the Spallation Neutron Source at ORNL positions the southeast to lead in neutron science. Upgrades are desired for CEBAF and the Holifield Radioactive Ion Beam Facility (ORNL). The more future possibilities are less clear, but are becoming a focus of strategic planning among the national laboratories. Possibilities may arise in the U.S. for next-generation light sources, large computational centers, advanced fusion devices, nanotechnology centers, and perhaps facilities that are not yet contemplated. A regional discussion of the needs for large-scale user facilities in the southeast is important.

  2. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    SciTech Connect

    Martin, R.C.; Laxson, R.R.; Knauer, J.B.

    1996-10-01

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed {sup 252}Cf neutron source for university and research loans. Within the CF, the {sup 252}Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests.

  3. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  4. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    NASA Astrophysics Data System (ADS)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  5. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  6. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  7. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  8. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  9. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  10. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect

    Ogden, Dan

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  11. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    SciTech Connect

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  12. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  13. The LERIX User Facility

    SciTech Connect

    Seidler, G.T.; Fister, T.T.; Cross, J.O.; Nagle, K.P.

    2007-01-18

    We describe the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer, located at sector 20 PNC-XOR of the Advanced Photon Source. This instrument, which is now available to general users, is the first user facility optimized for high throughput measurements of momentum transfer dependent nonresonant inelastic x-ray scattering (NRIXS) from the core shell electrons of relatively light elements or the less-tightly bound electrons of heavier elements. By means of example, we present new NRIXS measurements of the near-edge structure for the L-edges of Al and the K-edge in Si.

  14. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  15. NREL's Concentrated Solar Radiation User Facility

    SciTech Connect

    Lewandowski, A.

    1999-09-01

    Declared a national user facility in 1993, NREL's Concentrated Solar Radiation User Facility (CSR) allows industry, government, and university researchers to examine the effects and applications of as much as 50,000 suns of concentrated solar radiation using a High-Flux Solar Furnace and long-term exposure using an ultraviolet (UV) concentrator.

  16. GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research in GeoScience

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Sutton, S. R.; Prakapenka, V.; Wang, Y.; Newville, M.; Eng, P.; Dera, P. K.

    2009-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for geoscience research at Sector 13 of the Advanced Photon Source, Argonne National Laboratory. GSECARS provides the scientific community with access to high-brightness x-rays and supports a wide range of experimental techniques. The operation of the facility is funded by the NSF Earth Sciences Facilities and Instrumentation Program, and by the Department of Energy Geosciences Program. GSECARS is managed by the Consortium for Advanced Radiation Sources (CARS) at the University of Chicago, and provides access to resources for earth science research which no single university or other institution could provide. By operating beamlines that are specialized for earth science research, we are able to provide staff who understand and participate in the research being conducted, which is critical for productivity. GSECARS began operations in 1996, and currently operates 4 experimental stations, two on the bending magnet beamline and two on the undulator beamline. The two bending magnet stations operate independently and simultaneously, while the two undulator stations currently share the beam time. (An upgrade proposal has recently been funded by NSF, DOE and NASA to allow the undulator stations to also operate independently and simultaneously). The experimental techniques provided at the facility include: - Diamond Anvil Cell: Monochromatic diffraction and spectroscopy. Online laser heating is available on the undulator beamline, and external heating is available on the bending magnet beamline. - Multi-anvil Press: energy-dispersive and monochromatic diffraction and imaging. There is a 250 ton press on the bending magnet beamline, and a 1000 ton press on the undulator beamline; deformation experiments, acoustic velocity measurements, and computed tomography can all be performed in the press. - Microprobe: micro-XRF, micro-XAFS, fluorescence microCMT, micro-XRD - Microtomography: absorption and differential

  17. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  18. User Facilities: The Education of New Neutron Users

    SciTech Connect

    Hernandez, Yamali; Brown, Craig M.

    2009-08-19

    Neutron scattering is a particularly useful tool enabling the study of compositional, structural and dynamical properties of materials down to the atomic scale. Due to the complexity of operating an intense source of neutrons, this technique is primarily practiced at large national facilities that cater to the research needs of chemists, biologists, physicists, engineers, and material scientists in general. In particular, these user facilities provide specialized instrumentation along with the scientific and technical support required to efficiently utilize it. Since neutron scattering experiments are performed at central facilities rather than in the home-laboratories of individual investigators, the facilities themselves must play a key role in the education and development of new users. The role of neutron scattering facilities in educating young scientists will be examined using examples from current programs at the National Institute of Standards and Technology Center for Neutron Research.

  19. THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

    SciTech Connect

    David S. Duncan; Vondell J. Balls; Stephanie L. Austad

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

  20. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  1. FACET: SLAC___s New User Facility

    SciTech Connect

    Clarke, C.I.; Decker, F.-J.; England, R.J.; Erickson, R.A.; Hast, C.; Hogan, M.J.; Li, S.Z.; Litos, M.D.; Nosochkov, Y.; Seeman, J.T.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-05-16

    FACET (Facility for Advanced Accelerator Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. The first User Run started in spring 2012 with 20 GeV, 3 nC electron beams. The facility is designed to provide short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. The creation of drive and witness bunches and shaped bunch profiles is possible with 'Notch' Collimation. FACET is also a source of THz radiation for material studies. Positrons will be available at FACET in future user runs. We present the User Facility and the available tools and opportunities for future experiments.

  2. User's guide to DOE facilities

    SciTech Connect

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  3. DOE Thermochemical Users Facility A Proving Ground for Biomass Technology

    SciTech Connect

    2003-11-01

    The National Bioenergy Center at the National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products.

  4. FACET: The New User Facility at SLAC

    SciTech Connect

    Clarke, C.I.; Decker, F.J.; Erikson, R.; Hast, C.; Hogan, M.J.; Iverson, R.; Li, S.Z.; Nosochkov, Y.; Phinney, N.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; Seryi, A.; Wittmer, W.; /Michigan State U.

    2011-12-13

    FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 {mu}m. A final focusing system can produce beam spots 10 {mu}m wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments. Accelerators are our primary tool for discovering the fundamental laws to the universe. Each new frontier we probe requires a new, more powerful method. Accelerators are therefore increasing in size and cost. The future of this field requires new accelerating techniques that can reach the high energies required over shorter distances. New concepts for high gradient acceleration include utilizing the wakes in plasma and dielectric and metallic structures. FACET was built to provide a test bed for novel accelerating concepts with its high charge and highly compressed beams. As a test facility unlike any other, it has also attracted groups interested in beam diagnostic techniques and terahertz studies. The first phase of the construction was completed in May 2011. Beam commissioning began in June and was interleaved with the installation of five experiments. Users were invited to aid with the commissioning for the month of August during which time experimental hardware and software were checked out and some first measurements were taken. FACET is currently in the process of becoming a Department of Energy User Facility for High Energy Physics.

  5. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  6. Orion: a commissioned user facility

    NASA Astrophysics Data System (ADS)

    Treadwell, P. A.; Allan, P.; Cann, N.; Danson, C.; Duffield, S.; Elsmere, S.; Edwards, R.; Egan, D.; Girling, M.; Gumbrell, E.; Harvey, E.; Hill, M.; Hillier, D.; Hoarty, D.; Hobbs, L.; Hopps, N.; Hussey, D.; Oades, K.; James, S.; Norman, M.; Palmer, J.; Parker, S.; Winter, D.; Bett, T.

    2013-05-01

    The Orion Laser Facility at AWE in the UK consists of ten nanosecond beamlines and two sub-picosecond beamlines. The nanosecond beamlines each nominally deliver 500 J at 351 nm in a 1 ns square temporal profile, but can also deliver a user-definable temporal profile with durations between 0.1 ns and 5 ns. The sub-picosecond beamlines each nominally deliver 500 J at 1053 nm in a 500 fs pulse, with a peak irradiance of greater than 1021 W/cm2. One of the sub-picosecond beamlines can also be frequency-converted to deliver 100 J at 527 nm in a 500 fs pulse, although this is at half the aperture of the 1053 nm beam. Commissioning of all twelve beamlines has been completed, including the 527 nm sub-picosecond option. An overview of the design of the Orion beamlines will be presented, along with a summary of the commissioning and subsequent performance data. The design of Orion was underwritten by running various computer simulations of the beamlines. Work is now underway to validate these simulations against real system data, with the aim of creating predictive models of beamline performance. These predictive models will enable the user's experimental requirements to be critically assessed ahead of time, and will ultimately be used to determine key system settings and parameters. The facility is now conducting high energy density physics experiments. A capability experiment has already been conducted that demonstrates that Orion can generate plasmas at several million Kelvin and several times solid density. From March 2013 15% of the facility operating time will be given over to external academic users in addition to collaborative experiments with AWE scientists.

  7. Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  8. Multi-year Content Analysis of User Facility Related Publications

    SciTech Connect

    Patton, Robert M; Stahl, Christopher G; Hines, Jayson; Potok, Thomas E; Wells, Jack C

    2013-01-01

    Scientific user facilities provide resources and support that enable scientists to conduct experiments or simulations pertinent to their respective research. Consequently, it is critical to have an informed understanding of the impact and contributions that these facilities have on scientific discoveries. Leveraging insight into scientific publications that acknowledge the use of these facilities enables more informed decisions by facility management and sponsors in regard to policy, resource allocation, and influencing the direction of science as well as more effectively understand the impact of a scientific user facility. This work discusses preliminary results of mining scientific publications that utilized resources at the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL). These results show promise in identifying and leveraging multi-year trends and providing a higher resolution view of the impact that a scientific user facility may have on scientific discoveries.

  9. Identification of User Facility Related Publications

    SciTech Connect

    Patton, Robert M; Stahl, Christopher G; Wells, Jack C; Potok, Thomas E

    2012-01-01

    Scientific user facilities provide physical resources and technical support that enable scientists to conduct experiments or simulations pertinent to their respective research. One metric for evaluating the scientific value or impact of a facility is the number of publications by users as a direct result of using that facility. Unfortunately, for a variety of reasons, capturing accurate values for this metric proves time consuming and error-prone. This work describes a new approach that leverages automated browser technology combined with text analytics to reduce the time and error involved in identifying publications related to user facilities. With this approach, scientific user facilities gain more accurate measures of their impact as well as insight into policy revisions for user access.

  10. The Fifth Omega Laser Facility Users Group Workshop

    SciTech Connect

    Petrasso, R. D.

    2015-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.

  11. The Sixth Omega Laser Facility Users Group Workshop

    SciTech Connect

    Petrasso, R. D.

    2014-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.

  12. National Facilities study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This study provides a set of recommendations for improving the effectiveness of our nation's aeronautics and space facilities. The study plan considers current and future government and commercial needs as well as DOD and NASA mission requirements through the year 2023. It addresses shortfalls in existing capabilities, new facility requirements, upgrades, consolidations, and phase-out of existing facilities. If the recommendations are implemented, they will provide world-class capability where it is vital to our country's needs and make us more efficient in meeting future needs.

  13. University multi-user facility survey-2010.

    PubMed

    Riley, Melissa B

    2011-12-01

    Multi-user facilities serve as a resource for many universities. In 2010, a survey was conducted investigating possible changes and successful characteristics of multi-user facilities, as well as identifying problems in facilities. Over 300 surveys were e-mailed to persons identified from university websites as being involved with multi-user facilities. Complete responses were received from 36 facilities with an average of 20 years of operation. Facilities were associated with specific departments (22%), colleges (22%), and university research centers (8.3%) or were not affiliated with any department or college within the university (47%). The five most important factors to succeed as a multi-user facility were: 1) maintaining an experienced, professional staff in an open atmosphere; 2) university-level support providing partial funding; 3) broad client base; 4) instrument training programs; and 5) an effective leader and engaged strategic advisory group. The most significant problems were: 1) inadequate university financial support and commitment; 2) problems recovering full service costs from university subsidies and user fees; 3) availability of funds to repair and upgrade equipment; 4) inability to retain highly qualified staff; and 5) unqualified users dirtying/damaging equipment. Further information related to these issues and to fee structure was solicited. Overall, there appeared to be a decline in university support for facilities and more emphasis on securing income by serving clients outside of the institution and by obtaining grants from entities outside of the university.

  14. Characterizing User Communities of Large Multi-Disciplinary Research Facilities

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.

    2012-12-01

    Large-scale multi-user research facilities are a critical component of the federal science and engineering research enterprise. Developing infrastructure for multidisciplinary research requires large investments over long periods of time and typically involves partnerships across many institutions. Consequently, multiple policy questions surround federal investments in large research facilities including what is the best way to maximize scientific productivity? How should investments in infrastructure be balanced with support for individual or small group research? For many facilities, the answers to these questions become focused on the activities of the users: the individuals who are interacting with the facility for furthering scientific research and/or education. This independent study provides the first known analysis of facility utilization. Four facilities supported by the National Science Foundation (NSF) are used as case studies to create a conceptual framework for characterizing facility utilization, to examine changes in facility use over time, and to define how lessons learned can be applied to facility management and planning. Results show that there is a broad spectrum of users who interact with each facility in different ways and that for some facilities, unanticipated users are driving new areas of research. This work also shows that cyberinfrastructure-enabled facilities are experiencing rapid increases in data use and in some cases, the next generation of facility users appears to be developing new skills for working in an increasingly data-intensive research environment. Characterizing and quantifying large facility use will likely become increasingly important as the federal government continues to focus on developing metrics and evaluation tools for its investments in science and engineering research. This work establishes a foundation for assessing facility utilization and shows that this area is ripe for future work that may include portfolio

  15. Audit of the Department of Energy`s user facilities

    SciTech Connect

    1996-08-19

    DOE has for years made certain designated research facilities available to universities, industry, and other research organizations. Due to technology transfer efforts and excess capacities, even more facilities, such as defense program facilities, are being made available to outside users. Today, DOE user facilities fall into one of three categories: designated user facilities, other user resources, and Technology Deployment Center/User Facilities. Objective of this audit was to determine whether user facility agreements were priced for full cost recovery, user facility agreement collections were properly deposited, and financial assistance provided to visiting researchers was allowable and reasonable. The audit found that DOE priced Technology Deployment Center/User Facility and designated user facility agreements in accordance with DOE policies. However, other user facility agreements were not always priced to ensure full cost recovery, and collections were not always properly deposited. At one designated user facility, visiting researchers were provided with financial and housing assistance that is questionable as being allowable.

  16. Los Alamos neutron science user facility - control system risk mitigation & updates

    SciTech Connect

    Pieck, Martin

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  17. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  18. Generalized Monitoring Facility. Users Manual.

    DTIC Science & Technology

    1982-05-01

    14-9 14.4.2.3.2.1 Service Priorities .. ............. ... 14-9 14.4.2.3.2.2 Evaluation/Tuning Solution Priorities . . . 14-9 14.4.2.4 Specify Current ...14.4.2.4.2.1 Attainable Objectives .. ........... ... 14-9 14.4.2.4.2.2 Realistic Objectives ... ............ ... 14-9 14.4.2.4.2.3 Cost -Effective Objectives...changed from its current value of 1 to a value of 0. See subsection 2.6 for a complete description of all user requirements prior to using the GMC. When

  19. The National Ignition Facility

    SciTech Connect

    Miller, G H; Moses, E I; Wuest, C R

    2004-02-06

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5-ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

  20. The National Ignition Facility

    SciTech Connect

    Miller, G H; Moses, E I; Wuest, C R

    2004-06-03

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility that, when completed in 2008, will contain a 192-beam, 1.8- Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system and will provide a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5- ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

  1. DTRA National Ignition Facility (NIF)

    DTIC Science & Technology

    2009-01-16

    DTRA National Ignition Facility ( NIF ) ___________________________________ JSR-08- 800 September 29...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DTRA National Ignition Facility ( NIF ) 5b. GRANT NUMBER 5c...only). 13. SUPPLEMENTARY NOTES 14. ABSTRACT JASON was asked to address the utility of the National Ignition Facility ( NIF ) to the Defense Threat

  2. National Transonic Facility status

    NASA Technical Reports Server (NTRS)

    Mckinney, L. W.; Bruce, W. E., Jr.; Gloss, B. B.

    1989-01-01

    The National Transonic Facility (NTF) was operational in a combined checkout and test mode for about 3 years. During this time there were many challenges associated with movement of mechanical components, operation of instrumentation systems, and drying of insulation in the cryogenic environment. Most of these challenges were met to date along with completion of a basic flow calibration and aerodynamic tests of a number of configurations. Some of the major challenges resulting from cryogenic environment are reviewed with regard to hardware systems and data quality. Reynolds number effects on several configurations are also discussed.

  3. Operations on the National Ignition Facility

    SciTech Connect

    Brereton, Sandra J.; Burr, Robert F.; Folta, Peg; Keane, Christopher J.; Kohut, Thomas R.; Merritt, Bernard T.; Van Wonterghem, Bruno M.

    2014-03-24

    The National Ignition Facility (NIF) is a fully operational high energy density physics experimental user facility that focuses 192 laser beams onto a small target at the center of a target chamber. This paper describes how we execute experimental shots on the NIF, both from the user perspective and from the facility perspective. We review the planning processes and tools used to facilitate operations. Safety and radiological aspects of NIF’s operations are discussed. We also describe efforts to continuously improve operations and further increase shot rate.

  4. Operations on the National Ignition Facility

    DOE PAGES

    Brereton, Sandra J.; Burr, Robert F.; Folta, Peg; ...

    2014-03-24

    The National Ignition Facility (NIF) is a fully operational high energy density physics experimental user facility that focuses 192 laser beams onto a small target at the center of a target chamber. This paper describes how we execute experimental shots on the NIF, both from the user perspective and from the facility perspective. We review the planning processes and tools used to facilitate operations. Safety and radiological aspects of NIF’s operations are discussed. We also describe efforts to continuously improve operations and further increase shot rate.

  5. Ground Software Maintenance Facility (GSMF) user's manual

    NASA Technical Reports Server (NTRS)

    Aquila, V.; Derrig, D.; Griffith, G.

    1986-01-01

    Instructions for the Ground Software Maintenance Facility (GSMF) system user is provided to operate the GSMF in all modes. The GSMF provides the resources for the Automatic Test Equipment (ATE) computer program maintenance (GCOS and GOAL). Applicable reference documents are listed. An operational overview and descriptions of the modes in terms of operator interface, options, equipment, material utilization, and operational procedures are contained. Test restart procedures are described. The GSMF documentation tree is presented including the user manual.

  6. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  7. The National Ignition Facility

    SciTech Connect

    Miller, G H

    2003-12-19

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10'' bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5 ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as multi-color laser operation and high-energy short pulse operation.

  8. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  9. A study of the operation of selected national research facilities

    NASA Technical Reports Server (NTRS)

    Eisner, M.

    1974-01-01

    The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.

  10. National Solar Thermal Test Facility

    SciTech Connect

    Cameron, C.P.

    1989-12-31

    This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

  11. Office of Science User Facilities Summary Report, Fiscal Year 2015

    SciTech Connect

    2015-01-01

    The U.S. Department of Energy Office of Science provides the Nation’s researchers with worldclass scientific user facilities to propel the U.S. to the forefront of science and innovation. A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the following conditions: open, accessible, free, collaborative, competitive, and unique.

  12. On the future of BNL user facilities

    SciTech Connect

    Ben-Zvi, I.

    2010-08-01

    The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

  13. Facility Interface Capability Assessment (FICA) user manual

    SciTech Connect

    Pope, R.B.; MacDonald, R.R.; Massaglia, J.L.; Williamson, D.A.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is describe the FICA computer software and to provide the FICA user with a guide on how to use the FICA system. The FICA computer software consists of two executable programs: the FICA Reactor Report program and the FICA Summary Report program (written in the Ca-Clipper version 5.2 development system). The complete FICA software system is contained on either a 3.5 in. (double density) or a 5.25 in. (high density) diskette and consists of the two FICA programs and all the database files (generated using dBASE III). The FICA programs are provided as ``stand alone`` systems and neither the Ca-Clipper compiler nor dBASE III is required to run the FICA programs. The steps for installing the FICA software system and executing the FICA programs are described in this report. Instructions are given on how to install the FICA software system onto the hard drive of the PC and how to execute the FICA programs from the FICA subdirectory on the hard drive. Both FICA programs are menu driven with the up-arrow and down-arrow keys used to move the cursor to the desired selection.

  14. Target Visualization at the National Ignition Facility

    SciTech Connect

    Potter, Daniel Abraham

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  15. The user facility FELIX: Past, present and future

    SciTech Connect

    Meer, A.F.G. van der; Amersfoort, P.W. van

    1995-12-31

    The performance over the past year and the current user-relevant characteristics of the User Facility FELIX will be discussed. Also the existing plans for improving and extending the capabilities and provisions will be presented.

  16. The National Ignition Facility Project

    SciTech Connect

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-06-16

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project.

  17. MERLIN/VLBI National Facility

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Multi-Element Radio Linked Interferometer Network (MERLIN) is a unique synthesis radio telescope which was originally developed by the University of Manchester in the late 1970s and came into operation in 1980. After further development, in 1993 it formally became a National Facility operated by the University of Manchester on behalf of the UK PARTICLE PHYSICS AND ASTRONOMY RESEARCH COUNCIL...

  18. Radiant Heat Test Facility (RHTF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  19. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  20. Antenna Test Facility (ATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  1. National Ignition Facility site requirements

    SciTech Connect

    1996-07-01

    The Site Requirements (SR) provide bases for identification of candidate host sites for the National Ignition Facility (NIF) and for the generation of data regarding potential actual locations for the facilities. The SR supplements the NIF Functional Requirements (FR) with information needed for preparation of responses to queries for input to HQ DOE site evaluation. The queries are to include both documents and explicit requirements for the potential host site responses. The Sr includes information extracted from the NIF FR (for convenience), data based on design approaches, and needs for physical and organization infrastructure for a fully operational NIF. The FR and SR describe requirements that may require new construction or may be met by use or modification of existing facilities. The SR do not establish requirements for NIF design or construction project planning. The SR document does not constitute an element of the NIF technical baseline.

  2. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  3. The National Ignition Facility project

    SciTech Connect

    Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.

    1996-06-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KD0), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, the authors completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. This article presents an overview of the NIF project.

  4. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  5. The Jefferson Lab High Power THz User Facility

    SciTech Connect

    John Klopf; Amelia Greer; Joseph Gubeli; George Neil; Michelle D. Shinn; Timothy Siggins; David W. Waldman; Gwyn Williams; Alan Todd; Vincent Christina; Oleg Chubar

    2007-04-27

    We describe here, a high power (100 Watt average, 10 MW peak) broadband THz facility based on emission from sub-picosecond bunches of relativistic electrons and the beam transport system that delivers this beam in to a user laboratory.

  6. Implementation of patient charges at primary care facilities in Kenya: implications of low adherence to user fee policy for users and facility revenue.

    PubMed

    Opwora, Antony; Waweru, Evelyn; Toda, Mitsuru; Noor, Abdisalan; Edwards, Tansy; Fegan, Greg; Molyneux, Sassy; Goodman, Catherine

    2015-05-01

    With user fees now seen as a major hindrance to universal health coverage, many countries have introduced fee reduction or elimination policies, but there is growing evidence that adherence to reduced fees is often highly imperfect. In 2004, Kenya adopted a reduced and uniform user fee policy providing fee exemptions to many groups. We present data on user fee implementation, revenue and expenditure from a nationally representative survey of Kenyan primary health facilities. Data were collected from 248 randomly selected public health centres and dispensaries in 2010, comprising an interview with the health worker in charge, exit interviews with curative outpatients, and a financial record review. Adherence to user fee policy was assessed for eight tracer conditions based on health worker reports, and patients were asked about actual amounts paid. No facilities adhered fully to the user fee policy across all eight tracers, with adherence ranging from 62.2% for an adult with tuberculosis to 4.2% for an adult with malaria. Three quarters of exit interviewees had paid some fees, with a median payment of US dollars (USD) 0.39, and a quarter of interviewees were required to purchase additional medical supplies at a later stage from a private drug retailer. No consistent pattern of association was identified between facility characteristics and policy adherence. User fee revenues accounted for almost all facility cash income, with average revenue of USD 683 per facility per year. Fee revenue was mainly used to cover support staff, non-drug supplies and travel allowances. Adherence to user fee policy was very low, leading to concerns about the impact on access and the financial burden on households. However, the potential to ensure adherence was constrained by the facilities' need for revenue to cover basic operating costs, highlighting the need for alternative funding strategies for peripheral health facilities. Published by Oxford University Press in association with

  7. Engineering the National Ignition Facility

    SciTech Connect

    Bowers, J; Hackel, R; Larson, D; Manes, K; Murray, J; Sawicki, R

    1998-08-19

    The engineering team of the National Ignition Facility (NIF) has developed a highly optimized hardware design that satisfies stringent cost, performance and schedule requirements. After a 3-year effort, the design will culminate at the end of FY98 with the completion of major Title II design reviews. Every element of the facility from optic configuration, facility layout and hardware specifications to material selection, fabrication techniques and part tolerancing has been examined to assure the minimum cost per joule of laser energy delivered on target. In this paper, the design of the major subsystems will be discussed from the perspective of this optimization emphasis. Focus will be placed on the special equipment hardware which includes laser, beam transport, opto-mechanical , system control and target area systems. Some of the unique features in each of these areas will be discussed to highlight how significant cost savings have been achieved while maintaining reasonable and acceptable performance risk. Key to the success has also been a vigorous development program that commenced nearly 4 years ago and has been highly responsive to the specific needs of the NIF project. Supporting analyses and prototyping work that evolved from these parallel activities will also be discussed.

  8. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  9. A Software for managing afterhours activities in research user facilities

    DOE PAGES

    Camino, Fernando E.

    2016-10-13

    Here, we present an afterhours activity management program for shared facilities, which handles the processes required for afterhours access (request, approval, extension, etc.). It implements the concept of permitted afterhours activities, which consists of a list of well-defined activities that each user can perform afterhours. The program provides an easy and unambiguous way for users to know which activities they are allowed to perform afterhours. In addition, the program can enhance its safety efficacy by interacting with lab and instrument access control systems commonly present in user facilities.

  10. Implementation of patient charges at primary care facilities in Kenya: implications of low adherence to user fee policy for users and facility revenue

    PubMed Central

    Opwora, Antony; Waweru, Evelyn; Toda, Mitsuru; Noor, Abdisalan; Edwards, Tansy; Fegan, Greg; Molyneux, Sassy; Goodman, Catherine

    2015-01-01

    With user fees now seen as a major hindrance to universal health coverage, many countries have introduced fee reduction or elimination policies, but there is growing evidence that adherence to reduced fees is often highly imperfect. In 2004, Kenya adopted a reduced and uniform user fee policy providing fee exemptions to many groups. We present data on user fee implementation, revenue and expenditure from a nationally representative survey of Kenyan primary health facilities. Data were collected from 248 randomly selected public health centres and dispensaries in 2010, comprising an interview with the health worker in charge, exit interviews with curative outpatients, and a financial record review. Adherence to user fee policy was assessed for eight tracer conditions based on health worker reports, and patients were asked about actual amounts paid. No facilities adhered fully to the user fee policy across all eight tracers, with adherence ranging from 62.2% for an adult with tuberculosis to 4.2% for an adult with malaria. Three quarters of exit interviewees had paid some fees, with a median payment of US dollars (USD) 0.39, and a quarter of interviewees were required to purchase additional medical supplies at a later stage from a private drug retailer. No consistent pattern of association was identified between facility characteristics and policy adherence. User fee revenues accounted for almost all facility cash income, with average revenue of USD 683 per facility per year. Fee revenue was mainly used to cover support staff, non-drug supplies and travel allowances. Adherence to user fee policy was very low, leading to concerns about the impact on access and the financial burden on households. However, the potential to ensure adherence was constrained by the facilities’ need for revenue to cover basic operating costs, highlighting the need for alternative funding strategies for peripheral health facilities. PMID:24837638

  11. Manned orbital facility: A user's guide

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The salient conceptual features and expected evolution of the facility are discussed; the baseline design is offered as a model against which the reader can compare his needs. The overall program is discussed, supporting services and resources are described, and examples of typical payload applications are given. The general design features and configurations representing the baseline MOF developed and derived with due consideration given to applicable designs and subsystems such as those available in the Skylab, orbiter, and space lab vehicles.

  12. National Ignition Facility system alignment.

    PubMed

    Burkhart, S C; Bliss, E; Di Nicola, P; Kalantar, D; Lowe-Webb, R; McCarville, T; Nelson, D; Salmon, T; Schindler, T; Villanueva, J; Wilhelmsen, K

    2011-03-10

    The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.

  13. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  14. NATIONAL STORMWATER CALCULATOR USER'S GUIDE ...

    EPA Pesticide Factsheets

    The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US. It estimates the amount of stormwater runoff generated from a site under different development and control scenarios over a long term period of historical rainfall. The analysis takes into account local soil conditions, slope, land cover and meteorology. Different types of low impact development (LID) practices (also known as green infrastructure) can be employed to help capture and retain rainfall on-site. Future climate change scenarios taken from internationally recognized climate change projections can also be considered. The calculator provides planning level estimates of capital and maintenance costs which will allow planners and managers to evaluate and compare effectiveness and costs of LID controls.The calculator’s primary focus is informing site developers and property owners on how well they can meet a desired stormwater retention target. It can be used to answer such questions as:• What is the largest daily rainfall amount that can be captured by a site in either its pre-development, current, or post-development condition?• To what degree will storms of different magnitudes be captured on site?• What mix of LID controls can be deployed to meet a given stormwater retention target?• How well will LID controls perform under future meteorological projections made by global climate change models?• What are the relativ

  15. Generalized Monitoring Facility. Users Manual. Change 4.

    DTIC Science & Technology

    1983-01-01

    a Plot Interval (Plot ID PLOTS) . . . . . . .. .. .. * * . 10-24 10.5.2.6 Percent Buffer Requests Denied (Plot ID PLOT6...10-24 10.5.2.7 Number of 18-Bit Words Available for Buffers (Plot ID PLOT7) o......... . 10-24 10.5.2.8 Number of Users Logged on the System...Report ..-o.......* .... 12-8 12.4.2.4 Buffer Space Report . . . . . . . . . . .. . . 12-8 12.4.2,5 Table Reaching Threshold Size . . . . . ... 12-8

  16. National Cryo-Electron Microscopy Facility

    Cancer.gov

    Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.

  17. Orion: a high contrast user facility

    NASA Astrophysics Data System (ADS)

    Hillier, D. I.; Danson, C. N.; Duffield, S. J.; Egan, D. A.; Elsmere, S. P.; Girling, M. T.; Harvey, E. J.; Hopps, N. W.; Norman, M. J.; Parker, S. J. F.; Treadwell, P. T.; Winter, D. N.; Bett, T. H.

    2016-03-01

    The Orion facility consists of two synchronized laser systems: two CPA (Chirped Pulse Amplification) beamlines each deliver 500J to target in a 0.5ps pulse (1PW) at 1054nm; and ten long pulse beamlines each deliver 500J in 0.1-5ns temporally shaped pulse at 351nm. One of the CPA beamlines has the option to be frequency doubled at sub-aperture to produce 100J laser pulses with a nanosecond contrast of ∼ 1014. Further work is under way to enhance the contrast of both CPA beamlines in the first harmonic.

  18. National Facilities Study. Volume 1: Facilities Inventory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The inventory activity was initiated to solve the critical need for a single source of site specific descriptive and parametric data on major public and privately held aeronautics and aerospace related facilities. This a challenging undertaking due to the scope of the effort and the short lead time in which to assemble the inventory and have it available to support the task group study needs. The inventory remains dynamic as sites are being added and the data is accessed and refined as the study progresses. The inventory activity also included the design and implementation of a computer database and analytical tools to simplify access to the data. This volume describes the steps which were taken to define the data requirements, select sites, and solicit and acquire data from them. A discussion of the inventory structure and analytical tools is also provided.

  19. National Radiobiology Archives Distributed Access user's manual

    SciTech Connect

    Watson, C.; Smith, S. ); Prather, J. )

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

  20. National Ignition Facility system design requirements conventional facilities SDR001

    SciTech Connect

    Hands, J.

    1996-04-09

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

  1. Reliability Considerations for the Operation of Large Accelerator User Facilities

    DOE PAGES

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  2. Space Station Freedom technology payload user operations facility concept

    NASA Technical Reports Server (NTRS)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  3. Reliability Considerations for the Operation of Large Accelerator User Facilities

    SciTech Connect

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  4. National Ignition Facility for Inertial Confinement Fusion

    SciTech Connect

    Paisner, J.A.; Murray, J.R.

    1997-10-08

    The National Ignition Facility for inertial confinement fusion will contain a 1.8 MJ, 500 TW frequency-tripled neodymium glass laser system that will be used to explore fusion ignition and other problems in the physics of high temperature and density. We describe the facility briefly. The NIF is scheduled to be completed in 2003.

  5. National Biomedical Tracer Facility: Project definition study

    SciTech Connect

    Heaton, R.; Peterson, E.; Smith, P.

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  6. SSBRP User Operations Facility (UOF) Overview and Development Strategy

    NASA Technical Reports Server (NTRS)

    Picinich, Lou; Stone, Thom; Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1995-01-01

    This paper will present the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF) architecture and development strategy. A major element of the UOF at NASA Ames Research Center, the Communication and Data System (CDS) will be the primary focus of the discussions. CDS operational, telescience, security, and development objectives will be discussed along with CDS implementation strategy. The implementation strategy discussions will include: Object Oriented Analysis & Design, System & Software Prototyping, and Technology Utilization. A CDS design overview that includes: CDS Context Diagram, CDS Architecture, Object Models, Use Cases, and User Interfaces will also be presented. CDS development brings together "cutting edge" technologies and techniques such as: object oriented development, network security, multimedia networking, web-based data distribution, JAVA, and graphical user interfaces. Use of these "cutting edge" technologies and techniques translates directly to lower development and operations costs.

  7. Biomedical neutron research at the Californium User Facility for neutron science

    SciTech Connect

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  8. The National Ignition Facility Project. Revision 1

    SciTech Connect

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-06-16

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project.

  9. The National Ignition Facility and Industry

    NASA Astrophysics Data System (ADS)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  10. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  11. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  12. Shot-time photography at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Jedlovec, Donald; Christensen, Kim

    2015-08-01

    The Nation Ignition Facility (NIF) conducts a variety of experiments to study matter at the extremes, including studies of material properties, hydrodynamics, and the interaction of intense radiation fields with matter. The NIF supports the users by operating twenty-four hours a day, with a laser shot rate that averages one per day. We have developed a shot time camera that has the capability to provide an image of each shot for the users. While initially more of a promotional tool, there is emerging interest from the scientific staff in support of their experiments at the NIF. The shot time camera is a time integrated, shot-triggered, digital camera that images visible light generated at shot time in the NIF target chamber. It is selectable by the user and operates automatically with the NIF shot cycle. We will discuss the system design, recent results, and plans for the future.

  13. Overview of the National Ignition Facility.

    PubMed

    Brereton, Sandra

    2013-06-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. The NIF is a 192-beam, Nd-glass laser facility that is capable of producing 1.8 MJ, 500 TW of ultraviolet light, and over 50 times more energetic than other existing ICF facilities. The NIF construction began in 1997, and the facility, which was completed in 2009, is now fully operational. The facility is capable of firing up to 192 laser beams onto a target placed at the center of a 10-m-diameter spherical target chamber. Experiments involving the use of tritium have been underway for some time. These experiments present radiological issues: prompt neutron/gamma radiation, neutron activation, fission product generation, and decay radiation. This paper provides an introduction to the NIF facility and its operation, describes plans for the experimental program, and discusses radiological issues associated with the NIF's operations.

  14. Buffet test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  15. Impacts assessment for the National Ignition Facility

    SciTech Connect

    Bay Area Economics

    1996-12-01

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  16. National Ignition Facility Title II Design Plan

    SciTech Connect

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  17. Status of the National Transonic Facility Characterization

    NASA Technical Reports Server (NTRS)

    Bobbitt, C., Jr.; Everhart, J.

    2001-01-01

    This paper describes the current activities at the National Transonic Facility to document the test-section flow and to support tunnel improvements. The paper is divided into sections on the tunnel calibration, flow quality measurements, data quality assurance, and implementation of wall interference corrections.

  18. National Biomedical Tracer Facility. Project definition study

    SciTech Connect

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  19. The National Transonic Facility: A Research Retrospective

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.

    2001-01-01

    An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

  20. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    SciTech Connect

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  1. The Technology of the National Ignition Facility

    SciTech Connect

    Moses, E I

    2001-08-31

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory is a 192-beam, 1.8-Megajoule, 500-Terawat, 351-nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. A number of significant technology breakthroughs have been achieved in the course of designing NIF. This presentation will discuss some of the technology challenges and solutions that have made NIF possible.

  2. National Ignition Facility project acquisition plan

    SciTech Connect

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  3. Need for the National Ignition Facility

    SciTech Connect

    Crandall, D.H.

    1996-12-31

    This paper has an attitude - that the National Ignition Facility (NIF) is needed. The NIF will be unique in its ability to address high energy density physics and to test fusion ignition in the laboratory. This is a major scientific step and has high appeal to scientists and engineers. The reason for taking this step now is the importance of high energy density physics for US policy on nuclear weapons. The fact that the same capability and experiments give the most fundamental information on the potential of inertial fusion for commercial energy, and have value for applications in astrophysics, further supports the case for proceeding with this facility. 21 refs., 6 figs.

  4. Buffet test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk for the facility. Presented here are the test results from a structural dynamics and aeroelastic response point of view. The activities required for the safety analysis and risk assessment are described. The test was conducted in the same manner as a flutter test and employed on-board dynamic instrumentation, real time dynamic data monitoring, and automatic and manual tunnel interlock systems for protecting the model.

  5. National Ignition Facility (NIF) FY2015 Facility Use Plan

    SciTech Connect

    Folta, P.; Wisoff, Jeff

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  6. Construction Safety for the National Ignition Facility

    SciTech Connect

    Predmore, R

    2000-09-01

    This Construction Safety Program (CSP) for the National Ignition Facility (NIF) presents safety protocols and guidelines that management and workers shall follow to assure a safe and healthful work environment. Appendix A, a separate companion document, includes further applicable environmental, safety, and health requirements for the NIF Project. Specifically this document: {sm_bullet} Defines the fundamental site safety philosophy, {sm_bullet} Identifies management roles and responsibilities, {sm_bullet} Defines core safety management processes, {sm_bullet} Identifies LLNL institutional requirements, and {sm_bullet} Defines the functional areas and facilities accrued by the program and the process for transition of facilities, functional areas, and/or systems from construction to activation. Anyone willfully or thoughtlessly disregarding standards will be subject to immediate removal from the site. Thorough job planning will help ensure that these standards are met.

  7. Conceptual design of the National Ignition Facility

    SciTech Connect

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-08-02

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002.

  8. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting.

  9. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting

  10. The National Facility physics and diagnostics

    SciTech Connect

    Wootton, A

    1999-08-06

    This paper presents a description of the National Ignition Facility, some of the physics experiments that will be performed on it, and a description of some of the diagnostics needed to complete these experiments. Experiments are presented under the headings of: ignition physics, weapons physics or high-energy-density experimental science, weapons effects, and basic science and inertial fusion energy. The diagnostics discussed are primarily those that will be provided for early operation.

  11. The national facility physics and diagnostics

    SciTech Connect

    Wootton, A

    1999-08-06

    This paper presents a description of the National Ignition Facility, some of the physics experiments that will be performed on it and a description of some of the diagnostics needed to complete these experiments. Experiments are presented under the headings of: ignition physics, weapons physics or high-energy-density experimental science, weapons effects, and basic science and inertial fusion energy. The diagnostics discussed are primarily those that will be provided for early operation.

  12. The National Facility physics and diagnostics

    SciTech Connect

    Wooton, A

    1999-08-06

    This paper presents a description of the National Ignition Facility, some of the physics experiments that will be performed on it and a description of some of the diagnostics needed to complete these experiments. Experiments are presented under the headings of: ignition physics, weapons physics or high-energy-density experimental science, weapons effects, and basic science and inertial fusion energy. The diagnostics discussed are primarily those that will be provided for early operation.

  13. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  14. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  15. User fees for recreation services on public lands: a national assessment

    Treesearch

    J. Michael Bowker; H. Ken Cordell; Cassandra Y. Johnson

    1999-01-01

    A portion of the 1995 National Survey on Recreation and the Environment examined public opinion toward user fees as a means of funding recreation services on public lands, including campgrounds, boat ramps, trails, picnic areas, historic sites, restrooms, parking areas, special exhibits and presentations, visitor centers, and other facilities. Respondents were offered...

  16. National Energy AudiT (NEAT) user`s manual

    SciTech Connect

    Krigger, J.K.; Adams, N.; Gettings, M.

    1997-10-01

    Welcome to the US Department of Energy`s (DOE`s) energy auditing tool called ``NEAT``. NEAT, an acronym for National Energy AudiT, is a program for personal computers that was designed for use by local agencies in the Weatherization Assistance Program. It is an approved alternative audit that meets all auditing requirements set forth by the program as well as those anticipated from new regulations pertaining to waiver of the 40% materials requirements. NEAT is easy to use. It applies engineering and economic calculations to evaluate energy conservation measures for single-family, detached houses or small multifamily buildings. You can use it to rank measured for each individual house, or to establish a priority list of conservation measures for nearly identical housing types. NEAT was written for the Weatherization Assistance Program by Oak Ridge National Laboratory. Many buildings energy consumption algorithms are taken from Lawrence Berkeley Laboratory`s to the computerized Instrumented Residential Audit (CIRA), published in 1982 for the Department of energy. Equipment retrofit conservation measures are based on published reports on various heating retrofits. Heating and cooling system replacement conservation measures are based on the energy ratings of new heating and cooling equipment. The Weatherization Program anticipates that this computer-based energy audit will offer substantial performance improvements to many states who choose to incorporate it into their programs. When conservation measures are evaluated locally according to climate, fuel cost, measure cost, and existing house conditions, the Program will be closer to its goal of assuring the maximum return for every federal dollar spent.

  17. Supporting National User Communities at NERSC and NCAR

    SciTech Connect

    Killeen, Timothy L.; Simon, Horst D.

    2006-05-16

    The National Energy Research Scientific Computing Center(NERSC) and the National Center for Atmospheric Research (NCAR) are twocomputing centers that have traditionally supported large national usercommunities. Both centers have developed responsive approaches to supportthese user communities and their changing needs, providing end-to-endcomputing solutions. In this report we provide a short overview of thestrategies used at our centers in supporting our scientific users, withan emphasis on some examples of effective programs and futureneeds.

  18. National Ignition Facility project acquisition plan revision 1

    SciTech Connect

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  19. The National Ignition Facility: Experimental Capability

    SciTech Connect

    Miller, G H

    2003-09-22

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for facility diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as green laser operation and high-energy short pulse operation.

  20. Design of the target area for the National Ignition Facility

    SciTech Connect

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described.

  1. Design of the target area for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Foley, Richard J.; Karpenko, Victor P.; Adams, Chris H.; Patel, C. S.; Pittenger, L. C.; Lee, F. Dean; Reitz, T. C.; Hibbard, Wilthea J.; Horton, W. R.; Trummer, David J.; Tobin, Michael T.; McDonald, Anthony E.; Wavrik, R. W.; Pittman, P. C.

    1997-12-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x-ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described.

  2. National Ignition Facility design, performance, and cost

    SciTech Connect

    Hogan, W.J.; Paisner, J.A.; Lowdermilk, W.H.

    1994-09-16

    A conceptual design for the National Ignition Facility (NIF) has been completed and its cost has been estimated by a multilaboratory team. To maximize the performance/cost ratio a compact, segmented amplifier is used in a multipass architecture. Many recent optical and laser technology developments have been incorporated into the final design. The Beamlet project has successfully demonstrated the new concept. The mission of ICF Program using the NEF is to achieve ignition and gain in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects experiments, and for civilian applications such as inertial fusion energy development and fundamental studies of matter at high energy density.

  3. National Ignition Facility environmental protection systems

    SciTech Connect

    Mintz, J.M.; Reitz, T.C.; Tobin, M.T.

    1994-06-01

    The conceptual design of Environmental Protection Systems (EPS) for the National Ignition Facility (NIF) is described. These systems encompass tritium and activated debris handling, chamber, debris shield and general decontamination, neutron and gamma monitoring, and radioactive, hazardous and mixed waste handling. Key performance specifications met by EPS designs include limiting the tritium inventory to 300 Ci and total tritium release from NIF facilities to less than 10 Ci/yr. Total radiation doses attributable to NIF shall remain below 10 mrem/yr for any member of the general public and 500 mrem/yr for NIF staff. ALARA-based design features and operational procedures will, in most cases, result in much lower measured exposures. Waste minimization, improved cycle time and reduced exposures all result from the proposed CO2 robotic arm cleaning and decontamination system, while effective tritium control is achieved through a modern system design based on double containment and the proven detritiation technology.

  4. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was

  5. Outreach on a National Scale: The Critical Role of Facilities

    NASA Astrophysics Data System (ADS)

    Bartel, B. A.; Charlevoix, D. J.

    2015-12-01

    Facilities provide infrastructure for science that would not be feasible at a single institution. Facilities are also a resource for development of outreach products and activities that reach a national audience of diverse stakeholders. UNAVCO manages the NSF geodetic facility GAGE (Geodesy Advancing Geosciences and Earthscope). Staff at UNAVCO with expertise in education, outreach, and communication translate the science and supporting infrastructure into materials consumable by a wide array of users including teachers, students, museum attendees, emergency managers, park interpreters, and members of the general public. UNAVCO has the ability to distribute materials to a national and international audience, thereby greatly increasing the impact of the science and increasing the value of the investment by the National Science Foundation. In 2014 and 2015, UNAVCO produced multiple print products focused on the Plate Boundary Observatory (PBO), the geodetic component of EarthScope. Products include a deck of playing cards featuring PBO GPS stations, a poster featuring GPS velocities of the Western United States, and another poster focused on GPS velocities in Alaska. We are distributing these products to a broad audience, including teachers, station permit holders, and community members. The Tectonics of the Western United States poster was distributed this year in the American Geosciences Institute Earth Science Week kit for teachers, reaching 16,000 educators around the country. These posters and the PBO playing cards (PBO-52) were distributed to more than 100 teachers through workshops led by UNAVCO, the EarthScope National Office, the Southern California Earthquake Center (SCEC), and more. Additionally, these cards serve as a way to engage landowners who host these scientific stations on their property. This presentation will address the strategies for creating nationally relevant materials and the tools used for dissemination of materials to a broad audience. We

  6. A national facility for biological cryo-electron microscopy

    SciTech Connect

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  7. Power Balance Performance on the National Ignition Facility

    SciTech Connect

    LaFortune, K; Widmayer, C; Haynam, C; Kalantar, D; Wegner, P; Bowers, M; Dixit, S

    2009-04-09

    Recent experiments on the National Ignition Facility (NIF) have demonstrated the facility's power balance capability. Power balance is a measure of the temporal uniformity among multiple beams or beam groups in a multi-beamline laser. Users of the NIF facility will need precise control of the laser for a wide range of experiments. For example, in indirect drive Inertial Confinement Fusion (ICF) experiments, the NIF laser beams will be delivered onto the interior surface of a hohlraum, generating x-rays. In order for the x-rays emitted to be sufficiently uniform to symmetrically compress the spherical ignition capsule at the center of the hohlraum, each beamline needs to precisely deliver the requested temporal power profile to its intended target. The achieved power balance precision is determined by both the accuracy of the pulse shaping hardware and the repeatability of the energetics of the laser. The precision that is required for ICF targets is a function of time and power level during the pulse. We have developed a model that predicts the time-dependent power balance performance of an arbitrary pulse shape. In this model, performance is determined by a handful of dominant terms, whose magnitude we have characterized. The model and the power balance requirements for the current National Ignition Campaign (NIC) as well as the most recent demonstrated performance on 96-beam and full 192-beam NIF shots will be discussed.

  8. National Ignition Facility Control and Information System Operational Tools

    SciTech Connect

    Marshall, C D; Beeler, R G; Bowers, G A; Carey, R W; Fisher, J M; Foxworthy, C B; Frazier, T M; Mathisen, D G; Lagin, L J; Rhodes, J J; Shaw, M J

    2009-10-08

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint the size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.

  9. National Solar Radiation Database 1991-2010 Update: User's Manual

    SciTech Connect

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  10. Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Introduction to the National Ignition Facility

    SciTech Connect

    Moses, E I

    2004-01-05

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear bum, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  12. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  13. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  14. Radiological analysis of the National Ignition Facility

    SciTech Connect

    Singh, M.S.

    1993-10-26

    The National Ignition Facility (NIF) will be capable of providing a laser output pulse at 0.35 {mu}m wavelength with an energy of 1.8 MJ and a power of 500 TW. The NIF will house a multi-beamline, Nd-doped-glass laser capable of delivering such pulses into a target chamber. In the target chamber, a positioner will center a target containing fusion fuel (a deuterium-tritium mixture) for each ignition shot. Diagnostics in the chamber will provide the test data (e.g., neutron and x-ray yields). The NIF baseline case would result in deuterium-tritium (DT) neutron yields of about 10{sup 16} to 10{sup 19} per fusion shot. The baseline fusion shots would use 2 Ci of tritium per capsule, with an annual input of about 600 Ci (60 mg). The resulting anticipated annual airborne emissions would consist of approximately 10 Ci of tritium and small amounts of activated air species. The NEF shielding configuration would limit the direct and skyshine radiation intensities around the facility to less than 0.1 rem/y on site and to less than 0.001 rem/y off site. This report presents the results of atmospheric transport calculations for tritium and activated air emissions; neutron and secondary gamma-ray shielding calculations; and results of benchmark studies for validating the EPA CAP88-PC code (for the transport of tritium) and the Lawrence Livermore National Laboratory neutron-photon transport code TART. All calculations were normalized to the annual baseline case of 1.4 {times} 10{sup 20} DT-fusion neutrons. Tritium emissions were normalized to 10 Ci/y. Radiological analyses show that normal NIF operations would result in off-site radiation intensities that would represent insignificant increases over the natural background radiation intensity. The NIF is a national facility, and the DOE has not completed the site evaluation process. Although the results presented in this report are for LLNL, the analytical approach is applicable to any site.

  15. National Stormwater Calculator User's Guide – VERSION 1.1

    EPA Science Inventory

    This document is the user's guide for running EPA's National Stormwater Calculator (http://www.epa.gov/nrmrl/wswrd/wq/models/swc/). The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US.

  16. National Stormwater Calculator User's Guide – VERSION 1.1

    EPA Science Inventory

    This document is the user's guide for running EPA's National Stormwater Calculator (http://www.epa.gov/nrmrl/wswrd/wq/models/swc/). The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US.

  17. National Ignition Facility wet weather construction plan

    SciTech Connect

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  18. National Transonic Facility Model and Tunnel Vibrations

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1997-01-01

    Since coming online in 1984, the National Transonic Facility (NTF) cryogenic wind tunnel at the NASA Langley Research Center has provided unique high Reynolds number testing capability. While turbulence levels in the tunnel, expressed in terms of percent dynamic pressure, are typical of other transonic wind tunnels, the significantly increased load levels utilized to achieve flight Reynolds numbers, in conjunction with the unique structural design requirements for cryogenic operation, have brought forward the issue of model and model support structure vibrations. This paper reports new experimental measurements documenting aerodynamic and structural dynamics processes involved in such vibrations experienced in the NTF. In particular, evidence of local un-steady airloads developed about the model support strut is shown and related to well documented acoustic features known as "Parker" modes. Two-dimensional unsteady viscous computations illustrate this model support structure loading mechanism.

  19. National transonic facility Mach number system

    NASA Technical Reports Server (NTRS)

    Kern, F. A.; Knight, C. W.; Zasimowich, R. F.

    1985-01-01

    The Mach number system for the Langley Research Center's National Transonic Facility was designed to measure pressures to determine Mach number to within + or - 0.002. Nine calibration laboratory type fused quartz gages, four different range gages for the total pressure measurement, and five different range gages for the static pressure measurement were used to satisfy the accuracy requirement over the 103,000-890,000 Pa total pressure range of the tunnel. The system which has been in operation for over 1 year is controlled by a programmable data process controller to select, through the operation of solenoid valves, the proper range fused quartz gage to maximize the measurement accuracy. The pressure gage's analog outputs are digitized by the process controller and transmitted to the main computer for Mach number computation. An automatic two-point on-line calibration of the nine quartz gages is provided using a high accuracy mercury manometer.

  20. The National Ignition Facility Project: An Update

    SciTech Connect

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.; Hands, J.

    2000-12-07

    The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.

  1. National Ignition Facility Project: An Update

    SciTech Connect

    Hogan, W J; Moses, E; Warner, B; Sorem, M; Soures, J; Hands, J

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.

  2. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Moses, E

    2001-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during the construction, equipment installation, and commissioning activities. As the NIF Project transitions from a conventional facility construction activity to one of equipment installation, commissioning, initial laser operations, and other more routine-like operations, new safety requirements are needed. The NIF Project Site Safety Program (NPSSP) requires that all activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'', and the augmented set of controls and processes described in this NIF Project Site Safety Program. More specific requirements for construction activities under the Integration Management and Installation (IMI) contract are provided in the ''NIF Infrastructure Health and Safety Plan'', subtier to this program. Specifically this document: Defines the fundamental NIF site safety philosophy, Defines the areas covered by this safety program (see Appendix B), Identifies management roles and responsibilities, Defines core safety management processes, and Identifies NIF site-specific safety requirements.

  3. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  4. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2016-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  5. The NIF: An international high energy density science and inertial fusion user facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  6. Data Management and Science at DOE BES User Facilities Past, Present, and Future

    SciTech Connect

    Miller, Stephen D; Herwig, Kenneth W; Ren, Shelly; Vazhkudai, Sudharshan S; Jemian, Dr. Pete R; Luitz, Steffen; Salnikov, Andrei; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Hagen, Mark E

    2009-06-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better

  7. National Ignition Facility and Managing Location, Component, and State

    SciTech Connect

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  8. User`s guide for the KBERT 1.0 code: For the knowledge-based estimation of hazards of radioactive material releases from DOE nuclear facilities

    SciTech Connect

    Browitt, D.S.; Washington, K.E.; Powers, D.A.

    1995-07-01

    The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials.

  9. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of

  10. Development of an XUV-IR free-electron laser user facility for scientific research and industrial applications

    SciTech Connect

    Newnam, B.E.; Warren, R.W.; Conradson, S.D.; Goldstein, J.C.; McVey, B.D.; Schmitt, M.J.; Elliott, C.J.; Burns, M.J.; Carlsten, B.E.; Chan, K.C.; Johnson, W.J.; Wang, T.S.; Sheffield, R.L.; Meier, K.L.; Olsher, R.H.; Scott, M.L.; Griggs, J.E.

    1991-01-01

    Los Alamos has designed and proposes to establish an XUV-IR free- electron laser (FEL) user facility for scientific research and industrial applications based on coherent radiation ranging from soft x-rays as short as 1 nm to far-infrared wavelengths as long as 100 {mu}m. As the next-generation light source beyond low-emittance storage rings with undulator insertion devices, this proposed national FEL user facility should make available to researchers broadly tunable, picosecond-pulse, coherent radiation with 10{sup 4} to 10{sup 7} greater spectral flux and brightness. The facility design is based on two series of FEL oscillators including one regenerative amplifier. The primary series of seven FEL oscillators, driven by a single, 1-GeV rf linac, spans the short-wavelength range from 1 to 600 nm. A second 60-MeV rf linac, synchronized with the first, drives a series of three Vis/IR FEL oscillators to cover the 0. 5 to 100-{mu}m range. This paper presents the motivation for such a facility arising from its inherently high power per unit bandwidth and its potential use for an array of scientific and industrial applications, describes the facility design, output parameters, and user laboratories, makes comparisons with synchrotron radiation sources, and summarizes recent technical progress that supports the technical feasibility. 80 refs., 9 figs., 6 tabs.

  11. 78 FR 18353 - Guidance for Industry: Blood Establishment Computer System Validation in the User's Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Blood Establishment Computer System... ``Guidance for Industry: Blood Establishment Computer System Validation in the User's Facility'' dated April... establishment computer system validation program, consistent with recognized principles of software validation...

  12. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  13. Status of the National Ignition Facility Integrated Computer Control System

    SciTech Connect

    Lagin, L; Bryant, R; Carey, R; Casavant, D; Edwards, O; Ferguson, W; Krammen, J; Larson, D; Lee, A; Ludwigsen, P; Miller, M; Moses, E; Nyholm, R; Reed, R; Shelton, R; Van Arsdall, P J; Wuest, C

    2003-10-13

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Laser hardware is modularized into line replaceable units such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by the Integrated Computer Control System (ICCS). ICCS is a layered architecture of 300 front-end processors attached to nearly 60,000 control points and coordinated by supervisor subsystems in the main control room. The functional subsystems--beam control including automatic beam alignment and wavefront correction, laser pulse generation and pre-amplification, diagnostics, pulse power, and timing--implement automated shot control, archive data, and support the actions of fourteen operators at graphic consoles. Object-oriented software development uses a mixed language environment of Ada (for functional controls) and Java (for user interface and database backend). The ICCS distributed software framework uses CORBA to communicate between languages and processors. ICCS software is approximately 3/4 complete with over 750 thousand source lines of code having undergone off-line verification tests and deployed to the facility. NIF has entered the first phases of its laser commissioning program. NIF has now demonstrated the highest energy 1{omega}, 2{omega}, and 3{omega} beamlines in the world. NIF

  14. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  16. Large optics for the National Ignition Facility

    SciTech Connect

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  17. National Ignition Facility Comes to Life

    SciTech Connect

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energy requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.

  18. Reduced scale National Ignition Facility capsule design

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Haan, S. W.; Marinak, M. M.; Pollaine, S. M.; McEachern, R.

    1998-10-01

    In this article we describe the design and simulated performance characteristics of an indirectly-driven inertial confinement fusion capsule which utilizes only 900 kJ of laser energy and 250 TW of laser power from the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. This intentional reduction in laser performance from the nominal NIF specifications of 1.8 MJ and 500 TW results in lowering the hohlraum x-ray drive temperature from 300 eV to 250 eV. These energy and radiation temperature reductions are believed to define a "lower bound" on the successful implosion of an ignition capsule. This reduced scale capsule has a beryllium ablator containing a radially varying copper dopant, and a cryogenic solid deuterium-tritium fuel layer surrounding a cavity filled with equilibrium vapor pressure gaseous deuterium and tritium. Two-dimensional simulations predict ignition and propagated burn from this capsule when either Rayleigh-Taylor instability or time-dependent drive asymmetry effects are included.

  19. The National Ignition Facility Performance Status

    SciTech Connect

    Haynam, C; Auerbach, J; Nicola, J D; Dixit, S; Heestand, G; Henesian, M; Jancaitis, K; Manes, K; Marshall, C; Mehta, N; Nostrand, M; Orth, C; Sacks, R; Shaw, M; Sutton, S; Wegner, P; Williams, W; Widmayer, C; White, R; Yang, S; Van Wonterghem, B

    2005-08-30

    The National Ignition Facility (NIF) laser has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single ''quad'' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the Precision Diagnostics System (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements.

  20. Analysis of the National Transonic Facility mishap

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Robinson, Martha P.

    1990-01-01

    The nonlinear dynamic finite element code DYnamic Crash Analysis of STructures (DYCAST) was used to model an accident scenario that occurred at the National Transonic Facility (NTF) wind tunnel. A post mishap investigation revealed that a total of five upstream bulkhead fairing plates were missing, three in one location and two in another. These plates were drawn into the wind tunnel's composite fan blades causing extensive damage. A DYCAST model was developed to determine if one-half of a small thermal shield flange clamp, weighing approximately 2.7 lbs., could have spun off the NTF drive shaft and impacted the bulkhead fairing plates with sufficient energy to cause failure of the attachment bolts. The clamp was presumed to have spun off at a tangent from the NTF drive shaft at a velocity of 1624 in/sec (drive shaft rotating at 580 rpm). The DYCAST analytical model predicts that impact of the 2.7 lbs projectile failed all of the bolts in two of the fairing plates allowing them to escape from the bulkhead ring with a low velocity of a few in/sec.

  1. The NTF as a national facility. [project planning

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1977-01-01

    Activities which led to the definition of the National Transonic Facility and the general agreements reached regarding its use and operations are reviewed. Topics discussed include: redefinition of test requirements, development of low cost options, consideration of a single transonic facility using existing hardware if feasible, facility concept recommendations, and acquisition schedule proposals.

  2. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  3. A national facility for biological cryo-electron microscopy.

    PubMed

    Saibil, Helen R; Grünewald, Kay; Stuart, David I

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  4. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  5. Shot Automation for the National Ignition Facility

    SciTech Connect

    Lagin, L J; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R; Casavant, D D; Cline, B D; Demaret, R D; Domyancic, D M; Elko, S D; Fisher, J M; Hermann, M R; Krammen, J E; Kohut, T R; Marshall, C D; Mathisen, D G; Ludwigsen, A P; Patterson, Jr., R W; Sanchez, R J; Stout, E A; Van Arsdall, P J; Van Wonterghem, B M

    2005-09-21

    A shot automation framework has been developed and deployed during the past year to automate shots performed on the National Ignition Facility (NIF) using the Integrated Computer Control System This framework automates a 4-8 hour shot sequence, that includes inputting shot goals from a physics model, set up of the laser and diagnostics, automatic alignment of laser beams and verification of status. This sequence consists of set of preparatory verification shots, leading to amplified system shots using a 4-minute countdown, triggering during the last 2 seconds using a high-precision timing system, followed by post-shot analysis and archiving. The framework provides for a flexible, model-based execution driven of scriptable automation called macro steps. The framework is driven by high-level shot director software that provides a restricted set of shot life cycle state transitions to 25 collaboration supervisors that automate 8-laser beams (bundles) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification. Collaboration supervisors translate shot life cycle state commands from the shot director into sequences of ''macro steps'' to be distributed to each of its shot supervisors. Each Shot supervisor maintains order of macro steps for each subsystem and supports collaboration between macro steps. They also manage failure, restarts and rejoining into the shot cycle (if necessary) and manage auto/manual macro step execution and collaborations between other collaboration supervisors. Shot supervisors execute macro step shot functions commanded by collaboration supervisors. Each macro step has database-driven verification phases and a scripted perform phase. This provides for a highly flexible methodology for performing a variety of NIF shot types. Database tables define the order of work and dependencies (workflow) of macro steps to be performed for a

  6. National forest trail users: planning for recreation opportunities

    Treesearch

    John J. Daigle; Alan E. Watson; Glenn E. Haas

    1994-01-01

    National forest trail users in four geographical regions of the United States are described based on participation in clusters of recreation activities. Visitors are classified into day hiking, undeveloped recreation, and two developed camping and hiking activity clusters for the Appalachian, Pacific, Rocky Mountain, and Southwestern regions. Distance and time traveled...

  7. Biomedical user facility at the 400-MeV Linac at Fermilab

    SciTech Connect

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.

  8. A software for managing after-hours activities in research user facilities

    DOE PAGES

    Camino, F. E.

    2017-05-01

    Here, we present an afterhours activity management program for shared facilities, which handles the processes required for afterhours access (request, approval, extension, etc.). It implements the concept of permitted afterhours activities, which consists of a list of well-defined activities that each user can perform afterhours. The program provides an easy and unambiguous way for users to know which activities they are allowed to perform afterhours. In addition, the program can enhance its safety efficacy by interacting with lab and instrument access control systems commonly present in user facilities.

  9. The explosive components facility - fulfilling its role as a national resource

    SciTech Connect

    Johnson, D.R.; Bonzon, L.L.

    1996-08-01

    The Explosive Components Facility (ECF) is a major, low-hazard, non-nuclear, research and development facility of the Sandia National Laboratories/Albuquerque (SNL). Sandia Corporation, a subsidiary of Lockheed-Martin, operates this designated User Facility for the Department of Energy (DOE). The ECF consolidates many SNL energetic-materials activities and provides a unique combination of explosive-technologies, neutronic-components, batteries, and weapons-evaluation capabilities. This paper describes the project objectives, the basic building features, programmatic capabilities, and the processes used to beneficially occupy and assess readiness to operate.

  10. Design considerations of the national transonic facility

    NASA Technical Reports Server (NTRS)

    Baals, D. D.

    1976-01-01

    The inability of existing wind tunnels to provide aerodynamic test data at transonic speeds and flight Reynolds numbers was examined. The proposed transonic facility is a high Reynolds number transonic wind tunnel designed to meet the research and development needs of industry, and the scientific community. The facility employs the cryogenic approach to achieve high transonic Reynolds numbers at acceptable model loads and tunnel power. By using temperature as a test variable, a unique capability to separate scale effects from model aeroelastic effects is provided. The performance envelope of the facility is shown to provide a ten fold increase in transonic Reynolds number capability compared to currently available facilities.

  11. Direct facility funding as a response to user fee reduction: implementation and perceived impact among Kenyan health centres and dispensaries

    PubMed Central

    Opwora, Antony; Kabare, Margaret; Molyneux, Sassy; Goodman, Catherine

    2010-01-01

    There is increasing pressure for reduction of user fees, but this can have adverse effects by decreasing facility-level funds. To address this, direct facility funding (DFF) was piloted in Coast Province, Kenya, with health facility committees (HFCs) responsible for managing the funds. We evaluated the implementation and perceived impact 2.5 years after DFF introduction. Quantitative data collection at 30 public health centres and dispensaries included a structured interview with the in-charge, record reviews and exit interviews. In addition, in-depth interviews were conducted with the in-charge and HFC members at 12 facilities, and with district staff and other stakeholders. DFF procedures were well established: HFCs met regularly and accounting procedures were broadly followed. DFF made an important contribution to facility cash income, accounting for 47% in health centres and 62% in dispensaries. The main items of expenditure were wages for support staff (32%), travel (21%), and construction and maintenance (18%). DFF was perceived to have a highly positive impact through funding support staff such as cleaners and patient attendants, outreach activities, renovations, patient referrals and increasing HFC activity. This was perceived to have improved health worker motivation, utilization and quality of care. A number of problems were identified. HFC training was reportedly inadequate, and no DFF documentation was available at facility level, leading to confusion. Charging user fees above those specified in the national policy remained common, and understanding of DFF among the broader community was very limited. Finally, relationships between HFCs and health workers were sometimes characterized by mistrust and resentment. Relatively small increases in funding may significantly affect facility performance when the funds are managed at the periphery. Kenya plans to scale up DFF nationwide. Our findings indicate this is warranted, but should include improved training

  12. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  13. User evaluation of campgrounds on two Michigan National Forests.

    Treesearch

    Robert C. Lucas

    1970-01-01

    Campground use on the Huron and Manistee National Forests in Michigan was studied in relation to resource characteristics, location, facilities provided, and visitor attitudes about the environment. Four factors in combination accounted for 69% of a variation in campground use per unit. Resource quality ratings made earlier as part of a nationwide Forest Service...

  14. Long Duration Exposure Facility Mini-Data Base User`s Guide: Macintosh version. (Diskette)

    SciTech Connect

    Bohnhoff-Hlavacek, G.; Pippin, H.G.; Dursch, H.W.

    1995-04-01

    One of the objectives of the LDEF Special Investigation Group (SIG) was to develop a LDEF data base that identifies the experiment objectives and hardware flown, summarizes results and conclusions, and provides a system analysis overview, including spacecraft design guidelines and space environmental effects. Compiling the information into an easily accessible data base format, and making it available to the space community was a major task accomplished by the System and Materials SIG effort beginning in 1981. Included in this document is a short user`s manual for the LDEF Mini-Data Bases. The user`s manual contains pertinent examples from the data base on specifically how to access and work with the LDEF information. Accompanying this document are the mini-data bases on disk.

  15. CHALLENGES IN DATA INTENSIVE ANALYSIS AT SCIENTIFIC EXPERIMENTAL USER FACILITIES

    SciTech Connect

    Kleese van Dam, Kerstin; Li, Dongsheng; Miller, Stephen D.; Cobb, John W.; Green, Mark L.; Ruby, Catherine L.

    2011-12-31

    This chapter will discuss the critical data intensive analysis and visualiza-tion challenges faced by the experimental science community at large scale and laboratory based facilities. The chapter will further highlight initial solutions under development through community efforts and lay out perspectives for the future, such as the potential of more closely linked experimental and computational science approaches, methods to achieve real time analysis capabilities and the challenges and opportunities of data integration across experimental scales, levels of theory and varying techniques.

  16. The NHMFL Pulsed Field Facility at Los Alamos National Lab

    NASA Astrophysics Data System (ADS)

    Mielke, Chuck

    2014-03-01

    National user facilities provide scientists and industrial development companies with access to specialized experimental capabilities to enable development of materials and solve long standing technical problems. Magnetic fields have become an indispensable tool for researchers to better understand and manipulate ground states of electronic materials. As magnetic field intensities are increased the quantum nature of these materials become exponentially more likely to be observed and this is but one of the drivers to go further in high magnetic field generation. At the Los Alamos branch of the National High Magnetic Field Laboratory we have significant efforts in extremely high magnetic field generation and experimentation. In direct opposition with our efforts are the tremendous electro-mechanical forces exerted on our magnets and the electromagnetic interference that couples to the sample under study and the diagnostic equipment. Challenges in magnetic field generation and research will be presented. Various methods of pulsed high magnetic field generation and experimentation capabilities will be reviewed, including our recent ``World Record'' for the highest non-destructive magnetic field. NSF-DMR 1157490.

  17. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  18. The National Ignition Facility neutron imaging system.

    PubMed

    Wilke, Mark D; Batha, Steven H; Bradley, Paul A; Day, Robert D; Clark, David D; Fatherley, Valerie E; Finch, Joshua P; Gallegos, Robert A; Garcia, Felix P; Grim, Gary P; Jaramillo, Steven A; Montoya, Andrew J; Moran, Michael J; Morgan, George L; Oertel, John A; Ortiz, Thomas A; Payton, Jeremy R; Pazuchanics, Peter; Schmidt, Derek W; Valdez, Adelaida C; Wilde, Carl H; Wilson, Doug C

    2008-10-01

    The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y(n)>10(14) neutrons. The shielding will also permit the NIS to function at neutron yields >10(18), which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical

  19. The ATLAS Facility at Argonne National Laboratory

    SciTech Connect

    1997-07-01

    The Argonne Tandem Linac Accelerator System (ATLAS) is a superconducting low-energy heavy ion accelerator. Its primary purpose is to provide beams for research in nuclear structure physics. This report begins with a brief history of ATLAS and then describes the current design of the facility. Also summarized are the experimental equipment and research programs. It concludes with a proposal for turning ATLAS into a radioactive beam facility.

  20. Quality of antiretroviral therapy in public health facilities in Nigeria and perceptions of end users.

    PubMed

    Chiegil, Robert J; Zungu, Lindiwe I; Jooste, Karien

    2014-04-01

    This paper describes perceptions of the end users on quality of antiretroviral therapy (ART) in public health facilities in Nigeria. Health care services in Nigeria face challenges of meeting end users' requirements and expectations for quality ART service provision. A qualitative design was followed. Unstructured focus group discussions were conducted with end users (n = 64) in six locations across the six geopolitical zones of Nigeria. The findings indicate that end users were satisfied with uninterrupted antiretroviral drug supplies, courtesy treatment, volunteerism of support group members and quality counselling services. End users expect effective collaboration between healthcare providers and support group members, to enhance the quality of life of people living with HIV. A best practice guideline for the provision of end user focused ART service provision was developed for nurse managers. © 2013 John Wiley & Sons Ltd.

  1. Sanitation facilities in Kampala slums, Uganda: users' satisfaction and determinant factors.

    PubMed

    Tumwebaze, Innocent Kamara; Orach, Christopher Garimoi; Niwagaba, Charles; Luthi, Christoph; Mosler, Hans-Joachim

    2013-01-01

    Access to improved sanitation is a key preventive measure against sanitary-related gastro-enteric diseases such as diarrhoea. We assessed the access to sanitation facilities and users' satisfaction in 50 randomly selected slums of Kampala through a cross-sectional survey conducted in 2010. A total of 1500 household respondents were interviewed. Sixty-eight per cent of the respondents used shared toilets, 20% private, 11% public toilets and less than 1% reported using flying toilets or practising open defecation. More than half of the respondents (51.7%) were not satisfied with their sanitation facilities. Determinants for satisfaction with the facilities used included the nature and type of toilet facilities used, their cleanliness, and the number of families sharing them. The study findings showed that slum dwellers had high access to sanitation facilities. However, most of them were shared and majority of the respondents were not satisfied with their facilities, primarily due to cleanliness and over demand.

  2. Optical specification -- Their Role in the National Ignition Facility

    SciTech Connect

    Lawson, J K; Aikens, D M; Wang, D Y; Williams, W H

    2000-03-01

    The National Ignition Facility (NIF) has completed its design phase and is well into construction. In this talk, we review the optic specification rationale, along with examples of particular specifications and measurements.

  3. National Ignition Facility Beamline Pupil Relay Plane Location and Imaging

    SciTech Connect

    Korniski, R J; Lawson, J K

    2002-01-29

    Axial astigmatism can be introduced into the nominal design of an optical system by tilted and tilted-wedged plates. The pupil images in the National Ignition Facility experience many such components. Some ramifications will be explored.

  4. Design and operations at the National Tritium Labelling Facility

    SciTech Connect

    Morimoto, H.; Williams, P.G.

    1991-09-01

    The National Tritium Labelling Facility (NTLF) is a multipurpose facility engaged in tritium labeling research. It offers to the biomedical research community a fully equipped laboratory for the synthesis and analysis of tritium labeled compounds. The design of the tritiation system, its operations and some labeling techniques are presented.

  5. Financing Academic Research Facilities: A National Need.

    ERIC Educational Resources Information Center

    Norris, Julie T.

    1990-01-01

    This article examines possible changes to provide increased federal funding for university-based research facilities. The difficulties of converting between depreciation and use allowances are discussed, as is the possibility of using current market value versus acquisition cost as a basis for costing calculations and splitting the indirect cost…

  6. National remote computational flight research facility

    NASA Technical Reports Server (NTRS)

    Rediess, Herman A.

    1989-01-01

    The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.

  7. The NAF: National analysis facility at DESY

    NASA Astrophysics Data System (ADS)

    Haupt, Andreas; Kemp, Yves

    2010-04-01

    Within the framework of a broad collaboration among German particle physicists, the strategic Helmholtz Alliance "Physics a the Terascale", an analysis facility has been set up at DESY. The facility is intended to provide the best possible analysis infrastructure for researches of the ATLAS, CMS, LHCb and ILC experiments and also for theory researchers. In a first part of the contribution, we will present the concept of the NAF and its place in the existing distributed grid landscape of the experiments. In a second part, the building blocks of the NAF will be detailed with an emphasis on technical implementations of some parts: - Usage of VOMS for separating grid resources between collaboration-wide and NAF-specific resources. - interactive and batch cluster and integration with PROOF. - usage of grid proxies to access work group servers and AFS. - the usage and operation of Lustre for fast data access. A special focus is the seamless integration of the facility into the two geographically separated DESY sites and its implications. In a third part, the experience of running the facility for one year will be reported.

  8. Characteristics of Yoga Users: Results of a National Survey

    PubMed Central

    Legedza, Anna T.; Saper, Robert B.; Bertisch, Suzanne M.; Eisenberg, David M.; Phillips, Russell S.

    2008-01-01

    Background There are limited data on the characteristics of yoga users in the U.S. Objective To characterize yoga users, medical reasons for use, perceptions of helpfulness, and disclosure of use to medical professionals. Methods Utilizing cross-sectional survey data from the 2002 National Health Interview Survey (NHIS) Alternative Medicine Supplement (n = 31044), we examined correlates of yoga use for health. The estimated prevalence from 2002 NHIS of yoga for health was 5.1% corresponding to over 10 million adults. Results In 2002, yoga users were predominately Caucasian (85%) and female (76%) with a mean age of 39.5 years. Compared to non-yoga users, yoga users were more likely female (OR 3.76, 95% CI 3.11–4.33); less likely black than white (OR 0.65, 95% CI 0.53–0.80); tended to be younger; and more likely college educated (OR 2.70, 95% CI 2.37–3.08). Musculoskeletal conditions (OR 1.61, 95% CI 1.42–1.83), mental health conditions (OR 1.43, 95% CI 1.22–1.67), severe sprains in the last 12 months (OR 1.49, 95% CI 1.22–1.81), and asthma (OR 1.27, 95% CI 1.05–1.54) were independently associated with higher yoga use, while hypertension (OR 0.78, 95% CI 0.64–0.95) and chronic obstructive lung disease (OR 0.69, 95% CI 0.48–1.00) were associated with lower use. Yoga was most commonly used to treat musculoskeletal or mental health conditions, and most users reported yoga to be helpful for these conditions. A majority of yoga users (61%) felt yoga was important in maintaining health, though only 25% disclosed yoga practice to their medical professional. Conclusions We found that yoga users are more likely to be white, female, young and college educated. Yoga users report benefit for musculoskeletal conditions and mental health, indicating that further research on the efficacy of yoga for the treatment and/or prevention of these conditions is warranted. PMID:18651193

  9. (NTF) National Transonic Facility Test 213-SFW Flow Control II,

    NASA Image and Video Library

    2012-11-19

    (NTF) National Transonic Facility Test 213-SFW Flow Control II, Fast-MAC Model: The fundamental Aerodynamics Subsonic Transonic-Modular Active Control (Fast-MAC) Model was tested for the 2nd time in the NTF. The objectives were to document the effects of Reynolds numbers on circulation control aerodynamics and to develop and open data set for CFD code validation. Image taken in building 1236, National Transonic Facility

  10. The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)

    SciTech Connect

    Moses, E

    2009-09-17

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely

  11. 9 CFR 130.11 - User fees for inspecting and approving import/export facilities and establishments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false User fees for inspecting and approving import/export facilities and establishments. 130.11 Section 130.11 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE USER FEES USER FEES § 130.11 User fees...

  12. Visualization of Target Inspection data at the National Ignition Facility

    SciTech Connect

    Potter, D; Antipa, N

    2012-02-16

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  13. User Centered, Application Independent Visualization of National Airspace Data

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hinton, Susan E.

    2011-01-01

    This paper describes an application independent software tool, IV4D, built to visualize animated and still 3D National Airspace System (NAS) data specifically for aeronautics engineers who research aggregate, as well as single, flight efficiencies and behavior. IV4D was origin ally developed in a joint effort between the National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (A FRL) to support the visualization of air traffic data from the Airspa ce Concept Evaluation System (ACES) simulation program. The three mai n challenges tackled by IV4D developers were: 1) determining how to d istill multiple NASA data formats into a few minimal dataset types; 2 ) creating an environment, consisting of a user interface, heuristic algorithms, and retained metadata, that facilitates easy setup and fa st visualization; and 3) maximizing the user?s ability to utilize the extended range of visualization available with AFRL?s existing 3D te chnologies. IV4D is currently being used by air traffic management re searchers at NASA?s Ames and Langley Research Centers to support data visualizations.

  14. Los Alamos National Laboratory Facility Review

    SciTech Connect

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  15. Building Readiness into National Guard Facilities

    DTIC Science & Technology

    2012-02-28

    Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The Commission on Higher Education is an institutional accrediting agency...Higher Education of the Middle States Association of Colleges and Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The...proper maintenance facilities can exceed their expected life cycle, in most cases the resources have not been available to achieve that goal

  16. Ignition target design for the National Ignition Facility

    SciTech Connect

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D.

    1996-06-01

    The goal of inertial confinement fusion (ICF) is to produce significant thermonuclear burn from a target driven with a laser or ion beam. To achieve that goal, the national ICF Program has proposed a laser capable of producing ignition and intermediate gain. The facility is called the National Ignition Facility (NIF). This article describes ignition targets designed for the NIF and their modeling. Although the baseline NIF target design, described herein, is indirect drive, the facility will also be capable of doing direct-drive ignition targets - currently being developed at the University of Rochester.

  17. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.

    PubMed

    Packard, Eric D; Mac Kenzie, Carolyn

    2013-06-01

    Lawrence Livermore National Laboratory must control potentially activated materials and equipment in accordance with U.S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment, which requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such property. The National Ignition Facility at Lawrence Livermore National Laboratory developed a technical basis document and protocol for determining the radiological status of property that is potentially activated from exposure to neutron radiation produced via fusion of tritium and deuterium. The technical basis included assessment of the neutron energy, the type of materials potentially exposed and the likely activation products, and the sensitivity of radiation detectors used to survey the property. This paper evaluates the National Ignition Facility technical basis document for applicability to the release of property from Lawrence Livermore National Laboratory's various accelerator facilities considering the different types of particles accelerated, radiations produced, and resultant activation products. Extensive process knowledge regarding the accelerators' operations, accompanied by years of routine surveys, provides an excellent characterization of these facilities. Activation studies conducted at the Stanford Linear Accelerator and the High Energy Accelerator Research Organization in Japan corroborate that the long-lived radionuclides produced at accelerator facilities are of the same variety produced at the National Ignition Facility. Consequently, Lawrence Livermore National Laboratory concludes that the release protocol developed for the National Ignition Facility can be used appropriately at all its accelerator facilities.

  18. Research opportunities and facilities at ORNL`s residual stress user center

    SciTech Connect

    Hubbard, C.R.; Watkins, T.R.; Kozaczek, K.; Wang, X.-L.; Spooner, S.

    1994-09-01

    The High Temperature Materials Laboratory (HTML) User Program at ORNL was established to help solve high-temperature materials problems that limit the efficiency and reliability of advanced energy-conversion systems. Both proprietary and nonproprietary research can be conducted within the user program. The facilities are open to researchers in US industry, universities, and federal laboratories. The Residual Stress User Center (RSUC), one of the six HTML user centers, was recently established and consists of two high precision x-ray diffraction systems for measurement of residual strain and texture. Both biaxial and triaxial residual strain data can be collected. Attachments to the diffraction system include a position sensitive detector and a laser specimen positioning system. The RSUC has capabilities for electropolishing and strain measurement with strain gauges. A complementary neutron diffraction facility has recently been developed and demonstrated at the High Flux Isotope Reactor at ORNL. The neutron diffraction facility enables mapping of macro residual stresses throughout the volume of a component, complementing the near surface stress measurements available by x-ray diffraction. The neutron facility has been proposed as an addition to the RSUC.

  19. CHAWS user`s guide: System description and standard operating procedures, Johnston Island JCAD Facility

    SciTech Connect

    Martins, S.A.; Shinn, J.H.

    1990-07-01

    The Chemical Hazard Warning System (CHAWS) is designed to collect meteorological data and to display, in real time, the dispersion of hazardous chemicals that may result from an accidental release. Meteorological sensors have been placed strategically around the Johnston Island JCAD Facility and are used to calculate direction and hazard distance for the release. Based on these data, arrows depicting the release direction and distance traveled are graphically displayed on a computer screen showing a site map of the facility. The objectives of CHAWS are as follows: to determine the trajectory of the center of the mass of released material from the measured wind field; to calculate the dispersion of the released material based on the measured lateral turbulence intensity (sigma theta); to determine the height of the mixing zone by measurement of the inversion height and wind profiles up to an altitude of about 1 km at sites that have SODAR units installed; to archive meteorological data for potential use in climatological descriptions for emergency planning; to archive air-quality data for preparation of compliance reports; to provide access to the data for near real time hazard analysis purposes.

  20. FEDS user`s guide: Facility energy screening. Release 2.10

    SciTech Connect

    Dirks, J.A.

    1995-01-01

    The Facility Energy Decision Screening (FEDS) Model is under development at Pacific Northwest Laboratory (PNL) for the US DOE Federal Energy Management Program (DOE-FEMP) and the US Army Construction Engineering REsearch Laboratory (USA-CERL). FEDS is a multi-level energy analysis software system designed to provide a comprehensive approach to fuel-neutral, technology-independent, integrated (energy) resource planning and acquisition. The FEDS system includes Level-1, which is a top-down, first-pass energy systems analysis and energy resource acquisition decision software model for buildings and facilities, and the Level-2 software model, which allows specific engineering inputs and provides detailed output. The basic intent of the model is to provide an installation with the information necessary to determine the minimum life-cycle cost (LCC) configuration of the installation`s energy generation and consumption infrastructure. The model has no fuel or technology bias; it simply selects the technologies that will provide an equivalent or superior level of service (e.g., heating, cooling, illumination) at the minimum LCC.

  1. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  2. Savannah River National Laboratory Underground Counting Facility

    NASA Astrophysics Data System (ADS)

    Brown, Tim

    2006-10-01

    The SRNL UCF is capable of detecting extremely small amounts of radioactivity in samples, providing applications in forensics, environmental analyses, and nonproliferation. Past customers of the UCF have included NASA, (Long Duration Exposure Facility) the IAEA, (Iraq), and nonproliferation concerns. The SRNL UCF was designed to conduct ultra-low level gamma-ray analyses for radioisotopes at trace levels. Detection sensitivity is enhanced by background reduction, high detector efficiency, and long counting times. Backgrounds from cosmic-rays, construction materials, and radon are reduced by counting underground, active and passive shielding, (pre-WWII steel) and situation behind a Class 10,000 clean facility. High-detection efficiency is provided by a well detector for small samples and three large HPGe detectors. Sample concentration methods such as ashing or chemical separation are also used. Count times are measured in days. Recently, two SCUREF programs were completed with the University of South Carolina to further enhance UCF detection sensitivity. The first developed an ultra-low background HPGe detector and the second developed an anti-cosmic shield that further reduces the detector background. In this session, we will provide an overview status of the recent improvements made in the UCF and future directions for increasing sensitivity.

  3. Preliminary user planning for the NASA National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Cadwell, J. D.

    1981-01-01

    Anticipated uses for correlation testing, research and development testing, and configuration development are described. The investigation of high and low speed aerodynamics and the types of data desired from tunnel tests are discussed.

  4. Inertial fusion program and national laser users facility program

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This is the 1994 annual report for the University of Rochester, Laboratory for Laser Energetics. The report is presented as a series of research type reports. The titles emphasize the breadth of work carried out. They are: stability analysis of unsteady ablation fronts; characterization of laser-produced plasma density profiles using grid image refractometry; transport and sound waves in plasmas with light and heavy ions; three-halves-harmonic radiation from long-scale-length plasmas revisited; OMEGA upgrade status report; target imaging and backlighting diagnosis; effect of electron collisions on ion-acoustic waves and heat flow; particle-in-cell code simulations of the interaction of gaussian ultrashort laser pulses with targets of varying initial scale lengths; characterization of thick cryogenic fuel layers: compensation for the lens effect using convergent beam interferometry; compact, multijoule-output, Nd:Glass, large-aperture ring amplifier; atomic force microscopy observation of water-induced morphological changes in Y2O3 monolayer coatings; observation of longitudinal acceleration of electrons born in a high-intensity laser focus; spatial intensity nonuniformities of an OMEGA beam due to nonlinear beam propagation; calculated X-ray backlighting images of mixed imploded targets; evaluation of cosmic rays for use in the monitoring of the MEDUSA scintillator-photomultiplier diagnostic array; highly efficient second-harmonic generation of ultra-intense Nd:Glass laser pulses multiple cutoff wave numbers of the ablative Rayleigh-Taylor instability; ultrafast, all-silicon light modulator; angular dependence of the stimulated Brillouin scattering in homogeneous plasma; and femtosecond excited-state dynamics of a conjugated ladder polymer.

  5. National Ignition Facility Target Design and Fabrication

    SciTech Connect

    Cook, R C; Kozioziemski, B J; Nikroo, A; Wilkens, H L; Bhandarkar, S; Forsman, A C; Haan, S W; Hoppe, M L; Huang, H; Mapoles, E; Moody, J D; Sater, J D; Seugling, R M; Stephens, R B; Takagi, M; Xu, H W

    2007-12-10

    The current capsule target design for the first ignition experiments at the NIF Facility beginning in 2009 will be a copper-doped beryllium capsule, roughly 2 mm in diameter with 160-{micro}m walls. The capsule will have a 75-{micro}m layer of solid DT on the inside surface, and the capsule will driven with x-rays generated from a gold/uranium cocktail hohlraum. The design specifications are extremely rigorous, particularly with respect to interfaces, which must be very smooth to inhibit Rayleigh-Taylor instability growth. This paper outlines the current design, and focuses on the challenges and advances in capsule fabrication and characterization; hohlraum fabrication, and D-T layering and characterization.

  6. National Ignition Facility integrated computer control system

    NASA Astrophysics Data System (ADS)

    Van Arsdall, Paul J.; Bettenhausen, R. C.; Holloway, Frederick W.; Saroyan, R. A.; Woodruff, J. P.

    1999-07-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control system. The framework provides an open, extensive architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. THe ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensor to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  7. National Ignition Facility integrated computer control system

    SciTech Connect

    Van Arsdall, P.J., LLNL

    1998-06-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  8. Administrative, counseling and medical practices in National Abortion Federation facilities.

    PubMed

    Landy, U; Lewit, S

    1982-01-01

    A survey of members of the National Abortion Federation (NAF), most of them non-hospital facilities, responsible for performing almost half of the abortions in the United States, was carried out by the NAF in 1981. Among the principal findings were the following: Fifty-three percent of the NAF facilities are freestanding clinics operated for profit. Fifty-one percent are open more than 50 hours per week, and 77 percent are open six days a week; 86 percent are open on Saturdays. Seventy-five percent of the physicians performing abortions in these facilities are gynecologists. Counseling provided by specially trained abortion counselors is a unique contribution of abortion facilities to health-care delivery. Virtually all facilities employ counselors who are neither doctors nor nurses. Most NAF facilities have more counselors than nurses and more nurses than doctors. Counseling in virtually all facilities includes providing written as well as verbal information about the nature of the procedure and its medical risks; such information is given to the patient so that she can give informed consent for the abortion. Almost all facilities include information about contraception and about the options available to a woman with a problem pregnancy. Most offer counseling to the male, as well as the female partner, on the patient's request. Twenty-eight percent of facilities generally provide both individual and group counseling. Where only one type of counseling is provided, it is usually individual counseling.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Plans for National Ignition Facility operations training and operations procedures

    SciTech Connect

    Mantrom, D.D., LLNL

    1998-06-01

    A preliminary plan for National Ignition Facility (NIF) Operations training developed for the 200+ staff anticipated to operate the NIF facility is discussed. We also address the development and implementation of NIF Operations procedures. These procedures serve as an essential part of the staff training program. A special aspect of NIF Operations procedures is that they will be on-line with electronic links to design, operations, and test databases, and will likely incorporate electronic checklists and archiving capabilities.

  10. Status report on the Seoul National University AMS facility

    NASA Astrophysics Data System (ADS)

    Kim, J. C.; Youn, M.; Kim, I. C.; Park, J. H.; Song, Y. M.; Kang, J.; Choi, H. R.

    2004-08-01

    We report recent progress at the Seoul National University AMS facility in the area of sample preparations, facility maintenance, and briefly describe examples of present applications and future plans. The background level depending on the preparation methods is discussed, and water preparation line that are still under development is described. As the successful application of our facility, dating results of a historic site and a Paleolithic site, dating of Siberian permafrost and bomb pulse measurement are shown. Future plans for Be/Al AMS and biomedical application are discussed.

  11. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    SciTech Connect

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; Moody, D. L.; Schneider, D. H.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Stoeffl, W.; Widmann, K.; Yeamans, C. B.; Batha, S. H.; Grim, G. P.; Herrmann, H. W.; Merrill, F. E.; Leeper, R. J.; Oertel, J. A.; Sangster, T. C.; Edgell, D. H.; Hohenberger, M.; Glebov, V. Yu.; Regan, S. P.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Rinderknecht, H. G.; Zylstra, A. B.; Cooper, G. W.; Ruiz, C.

    2016-01-06

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Lastly, recommendations for future diagnostics on the NIF are discussed.

  12. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    DOE PAGES

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; ...

    2016-01-06

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by themore » function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Lastly, recommendations for future diagnostics on the NIF are discussed.« less

  13. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    SciTech Connect

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; Moody, J. D.; Schneider, D. H.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Stoeffl, W.; Widmann, K.; Yeamans, C. B.; Batha, S. H.; Grim, G. P.; Herrman, H. W.; Merrill, F. E.; Leeper, J.; Oertel, J. A.; Sangster, T. C.; Edgell, D. H.; Hohenberger, M.; Glebov, V. Yu; Regan, S. P.; Frenje, J. A.; Johnson, M. Gatu-; Petrasso, R. D.; Rinderknecht, H. G.; Zylstra, A. B.; Cooper, G. W.; Ruiz, C.

    2016-02-01

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. Furthermore, a comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Finally, we discuss recommendations for future diagnostics on the NIF.

  14. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    DOE PAGES

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; ...

    2016-02-01

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by themore » function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. Furthermore, a comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Finally, we discuss recommendations for future diagnostics on the NIF.« less

  15. National Ignition Facility pollution prevention and waste minimization plan

    SciTech Connect

    Cantwell, B.; Celeste, J.

    1998-09-01

    This document is the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF) Pollution Prevention and Waste Minimization Plan. It will not only function as the planning document for anticipating, minimizing, and mitigating NIF waste generation, but it is also a Department of Energy (DOE) milestone document specified in the facility's Mitigation Action Plan (MAP). As such, it is one of the ''living'' reference documents that will guide NIF operations through all phases of the project. This document will be updated periodically to reflect development of the NIF, from construction through lifetime operations.

  16. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  17. Tantalum Strength Experiments on National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Arsenlis, A.; Benedetti, L.; Huntington, C.; McNaney, J.; Orlikowski, D.; Prisbrey, S.; Rudd, R.; Weber, S.; Wehrenberg, C.; Remington, B.

    2015-06-01

    We are conducting Ta strength experiments using the NIF laser to test Ta strength models at high pressures (~ 5 Mbar), high strain rates (~ 107 s-1) and high strains (>30%). We use 800 kJ of laser energy to create a ramped drive via a 4-layer reservoir - gap configuration. The target package includes sinusoidal Ta surface ripples that are used to infer the plastic flow stress of the sample from a measurement of the Rayleigh-Taylor instability ripple growth. The inferred flow stress is approximately twice greater than predictions by the multiscale strength model. It is conjectured that homogeneous nucleation behind the leading shock at ~ 1 Mbar promptly generates a very high dislocation density, thus increasing the strength through the work hardening term. This paper will present the experimental results comparing them with various strength models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Switch evaluation test system for the National Ignition Facility

    SciTech Connect

    Savage, M.E.; Simpson, W.W.; Sharpe, R.A. |; Reynolds, F.D. |

    1997-07-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100`s of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches.

  19. Development and construction of a comprehensive set of research diagnostics for the FLARE user facility

    NASA Astrophysics Data System (ADS)

    Yoo, Jongsoo; Jara-Almonte, J.; Majeski, S.; Frank, S.; Ji, H.; Yamada, M.

    2016-10-01

    FLARE (Facility for Laboratory Reconnection Experiments) will be operated as a flexible user facility, and so a complete set of research diagnostics is under development, including magnetic probe arrays, Langmuir probes, Mach probes, spectroscopic probes, and a laser interferometer. In order to accommodate the various requirements of users, large-scale (1 m), variable resolution (0.5-4 cm) magnetic probes have been designed, and are currently being prototyped. Moreover, a fully fiber-coupled laser interferometer has been designed to measure the line-integrated electron density. This fiber-coupled interferometer system will reduce the complexity of alignment processes and minimize maintenance of the system. Finally, improvements to the electrostatic probes and spectroscopic probes currently used in the Magnetic Reconnection Experiment (MRX) are discussed. The specifications of other subsystems, such as integrators and digitizers, are also presented. This work is supported by DoE Contract No. DE-AC0209CH11466.

  20. The Dutch GOCE National User Group-Fact Sheet

    NASA Astrophysics Data System (ADS)

    Koop, R.; Visser, P.; Selig, A.; Ambrodius, B.

    2004-06-01

    Dutch groups and persons have been participating in GOCE activities from the early days of the project till now and are planning to stay involved until the goals of the mission will be realized. The activities, that actually go back all the way to the first ideas of the ARISTOTELES mission, have been evolving over many aspects of the mission, from instrument simulation via data processing to user applications. The groups now involved can rely on a long lasting expertise in the respective fields of interest: space geodesy, orbital mechanics, space research and technology, oceanography and geodynamics. In the context of GOCE, but also in related fields, the participating Dutch groups have established both national and international cooperation and reputation.

  1. Idaho National Engineering Laboratory Consolidated Transportation Facility. Environmental Assessment

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0822, addressing environmental impacts that could result from siting, construction, and operation of a consolidated transportation facility at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The DOE proposes to construct and operate a new transportation facility at the Central Facilities Area (CFA) at the INEL. The proposed facility would replace outdated facilities and consolidate in one location operations that are conducted at six different locations at the CFA. The proposed facility would be used for vehicle and equipment maintenance and repair, administrative support, bus parking, and bus driver accommodation. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, the preparation of an environmental impact statement (EIS) is not required and the Department is issuing this finding of no significant impact.

  2. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect

    Wolfe, C.R.; Yatabe, J.

    1996-09-01

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  3. Systems reliability analysis for the national ignition facility

    SciTech Connect

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-06-12

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level.

  4. Transport and handling of National Ignition Facility beamline optic modules

    SciTech Connect

    Yakuma, S.C.; Grasz, E.L.; Rowe, A.W.; Yourchenko, G.; Swan, D.A.; Robles, G.M.

    1997-12-23

    Installing the thousands of optics that make up the laser for the National Ignition Facility (NIF) is a complex operation. This paper introduces the Optical Transport and Material Handling designs that will be used to deliver the optics. The transport and handling hardware is being designed to allow autonomous, semiautonomous, and manual operations.

  5. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-06-14

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

  6. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  7. National RF Test Facility as a multipurpose development tool

    SciTech Connect

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

  8. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    SciTech Connect

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  9. Removing user fees for basic health services: a pilot study and national roll-out in Afghanistan.

    PubMed

    Steinhardt, Laura C; Aman, Iqbal; Pakzad, Iqbalshah; Kumar, Binay; Singh, Lakhwinder P; Peters, David H

    2011-11-01

    BACKGROUND User fees for primary care tend to suppress utilization, and many countries are experimenting with fee removal. Studies show that additional inputs are needed after removing fees, although well-documented experiences are lacking. This study presents data on the effects of fee removal on facility quality and utilization in Afghanistan, based on a pilot experiment and subsequent nationwide ban on fees. METHODS Data on utilization and observed structural and perceived overall quality of health care were compared from before-and-after facility assessments, patient exit interviews and catchment area household surveys from eight facilities where fees were removed and 14 facilities where fee levels remained constant, as part of a larger health financing pilot study from 2005 to 2007. After a national user fee ban was instituted in 2008, health facility administrative data were analysed to assess subsequent changes in utilization and quality. RESULTS The pilot study analysis indicated that observed and perceived quality increased across facilities but did not differ by fee removal status. Difference-in-difference analysis showed that utilization at facilities previously charging both service and drug fees increased by 400% more after fee removal, prompting additional inputs from service providers, compared with facilities that previously only charged service fees or had no change in fees (P = 0.001). Following the national fee ban, visits for curative care increased significantly (P < 0.001), but institutional deliveries did not. Services typically free before the ban-immunization and antenatal care-had immediate increases in utilization but these were not sustained. CONCLUSION Both pilot and nationwide data indicated that curative care utilization increased following fee removal, without differential changes in quality. Concerns raised by non-governmental organizations, health workers and community leaders over the effects of lost revenue and increased

  10. Removing user fees for basic health services: a pilot study and national roll-out in Afghanistan

    PubMed Central

    Steinhardt, Laura C; Aman, Iqbal; Pakzad, Iqbalshah; Kumar, Binay; Singh, Lakhwinder P; Peters, David H

    2011-01-01

    Background User fees for primary care tend to suppress utilization, and many countries are experimenting with fee removal. Studies show that additional inputs are needed after removing fees, although well-documented experiences are lacking. This study presents data on the effects of fee removal on facility quality and utilization in Afghanistan, based on a pilot experiment and subsequent nationwide ban on fees. Methods Data on utilization and observed structural and perceived overall quality of health care were compared from before-and-after facility assessments, patient exit interviews and catchment area household surveys from eight facilities where fees were removed and 14 facilities where fee levels remained constant, as part of a larger health financing pilot study from 2005 to 2007. After a national user fee ban was instituted in 2008, health facility administrative data were analysed to assess subsequent changes in utilization and quality. Results The pilot study analysis indicated that observed and perceived quality increased across facilities but did not differ by fee removal status. Difference-in-difference analysis showed that utilization at facilities previously charging both service and drug fees increased by 400% more after fee removal, prompting additional inputs from service providers, compared with facilities that previously only charged service fees or had no change in fees (P = 0.001). Following the national fee ban, visits for curative care increased significantly (P < 0.001), but institutional deliveries did not. Services typically free before the ban—immunization and antenatal care—had immediate increases in utilization but these were not sustained. Conclusion Both pilot and nationwide data indicated that curative care utilization increased following fee removal, without differential changes in quality. Concerns raised by non-governmental organizations, health workers and community leaders over the effects of lost revenue and increased

  11. International Microgravity Plasma Facility IMPF: A Multi-User Modular Research Facility for Complex Plasma Research on ISS

    NASA Astrophysics Data System (ADS)

    Seurig, R.; Burfeindt, J.; Castegini, R.; Griethe, W.; Hofmann, P.

    2002-01-01

    On March 03, 2001, the PKE-Nefedov plasma experiment was successfully put into operation on board ISS. This complex plasma experiment is the predecessor for the semi-autonomous multi-user facility IMPF (International Microgravity Plasma Facility) to be flown in 2006 with an expected operational lifetime of 10 years. IMPF is envisioned to be an international research facility for investigators in the field of multi-component plasmas containing ions, electrons, and charged microparticles. This research filed is often referred to as "complex plasmas". The actual location of IMPF on ISS is not decided yet; potential infrastructure under consideration are EXPRESS Rack, Standard Interface Rack SIR, European Drawer Rack EDR, or a to be designed custom rack infrastructure on the Russian Segment. The actual development status of the DLR funded Pre-phase B Study for IMPF will be presented. For this phase, IMPF was assumed to be integrated in an EXPRESS Rack requiring four middeck lockers with two 4-PU ISIS drawers for accommodation. Technical and operational challenges, like a 240 Mbytes/sec continuous experimental data stream for 60 minutes, will be addressed. The project was funded by the German Space Agency (DLR) and was performed in close cooperation with scientists from the Max-Planck-Institute for Extraterrestical Physics in Munich, Germany.

  12. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei A.; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L.

    2009-07-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve

  13. Data Management and Its Role in Delivering Science at DOE BES User Facilities Past, Present, and Future

    SciTech Connect

    Miller, Stephen D; Herwig, Kenneth W; Ren, Shelly; Vazhkudai, Sudharshan S

    2009-01-01

    Abstract. The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one s laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today s data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990 s to integrate data from across multiple modalities

  14. Suicidal behaviours in male and female users of illicit drugs recruited in drug treatment facilities.

    PubMed

    Arribas-Ibar, Elisabet; Suelves, Josep Maria; Sanchez-Niubò, Albert; Domingo-Salvany, Antònia; T Brugal, M

    We assessed prevalence of suicidal ideation and plans among illicit drug users and their association with contextual factors, by gender. Cross-sectional study. In a sample of 511 illicit drug users recruited during spring 2012 in drug treatment and prevention facilities in Catalonia (Spain), the prevalence of suicidal ideation/plans in the last 12 months was assessed. Poisson regression was used to examine associations between suicidal ideation/plans and various factors (socio-demographic, psychological, illegal drug market activities and marginal income generation activities, which included any reported sex work, stealing, peddling, begging or borrowing on credit from a dealer). The average age was 37.9 years (standard deviation: 8.62); 76.3% were men. Suicidal ideation/plans were reported by 30.8% of men and 38.8% of women, with no significant differences by age or gender. Recent aggression (male prevalence ratio [PR]=2.2; female PR=1.4), psychological treatment (male PR=1.2; female PR=1.3) and illegal/marginal income generation activities (male PR=1.5; female PR=1.1) were associated with suicidal ideation/plans. Men who trafficked were more likely to have suicidal ideation/plans (PR=1.3), while prison history was positive for women (PR=1.8) and negative for men (PR=0.7). Prevalence of suicidal ideation/plans was high among illicit drug users recruited from healthcare facilities. Besides psychological variables, participation in illegal market activities and crime ought to be considered in drug users' suicidal prevention. Suicide risk needs to be evaluated in drug treatment facilities and psychological status and context contemplated. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  16. Oak Ridge National Laboratory Facilities Revitalization Project - Project Management Plan

    SciTech Connect

    Myrick, T.E.

    2000-06-06

    The Facilities Revitalization Project (FRP) has been established at Oak Ridge National Laboratory (ORNL) to provide new and/or refurbished research and support facilities for the Laboratory's science mission. The FRP vision is to provide ORNL staff with world-class facilities, consolidated at the X-10 site, with the first phase of construction to be completed within five years. The project will utilize a combination of U.S. Department of Energy (DOE), State of Tennessee, and private-sector funds to accomplish the new construction, with the facilities requirements to be focused on support of the ORNL Institutional Plan. This FRP Project Management Plan has been developed to provide the framework under which the project will be conducted. It is intended that the FRP will be managed as a programmatic office, with primary resources for execution of the project to be obtained from the responsible organizations within ORNL (Engineering, Procurement, Strategic Planning, etc.). The FRP Project Management Plan includes a definition of the project scope, the organizational responsibilities, and project approach, including detailed Work Breakdown Structure (WBS), followed by more detailed discussions of each of the main WBS elements: Project Planning Basis, Facility Deactivation and Consolidation, and New Facilities Development. Finally, a general discussion of the overall project schedule and cost tracking approach is provided.

  17. Ushering in A New Era in Lasers: The National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2008-04-01

    The world's largest ultraviolet laser, the National Ignition Facility (NIF), under construction at Lawrence Livermore National Laboratory, is scheduled to be complete by March 2009. NIF focuses on three main missions: support of stockpile stewardship to ensure a safe and reliable nuclear stockpile, demonstrating the feasibility of inertial confinement fusion (ICF) as a clean source of energy, and enabling high-energy-density (HED) science to help understand the physical processes that drive the cosmos. These three missions share the need to study materials at extreme conditions: temperatures up to 108 K, densities approaching 1000 grams per cc, and pressures up to 10^10 megapascals. Moreover, in fusion events NIF will produce, for a short time, a neutron density up to 10^21 cm-3. These conditions occur only in the interiors of stars, during thermonuclear burn, and in supernova events. NIF's next set of experiments, to study the systematics of ICF, is scheduled to begin in 2008 with the goal of conducting a credible ignition experiment by 2010. NIF will also conduct a variety of basic science experiments that will include laser-plasma interactions; solids at extremely high pressure leading to information about planetary interiors; hydrodynamic instabilities; and nuclear astrophysics. By 2010, NIF will be managed as a national user facility to best exploit its scientific potential. Users of NIF will include researchers from the Department of Energy national laboratories, scientists from academia, and other national and international users. Nuckolls, Wood, and Thiessen proposed ICF half a century ago, within weeks of the first demonstration of a working laser. Successive generations of lasers were built with the goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory for more than half a century. With the completion of NIF that long-sought goal will be much closer to realization. The talk will focus on NIF technical capabilities and the

  18. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  19. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  20. Status of the FLARE (Facility for Laboratory Reconnection Experiments) Construction Project and Plans as a User Facility

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Chen, Y.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2016-10-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, (2011)]. Most of major components either have been already fabricated or are near their completion, including the two most crucial magnets called flux cores. The hardware assembly and installation begin in this summer, followed by commissioning in 2017. Initial comprehensive set of research diagnostics will be constructed and installed also in 2017. The main diagnostics is an extensive set of magnetic probe arrays, covering multiple scales from local electron scales, to intermediate ion scales, and global MHD scales. The planned procedures and example topics as a user facility will be discussed.

  1. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  2. Recent progress on the National Ignition Facility advanced radiographic capability

    SciTech Connect

    Wegner, P.; Bowers, M.; Chen, H.; Heebner, J.; Hermann, M.; Kalantar, D.; Martinez, D.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore, this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.

  3. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  4. Assuring operational readiness of the National Ignition Facility.

    PubMed

    Brereton, Sandra J; Papp, Frank

    2013-06-01

    National Ignition Facility experiments involve the use of a variety of materials that generate a number of radiological issues. Along with the use of tritium and depleted uranium, shots generating neutrons create prompt radiation fields as well as fission and activation products. In order to assure readiness for these hazards, a series of readiness reviews was conducted as the hazards were introduced. Each step was built upon the previous steps, as well as the basic infrastructure and operating capability of the laser facility. A detailed preparation plan for the introduction of these hazards was developed. This included ensuring required equipment was in place and ready, all plans and procedures were developed, and personnel were trained and qualified to perform work in the environment. The approach for preparing the facility for operations under the new set of conditions, the preparations for the readiness reviews, the review process, as well as the approach to initial operations are discussed.

  5. Video model deformation system for the National Transonic Facility

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-08-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  6. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  7. The National Ignition Facility: The world's largest optical system

    SciTech Connect

    Stolz, C J

    2007-10-15

    The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics at desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.

  8. National Transonic Facility model and model support vibration problems

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

    1990-01-01

    Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

  9. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, Mark E.; Cameron, Christopher P.; Ghanbari, Cheryl M.

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirtland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/sq cm that is uniform over a 15-cm diameter with a total beam power of over 5 MWt. One solar furnace produces flux levels of 270 W/sq cm over and delivers a 6-mm diameter and total power of 16 kWt. A second furnace produces flux levels up to 1000 W/sq cm over a 4 cm diameter and total power of 60 kWt. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11-m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/sq cm over a 2.5-cm diameter and total power of 75 kWt. High-speed shutters have been used to produce square pulses.

  10. National facilities study. Volume 2A: Facility Study Office on the National Wind Tunnel Complex

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Facility Study Office (FSO) has completed its assigned activities. The results of the FSO efforts, studies, and assessments are documented. An overview of the FSO activities as well as a general comparison of all concepts considered are provided. Detailed information is also provided for the selected concept, Concept D-Option 5. Only findings are presented. The FSO developed recommendations only as a consequence of assumptions for cost and schedule assessments.

  11. Cryogenic Balance Technology at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Parker, P. A.

    2001-01-01

    This paper provides an overview of force measurement at the National Transonic Facility (NTF). The NTF has unique force measurement requirements that dictate an integration of all aspects of balance design, production, and calibration. An overview of current force measurement capabilities is provided along with new balance development efforts. Research activities in the areas of thermal compensation and balance calibration are presented. Also, areas of future research are detailed.

  12. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  13. Data quality analysis at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Stewart, Pamela N.

    1990-01-01

    The data quality analysis program that was developed at Langley Research Center's National Transonic Facility is described. The program provides a computer driven systematic analysis of data taken during calibrations of the high speed digital data acquisition system. Five distinct checks that are performed on the calibration data are outlined. The five checks are for non-linearity, noise, short term drift, long term drift, and the proper functioning of the calibrator. The program has established a standard set of evaluation guidelines.

  14. Analysis of optics damage growth at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Liao, Z. M.; Nostrand, M.; Whitman, P.; Bude, J.

    2015-11-01

    Optics damage growth modeling and analysis at the National Ignition Facility (NIF) has been performed on fused silica. We will show the results of single shot growth comparisons, damage site lifetime comparisons as well as growth metrics for each individual NIF beamline. These results help validate the consistency of the damage growth models and allow us to have confidence in our strategic planning in regards to projected optic usage.

  15. Reduction of Tunnel Dynamics at the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Butler, D. H.

    2001-01-01

    This paper describes the results of recent efforts to reduce the tunnel dynamics at the National Transonic Facility. The results presented describe the findings of an extensive data analysis, the proposed solutions to reduce dynamics and the results of implementing these solutions. These results show a 90% reduction in the dynamics around the model support structure and a small impact on reducing model dynamics. Also presented are several continuing efforts to further reduce dynamics.

  16. Preliminary calibration and test results from the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mckinney, Linwood W.; Fuller, Dennis E.

    1986-01-01

    The National Transonic Facility (NTF) was operated to design condition of 120 million Reynolds number at a Mach number of 1.0. All systems were checked out except plenum isolation valves; modifications are being made to heaters on the actuators. Initial steady-state calibration indicates excellent steady flow characteristics. The first test of the Pathfinder 1 model indicated significant Reynolds number effects. Some effect of temperature on instrumentation were obtained. The cause of these effects is being evaluated.

  17. High Performance Imaging Streak Camera for the National Ignition Facility

    SciTech Connect

    Opachich, Y. P.; Kalantar, D.; MacPhee, A.; Holder, J.; Kimbrough, J.; Bell, P. M.; Bradley, D.; Hatch, B.; Brown, C.; Landen, O.; Perfect, B. H.; Guidry, B.; Mead, A.; Charest, M.; Palmer, N.; Homoelle, D.; Browning, D.; Silbernagel, C.; Brienza-Larsen, G.; Griffin, M.; Lee, J. J.; Haugh, M. J.

    2012-01-01

    An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

  18. Flow Disturbance Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.

    2013-01-01

    Recent flow measurements have been acquired in the National Transonic Facility to assess the test-section unsteady flow environment. The primary purpose of the test is to determine the feasibility of the facility to conduct laminar-flow-control testing and boundary-layer transition-sensitive testing at flight-relevant operating conditions throughout the transonic Mach number range. The facility can operate in two modes, warm and cryogenic test conditions for testing full and semispan-scaled models. Data were acquired for Mach and unit Reynolds numbers ranging from 0.2 less than or equal to M less than or equal to 0.95 and 3.3 × 10(exp 6) less than Re/m less than 220×10(exp 6) collectively at air and cryogenic conditions. Measurements were made in the test section using a survey rake that was populated with 19 probes. Roll polar data at selected conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. This paper focuses primarily on the unsteady pressure and hot-wire results. Based on the current measurements and previous data, an assessment was made that the facility may be a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.

  19. Design for environment for the National Ignition Facility

    SciTech Connect

    Cantwell, E.; Gobor, K.; Celeste, J.; Cerruti, S.

    1998-05-01

    The National Ignition Facility (NIF) will be a U.S. Department of Energy (DOE) national center for inertial confinement fusion (ICF) and other research into the physics of high temperatures and high densities, and a vital element of the DOE`s nuclear weapons Stockpile Stewardship and Management Program. It will be used by scientists from a numerous different institutions and disciplines to support research advancements in national security, energy, basic science, and economic development. Multiple powerful laser beams will `ignite` small fusion targets, helping liberate more energy than is required to initiate the fusion reactions. This paper discusses the Design for Environment process for NIF, some of the subsequent activities resulting from the initial study, and a few of the lessons learned from this process. Subsequent activities include the development of a Pollution Prevention and Waste Minimization Plan (P2/WMin) for the facility, which includes Pollution Prevention Opportunity Assessments (PPOAS) on predicted waste streams from NIF, development of construction phase recycling plans, analysis of some of the specialized materials of construction to minimize future demolition and decommissioning (D&D) costs and development of cost assessments for more benign cleaning procedures that meet the stringent cleaning specifications for this facility.

  20. Developing an online orientation resource for users of institutional animal housing facilities.

    PubMed

    Dryman, Amy L; Alworth, Leanne C

    2015-08-01

    Institutions can share information and orientation materials easily and effectively using modern media and communications technology. For this reason the Office of Animal Care and Use at the University of Georgia developed an online orientation resource for users of its animal housing facilities. Here the authors describe the resource and the planning and project management that accompanied its development. The authors explain the rationale behind each of their decisions and describe select organizational methods that contributed to the success of the project. They describe their own experience, in the context of their institutional circumstances, for the benefit of other institutions that might consider developing a similar resource.

  1. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  2. IKNO, a user facility for coherent terahertz and UV synchrotron radiation

    SciTech Connect

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-04-26

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy.

  3. Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility

    SciTech Connect

    Bingham, C.; Lewandowski, A.; Stone, K.; Sherif, R.; Ortabasi, U.; Kusek, S.

    2003-05-01

    There has been much recent interest in photovoltaic modules designed to operate with concentrated sunlight (>100 suns). Concentrating photovoltaic (CPV) technology offers an exciting new opportunity as a viable alternative to dish Stirling engines. Advantages of CPV include potential for>40% cell efficiency in the long term (25% now), no moving parts, no intervening heat transfer surface, near-ambient temperature operation, no thermal mass, fast response, concentration reduces cost of cells relative to optics, and scalable to a range of sizes. Over the last few years, we have conducted testing of several CPV modules for DOEs Concentrating Solar Power (CSP) program. The testing facilities are located at the Concentrating Solar Radiation Users Facility (CRULF) and consist the 10 kW High-Flux Solar Furnace (HFSF) and a 14m2 Concentrating Technologies, LLC (CTEK) dish. This paper will primarily describe the test capabilities; module test results will be detailed in the presentation.

  4. IKNO, a user facility for coherent terahertz and UV synchrotron radiation.

    PubMed

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-11-01

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing third-generation light sources. Simultaneously to the CSR operation, broadband incoherent synchrotron radiation up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent synchrotron radiation are described in this paper. The proposed location for the infrastructure facility is Sardinia, Italy.

  5. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    SciTech Connect

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program.

  6. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    SciTech Connect

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.

    1999-08-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike.

  7. LAPTAG: Los Angeles Physics Teachers Alliance Group and the UCLA Basic Plasma User Facility.

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter

    2001-10-01

    LAPTAG was founded in 1993 during a meeting sponsored by the APS, which encouraged high schools and Universities to form alliances. There are currently about twenty high schools, several community colleges and two Universities (UCLA and USC) involved. At first LAPTAG organized tours of laboratories at UCLA, USC, JPL, General Atomics and the Mt. Wilson Observatory and had meetings in which issues on curricula were discussed. It became obvious after awhile that in order for the group to last that projects were necessary. An early project involved having the high school faculty and students create Websites for most of the schools. This was before most the schools could afford Internet connections and Web authoring tools did not exist. Then with funding from the UC Office of the President, a seismology project was initiated and ten schools received seismometers. There were lectures by geologists and staff members of the Southern California Earthquake center; results were reported on the Web. In the spring of 1999 LAPTAG gave seven posters at the Condensed Matter APS meeting in Los Angeles. A web based astronomy course was created and high school students controlled the Mount Wilson telescope remotely and studied a variable star. Our latest project, funded by the Department of Energy resulted in the construction of a plasma lab dedicated to LAPTAG. The lab has equipment that is used by practicing plasma physicists (tone-burst generators, digital scopes, digital data acquisition and computerized probe drives) as well as software (LabView, PVwave). The high school students and teachers built the machine and all the associated diagnostics. Examples of the experiments will be given, however it is not a cookbook lab. As new experiments are introduced the same difficulties we all face must be overcome; the students take part in this. The LAPD laboratory is now a National User Facility and LAPTAG is a key component of its outreach program. We have met with the director of

  8. National facilities study. Volume 5: Space research and development facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  9. 21 CFR 803.30 - If I am a user facility, what reporting requirements apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING User Facility Reporting... information, from any source, that reasonably suggests that a device has or may have caused or contributed to the death of a patient of your facility. You must also submit the report to the device...

  10. 21 CFR 803.30 - If I am a user facility, what reporting requirements apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING User Facility Reporting... information, from any source, that reasonably suggests that a device has or may have caused or contributed to the death of a patient of your facility. You must also submit the report to the device...

  11. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, M. E.; Cameron, C. P.; Ghanbari, C. M.

    1992-11-01

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm(sup 2) that is uniform over a 15-cm diameter with a total beam power of over 5 MW(sub t). The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m (times) 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm(sup 2) over and delivers a 6-mm diameter and total power of 16 kW(sub t). A second furnace produces flux levels up to 1000 W/cm(sup 2) over a 4 cm diameter and total power of 60 kW(sub t). Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm(sup 2) over a 2.5 cm diameter and total power of 75 kW(sub t). High-speed shutters have been used to produce square pulses.

  12. National Low-Temperature Neutron Irradiation Facility (NLTNIF). The status of development

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Young, F.W. Jr.

    1985-12-01

    In May 1983, the Department of Energy authorized the establishment of a National Low-Temperature Neutron Irradiation Facility (NLTNIF) at ORNL's Bulk Shielding Reactor (BSR). The NLTNIF, which will be available for qualified experiments at no cost to users, will provide a combination of high radiation intensities and special environmental and testing conditions that have not been previously available in the US. Since the DOE authorization, work has proceeded on the design and construction of the new facility without interruption. This report describes the present status of the development of the NLTNIF and the anticipated schedule for completion and performance testing. There is a table of the major specifications and capabilities and a schematic layout of the irradiation cryostate for design and dimensioning of test and experiment assemblies.

  13. PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

    2010-10-22

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

  14. The Ignition Target for the National Ignition Facility

    SciTech Connect

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-03-12

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10{sup 8} K), pressures (10-GBar) and matter densities (> 100 g/cm{sup 3}). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art.

  15. Performance and Operational Modeling of the National Ignition Facility

    SciTech Connect

    Shaw, M; Williams, W; Jancaitis, K; Widmayer, C; House, R

    2003-07-01

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory (LLNL) is a stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terrawatt, 351-nm laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions where they will ignite and burn, liberating more energy than required to initiate the fusion reaction. The first four beamlines (a quad) are currently being commissioned, with increasingly energetic laser pulses being propagated throughout the laser system. Success on many of the NIF laser's missions depends on obtaining precisely specified energy waveforms from each of the 192 beams over a wide variety of pulse lengths and temporal shapes. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed during NIF commissioning to automate the laser setup process, and accurately predict laser energetics. For each shot on NIF, the LPOM determines the characteristics of the injection laser system required to achieve the desired main laser output, provides parameter checking for equipment protection, determines the required diagnostic setup, and supplies post-shot data analysis and reporting.

  16. National Radiobiology Archives Distributed Access User`s Manual, Version 1.1. Revision 1

    SciTech Connect

    Smith, S.K.; Prather, J.C.; Ligotke, E.K.; Watson, C.R.

    1992-06-01

    This supplement to the NRA Distributed Access User`s manual (PNL-7877), November 1991, describes installation and use of Version 1.1 of the software package; this is not a replacement of the previous manual. Version 1.1 of the NRA Distributed Access Package is a maintenance release. It eliminates several bugs, and includes a few new features which are described in this manual. Although the appearance of some menu screens has changed, we are confident that the Version 1.0 User`s Manual will provide an adequate introduction to the system. Users who are unfamiliar with Version 1.0 may wish to experiment with that version before moving on to Version 1.1.

  17. Ignition Target Fabrication and Fielding for the National Ignition Facility

    SciTech Connect

    Bernat, T P; Huang, H; Nikroo, A; Stephens, R; Wilkens, H; Xu, H; Armstrong, P; Cook, R; Kozioziemski, B; Letts, S; Mapoles, E; Moody, J; McElfresh, M; Sanchez, J; Seugling, R; Cooley, J; Montgomery, D; Nobile, A

    2005-10-06

    Continued advances in the design of ignition targets have stimulating new development paths for target fabrication, with potentially important simplifications for fielding cryogenic ignition targets for the National Ignition Facility. Including graded dopants in ablators as well as optimizing capsule and fuel layer dimensions increase implosion stability. This has led to developments of micron-scale fill tubes to fill and field the targets. Rapid progress has been made in development of the graded dopant layers in capsules as well as their characterization, in fabrication methods for micro-fill-tubes, and in fuel fill control with these fill tubes. Phase-contrast x-ray radiography has allowed characterization of fuel layers in beryllium targets. This target development program includes participation from General Atomics, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

  18. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    SciTech Connect

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.

  19. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  20. Community Extreme Tonnage User Service (CETUS): A 5000 Ton Open Research Facility in the United States

    NASA Technical Reports Server (NTRS)

    Danielson, L.; Righter, K.; McCubbin, F.

    2016-01-01

    Large sample volume 5000 ton multi-anvil presses have contributed to the exploration of deep Earth and planetary interiors, synthesis of ultra-hard and other novel materials, and serve as a sample complement to pressure and temperature regimes already attainable by diamond anvil cell experiments. However, no such facility exists on the North American continent. We propose the establishment of an open user facility for COMPRES members and the entire research community, with the unique capability of a 5000 ton (or more) press, supported by a host of extant co-located experimental and analytical laboratories and research staff. We offer wide range of complementary and/or preparatory experimental options. Any required synthesis of materials or follow up experiments can be carried out controlled atmosphere furnaces, piston cylinders, multi-anvil, or experimental impact apparatus. Additionally, our division houses two machine shops that would facilitate any modification or custom work necessary for development of CETUS, one for general fabrication and one located specifically within our experimental facilities. We also have a general sample preparation laboratory, specifically for experimental samples, that allows users to quickly and easily prepare samples for ebeam analyses and more. A service we can offer to COMPRES community members in general, and CETUS visiting users specifically, is a multitude of analytical instrumentation literally steps away from the experimental laboratories. This year we will be pursuing site funding of our laboratories through NASA's Planetary Science Directorate, which should result in substantial cost savings to all visiting users, and supports our mission of interagency cooperation for the enhancement of science for all (see companion PSAMS abstract). The PI is in a unique position as an employee of Jacobs Technology to draw funding from multiple sources, including those from industry and commerce. We submitted a Planetary Major Equipment

  1. Project definition study for the National Biomedical Tracer Facility

    SciTech Connect

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  2. Evaluation of users' satisfaction on pedestrian facilities using pair-wise comparison approach

    NASA Astrophysics Data System (ADS)

    Zainol, R.; Ahmad, F.; Nordin, N. A.; Aripin, A. W. M.

    2014-02-01

    Global climate change issues demand people of the world to change the way they live today. Thus, current cities need to be redeveloped towards less use of carbon in their day to day operations. Pedestrianized environment is one of the approaches used in reducing carbon foot print in cities. Heritage cities are the first to be looked into since they were built in the era in which motorized vehicles were minimal. Therefore, the research explores users' satisfaction on assessment of physical attributes of pedestrianization in Melaka Historical City, a UNESCO World Heritage Site. It aims to examine users' satisfaction on pedestrian facilities provided within the study area using pair wise questionnaire comparison approach. A survey of 200 respondents using random sampling was conducted in six different sites namely Jonker Street, Church Street, Kota Street, Goldsmith Street, Merdeka Street to Taming Sari Tower and Merdeka Street to River Cruise terminal. The survey consists of an assessment tool based on a nine-point scale of users' satisfaction level of pathway properties, zebra pedestrian crossing, street furniture, personal safety, adjacent to traffic flow, aesthetic and amenities. Analytical hierarchical process (AHP) was used to avoid any biasness in analyzing the data collected. Findings show that Merdeka Street to Taming Sari Tower as the street that scores the highest satisfaction level that fulfils all the required needs of a pedestrianized environment. Similar assessment elements can be used to evaluate existing streets in other cities and these criteria should also be used in planning for future cities.

  3. Recent Productivity Improvements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Popernack, Thomas G., Jr.; Sydnor, George H.

    1998-01-01

    Productivity gains have recently been made at the National Transonic Facility wind tunnel at NASA Langley Research Center. A team was assigned to assess and set productivity goals to achieve the desired operating cost and output of the facility. Simulations have been developed to show the sensitivity of selected process productivity improvements in critical areas to reduce overall test cycle times. The improvements consist of an expanded liquid nitrogen storage system, a new fan drive, a new tunnel vent stack heater, replacement of programmable logic controllers, an increased data communications speed, automated test sequencing, and a faster model changeout system. Where possible, quantifiable results of these improvements are presented. Results show that in most cases, improvements meet the productivity gains predicted by the simulations.

  4. Sandia National Laboratories' new high level acoustic test facility

    SciTech Connect

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  5. High energy-density science on the National Ignition Facility

    SciTech Connect

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  6. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  7. Validation of Blockage Interference Corrections in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.

    2007-01-01

    A validation test has recently been constructed for wall interference methods as applied to the National Transonic Facility (NTF). The goal of this study was to begin to address the uncertainty of wall-induced-blockage interference corrections, which will make it possible to address the overall quality of data generated by the facility. The validation test itself is not specific to any particular modeling. For this present effort, the Transonic Wall Interference Correction System (TWICS) as implemented at the NTF is the mathematical model being tested. TWICS uses linear, potential boundary conditions that must first be calibrated. These boundary conditions include three different classical, linear. homogeneous forms that have been historically used to approximate the physical behavior of longitudinally slotted test section walls. Results of the application of the calibrated wall boundary conditions are discussed in the context of the validation test.

  8. Laser design basis for the National Ignition Facility

    SciTech Connect

    Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

    1994-06-01

    Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X-ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

  9. Laser design basis for the National Ignition Facility

    SciTech Connect

    Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

    1994-11-01

    Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

  10. Personnel Access Control System Evaluation for National Ignition Facility Operations

    SciTech Connect

    Altenbach, T; Brereton, S.; Hermes, G.; Singh, M.

    2001-06-01

    The purpose of this document is to analyze the baseline Access Control System for the National Ignition Facility (NIF), and to assess its effectiveness at controlling access to hazardous locations during full NIF operations. It reviews the various hazards present during a NIF shot sequence, and evaluates the effectiveness of the applicable set of controls at preventing access while the hazards are present. It considers only those hazards that could potentially be lethal. In addition, various types of technologies that might be applicable at NIF are reviewed, as are systems currently in use at other facilities requiring access control for safety reasons. Recommendations on how this system might be modified to reduce risk are made.

  11. National Ignition Facility Project Site Safety Program Appendix A

    SciTech Connect

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  12. Experiences managing radioactive material at the National Ignition Facility.

    PubMed

    Thacker, Rick L

    2013-06-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion and experiments studying high energy density science. Many experiments performed at the National Ignition Facility involve radioactive materials; these may take the form of tritium and small quantities of depleted uranium used in targets, activation products created by neutron-producing fusion experiments, and fission products produced by the fast fissioning of the depleted uranium. While planning for the introduction of radioactive material, it was recognized that some of the standard institutional processes would need to be customized to accommodate aspects of NIF operations, such as surface contamination limits, radiological postings, airborne tritium monitoring protocols, and personnel protective equipment. These customizations were overlaid onto existing work practices to accommodate the new hazard of radioactive materials. This paper will discuss preparations that were made prior to the introduction of radioactive material, the types of radiological work activities performed, and the hazards and controls encountered. Updates to processes based on actual monitoring results are also discussed.

  13. National facilities study. Volume 3: Mission and requirements model report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.

  14. The Neutral Beam Test Facility and Radiation Effects Facility at Brookhaven National Laboratory

    SciTech Connect

    McKenzie-Wilson, R.B.

    1990-01-01

    As part of the Strategic Defense Initiative (SDI) Brookhaven National Laboratory (BNL) has constructed a Neutral Beam Test Facility (NBTF) and a Radiation Effects Facility (REF). These two facilities use the surplus capacity of the 200-MeV Linac injector for the Alternating Gradient Synchrotron (AGS). The REF can be used to simulate radiation damage effects in space from both natural and man made radiation sources. The H{sup {minus}} beam energy, current and dimensions can be varied over a wide range leading to a broad field of application. The NBTF has been designed to carry out high precision experiments and contains an absolute reference target system for the on-line calibration of measurements carried out in the experimental hall. The H{sup {minus}} beam energy, current and dimensions can also be varied over a wide range but with tradeoffs depending on the required accuracy. Both facilities are fully operational and will be described together with details of the associated experimental programs.

  15. Progress Towards Ignition on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Interferometric adaptive optics for the National Ignition Facility

    SciTech Connect

    Baker, Kevin

    2010-06-02

    Great strides have been made during the past half century in pursuit of fusion energy as a relatively clean and essentially unlimited energy source. One of two current approaches, inertial-confinement fusion (ICF), uses a large number of lasers to either directly compress a capsule containing deuterium and tritium (DT) or indirectly convert the laser photons into x-rays on the wall of a Hohlraum (an idealized cavity) and use this radiation to compress a DT-filled capsule. The latter, indirect-drive ICF is currently being pursued by the newly commissioned National Ignition Facility (NIF).

  17. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  18. National Transonic Facility: A review of the operational plan

    NASA Technical Reports Server (NTRS)

    Liepmann, H. W.; Black, R. E.; Dietz, R. O.; Kirchner, M. E.; Sears, W. R.

    1980-01-01

    The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels.

  19. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  20. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R J

    2009-10-06

    This paper describes current efforts to develop a plastic ablator capsule design for the first ignition attempt on the National Ignition Facility. The trade-offs in capsule scale and laser energy that must be made to achieve ignition probabilities comparable to those with other candidate ablators, beryllium and high-density carbon, are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are discussed.

  1. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  2. The First Experiments on the National Ignition Facility

    SciTech Connect

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

    2005-11-11

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

  3. Optical pulse generation system for the National Ignition Facility (NIF)

    SciTech Connect

    Penko, F; Braucht,; Browning, D; Crane, J K; Dane, B; Deadrick, F; Dreifuerst, G; Henesian, M; Jones, B A; Kot, L; Laumann, C; Martinez, M; Moran, B; Rothenberg, J E; Skulina, K; Wilcox, R B

    1998-06-18

    We describe the Optical Pulse Generation (OPG) system for the National Ignition Facility ( NIF ). The OPG system begins with the Master Oscillator Room ( MOR ) where the initial, seed pulse for the entire laser system is produced and properly formatted to enhance ignition in the target. The formatting consists of temporally shaping the pulse and adding additional bandwidth to increase the coupling of the laser generated x-rays to the high density target plasma. The pulse produced in the MOR fans out to 48 identical preamplifier modules where it is amplified by a factor of ten billion and spatially shaped for injection into the 192 main amplifier chai

  4. Shock Timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Celliers, P. M.; Boehly, T. R.; Robey, H. F.; Datte, P. S.; Bowers, M. W.; Krauter, K. G.; Frieders, G.; Ross, G. F.; Jackson, J. L.; Olson, R. E.; Munro, D. H.; Nikroo, A.; Kroll, J. J.; Horner, J. B.; Hamza, A. V.; Bhandarkar, S. D.; Gibson, C. R.; Eggert, J. H.; Smith, R. F.; Park, H.-S.; Young, B. K.; Hsing, W. W.; Collins, G. W.; Landen, O. L.; Meyerhofer, D. D.

    2011-06-01

    Experiments are proceeding to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility. These experiments use a modified cryogenic hohlraum geometry designed to match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). The results of these measurements will be used to set the pulse shape for ignition capsule implosions to follow. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Experimental uncertainty and drag measurements in the national transonic facility

    NASA Technical Reports Server (NTRS)

    Batill, Stephen M.

    1994-01-01

    This report documents the results of a study which was conducted in order to establish a framework for the quantitative description of the uncertainty in measurements conducted in the National Transonic Facility (NTF). The importance of uncertainty analysis in both experiment planning and reporting results has grown significantly in the past few years. Various methodologies have been proposed and the engineering community appears to be 'converging' on certain accepted practices. The practical application of these methods to the complex wind tunnel testing environment at the NASA Langley Research Center was based upon terminology and methods established in the American National Standards Institute (ANSI) and the American Society of Mechanical Engineers (ASME) standards. The report overviews this methodology.

  6. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    SciTech Connect

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  7. Final optics damage inspection (FODI) for the National Ignition Facility

    SciTech Connect

    Conder, A; Alger, T; Azevedo, S; Chang, J; Glenn, S; Kegelmeyer, L; Liebman, J; Spaeth, M; Whitman, P

    2007-10-23

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) will routinely fire high energy shots (approaching 10 kJ per beamline) through the final optics, located on the target chamber. After a high fluence shot, exceeding 4J/cm2 at 351 nm wavelength, the final optics will be inspected for laser-induced damage. The FODI (Final Optics Damage Inspection) system has been developed for this purpose, with requirements to detect laser-induced damage initiation and to track and size it's the growth to the point at which the optic is removed and the site mitigated. The FODI system is the 'corner stone' of the NIF optic recycle strategy. We will describe the FODI system and discuss the challenges to make optics inspection a routine part of NIF operations.

  8. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R P

    2009-12-01

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF), has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  9. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.; Salmonson, Jay D.; Callahan, Debra A.; Town, Richard P. J.

    2010-05-15

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004)], has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of one-dimensional simulations, meant to assess the statistical behavior of the target design, as well as two-dimensional simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  10. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  11. The effect of user fee exemption on the utilization of maternal health care at mission health facilities in Malawi

    PubMed Central

    Manthalu, Gerald; Yi, Deokhee; Farrar, Shelley; Nkhoma, Dominic

    2016-01-01

    The Government of Malawi has signed contracts called service level agreements (SLAs) with mission health facilities in order to exempt their catchment populations from paying user fees. Government in turn reimburses the facilities for the services that they provide. SLAs started in 2006 with 28 out of 165 mission health facilities and increased to 74 in 2015. Most SLAs cover only maternal, neonatal and in some cases child health services due to limited resources. This study evaluated the effect of user fee exemption on the utilization of maternal health services. The difference-in-differences approach was combined with propensity score matching to evaluate the causal effect of user fee exemption. The gradual uptake of the policy provided a natural experiment with treated and control health facilities. A second control group, patients seeking non-maternal health care at CHAM health facilities with SLAs, was used to check the robustness of the results obtained using the primary control group. Health facility level panel data for 142 mission health facilities from 2003 to 2010 were used. User fee exemption led to a 15% (P <  0.01) increase in the mean proportion of women who made at least one antenatal care (ANC) visit during pregnancy, a 12% (P < 0.05) increase in average ANC visits and an 11% (P < 0.05) increase in the mean proportion of pregnant women who delivered at the facilities. No effects were found for the proportion of pregnant women who made the first ANC visit in the first trimester and the proportion of women who made postpartum care visits. We conclude that user fee exemption is an important policy for increasing maternal health care utilization. For certain maternal services, however, other determinants may be more important. PMID:27175033

  12. The effect of user fee exemption on the utilization of maternal health care at mission health facilities in Malawi.

    PubMed

    Manthalu, Gerald; Yi, Deokhee; Farrar, Shelley; Nkhoma, Dominic

    2016-11-01

    The Government of Malawi has signed contracts called service level agreements (SLAs) with mission health facilities in order to exempt their catchment populations from paying user fees. Government in turn reimburses the facilities for the services that they provide. SLAs started in 2006 with 28 out of 165 mission health facilities and increased to 74 in 2015. Most SLAs cover only maternal, neonatal and in some cases child health services due to limited resources. This study evaluated the effect of user fee exemption on the utilization of maternal health services. The difference-in-differences approach was combined with propensity score matching to evaluate the causal effect of user fee exemption. The gradual uptake of the policy provided a natural experiment with treated and control health facilities. A second control group, patients seeking non-maternal health care at CHAM health facilities with SLAs, was used to check the robustness of the results obtained using the primary control group. Health facility level panel data for 142 mission health facilities from 2003 to 2010 were used. User fee exemption led to a 15% (P <  0.01) increase in the mean proportion of women who made at least one antenatal care (ANC) visit during pregnancy, a 12% (P < 0.05) increase in average ANC visits and an 11% (P < 0.05) increase in the mean proportion of pregnant women who delivered at the facilities. No effects were found for the proportion of pregnant women who made the first ANC visit in the first trimester and the proportion of women who made postpartum care visits. We conclude that user fee exemption is an important policy for increasing maternal health care utilization. For certain maternal services, however, other determinants may be more important.

  13. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    SciTech Connect

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  14. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    SciTech Connect

    BOWERMAN,B.; SULLIVAN,P.T.; MOORE,D.

    2001-02-24

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and because its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies (when the sources were shipped for disposal). The decommissioning project included packaging, transport and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual doses experienced during the work were lower than anticipated. Because the sources were sealed, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris. However, disposal of the pool water involved addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant.

  15. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  16. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  17. Tritium and ignition target management at the National Ignition Facility.

    PubMed

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  18. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  19. National Radiobiology Archives Distributed Access User's Manual, Version 1. 1

    SciTech Connect

    Smith, S.K.; Prather, J.C.; Ligotke, E.K.; Watson, C.R.

    1992-06-01

    This supplement to the NRA Distributed Access User's manual (PNL-7877), November 1991, describes installation and use of Version 1.1 of the software package; this is not a replacement of the previous manual. Version 1.1 of the NRA Distributed Access Package is a maintenance release. It eliminates several bugs, and includes a few new features which are described in this manual. Although the appearance of some menu screens has changed, we are confident that the Version 1.0 User's Manual will provide an adequate introduction to the system. Users who are unfamiliar with Version 1.0 may wish to experiment with that version before moving on to Version 1.1.

  20. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    also been conducted on NIF. This paper describes the unprecedented experimental capabilities of NIF and the results achieved so far on the path toward ignition, for stockpile stewardship, and the beginning of frontier science experiments. The paper will also address our plans to transition NIF to a national user facility, providing access to NIF for researchers from the DOE laboratories, as well as the national and international academic and fusion energy communities.

  1. A user oriented microcomputer facility for designing linear quadratic Gaussian feedback compensators

    NASA Technical Reports Server (NTRS)

    Houpt, P. K.; Wahid, J.; Johnson, T. L.; Ward, S. A.

    1978-01-01

    A laboratory design facility for digital microprocessor implementation of linear-quadratic-Gaussian feedback compensators is described. Outputs from user interactive programs for solving infinite time horizon LQ regulator and Kalman filter problems were conditioned for implementation on the laboratory microcomputer system. The software consisted of two parts: an offline high-level program for solving the LQ Ricatti equations and generating associated feedback and filter gains and a cross compiler/macro assembler which generates object code for the target microprocessor system. A PDP 11/70 with a UNIX operating system was used for all high level program and data management, and the target microprocessor system is an Intel MDS (8080-based processor). Application to the control of a two dimensional inverted pendulum is presented and issues in expanding the design/prototyping system to other target machine architectures are discussed.

  2. Feasibility study for a numerical aerodynamic simulation facility. Volume 3: FMP language specification/user manual

    NASA Technical Reports Server (NTRS)

    Kenner, B. G.; Lincoln, N. R.

    1979-01-01

    The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.

  3. THE JLAMP VUV/SOFT X-RAY USER FACILITY AT JEFFERSON LABORATORY

    SciTech Connect

    S.V. Benson; D. Douglas; P. Evtushenko; J. Gubeli; F.E. Hannon; K. Jordan; J. M. Klopf; G.R. Neil; Michelle D. Shinn; C. Tennant; G.P. Williams; S. Zhang

    2010-05-01

    Jefferson Lab (JLab) is proposing JLAMP (JLab Amplifier), a 4th generation light source covering the 10-100 eV range in the fundamental mode with harmonics stretching towards the oxygen k-edge. The new photon science user facility will feature a two-pass superconducting LINAC to accelerate the electron beam to 600MeV at repetition rates of 4.68MHz continuous wave. The average brightness from a seeded amplifier free electron laser (FEL) will substantially exceed existing light sources in this device's wavelength range, extended by harmonics towards 2 nm. Multiple photon sources will be made available for pump-probe dynamical studies. The status of the machine design and technical challenges associated with the development of the JLAMP are presented here.

  4. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  5. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  6. Control and Information Systems for the National Ignition Facility

    SciTech Connect

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; Lagin, Lawrence; Ludwigsen, Pete; Reed, Robert; Speck, Douglas; Wilhelmsen, Karl

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.

  7. The National Ignition Facility: Transition to Target Shooter

    SciTech Connect

    Moses, E I

    2003-11-24

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} Bars, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. This paper provides a detailed look the NIF laser systems and the results of recent laser commissioning shots. We discuss plans for experiments using the first laser beams of NIF and plans for future uses of NIF, including short pulse laser capability on NIF for high energy, high brightness radiographic x-ray backlighters for physics experiments of importance to the Stockpile Stewardship Program.

  8. Optical System Design of the National Ignition Facility

    SciTech Connect

    English, R E; Laumann, C W; Miller, J L; Seppala, L G

    1998-06-26

    The National Ignition Facility (NIF) is a laser fusion facility being constructed at Lawrence Liver-more National Laboratory (LLNL). The neodymium-doped phosphate glass pulsed laser system will produce over 3.5MJ of laser energy at a fundamental lasing wavelength of 1.053pm (1 o). The final optics assembly contains a pair of crystals (KDPKD*P) and a focusing lens to convert the light by sum-frequency-mixing to 30 (h=0,35pm) and focus 1 .SM.J onto the target. The NIF optical system is large and complex. To give some perspective the NIF building is roughly 200 meters long x 85 meters wide. There are approximately 7500 optical components in the large aperture laser system - lenses, mirrors, polarizers, laser slabs, crystals, and windows - each with a clear aperture greater than 4Ocm square. The front-end of the laser system contains more than 8000 smaller (S-l 5cm) precision laser components. In this paper we will describe the optical system configuration, layout, and general design considerations. We will explain the path of the pulse through the various subsystems. Some of the top-level optical system and sub-system design requirements will be pre

  9. The National Ignition Facility: Transition to a Target Shooter

    SciTech Connect

    Moses, E I

    2003-10-07

    The National Ignition Facility (NIP) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light exceeding design requirements. Operation of single beams at the second harmonic (531 nm) and third harmonic (351 nm) at greater than 10 kJ have also exceeded the performance criteria. NIFs target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  10. The National Ignition Facility High-Energy Ultraviolet Laser System

    SciTech Connect

    Moses, E I

    2003-09-15

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1 .&Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kilojoules of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  11. The National Ignition Facility: The World's Largest Laser

    SciTech Connect

    Moses, E I

    2003-10-13

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} Bars, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has now completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilo-joules of infrared light, exceeding design requirements. Operation of single beams at the second harmonic (531 nm) and third harmonic (351 nm) at greater than 10 kilojoules have also exceeded the performance criteria. NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  12. The National Ignition Facility: Laser Performance and First Experiments

    SciTech Connect

    Moses, Edward I.; Wuest, Craig R.

    2005-04-15

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has successfully activated, commissioned, and utilized the first four beams of the laser system to conduct over 300 shots between November 2002 and August 2004. NIF laser scientists have established that the laser meets nearly all performance requirements on a per beam basis for energy, uniformity, timing, and pulse shape. Using these four beams, ICF and high-energy-density physics researchers have conducted a number of experimental campaigns resulting in high quality data that could not be reached on any other laser system. We discuss the successful NIF Early Light Program including details of laser performance, examples of experiments performed to date, and recent advances in the ICF Program that enhance prospects for successful achievement of fusion ignition on NIF.

  13. The National Ignition Facility: Laser Performance and First Experiments

    SciTech Connect

    Wuest, C R; Moses, E I

    2004-09-09

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 108 K and 1011 bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has successfully activated, commissioned, and utilized the first four beams of the laser system to conduct over 300 shots between November 2002 and August 2004. NIF laser scientists have established that the laser meets nearly all performance requirements on a per beam basis for energy, uniformity, timing, and pulse shape. Using these four beams, ICF and high-energy-density physics researchers have conducted a number of experimental campaigns resulting in high quality data that could not be reached on any other laser system. We discuss the successful NIF Early Light Program including details of laser performance, examples of experiments performed to date, and recent advances in the ICF Program that enhance prospects for successful achievement of fusion ignition on NIF.

  14. Developing enabling optics finishing technologies for the National Ignition Facility

    SciTech Connect

    Aikens, D.M.; Rich, L.; Bajuk, D.; Slomba, A.

    1998-01-08

    Lawrence Livermore National Laboratory is in the process of constructing the National Ignition Facility, a half million square foot facility which will house a 192 beam laser system capable of generating the 2 million joules of ultraviolet light energy necessary to achieve fusion ignition with inertial targets by 2004. More than 7,000 meter class optics will need to be manufactured by LLNL`s industrial partners to construct the laser system. The components will be manufactured starting in 1998 and will be finished by 2003. In 1994 it became clear through a series of funded cost studies that, in order to fabricate such an unprecedented number of large precision optics in so short a time for the lowest possible cost, new technologies would need to be developed and new factories constructed based on those technologies. At that time, LLNL embarked on an ambitious optics finishing technology development program costing more than $6M over 3 years to develop these technologies, working with three suppliers of large precision optics. While each development program centered upon the specialties and often proprietary technologies already existing in the suppliers facility, many of the technologies required for manufacturing large precision optics at the lowest cost possible are common to two and in some cases all three efforts. Since many of the developments achieved during this program stemmed from intellectual property and trade secrets at the vendors, the program cannot be described completely in a public forum. Nevertheless, many non-proprietary advances were made during this program which the vendors are willing to share with the greater community. This presentation will describe the manufacturing process in a general sense which is used by all three of the companies under contract; Zygo Corporation, Tinsley Laboratories, and Eastman Kodak. In each of the principle process steps of shaping, grinding, polishing, figuring, and metrology, development highlights will be

  15. Status of the National Ignition Facility and Control System

    SciTech Connect

    Van Arsdall, P J; Bryant, R M; Carey, R W; Casavant, D D; Lagin, L J; Patterson, R W

    2005-09-21

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into line replaceable units such as optical assemblies, amplifiers, and multi-function sensor packages containing thousands of adjusting motors and diagnostic points. NIF is operated by the Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 750 front-end processors and supervisory servers. Bundle control system partitions are replicated and commissioned by configuring the control database for each new bundle. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. ICCS software is approximately 80% complete with 1.1 million source lines of code delivered to the facility. NIF has successfully activated, commissioned and utilized the first four laser beams to conduct nearly 400 shots in 2003 and 2004, resulting in high quality data that could not be obtained on any other laser system. This presentation discusses NIF's early light commissioning, the status of the control system implementation and plans to complete installation of the

  16. Reaction Rate Measurement at the Californium User Facility (CUF) for unfolding the neutron spectrum

    NASA Astrophysics Data System (ADS)

    Hannan, Mohammad; Ortega, Ruben

    2011-03-01

    Neutron Activation Analysis was used to determine Reaction Rate measurement of several activation detectors at the ORNL Californium User Facility (CUF). The irradiations were performed with 34 mg Cf 252 neutron source strength.. Ten source capsules > 34 mgwerepositionedconcentricallyaroundasamplecavity . Wehavedeterminedabsoluteactivityperatomof 9 detectors : Au 197 (n , γ) Au 198 , Al 27 (n , α) Na 24 , Al 27 (n , p) Mg 27 , Fe 56 (n , p) Mn 5 , Fe 54 (n , p) Mn 54 , In 115 (n , γ) In 116 , Ti 46 (n , p) Sc 46 , Ni 60 (n , p) Co 60 , Fe 58 (n , γ) Fe 59 . Theerrorsarewithin 1.5 - 8 60 and Fe 58 have errors of 46% and 32 %. These high errors may be attributed to the counting statistics. These reaction rate values will be used to unfold the neutron spectrum of the CUF using the MAXED 2000, a computer code for the de convolution of multi sphere neutron spectrometer data and the results are discussed. The authors acknowledge help, advise, and using facility at ORNL-CUF to Dr. Rodger martin and Mr. David C. Galsgow.

  17. National scientific facilities and their science impact on nonbiomedical research

    PubMed Central

    Kinney, A. L.

    2007-01-01

    The “h index” proposed by Hirsch [Hirsch JE (2005) Proc Natl Acad Sci USA 102:16569–16573] is a good indicator of the impact of a scientist's research and has the advantage of being objective. When evaluating departments, institutions, or laboratories, the importance of the h index can be further enhanced when it is properly calibrated for the size of the group. Particularly acute is the issue of federally funded facilities whose number of actively publishing scientists frequently dwarfs that of academic departments. Recently, Molinari and Molinari [Molinari JF, Molinari A (2008) Scientometrics, in press] developed a methodology that shows that the h index has a universal growth rate for large numbers of papers, allowing for meaningful comparisons between institutions. An additional challenge when comparing large institutions is that fields have distinct internal cultures, with different typical rates of publication and citation; biology is more highly cited than physics, for example. For this reason, the present study has focused on the physical sciences, engineering, and technology and has excluded biomedical research. Comparisons between individual disciplines are reported here to provide a framework. Generally, it was found that the universal growth rate of Molinari and Molinari holds well across the categories considered, testifying to the robustness of both their growth law and our results. The goal here is to set the highest standard of comparison for federal investment in science. Comparisons are made of the nation's preeminent private and public institutions. We find that many among the national science facilities compare favorably in research impact with the nation's leading universities. PMID:17991781

  18. National Utility Financial Statement model (NUFS). Volume II of III: user's guide. Final report

    SciTech Connect

    Not Available

    1981-10-29

    This volume is a User's Guide for the National Utility Financial Statement Model (NUFS). This is the second of three volumes describing NUFS provided by ICF Incorporated under contract DEAC01-79EI10579. The three volumes are entitled: Model Overview and Description; User's Guide; and Software Description. This volume describes each necessary input file, discusses user options, and describes the job stream necessary to run the model.

  19. Factors related to correctional facility incarceration among active injection drug users in Baltimore, MD.

    PubMed

    Severtson, Stevan Geoffrey; Latimer, William W

    2008-04-01

    We investigated the moderating effect of impulse control on the association between drug use and incarceration among active injection drug users (IDU). The study sample consisted of 282 IDUs aged 15-50 years from the Baltimore metropolitan region who reported injection drug use within the past 6 months and indicated that heroin or speedball was their drug of choice. Impulse control was measured using commission error standardized scores from the Test of Variables of Attention (TOVA). Incarceration was obtained using self-reported lifetime history of incarceration in correctional facilities. Findings indicated that impulse control moderated the association between years of injection drug use and incarceration in correctional facilities adjusting for ethnicity, gender, estimated pre-morbid intelligence, and age of first injection use. Specifically, among individuals who were intact in impulse control, four or more years of injection drug use was associated with incarceration (AOR=4.97, 95% CI: 2.02-12.23). This finding was not observed among individuals with impaired impulse control (AOR=0.57, 95% CI: 0.10-3.23). Furthermore, impulse control moderated the association between regular cocaine use and incarceration. Among individuals who had a history of cocaine use, individuals with low impulse control but not impaired were more likely to have reported time in a correctional facility (AOR=6.28, 95% CI: 1.68-23.60). There was no association among individuals with impaired or intact impulse control. Results highlight the importance of considering cognitive measures of impulse control in addressing negative outcomes associated with drug use.

  20. Potential community and public health impacts of medically supervised safer smoking facilities for crack cocaine users

    PubMed Central

    Shannon, Kate; Ishida, Tomiye; Morgan, Robert; Bear, Arthur; Oleson, Megan; Kerr, Thomas; Tyndall, Mark W

    2006-01-01

    There is growing evidence of the public health and community harms associated with crack cocaine smoking, particularly the risk of blood-borne transmission through non-parenteral routes. In response, community advocates and policy makers in Vancouver, Canada are calling for an exemption from Health Canada to pilot a medically supervised safer smoking facility (SSF) for non-injection drug users (NIDU). Current reluctance on the part of health authorities is likely due to the lack of existing evidence surrounding the extent of related harm and potential uptake of such a facility among NIDUs in this setting. In November 2004, a feasibility study was conducted among 437 crack cocaine smokers. Univariate analyses were conducted to determine associations with willingness to use a SSF and logistic regression was used to adjust for potentially confounding variables (p < 0.05). Variables found to be independently associated with willingness to use a SSF included recent injection drug use (OR = 1.72, 95% CI: 1.09–2.70), having equipment confiscated or broken by police (OR = 1.96, 95% CI: 1.24–2.85), crack bingeing (OR = 2.16, 95% CI: 1.39–3.12), smoking crack in public places (OR = 2.48, 95% CI: 1.65–3.27), borrowing crack pipes (OR = 2.50, 95% CI: 1.86–3.40), and burns/ inhaled brillo due to rushing smoke in public places (OR = 4.37, 95% CI: 2.71–8.64). The results suggest a strong potential for a SSF to reduce the health related harms and address concerns of public order and open drug use among crack cocaine smokers should a facility be implemented in this setting. PMID:16403229

  1. Potential community and public health impacts of medically supervised safer smoking facilities for crack cocaine users.

    PubMed

    Shannon, Kate; Ishida, Tomiye; Morgan, Robert; Bear, Arthur; Oleson, Megan; Kerr, Thomas; Tyndall, Mark W

    2006-01-10

    There is growing evidence of the public health and community harms associated with crack cocaine smoking, particularly the risk of blood-borne transmission through non-parenteral routes. In response, community advocates and policy makers in Vancouver, Canada are calling for an exemption from Health Canada to pilot a medically supervised safer smoking facility (SSF) for non-injection drug users (NIDU). Current reluctance on the part of health authorities is likely due to the lack of existing evidence surrounding the extent of related harm and potential uptake of such a facility among NIDUs in this setting. In November 2004, a feasibility study was conducted among 437 crack cocaine smokers. Univariate analyses were conducted to determine associations with willingness to use a SSF and logistic regression was used to adjust for potentially confounding variables (p < 0.05). Variables found to be independently associated with willingness to use a SSF included recent injection drug use (OR = 1.72, 95% CI: 1.09-2.70), having equipment confiscated or broken by police (OR = 1.96, 95% CI: 1.24-2.85), crack bingeing (OR = 2.16, 95% CI: 1.39-3.12), smoking crack in public places (OR = 2.48, 95% CI: 1.65-3.27), borrowing crack pipes (OR = 2.50, 95% CI: 1.86-3.40), and burns/inhaled brillo due to rushing smoke in public places (OR = 4.37, 95% CI: 2.71-8.64). The results suggest a strong potential for a SSF to reduce the health related harms and address concerns of public order and open drug use among crack cocaine smokers should a facility be implemented in this setting.

  2. Relationship between national mental health expenditure and quality of care in longer-term psychiatric and social care facilities in Europe: cross-sectional study.

    PubMed

    Taylor Salisbury, Tatiana; Killaspy, Helen; King, Michael

    2017-03-16

    BackgroundIt is not known whether increased mental health expenditure is associated with better outcomes.AimsTo estimate the association between national mental health expenditure and (a) quality of longer-term mental healthcare, (b) service users' ratings of that care in eight European countries.MethodNational mental health expenditure (per cent of health budget spent on mental health) was calculated from international sources. Multilevel models were developed to assess associations with quality of care and service user experiences of care using ratings of 171 facility managers and 1429 service users.ResultsSignificant positive associations were found between mental health spend and (a) six of seven quality of care domains; and (b) service user autonomy and experiences of care.ConclusionsGreater national mental health expenditure was associated with higher quality of care and better service user experience.

  3. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    DTIC Science & Technology

    2013-06-21

    enable exciting new opportunities for scientific discovery 2 • “Science on (NIF, Omega, Jupiter , Z,…) science is more than HED science” 1492...Japan) UFL-2M (Russia) NIF Laser 1494 The NIF and Jupiter lasers are the primary HED facilities at LLNL 5 NIF Large-scale facility for high energy...applications Jupiter “Intermediate scale” facility ideal for student training 1495 6 1496 Jupiter has operated as a user facility since 2008

  4. 75 FR 24970 - FBI Records Management Division National Name Check Program Section User Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Federal Bureau of Investigation FBI Records Management Division National Name Check Program Section User Fees AGENCY: Federal Bureau of Investigation (FBI), Justice. ACTION: Notice. SUMMARY: This notice establishes the user fee schedule for federal agencies requesting name-based background checks of the...

  5. Perceived constraints by non-traditional users on the Mt. Baker-Snoqualmie National Forest

    Treesearch

    Elizabeth A. Covelli; Robert C. Burns; Alan Graefe

    2007-01-01

    The purpose of this study was to investigate the constraints that non-traditional users face, along with the negotiation strategies that are employed in order to start, continue, or increase participation in recreation on a national forest. Non-traditional users were defined as respondents who were not Caucasian. Additionally, both constraints and negotiation...

  6. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  7. Long Duration Exposure Facility mini-data base user`s guide: IBM-compatible PC computer version. (Diskette)

    SciTech Connect

    Bohnhoff-Hlavacek, G.; Pippin, G.; Dursch, H.

    1995-04-01

    One of the objectives of the LDEF Special Investigation Group (SIG) was to develop a LDEF data base that identifies the experiment objectives and hardware flown, summarizes results and conclusions, and provides a system analysis overview which would include spacecraft design guidelines and space environmental effects. Compiling this information into an easily accessible data base format and making it available to the space community was a major task accomplished by the System and Materials SIG effort beginning in 1991. Included in this document is a short user`s manual for the LDEF Mini-Data Bases. The user`s manual contains pertinent examples from the data base on specifically how to access and work with the LDEF information. Accompanying this document are the mini-data bases on disk.

  8. The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT

    SciTech Connect

    Porter, F S; Beiersdorfer, P; Brown, G V; Doriese, W; Gygax, J; Kelley, R L; Kilbourne, C A; King, J; Irwin, K; Reintsema, C; Ullom, J

    2007-09-07

    The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 {micro}s event timing, and capable of uninterrupted acquisition sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.

  9. Early Hearing Detection and Intervention-Pediatric Audiology Links to Services EHDI-PALS: Building a National Facility Database

    PubMed Central

    Chung, Winnie; Beauchaine, Kathryn L.; Hoffman, Jeff; Coverstone, Kirsten R.; Oyler, Anne; Mason, Craig

    2017-01-01

    Objectives To create a searchable web-based national audiology facility directory using a standardized survey, so parents and providers could identify which facilities had capacity to provide appropriate services based on child’s age. Design An Early Hearing Detection and Intervention-Pediatric Audiology Links to Services expert panel was convened to create a survey to collect audiology facility information. Professional practice documents were reviewed, a survey was designed to collect pertinent test protocols of each audiology facility, and a standard of care template was created to cross-check survey answers. Audiology facility information across the United States was collected and compiled into a directory structured and displayed in an interactive website, ehdipals.org. Results Since November 7, 2012, to May 21, 2016, over 1000 facilities have completed the survey and become listed in the Early Hearing Detection and Intervention-Pediatric Audiology Links to Services directory. The site has registered 10,759 unique visitors, 151,981 page views, and 9134 unique searches from consumers. User feedback has been positive overall. Conclusion A searchable, web-based facility directory has proven useful to consumers as a tool to help them differentiate whether a facility was set up to test newborns versus young children. Use of a preprogrammed standard of practice template to cross-check survey answers was also shown to be a practical aid. PMID:28353523

  10. Early Hearing Detection and Intervention-Pediatric Audiology Links to Services EHDI-PALS: Building a National Facility Database.

    PubMed

    Chung, Winnie; Beauchaine, Kathryn L; Hoffman, Jeff; Coverstone, Kirsten R; Oyler, Anne; Mason, Craig

    To create a searchable web-based national audiology facility directory using a standardized survey, so parents and providers could identify which facilities had capacity to provide appropriate services based on child's age. An Early Hearing Detection and Intervention-Pediatric Audiology Links to Services expert panel was convened to create a survey to collect audiology facility information. Professional practice documents were reviewed, a survey was designed to collect pertinent test protocols of each audiology facility, and a standard of care template was created to cross-check survey answers. Audiology facility information across the United States was collected and compiled into a directory structured and displayed in an interactive website, ehdipals.org. Since November 7, 2012, to May 21, 2016, over 1000 facilities have completed the survey and become listed in the Early Hearing Detection and Intervention-Pediatric Audiology Links to Services directory. The site has registered 10,759 unique visitors, 151,981 page views, and 9134 unique searches from consumers. User feedback has been positive overall. A searchable, web-based facility directory has proven useful to consumers as a tool to help them differentiate whether a facility was set up to test newborns versus young children. Use of a preprogrammed standard of practice template to cross-check survey answers was also shown to be a practical aid.

  11. Psychiatric disorders in inhalant users: results from The National Epidemiologic Survey on Alcohol and Related Conditions.

    PubMed

    Wu, Li-Tzy; Howard, Matthew Owen

    2007-05-11

    To examine the prevalence and correlates of mood, anxiety, and personality disorders among lifetime inhalant users. Statistical analyses were based on data from the 2001-2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a nationally representative survey of adults in the United States. Inhalant users (N=664) had high lifetime prevalences of DSM-IV mood (48%), anxiety (36%), and personality (45%) disorders. Of all inhalant users, 70% met criteria for at least one lifetime mood, anxiety, or personality disorder and 38% experienced a mood or anxiety disorder in the past year. Prevalences of comorbid psychiatric disorders varied by gender. Compared with male inhalant users, female inhalant users had higher prevalences of lifetime dysthymia (24% versus 16%), any anxiety disorder (53% versus 30%), panic disorder without agoraphobia (25% versus 11%), and specific phobia (28% versus 14%), but a lower prevalence of antisocial personality disorder (22% versus 36%). Female inhalant users also were more likely than male inhalant users to meet criteria for three or more mood or anxiety disorders (15% versus 8%) in the past year. Among inhalant users with comorbid disorders, those who developed social or specific phobia typically experienced onset of these disorders prior to initiation of inhalant use; all other mood and anxiety disorders usually developed following the onset of inhalant use. Inhalant users who were women, poor, less educated, with early onset of inhalant use, family histories of psychopathology, and personal histories of substance abuse treatment had increased odds of psychiatric disorders. Psychiatric disorders are highly prevalent among inhalant users nationally and female inhalant users are more likely than male inhalant users to experience multiple psychiatric disorders. Inhalant use and its consequences among females warrant greater research attention.

  12. Psychiatric Disorders in Inhalant Users: Results from The National Epidemiologic Survey on Alcohol and Related Conditions

    PubMed Central

    Wu, Li-Tzy; Howard, Matthew Owen

    2007-01-01

    Objective To examine the prevalence and correlates of mood, anxiety, and personality disorders among lifetime inhalant users. Methods Statistical analyses were based on data from the 2001─2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a nationally representative survey of adults in the United States. Results Inhalant users (N = 664) had high lifetime prevalences of DSM-IV mood (48%), anxiety (36%), and personality (45%) disorders. Of all inhalant users, 70% met criteria for at least one lifetime mood, anxiety, or personality disorder and 38% experienced a mood or anxiety disorder in the past year. Prevalences of comorbid psychiatric disorders varied by gender. Compared with male inhalant users, female inhalant users had higher prevalences of lifetime dysthymia (24% vs. 16%), any anxiety disorder (53% vs. 30%), panic disorder without agoraphobia (25% vs. 11%), and specific phobia (28% vs. 14%), but a lower prevalence of antisocial personality disorder (22% vs.36%). Female inhalant users also were more likely than male inhalant users to meet criteria for three or more mood or anxiety disorders (15% vs. 8%) in the past year. Among inhalant users with comorbid disorders, those who developed social or specific phobia typically experienced onset of these disorders prior to initiation of inhalant use; all other mood and anxiety disorders usually developed following the onset of inhalant use. Inhalant users who were women, poor, less educated, with early onset of inhalant use, family histories of psychopathology, and personal histories of substance abuse treatment had increased odds of psychiatric disorders. Conclusions Psychiatric disorders are highly prevalent among inhalant users nationally and female inhalant users are more likely than male inhalant users to experience multiple psychiatric disorders. Inhalant use and its consequences among females warrant greater research attention. PMID:17129683

  13. Proton pinhole imaging on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Park, H.-S.; Ross, J. S.; Fiuza, F.; Frenje, J. A.; Higginson, D. P.; Huntington, C.; Li, C. K.; Petrasso, R. D.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Séguin, F. H.; Turnbull, D.; Wilks, S. C.

    2016-11-01

    Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  14. Optimization of the National Ignition Facility primary shield design

    SciTech Connect

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F.; Latkowski, J.; Lee, J.D.; Soran, P.; Tobin, M.L.

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries.

  15. Development of a laser glass for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hayden, Joseph S.; Campbell, John H.; Payne, Stephen A.

    2007-04-01

    We review the development of a new glass formulation and manufacturing technology for a neodymium-doped phosphate based laser glass used in the LLNL National Ignition Facility (NIF) and the French Laser MegaJoule (LMJ). The glass development process built on both accumulated experience and the utilization of glass science principles, and the resultant new glass offers superior laser properties in combination with improvements in physical properties to enhance manufacturing yield. Essentially in parallel, a continuous melting production line was also conceived, designed and operated to meet both the schedule and cost targets of the NIF. Prior to 1997, phosphate laser glasses were manufactured by a discontinuous pot-melting process with limited production rate and associated high costs. The continuous melting process met several technical challenges, including producing glass with low residual water content and absence of inclusions which become damage sites when used in the NIF laser system.

  16. Proton pinhole imaging on the National Ignition Facility

    DOE PAGES

    Zylstra, Alex B.; Park, H. -S.; Ross, J. S.; ...

    2016-07-29

    Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less

  17. Note: A monoenergetic proton backlighter for the National Ignition Facility

    DOE PAGES

    Rygg, J. R.; Zylstra, A. B.; Seguin, F. H.; ...

    2015-11-12

    Here, a monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the 3He(d,p)4He nuclear reaction reveal a bright (1010 protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 µm) and isotropic emission (~13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)3He reactions also show 2 × 1010more » isotropically distributed 3-MeV protons.« less

  18. X-29 High Alpha Test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan

    2003-01-01

    This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.

  19. Note: A monoenergetic proton backlighter for the National Ignition Facility.

    PubMed

    Rygg, J R; Zylstra, A B; Séguin, F H; LePape, S; Bachmann, B; Craxton, R S; Garcia, E M; Kong, Y Z; Gatu-Johnson, M; Khan, S F; Lahmann, B J; McKenty, P W; Petrasso, R D; Rinderknecht, H G; Rosenberg, M J; Sayre, D B; Sio, H W

    2015-11-01

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF's 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the (3)He(d,p)(4)He nuclear reaction reveal a bright (10(10) protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)(3)He reactions also show 2 × 10(10) isotropically distributed 3-MeV protons.

  20. Proton pinhole imaging on the National Ignition Facility

    SciTech Connect

    Zylstra, Alex B.; Park, H. -S.; Ross, J. S.; Fiuza, F.; Frenje, J. A.; Higginson, D. P.; Huntington, C.; Li, C. K.; Petrasso, R. D.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Seguin, F. H.; Turnbull, D.; Wilks, S. C.

    2016-07-29

    Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  1. Note: A monoenergetic proton backlighter for the National Ignition Facility

    SciTech Connect

    Rygg, J. R.; LePape, S.; Bachmann, B.; Khan, S. F.; Sayre, D. B.; Zylstra, A. B.; Séguin, F. H.; Gatu-Johnson, M.; Lahmann, B. J.; Petrasso, R. D.; Sio, H. W.; Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; McKenty, P. W.; Rinderknecht, H. G.; Rosenberg, M. J.

    2015-11-15

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the {sup 3}He(d,p){sup 4}He nuclear reaction reveal a bright (10{sup 10} protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n){sup 3}He reactions also show 2 × 10{sup 10} isotropically distributed 3-MeV protons.

  2. A Kirkpatrick-Baez microscope for the National Ignition Facility

    SciTech Connect

    Pickworth, L. A. McCarville, T.; Decker, T.; Pardini, T.; Ayers, J.; Bell, P.; Bradley, D.; Brejnholt, N. F.; Izumi, N.; Mirkarimi, P.; Pivovaroff, M.; Smalyuk, V.; Vogel, J.; Walton, C.; Kilkenny, J.

    2014-11-15

    Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10–25 μm) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 μm resolution over a 300 μm field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 μm field of view.

  3. Laser shocking of materials: Toward the national ignition facility

    NASA Astrophysics Data System (ADS)

    Meyers, M. A.; Remington, B. A.; Maddox, B.; Bringa, E. M.

    2010-01-01

    In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. This technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 107-108 s-1 and resolving details of the kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.

  4. Proton pinhole imaging on the National Ignition Facility.

    PubMed

    Zylstra, A B; Park, H-S; Ross, J S; Fiuza, F; Frenje, J A; Higginson, D P; Huntington, C; Li, C K; Petrasso, R D; Pollock, B; Remington, B; Rinderknecht, H G; Ryutov, D; Séguin, F H; Turnbull, D; Wilks, S C

    2016-11-01

    Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  5. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect

    Yi, S. A. Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H.; Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  6. Shock timing on the National Ignition Facility: First Experiments

    SciTech Connect

    Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

    2011-10-24

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  7. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  8. Proton pinhole imaging on the National Ignition Facility

    SciTech Connect

    Zylstra, A. B.; Park, H.-S.; Ross, J. S.; Higginson, D. P.; Huntington, C.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Turnbull, D.; Wilks, S. C.; Fiuza, F.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H.

    2016-11-15

    Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  9. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  10. Optical Propagation Modeling for the National Ignition Facility

    SciTech Connect

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  11. A solution to water vapor in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.; Bruce, Robert A.

    1989-01-01

    As cryogenic wind tunnels are utilized, problems associated with the low temperature environment are being discovered and solved. Recently, water vapor contamination was discovered in the National Transonic Facility, and the source was shown to be the internal insulation which is a closed-cell polyisocyanurate foam. After an extensive study of the absorptivity characteristics of the NTF thermal insulation, the most practical solution to the problem was shown to be the maintaining of a dry environment in the circuit at all times. Utilizing a high aspect ratio transport model, it was shown that the moisture contamination effects on the supercritical wing pressure distributions were within the accuracy of setting test conditions and as such were considered negligible for this model.

  12. Next Generation Gamma Ray Diagnostics for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Young, C. S.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Jorgenson, H. J.; Barlow, D. B.; Stoeffl, W.; Church, J. A.; Hernandez, J. E.; Carpenter, A.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Moy, K.; Hares, J. D.; Milnes, J.

    Fusion reaction history and ablator areal density measurements based on gamma ray detection are an essential part of Inertial Confinement Fusion (ICF) experiments on the National Ignition Facility (NIF). Capability improvements are being implemented in sensitivity, temporal and spectral response relative to the existing Gamma Reaction History diagnostic (GRH-6m). The ``Super'' Gas Cherenkov Detector (GCD) will provide 200x more sensitivity, reduce the effective temporal resolution from 100 to 10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH-6m. The Gamma-to-Electron Magnetic Spectrometer (GEMS) - a Compton spectrometer intended to provide true gamma energy resolution (<=5%) for isolation of specific lines such as t(d, γ) , D(n, γ) , 12C(n,n' γ) and energetic charged particle nuclear reactions indicative of ablator/fuel mix

  13. Shock timing on the National Ignition Facility: First experiments

    NASA Astrophysics Data System (ADS)

    Celliers, P. M.; Robey, H. F.; Boehly, T. R.; Alger, E.; Azevedo, S.; Berzins, L. V.; Bhandarkar, S. D.; Bowers, M. W.; Brereton, S. J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D. S.; Coffee, K. R.; Datte, P. S.; Dewald, E. L.; DiNicola, P.; Dixit, S.; Döppner, T.; Dzenitis, E.; Edwards, M. J.; Eggert, J. H.; Fair, J.; Farley, D. R.; Frieders, G.; Gibson, C. R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A. V.; Haynam, C.; Hicks, D. G.; Holunga, D. M.; Horner, J. B.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Kline, J. L.; Krauter, K. G.; Kroll, J. J.; LaFortune, K. N.; Le Pape, S.; Malsbury, T.; Mapoles, E. R.; Meezan, N. B.; Milovich, J. L.; Moody, J. D.; Moreno, K.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Parham, T.; Pollaine, S.; Radousky, H. B.; Ross, G. F.; Sater, J.; Schneider, M. B.; Shaw, M.; Smith, R. F.; Sterne, P. A.; Thomas, C. A.; Throop, A.; Town, R. P. J.; Trummer, D.; Van Wonterghem, B. M.; Walters, C. F.; Widmann, K.; Widmayer, C.; Young, B. K.; Atherton, L. J.; Collins, G. W.; Landen, O. L.; Lindl, J. D.; MacGowan, B. J.; Meyerhofer, D. D.; Moses, E. I.

    2013-11-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  14. Wing Twist Measurements at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Wahls, Richard A.; Goad, William K.

    1996-01-01

    A technique for measuring wing twist currently in use at the National Transonic Facility is described. The technique is based upon a single camera photogrammetric determination of two dimensional coordinates with a fixed (and known) third dimensional coordinate. The wing twist is found from a conformal transformation between wind-on and wind-off 2-D coordinates in the plane of rotation. The advantages and limitations of the technique as well as the rationale for selection of this particular technique are discussed. Examples are presented to illustrate run-to-run and test-to-test repeatability of the technique in air mode. Examples of wing twist in cryogenic nitrogen mode are also presented.

  15. Instrumentation and data acquisition systems. [for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Guarino, J. F.

    1977-01-01

    A comprehensive and integrated measurement system was identified and a design and development effort initiated to meet the criteria imposed by the National Transonic Facility operating environment. Specific measurement areas receiving concentrated attention include: data acquisition, force measurement, pressure instrumentation, flow visualization techniques, model attitude and model deformation measurement, and temperature measurement. The NTF instrument complex will be centered around four 32-bit, 1-microsecond-cycle-time central processing units connected in a multipoint-distributed network configuration. The principal activities to be supported by these computers are: (1) data base management and processing; (2) research measurement data acquisition and display; (3) tunnel and model control; and (4) process monitoring and communication control. The distributed network approach was chosen to modularize the functional software into definable and implementable parts by the various groups involved in the design and to permit use of similar hardware configurations to improve reliability and maintainability.

  16. Optical assembly and alignment for the National Ignition Facility project

    SciTech Connect

    Hurst, P.A.; Grasz, E.L.; Wong, H.; Schmitt, E.H.; Simmons, M.R.

    1997-12-23

    The National Ignition Facility (NIF) will use about 8,000 large optics to carry a high-power laser through a stadium-size building, and will do so on a very tight schedule and budget. The collocated Optics Assembly Building (OAB) will assemble and align, in a clean-room environment, the NIF`s large optics, which are the biggest optics ever assembled in such an environment. In addition, the OAB must allow for just-in-time processing and clean transfer to the areas where the optics will be used. By using a mixture of off-the-shelf and newly designed equipment and by working with industry, we have developed innovative handling systems to perform the clean assembly and precise alignment required for the full variety of optics, as well as for postassembly inspection. We have also developed a set of loading mechanisms that safely get the clean optics to their places in the main NIF building.

  17. Proton pinhole imaging on the National Ignition Facility

    SciTech Connect

    Zylstra, Alex B.; Park, H. -S.; Ross, J. S.; Fiuza, F.; Frenje, J. A.; Higginson, D. P.; Huntington, C.; Li, C. K.; Petrasso, R. D.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Seguin, F. H.; Turnbull, D.; Wilks, S. C.

    2016-07-29

    Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  18. The Sodium Process Facility at Argonne National Laboratory-West

    SciTech Connect

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  19. Debris Characterization Diagnostic for the National Ignition Facility

    SciTech Connect

    Miller, M.C.; Celeste, J.R. Stoyer, M.A.; Suter, L.J.; Tobin, M.T.; Grun, J.; Davis, J.F.; Barnes, C.W.; Wilson, D.C.

    2000-06-07

    Generation of debris from targets and by x-ray ablation of surrounding materials will be a matter of concern for experimenters and the operations staff at the National Ignition Facility (NIF). Target chamber and final optics protection, for example debris shield damage, and efficient facility operation drive the interest for the NIF staff. Experimenters are primarily concerned with diagnostic survivability, separation of mechanical versus radiation induced test object response in the case of effects tests, and radiation transport through the debris field when the net radiation output is used to benchmark computer codes. In addition, radiochemical analysis of activated capsule debris during ignition shots can provide a measure of the ablator. Conceptual design of the Debris Monitor and Rad-Chem Station, one of the NIF core diagnostics, is presented. Methods of debris collection, particle size and mass analysis, impulse measurement, and radiochemical analysis are given. A description of recent experiments involving debris collection and impulse measurement on the OMEGA and Pharos lasers is also provided.

  20. Semi-span model testing in the national transonic facility

    NASA Astrophysics Data System (ADS)

    Chokani, Ndaona

    1994-05-01

    The present work was motivated by an ongoing research program at NASA Langley Research Center to develop a semi-span testing capability for the National Transonic Facility (NTF). This test technique is being investigated as a means to design and optimize high-lift devices at flight Reynolds numbers in a ground test facility. Even though the freestream Mach numbers of interest are around .20, the flow around a transport wing with high lift devices deployed may contain regions of compressible flow. Thus to properly model the flow physics, a compressible flow solver may be required. However, the application of a compressible flow solver at low Mach numbers can be problematic. The objective of this phase of the project is to directly compare the performance of two widely used three-dimensional compressible Navier-Stokes solvers at low Mach numbers to both experimental data and to results obtained from an incompressible Navier-Stokes solver. The geometries of interest are two isolated wings with different leading edge sweep angles. The compressible Navier-Stokes solvers chosen, TLNS3D-MB and CFL3D, which were developed at NASA Langley Research Center (LaRC), represent the current state-of-the-art in compressible 3-D Navier-Stokes solvers. The incompressible Navier-Stokes solver, INS3D-UP, developed recently at NASA Ames Research Center (ARC), represents the current state-of-the-art in incompressible Navier-Stokes solvers.

  1. In vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  2. Flow Disturbance Characterization Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.; Tsoi, Andrew

    2012-01-01

    Recent flow measurements have been acquired in the National Transonic Facility (NTF) to assess the unsteady flow environment in the test section. The primary purpose of the test is to determine the feasibility of the NTF to conduct laminar-flow-control testing and boundary-layer transition sensitive testing. The NTF can operate in two modes, warm (air) and cold/cryogenic (nitrogen) test conditions for testing full and semispan scaled models. The warm-air mode enables low to moderately high Reynolds numbers through the use of high tunnel pressure, and the nitrogen mode enables high Reynolds numbers up to flight conditions, depending on aircraft type and size, utilizing high tunnel pressure and cryogenic temperatures. NASA's Environmentally Responsible Aviation (ERA) project is interested in demonstrating different laminar-flow technologies at flight-relevant operating conditions throughout the transonic Mach number range and the NTF is well suited for the initial ground-based demonstrations. Roll polar data at selected test conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired from the rake probes included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. . Based on the current measurements and previous data, an assessment was made that the NTF is a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.

  3. Target diagnostic system for the National Ignition Facility (NIF)

    SciTech Connect

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-07-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

  4. Development of an Uncertainty Model for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Walter, Joel A.; Lawrence, William R.; Elder, David W.; Treece, Michael D.

    2010-01-01

    This paper introduces an uncertainty model being developed for the National Transonic Facility (NTF). The model uses a Monte Carlo technique to propagate standard uncertainties of measured values through the NTF data reduction equations to calculate the combined uncertainties of the key aerodynamic force and moment coefficients and freestream properties. The uncertainty propagation approach to assessing data variability is compared with ongoing data quality assessment activities at the NTF, notably check standard testing using statistical process control (SPC) techniques. It is shown that the two approaches are complementary and both are necessary tools for data quality assessment and improvement activities. The SPC approach is the final arbiter of variability in a facility. Its result encompasses variation due to people, processes, test equipment, and test article. The uncertainty propagation approach is limited mainly to the data reduction process. However, it is useful because it helps to assess the causes of variability seen in the data and consequently provides a basis for improvement. For example, it is shown that Mach number random uncertainty is dominated by static pressure variation over most of the dynamic pressure range tested. However, the random uncertainty in the drag coefficient is generally dominated by axial and normal force uncertainty with much less contribution from freestream conditions.

  5. National Ignition Facility (NIF) Control Network Design and Analysis

    SciTech Connect

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-10-19

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements.

  6. Pressure Effects Analysis of National Ignition Facility Capacitor Module Events

    SciTech Connect

    Brereton, S; Ma, C; Newton, M; Pastrnak, J; Price, D; Prokosch, D

    1999-11-22

    Capacitors and power conditioning systems required for the National Ignition Facility (NIF) have experienced several catastrophic failures during prototype demonstration. These events generally resulted in explosion, generating a dramatic fireball and energetic shrapnel, and thus may present a threat to the walls of the capacitor bay that houses the capacitor modules. The purpose of this paper is to evaluate the ability of the capacitor bay walls to withstand the overpressure generated by the aforementioned events. Two calculations are described in this paper. The first one was used to estimate the energy release during a fireball event and the second one was used to estimate the pressure in a capacitor module during a capacitor explosion event. Both results were then used to estimate the subsequent overpressure in the capacitor bay where these events occurred. The analysis showed that the expected capacitor bay overpressure was less than the pressure tolerance of the walls. To understand the risk of the above events in NIF, capacitor module failure probabilities were also calculated. This paper concludes with estimates of the probability of single module failure and multi-module failures based on the number of catastrophic failures in the prototype demonstration facility.

  7. National Ignition Facility Project Completion and Control System Status

    SciTech Connect

    Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

    2009-10-02

    The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

  8. National Solar Radiation Database 1991-2005 Update: User's Manual

    SciTech Connect

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  9. Plasma electrode pockels cell for the National Ignition Facility

    SciTech Connect

    Alger, T.; Biltoft, P.; Boley, C. D.; Fochs, S.; Funkhouser, B.; Rhodes, M. A.

    1998-07-28

    The National Ignition Facility (NIF), now under construction at Lawrence Livermore National Laboratory, will be the largest laser fusion facility ever built. The NIF laser architecture is based on a multi-pass power amplifier to reduce cost and maximize performance. A key component in this laser design is an optical switch that closes to trap the optical pulse in the cavity for four gain passes and then opens to divert the optical pulse out of the amplifier cavity. The switch is comprised of a Pockels cell and a polarizer and is unique because it handles a beam that is 40 cm x 40 cm square and allows close horizontal and vertical beam spacing. Conventional Pockels cells do not scale to such large apertures or the square shape required for close packing. Our switch is based on a Plasma-Electrode Pockels Cell (PEPC). In a PEPC, low-pressure helium discharges (1-2 kA) are formed on both sides of a thin slab of electro-optic material. Typically, we use KH{sub 2}PO{sub 4 } crystals (KDP). The discharges form highly conductive, transparent sheets that allow uniform application of a high-voltage pulse (17 kV) across the crystal. A 37 cm x 37 cm PEPC has been in routine operation for two years on the 6 k.J Beamlet laser at LLNL. For the NIF, a module four apertures high by one wide (4x1) is required. However, this 4x1 mechanical module will be comprised electrically of a pair of 2x1 sub-modules. Last year (FY 97), we demonstrated full operation of a prototype 2x1 PEPC. In this PEPC, the plasma spans two KDP crystals. A major advance in the 2x1 PEPC over the Beamlet PEPC is the use of anodized aluminum construction that still provides sufficient insulation to allow formation of the planar plasmas.

  10. Configuring the National Ignition Facility for direct-drive experiments

    SciTech Connect

    Eimerl, D.

    1995-07-01

    The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

  11. Arctic National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1986-01-01

    Section 1002 of the Alaska National Interest Lands Conservation Act of 1980 (ANILCA, 1980) requires the Secretary of Interior to conduct a continuing study of fish, wildlife, and habitats on the coastal plain of the Arctic National Wildlife Refuge (ANWR). Included in this study is a determination of the extent, location, and carrying capacity of fish and wildlife habitats.

  12. QDES User’s Guide. National PDES Testbed Report Series

    DTIC Science & Technology

    1990-06-29

    related software [Smith88]. A National PDES Testbed has been established at the National I.istitute of Standards and Technol- ogy to provide testing ...the Office of the Secretary of Defense. As part of the testing effort, NIST is charged with providing a software toolkit for manipulating PDES data...text, mechanism for creating simple test cases for PDES/STEP tools; hence the name Quick-and-Dirty. Speed was not a concern at any point during the

  13. Drug user organizations in the Nordic countries--local, national, and international dimensions.

    PubMed

    Frank, Vibeke Asmussen; Anker, Jørgen; Tammi, Tuukka

    2012-04-01

    The article focuses on drug user organizations that represent and advocate for active "hard drug" users in the Nordic countries. It discusses the opportunities and challenges that these organizations face in their search for legitimacy and political influence. The comparative perspective points at similarities and differences in national contexts that both support and challenges the existence of drug user organizations, including drug policy, social welfare policy, trends in drug use, and organizational conditions. The article also discusses the importance of international network and transnational organizations that support drug user organizations.

  14. Progress towards ignition on the National Ignition Facility

    SciTech Connect

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L.; and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  15. Sharing experiences of user involvement in shaping new services: the story of a national patient group.

    PubMed

    Donaldson, Alison; Lank, Elizabeth; Maher, Jane

    2007-01-01

    When the Cancer Genetics Pilots Programme was established in 2004, Macmillan Cancer Support undertook to create and facilitate the work of a "National User Reference Group". The purpose of this group was to give service user representatives (patients and carers) from each of the seven pilot projects regular opportunities to meet and share experiences and thus strengthen the influence of patients on the services. Macmillan commissioned a narrative writer to record key aspects of the national user group's work and influence. The emerging narrative accounts, created in collaboration with its members, provide a picture of a diverse group of skilled and enterprising individuals, enthusiastic about helping future patients. Service users have contributed to shaping projects, improving written information and sustaining the local services. In addition, project staff responsible for user involvement highlighted the value of training for user representatives and the need to remove financial and logistical barriers to participation. The national user group itself received vital support from Macmillan in the form of a dedicated "group facilitator", as well as continuous guidance and encouragement from a senior manager (an "organisational sponsor") present at all the group's meetings. By the end of 2006, the group discussions indicated that user involvement had developed to varying degrees and in different forms across the pilot projects. In the best case, patient representatives were being "treated as part of the team".

  16. National Ignition Facility monthly status report--February 2000

    SciTech Connect

    Moses, E

    2000-02-29

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: The Incident Analysis and Construction Management Safety Review Teams were formed to review the January 13, 2000, accident in which a worker received a back injury when a 42-in.-diameter duct fell during installation. One action is to contract DuPont to review the Safety Program. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing successfully; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3{omega} damage and to resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 83% complete. The Beampath Infrastructure System is on the critical schedule path. The procurement strategy was evaluated by commercial construction management and Architectural/Engineering (A/E) contractors with a panel of independent experts, the Beampath Infrastructure System (BIS) Implementation Review Committee Advisory Group. The BIS Integration Management and Installation Services (IMI) Subcontractor solicitation package and approach

  17. Design and construction of models for the National Transonic Facility, part 1

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr.

    1985-01-01

    The design and construction of models for the National Transonic Facility (NTF) has resulted in significant technology developments in many areas. This lecture covers the development of design criteria and major research and development work that has contributed to the successful design and fabrication models for testing at full scale Reynolds number the NTF. Emphasis is placed on the materials aspect of the design and fabrication proces, including metallic materials, mechanical properties characterization, new steel alloy development, fracture toughness enhancement, and identification of fillers and solders suitable for use in cryogenic models. Quantitative data are provided which will be of value to the potential user of NTF or for application to the design and fabrication of model systems for other cryogenic wind tunnels.

  18. Adverse events associated with ultrasonic scalers: A manufacturer and user facility device experience database analysis.

    PubMed

    Thennukonda, Rajagopal Athmarao; Natarajan, Bhavani Rekha

    2015-01-01

    The present study was conducted to determine the frequency and type of adverse events (AEs) associated with ultrasonic scaler reported to the Food and Drug Administration manufacturer and user facility device experience (MAUDE) database. The authors reviewed the ultrasonic scaler units (USU) related AEs reported to MAUDE from October 1, 1995, to September 31, 2015. Analyses of details collected are presented. MAUDE received a total of 667 unique USU-related AE reports. Of 667 cases, MAUDE classified 628 instances (94.2%) as malfunction 27 (4%) as injurious, 10 (1.5%) as others, and 2 (0.3%) claiming the use of USU as cause of death. Of the 667 cases, 511 (76.6%) were used for endodontic application, and 147 (22%) as scaler applications. In 512 (76.8%) instances, there was separation of the tips, posing danger to patients or users, and 112 (16.8%) instances of overheating, 12 (1.8%) instances of breakage, and electrical issues in 8 (1.2%) instances. These AE resulted in 19 instances of thermal injury, 2 suspicious deaths, and hearing loss in 3 cases. In 4 cases, patient swallowed broken parts requiring additional medical care. Use of USU, a Class 2 device without exemption, carries a degree of risk to patient's safety, if not properly used. As of today, MAUDE data is the only reliable source of AE until another database or such study is carried out. Certain AE that has been largely anecdotal, such as hearing loss has been reported in this study. The findings from study reiterate that more in-depth analysis of AE of USU is needed. Until then operator needs to take all precautions to avoid AE when using USU.

  19. 78 FR 3900 - Generic Drug User Fee-Active Pharmaceutical Ingredient and Finished Dosage Form Facility Fee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... HUMAN SERVICES Food and Drug Administration Generic Drug User Fee--Active Pharmaceutical Ingredient and Finished Dosage Form Facility Fee Rates for Fiscal Year 2013 AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the rate for the generic...

  20. The wound dressing supply chain within England's National Health Service: unravelling the context for users.

    PubMed

    Browne, Natasha; Grocott, Patricia; Cowley, Sarah

    2004-01-01

    To explore the representation of user needs (nurses and patients, both individuals and groups) at the industrial (wound dressing manufacture) and National Health Service interface. The wound dressing supply chain is outlined, tracking organizational changes. The methods that are used to transfer user information between industries that produce dressings and those using the products are reviewed in terms of their ability to communicate what users need from dressings. Organizational policies and systems are outlined, with the focus on their role in facilitating the communication of user needs. Methods for generating user information that can directly inform dressing design are needed together with interactive communication routes within the supply chain, specifically between users, manufacturers, purchasers and suppliers. This will facilitate dual benefits for nursing management through improvements in purchasing decisions and nurses' management of wound care.

  1. The Quest for Fusion at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hartouni, Edward

    2017-01-01

    Arthur Eddington speculated in 1920 on the internal constitution of stars and described the possibility of nuclear fusion based on the then new results from special relativity and measurements of light nuclei masses. By 1929 Atkinson and Houtermans worked out the calculations for nuclear fusion in stars and initiating nuclear astrophysics. All of these sciences were pressed into service during the World War II, and the applications developed, particularly under the auspices of the Manhattan Project provided both weapons with which to wage and win that conflict, but also the possibilities to harness these applications of the nuclear processes of fission and fusion for peaceful purposes. 32 years after Eddington's speculation the United States demonstrated the application of fusion in a famous nuclear weapons test. In the following years many ideas for producing ``controlled'' fusion through inertial confinement were pursued. The invention of the laser opened up new avenues which have culminated in the National Ignition Facility, NIF. I will attempt to cover the ground between Eddington, through the Manhattan Project and provide a current status of this quest at NIF. LLNL-ABS-704367-DRAFT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Automated Experimental Data Analysis at the National Ignition Facility

    SciTech Connect

    Azevedo, S G; Bettenhausen, R C; Beeler, R G; Bond, E J; Edwards, P W; Glenn, S M; Liebman, J A; Tappero, J D; Warrick, A L; Williams, W H

    2009-09-24

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam 1.8 MJ ultraviolet laser system designed to support high-energy-density science, including demonstration of inertial confinement fusion ignition. After each target shot lasting {approx}20 ns, scientists require data acquisition, analysis and display within 30 minutes from more than 20 specialized high-speed diagnostic instruments. These diagnostics measure critical x-ray, optical and nuclear phenomena during target burn to quantify ignition results and compare to computational models. All diagnostic data (hundreds of Gbytes) are automatically transferred to an Oracle database that triggers the NIF Shot Data Analysis (SDA) Engine, which distributes the signal and image processing tasks to a Linux cluster. The SDA Engine integrates commercial workflow tools and messaging technologies into a scientific software architecture that is highly parallel, scalable, and flexible. Results are archived in the database for scientist approval and displayed using a web-based tool. The unique architecture and functionality of the SDA Engine will be presented along with an example.

  3. Iron Opacity Platform Performance Characterization at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Opachich, Y. P.; Ross, P. W.; Heeter, R. F.; Barrios, M. A.; Liedahl, D. A.; May, M. J.; Schneider, M. B.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Weaver, J. L.; Flippo, K. A.; Kline, J. L.; Perry, T. S.; Los Alamos National Laboratory Collaboration; Naval Research Laboratory Collaboration; University of Rochester LaboratoryLaser Energetics Collaboration; Lawrence Livermore National Lab Collaboration; National Security Technologies, LLC Collaboration

    2016-10-01

    A high temperature opacity platform has been fielded at the National Ignition Facility (NIF). The platform will be used to study opacity in iron at a temperature of 160 eV. The platform uses a 6 mm diameter hohlraum driven by 128 laser beams with 530 kJ of energy in a 3 ns pulse to heat an iron sample. Absorption spectra of the heated sample are generated with a broadband pulsed X-ray backlighter produced by imploding a vacuum-filled CH shell. The shell is 2 mm in diameter and 20 microns thick, driven by 64 beams with 250 kJ in a 2.5 ns pulse. The hohlraum and backlighter performance have both been investigated recently and will be discussed in this presentation. This work was performed by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-2892.

  4. The National Ignition Facility Wavefront Requirements and Optical Architecture

    SciTech Connect

    Spaeth, M L; Manes, K R; Widmayer, C C; Williams, W H; Whitman, P K; Henesian, M A; Stowers, I F; Honig, J

    2004-06-03

    With the first four of its eventual 192 beams now executing shots and generating more than 100 kilojoules of laser energy at its primary wavelength of 1.06 {micro}m, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is already the world's largest and most energetic laser. The optical system performance requirements that are in place for NIF are derived from the goals of the missions it is designed to serve. These missions include inertial confinement fusion (ICF) research and the study of matter at extreme energy densities and pressures. These mission requirements have led to a design strategy for achieving high quality focusable energy and power from the laser and to specifications on optics that are important for an ICF laser. The design of NIF utilizes a multipass architecture with a single large amplifier type that provides high gain, high extraction efficiency and high packing density. We have taken a systems engineering approach to the practical implementation of this design that specifies the wavefront parameters of individual optics in order to achieve the desired cumulative performance of the laser beamline. This presentation provides a detailed look at the causes and effects of performance degradation in large laser systems and how NIF has been designed to overcome these effects. We will also present results of spot size performance measurements that have validated many of the early design decisions that have been incorporated in the NIF laser architecture.

  5. The National Ignition Facility Wavefront Requirements and Optical Architecture

    SciTech Connect

    Spaeth, M L; Manes, K R; Widmayer, C C; Williams, W; Whitman, P A; Henesian, M

    2004-01-05

    With the first four of its eventual 192 beams now executing shots, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is already the world's largest and most energetic laser. The optical system performance requirements that are in place for NIF are derived from the goals of the missions it is designed to serve. These missions include inertial confinement fusion (ICF) research and the study of matter at extreme energy densities and pressures. These mission requirements have led to a design strategy for achieving high quality focusable energy and power from the laser and to specifications on optics that are important for an ICF laser. The design of NIF utilizes a multipass architecture with a single large amplifier type that provides high gain, high extraction efficiency and high packing density. We have taken a systems engineering approach to the practical implementation of this design that specifies the wavefront parameters of individual optics in order to achieve the desired cumulative performance of the laser beamline. This presentation provides a detailed look at the causes and effects of performance degradation in large laser systems and how NIF has been designed to overcome these effects. We will also present results of spot size performance measurements that have validated many of the early design decisions that have been incorporated in the NIF laser architecture.

  6. Opto-mechanical assembly procurement for the National Ignition Facility

    SciTech Connect

    House, W; Simon, T

    1999-07-01

    A large number of the small optics procurements for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be in the form of completely assembled, tested, and cleaned subsystems. These subsystems will be integrated into the NIF at LLNL. To accomplish this task, the procurement packages will include, optical and mechanical drawings, acceptance test and cleanliness requirements. In January 1999, the first such integrated opto-mechanical assembly was received and evaluated at LLNL. With the successful completion of this important trial procurement, we were able to establish the viability of purchasing clean, ready to install, opto-mechanical assemblies from vendors within the optics industry. 32 vendors were chosen from our supplier database for quote, then five were chosen to purchase from. These five vendors represented a cross section of the optics industry. From a ''value'' catalog supplier (that did the whole job internally) to a partnership between three specialty companies, these vendors demonstrated they have the ingenuity and capability to deliver cost competitive, NIF-ready, opto- mechanical assemblies. This paper describes the vendor selection for this procurement, technical requirements including packaging, fabrication, coating, and cleanliness specifications, then testing and verification. It also gives real test results gathered from inspections performed at LLNL that show how our vendors scored on the various requirements. Keywords: Opto-Mechanical, assembly, NIF, packaging, shipping, specifications, procurement, MIL-STD-1246C, surface cleanliness

  7. Neutronics and shielding analysis of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Latkowski, J. F.; Tobin, M. T.; Singh, M. S.

    1994-06-01

    The Department of Energy (DOE) is proposing to construct the National Ignition Facility (NIF) by the year 2001 to embark on a program to achieve ignition and modest gain in the laboratory. The NIF will use 1.8 MJ of 0.35 (mu)m laser light, nearly a fifty-fold increase in energy over the Nova laser at Lawrence Livermore National Laboratory (LLNL). A 5-m radius spherical aluminum chamber will contain the target experiments and allow access to diagnostics for data collection. Based on a projected maximum annual yield of 385 MJ (1.4 x 10(exp 20) 14 MeV neutrons), prompt annual doses will be less than 1.2 (mu)Sv at the nearest site boundary, less than 0.43 mSv immediately outside the Target Area, and less than 30 (mu)Sv in the war-room and control room. The target chamber material has been selected in a trade-off between its mechanical properties and its neutron activation qualities. External target chamber shielding has been selected such that the total annual occupational dose to Target Area workers will be less than or equal to 5 mSv. Finally, some Target Area systems have been redesigned based on their neutron activation and residual dose rates. The operation of the NIF will have an insignificant impact to workers and the general population.

  8. Neutronics and shielding analysis of the National Ignition Facility

    SciTech Connect

    Latkowski, J.F.; Tobin, M.T.; Singh, M.S.

    1994-06-01

    The Department of Energy (DOE) is proposing to construct the National Ignition Facility (NIF) by the year 2001 to embark on a program to achieve ignition and modest gain in the laboratory. The NIF will use 1.8 MJ of 0.35 {mu}m laser light, nearly a fifty-fold increase in energy over the Nova laser at Lawrence Livermore National Laboratory (LLNL). A 5-m radius spherical aluminum chamber will contain the target experiments and allow access to diagnostics for data collection. Based on a projected maximum annual yield of 385 MJ (1.4 {times} 10{sup 20} 14 MeV neutrons), prompt annual doses will be < 1.2 {mu}Sv at the nearest site boundary, < 0.43 mSv immediately outside the Target Area, and < 30 {mu}Sv in the war-room and control room. The target chamber material has been selected in a trade-off between its mechanical properties and its neutron activation qualities. External target chamber shielding has been selected such that the total annual occupational dose to Target Area workers will be {le} 5 mSv. Finally, some Target Area systems have been redesigned based on their neutron activation and residual dose rates. The operation of the NIF will have an insignificant impact to workers and the general population.

  9. The National Bio- and Agro-Defense Facility: Issues for Congress

    DTIC Science & Technology

    2007-11-15

    The National Bio- and Agro -Defense Facility: Issues for Congress Introduction The agricultural and food infrastructure of the United States is a key...Order Code RL34160 The National Bio- and Agro -Defense Facility: Issues for Congress Updated November 15, 2007 Dana A. Shea Specialist in Science and...2007 to 00-00-2007 4. TITLE AND SUBTITLE The National Bio- and Agro -Defense Facility: Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  10. The National Bio- and Agro-Defense Facility: Issues for Congress

    DTIC Science & Technology

    2007-09-04

    FAD). The National Bio- and Agro -Defense Facility: Issues for Congress Introduction The agricultural and food infrastructure of the United States is...Order Code RL34160 The National Bio- and Agro -Defense Facility: Issues for Congress September 4, 2007 Dana A. Shea Specialist in Science and...SUBTITLE The National Bio- and Agro -Defense Facility: Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  11. The National Bio- and Agro-Defense Facility: Issues for Congress

    DTIC Science & Technology

    2007-09-10

    Directive/HSPD-9, January 30, 2004. The National Bio- and Agro -Defense Facility: Issues for Congress Introduction The agricultural and food infrastructure...Order Code RL34160 The National Bio- and Agro -Defense Facility: Issues for Congress Updated September 10, 2007 Dana A. Shea Specialist in Science and...to 00-00-2007 4. TITLE AND SUBTITLE The National Bio- and Agro -Defense Facility: Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  12. The National Bio- and Agro-Defense Facility: Issues for Congress

    DTIC Science & Technology

    2008-04-03

    Directorate congressional budget justification, p. 44. The National Bio- and Agro -Defense Facility: Issues for Congress Introduction The agricultural and food ...Order Code RL34160 The National Bio- and Agro -Defense Facility: Issues for Congress Updated April 3, 2008 Dana A. Shea Specialist in Science and...00-00-2008 4. TITLE AND SUBTITLE The National Bio- and Agro -Defense Facility: Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  13. The National Bio- and Agro-Defense Facility: Issues for Congress

    DTIC Science & Technology

    2008-05-19

    National Bio- and Agro -Defense Facility: Issues for Congress Introduction The agricultural and food infrastructure of the United States is a key component...Order Code RL34160 The National Bio- and Agro -Defense Facility: Issues for Congress Updated May 19, 2008 Dana A. Shea Specialist in Science and...00-00-2008 4. TITLE AND SUBTITLE The National Bio- and Agro -Defense Facility: Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  14. Innoko National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    Conservation Act of 1980 (ANILCA, 1980) requires the Secretary of Interior to conduct a continuing study of fish, wildlife, and habitats on the Innoko National Wildlife Refuge (INWR). Included in this study is a determination of the extent, location, and carrying capacity of fish and wildlife habitats.

  15. An assessment of the effect of user fee policy reform on facility-based deliveries in rural Zambia.

    PubMed

    Chama-Chiliba, Chitalu Miriam; Koch, Steven Fredric

    2016-12-07

    Improving maternal health outcomes by reducing barriers to accessing maternal health services is a key goal for most developing countries. This paper analyses the effect of user fee removal, which was announced for rural areas of Zambia in April 2006, on the use of public health facilities for childbirth. Data from the 2007 Zambia Demographic and Health Survey, including birth histories for the five years preceding the survey, is linked to administrative data and geo-referenced health facility census data. We exploit a difference-in-differences design, due to a differential change in user fees at the district level; fees were removed in 54 rural districts, but not in the 18 remaining urban districts. We use multilevel modelling to estimate the effect of this policy change, based on 4018 births from May 2002 to September 2007, covering a period before and after the policy announcement in April 2006. The difference-in-difference estimates point to statistically insignificant changes in the proportion of women giving birth at home and in public facilities, but significant changes are found for deliveries in private (faith-based) facilities. Thus, the abolition of delivery fees is found to have some effect on where Zambian mothers choose to have their children born. The removal of user fees has not overcome barriers to the utilisation of delivery services at public facilities. User fee removal may also yield unintended consequences deterring the utilisation of delivery services. Therefore, abolishing user fees, alone, may not be sufficient to affect changes in utilisation; instead, other efforts, such as improving service quality, may have a greater impact.

  16. Technical Report and Data File User's Manual for the 1992 National Adult Literacy Survey.

    ERIC Educational Resources Information Center

    Kirsch, Irwin; Yamamoto, Kentaro; Norris, Norma; Rock, Donald; Jungeblut, Ann; O'Reilly, Patricia; Berlin, Martha; Mohadjer, Leyla; Waksberg, Joseph; Goksel, Huseyin; Burke, John; Rieger, Susan; Green, James; Klein, Merle; Campbell, Anne; Jenkins, Lynn; Kolstad, Andrew; Mosenthal, Peter; Baldi, Stephane

    Chapter 1 of this report and user's manual describes design and implementation of the 1992 National Adult Literacy Survey (NALS). Chapter 2 reviews stages of sampling for national and state survey components; presents weighted and unweighted response rates for the household component; and describes non-incentive and prison sample designs. Chapter…

  17. User`s manual for TMY2s: Derived from the 1961--1990 National Solar Radiation Data Base

    SciTech Connect

    Marion, W.; Urban, K.

    1995-06-01

    This report is a user`s manual that describes typical meteorological year (TMY) data sets derived from the 1961-1990 National Solar Radiation Data Base. The TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. The intended use if for computer simulations of solar energy conversion systems and building systems. Section 1 of the manual provides general information about the TMYs; Section 2 lists the stations and provides station identifying information and classification; Section 3 details the contents of the TMY2 files and provides the hourly records of data values; Section 4 compares TMY2 with 30-year data sets; Appendices provide procedures used to develop TMYs and a table to convert SI data to other units.

  18. Neutron activation analysis at the Californium User Facility for Neutron Science

    SciTech Connect

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide {sup 252}Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world`s largest inventory of compact {sup 252}Cf neutron sources. Neutron source intensities of {le} 10{sup 11} neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10{sup 8} cm{sup {minus}2} s{sup {minus}1} at the sample. Total flux of {ge}10{sup 9} cm{sup {minus}2} s{sup {minus}1} is feasible for large-volume irradiation rabbits within the {sup 252}Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis.

  19. Management Of Experiments And Data At The National Ignition Facility

    SciTech Connect

    Azevedo, S; Casey, A; Beeler, R; Bettenhausen, R; Bond, E; Chandrasekaran, H; Foxworthy, C; Hutton, M; Krammen, J; Liebman, J; Marsh, A; Pannell, T; Rhodes, J; Tappero, J; Warrick, A

    2011-03-18

    Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

  20. Target area chamber system design for the National Ignition Facility

    SciTech Connect

    Wavrik, R.; Boyes, J.; Olson, C.; Dempsey, F.; Garcia, R.; Karpenko, V.; Anderson, A.; Tobin, M.; Latkowski, J.

    1994-06-01

    The National Ignition Facility (NIF) is a proposed Department of Energy facility which will contribute to the resolution of important Defense Program and inertial fusion energy issues for energy production in the future. The NIF will consist of a laser system with 192 independent beamlets transported to a target chamber. The target chamber is a multi-purpose structure that provides the interface between the target and the laser optics. The chamber must be capable of achieving moderate vacuum levels in reasonable times; it must remain dimensionally stable within micron tolerances, provide support for the optics, diagnostics, and target positioner; it must minimize the debris from the x-ray and laser light environments; and it must be capable of supporting external neutron shielding. The chamber must also be fabricated from a low activation material. The fusion reaction in the target gives off neutrons, x-ray and gamma rays. The x-rays and gamma rays interact with the interior of the target chamber wall while neutrons penetrate the wall. In order to minimize the neutron activation of components outside the target chamber and to absorb gammas emitted from the activated chamber, shielding will be placed immediately outside the chamber. The target chamber contains the target positioner. The target positioner moves the target from outside the chamber to the center of the chamber and positions the target at the focal spot of the laser beams. The target positioner must be survivable in a harsh radioactive environment. The materials used must be low activation and have a high stiffness to weight ratio to maintain target stability. This paper describes the conceptual design of the target chamber, target postioner, and shielding for the NIF.

  1. National Energy Audit (NEAT) Users Manual Version 7

    SciTech Connect

    Gettings, M.

    2001-05-10

    Welcome to the U.S. Department of Energy's (DOE's) energy auditing tool, called ''NEAT.'' NEAT, an acronym for National Energy Audit Tool, a program for personal computers that was designed for use by local agencies in the Weatherization Assistance Program. It is an approved alternative audit that meets all auditing requirements set forth by the Program. NEAT is easy to use. It applies engineering and economic calculations to evaluate energy conservation measures for single-family, detached houses or small multifamily buildings. You can use it to rank measures for each individual house, or to establish a priority list of conservation measures for nearly identical housing types. NEAT was written for the Weatherization Assistance Program by Oak Ridge National Laboratory. Many building energy consumption algorithms are taken from Lawrence Berkeley Laboratory's Computerized Instrumented Residential Audit (CIRA), published in 1982 for the Department of Energy. Equipment retrofit conservation measures are based on published reports on various heating retrofits. Heating and cooling system replacement conservation measures are based on the energy ratings of new heating and cooling equipment. The Weatherization Program anticipates that this computer-based energy audit will offer substantial performance improvements to many states who choose to incorporate it into their programs. When conservation measures are evaluated locally according to climate, fuel cost, measure cost, and existing house conditions, the Program will be closer to its goal of assuring the maximum return for every federal dollar spent.

  2. The Hohlraum Drive Campaign on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moody, John D.

    2013-10-01

    The Hohlraum drive effort on the National Ignition Facility (NIF) laser has three primary goals: 1) improve hohlraum performance by improving laser beam propagation, reducing backscatter from laser plasma interactions (LPI), controlling x-ray and electron preheat, and modifying the x-ray drive spectrum; 2) improve understanding of crossbeam energy transfer physics to better evaluate this as a symmetry tuning method; and 3) improve modeling in order to find optimum designs. Our experimental strategy for improving performance explores the impact of significant changes to the hohlraum shape, wall material, gasfill composition, and gasfill density on integrated implosion experiments. We are investigating the performance of a rugby-shaped design that has a significantly larger diameter (7 mm) at the waist than our standard 5.75 mm diameter cylindrical-shaped hohlraum but maintains approximately the same wall area. We are also exploring changes to the gasfill composition in cylindrical hohlraums by using neopentane at room temperature to compare with our standard helium gasfill. In addition, we are also investigating higher He gasfill density (1.6 mg/cc vs nominal 0.96 mg/cc) and increased x-ray drive very early in the pulse. Besides these integrated experiments, our strategy includes experiments testing separate aspects of the hohlraum physics. These include time-resolved and time-integrated measurements of cross-beam transfer rates and laser-beam spatial power distribution at early and late times using modified targets. Non-local thermal equilibrium modeling and heat transport relevant to ignition experiments are being studied using sphere targets on the Omega laser system. These simpler targets provide benchmarks for improving our modeling tools. This talk will summarize the results of the Hohlraum Drive campaign and discuss future directions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

  3. Installation of line replaceable units into the National Ignition Facility

    SciTech Connect

    Bahowick, S; Mcmahon, D; Rowe, A; Tiszauer, D; Yakuma, S

    1999-03-08

    In the National Ignition Facility (NIF), currently under design and construction at Lawrence Livermore National Laboratory (LLNL), 192 high-power laser beamlines incorporating over 8,000 large optics, are focused onto a target smaller than a dime. The actual laser path will be contained within the Laser Target Area Building (LTAB), but the smaller adjacent building, the Optics Assembly Building, is where the optic modules are assembled and aligned. After the optics are finished in the OAB they must be transported and installed into the LTAB. While this is done strict cleanliness and handling conditions must be maintained. To maximize the efficiency of this process the optics are assembled into Line Replaceable Units (LRUs), which typically consist of a mechanical housing, laser optics, utilities, actuators and kinematic mounts. In this paper the Optical Transport and Material Handling designs that will be used to deliver the LRUs into the NIF laser bays are presented. Five types of delivery systems have been developed to deliver the LRUs to their locations in the LTAB. They are top loading, bottom loading, side loading, switchyard loading and target area loading. The first three operate in the laser bay of the LTAB and are transported between the OAB and the LTAB by the Laser Bay Transport System (LBTS). All delivery systems must maintain each optical LRU assemblies' specified shock, vibration, cleanliness, and environmental requirements. The design for each delivery system must take into consideration the cleanliness, functionality and alignment of the LRUs while maximizing commonality in order to meet the beamline installation schedule. This paper focuses on the design challenges of the bottom, side and top loading delivery systems and especially on how commonality among these varied systems is achieved.

  4. Gas-filled hohlraum experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    FernáNdez, Juan C.

    2005-10-01

    A joint team from the National Laboratories at Los Alamos (LANL) and Lawrence Livermore (LLNL) has fielded the first gas-filled hohlraum experiments at the National Ignition Facility (NIF) laser, with the available four beams arranged as a single f/8 beam. The gas-fill in this LANL design provides plasma pressure to tamp the hohlraum gold wall to avoid filling, the same technique used in ignition designs. A shaped laser pulse 8 ns in duration was used, with a low-power foot and a late peak of 7 TW, a contrast ratio exceeding 100 (the highest on NIF so far), and a total energy of 14 kJ. Deployed measurements include laser energy and power; back-scattered light spectrum, power and energy directly into the focusing lenses; back-scattered laser light energy outside the lenses; soft x-ray drive spectrum and power, and; gated framing-camera images of the hohlraum self-emission with x-ray energy > 10 keV. Our main results and conclusions are: (1) This is the first experimental demonstration that a low-Z fill can keep the interior of a laser-driven hohlraum open long enough to ensure efficient coupling of ignition-relevant laser pulses. (2) When backscattering losses are accounted ( 25% reflectivity due to stimulated Brillouin scattering [SBS]), we have the radiation-hydrodynamics predictive capability necessary to understand the energy balance in such hohlraums quantitatively, as well as other details of the hohlraum-plasma evolution. (3) Laser-plasma instabilities (LPI) can lead to considerable laser reflectivity levels, with a significant and measurable deleterious impact on hohlraum energetics. Thus, continued development of LPI predictive capability and understanding is needed. (4) These experiments provide evidence that Stimulated Raman back-scattering losses (SRS) may be minimized with a proper choice of plasma conditions.

  5. Magnetic Fields on the National Ignition Facility (MagNIF)

    SciTech Connect

    Mason, D.; Folta, J.

    2016-08-12

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentally relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.

  6. The Oak Ridge National Laboratory automobile heat pump model: User`s guide

    SciTech Connect

    Kyle, D.M.

    1993-05-01

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at Oak Ridge National Laboratory. Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as inputs to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermal expansion valve, capillary tube and short tube expansion devices; refrigerant mass; evaporator pressure regulator; and all interconnecting tubing. The program can be used with a variety of refrigerants, including R134a. Methodologies are discussed for using the model as a tool for designing all new systems or, alternatively, as a tool for simulating a known system for a variety of operating conditions.

  7. National Ignition Facility monthly status report-January 2000

    SciTech Connect

    Moses, E

    2000-01-31

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: On January 13, 2000, a worker received a back injury when a 42-in.-diameter duct fell during installation. He was taken by helicopter to the hospital and released on January 16, 2000. All work in the area was suspended, and the construction contractors went through a thorough safety review before work was started. A DOE occurrence report was filed. An independent LLNL Incident Analysis Team is reviewing the cause of the accident and will report out on March 1. A Project management review team is reviewing construction line management and safety support and will also report out on March 1. Several changes in work planning and site management have been incorporated to increase site safety. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3 {omega}damage and resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 80% complete. The Beampath Infrastructure

  8. National Ignition Facility monthly status report--April 2000

    SciTech Connect

    Moses, E

    2000-05-26

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes, deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (SSM PEIS). Safety: On Saturday April 29, 2000, while preparing the Ringer crane for operation at the NIF site, a mechanical malfunction was observed by the operator. He stopped work and consulted with line management. They agreed with the operator's assessment, and with the Livermore Emergency Duty Officer, implemented a precautionary evacuation of the area around the crane. DOE was notified of the situation. The crane was then placed in a safe condition. A crane maintenance vendor is inspecting the crane and a management team headed by the Beampath Infrastructure System Associate Project Manager is reviewing the documentation, crane history, and repairs to ensure that the crane is fully safe before reuse. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering working groups; (2) laser glass, where a second pilot run at both commercial suppliers is expected to confirm the mitigation steps identified in the first pilot run; and (3) operational costs associated with Final Optics Assembly (FOA) optics components, where methods are being developed to mitigate 3 {omega} damage and to resolve beam rotation issues. Schedule: The project completion

  9. Neutron source reconstruction from pinhole imaging at National Ignition Facility.

    PubMed

    Volegov, P; Danly, C R; Fittinghoff, D N; Grim, G P; Guler, N; Izumi, N; Ma, T; Merrill, F E; Warrick, A L; Wilde, C H; Wilson, D C

    2014-02-01

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

  10. Imaging VISAR diagnostic for the National Ignition Facility (NIF)

    SciTech Connect

    Malone, R M; Bower, J R; Bradley, D K; Capelle, G A; Celeste, J R; Celliers, P M; Collins, G W; Eckart, M J; Eggert, J H; Frogget, B C; Guyton, R L; Hicks, D G; Kaufman, M I; MacGowan, B J; Montelongo, S; Ng, E W; Robinson, R B; Tunnell, T W; Watts, P W; Zapata, P G

    2004-08-30

    The National Ignition Facility (NIF) requires diagnostics to analyze high-energy density physics experiments. A VISAR (Velocity Interferometry System for Any Reflector) diagnostic has been designed to measure shock velocities, shock breakout times, and shock emission of targets with sizes from 1 to 5 mm. An 8-inch-diameter fused silica triplet lens collects light at f/3 inside the 30-foot-diameter vacuum chamber. The optical relay sends the image out an equatorial port, through a 2-inch-thick vacuum window, and into two interferometers. A 60-kW VISAR probe laser operates at 659.5 nm with variable pulse width. Special coatings on the mirrors and cutoff filters are used to reject the NIF drive laser wavelengths and to pass a band of wavelengths for VISAR, passive shock breakout light, or thermal imaging light (bypassing the interferometers). The first triplet can be no closer than 500 mm from the target chamber center and is protected from debris by a blast window that is replaced after every event. The front end of the optical relay can be temporarily removed from the equatorial port, allowing other experimenters to use that port. A unique resolution pattern has been designed to validate the VISAR diagnostic before each use. All optical lenses are on kinematic mounts so that the pointing accuracy of the optical axis can be checked. Seven CCD cameras monitor the diagnostic alignment.

  11. The National Ignition Facility modular Kirkpatrick-Baez microscope.

    PubMed

    Pickworth, L A; Ayers, J; Bell, P; Brejnholt, N F; Buscho, J G; Bradley, D; Decker, T; Hau-Riege, S; Kilkenny, J; McCarville, T; Pardini, T; Vogel, J; Walton, C

    2016-11-01

    Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

  12. Direct drive: Simulations and results from the National Ignition Facility

    SciTech Connect

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Dixit, S. N.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Moody, J.; Myatt, J. F.; Petrasso, R. D.; Regan, S. P.; Sangster, T. C.; Sio, H.; Skupsky, S.; Zylstra, A.

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  13. The Injection Laser System on the National Ignition Facility

    SciTech Connect

    Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M; Jedlovec, D

    2006-12-13

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed.

  14. Radiological design aspects of the National Ignition Facility.

    PubMed

    Kohut, Thomas R; Brereton, Sandra J; Khater, Hesham

    2013-06-01

    The National Ignition Facility (NIF) has been designed to accommodate some challenging radiological conditions. The high prompt neutron source (up to 1.6 × 10(19) neutrons per shot) results in the need for significant fixed shielding. Concrete shielding approximately 2 m thick is used for the primary (target bay) shield. Penetrations in this shield, including those required for 192 laser beams, utilities, diagnostics, and 19 shielded personnel access doors, make the design challenging. An additional 28 shield doors are part of the secondary shield. In addition, the prompt neutron pulse results in activated air within the target bay, requiring special ventilation considerations. Finally, targets can use a number of hazardous and radioactive materials including tritium, beryllium, and depleted uranium (the latter of which results in the generation of small quantities of fission products). Frequent access is required to the associated potentially contaminated volumes for experimental setup, facilitating the need for local exhaust ventilation to manage these hazards. This paper reviews some of these challenges, design considerations, and the engineering solutions to these design requirements.

  15. Programmable beam spatial shaping system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Heebner, John; Borden, Michael; Miller, Phil; Hunter, Steve; Christensen, Kim; Scanlan, Michael; Haynam, Chris; Wegner, Paul; Hermann, Mark; Brunton, Gordon; Tse, Eddy; Awwal, Abdul; Wong, Nan; Seppala, Lynn; Franks, Mark; Marley, Ed; Williams, Kevin; Budge, Tracy; Henesian, Mark; Stolz, Christopher; Suratwala, Tayyab; Monticelli, Marcus; Walmer, Dan; Dixit, Sham; Widmayer, Clay; Wolfe, Justin; Bude, Jeff; McCarty, Kelly; DiNicola, Jean-Michel

    2011-03-01

    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce "blocker" obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

  16. National Ignition Facility Risk Management Plan, Revision 2

    SciTech Connect

    Brereton, S J

    2002-06-01

    The National Ignition Facility (NIF) Risk Management Plan (LLNL, 1997a) was originally prepared in 1997 in accordance with the Department of Energy (DOE) Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported NIF Critical Decision 3, approval to initiate construction (DOE, 1997a). The plan was updated in 1998 to reflect realized risks such as the finding and successful clean up of polychlorinated biphenyl (PCB)-filled electrical capacitors at the NIF excavation during initial construction and the litigation of the Programmatic Environmental Impact Statement for Stockpile Stewardship (DOE, 1996b) by a group of non-governmental organizations led by the Natural Resources Defense Council. The current update of the Risk Management Plan brings it into compliance with the applicable DOE Orders and Standards and addresses new risks, such as assuring safety during the period when construction, special equipment installation, and commissioning are occurring simultaneously at the NIF site, and the extensive use of models to manage technical performance risk. The objectives of the updated plan are to: (1) Identify the risks to the completion of the Project in terms of meeting performance and regulatory requirements, ES&H, cost, and schedule; (2) Assess or the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES&H, costs, and schedule; and (3) Address suitable risk mitigation measures for each identified risk.

  17. Three-Dimensional Hydrodynamics Experiments on the National Ignition Facility

    SciTech Connect

    Blue, B E; Weber, S V; Glendinning, S; Lanier, N; Woods, D; Bono, M; Dixit, S; Haynam, C; Holder, J; Kalantar, D; MacGowan, B; Moses, E; Nikitin, A; Rekow, V; Wallace, R; Van Wonterghem, B; Rosen, P; Foster, J; Stry, P; Wilde, B; Hsing, W; Robey, H

    2004-11-12

    The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster et. al, Phys. Plasmas 9, 2251 (2002)]. In three-dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.

  18. Three-Dimensional Hydrodynamic Experiments on the National Ignition Facility

    SciTech Connect

    Blue, B E; Robey, H F; Glendinning, S G; Bono, M J; Dixit, S N; Foster, J M; Haynam, C A; Holder, J P; Hsing, W W; Kalantar, D H; Lanier, N E; MacGowan, B J; Moses, E I; Nikitin, A J; Perry, T S; Rekow, V V; Rosen, P A; Stry, P E; Van Wonterghem, B M; Wallace, R; Weber, S V; Wilde, B H; Woods, D T

    2005-02-09

    The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster et. al, Phys. Plasmas 9, 2251 (2002)]. In three-dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.

  19. Direct drive: Simulations and results from the National Ignition Facility

    DOE PAGES

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; ...

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  20. National Ignition Facility Shot Data Analysis Module Guidelines

    SciTech Connect

    Azevedo, S; Glenn, S; Lopez, A; Warrick, A; Beeler, R

    2007-10-03

    This document provides the guidelines for software development of modules to be included in Shot Data Analysis (SDA) for the National Ignition Facility (NIF). An Analysis Module is a software entity that groups a set of (typically cohesive) functions, procedures and data structures for performing an analysis task relevant to NIF shot operations. Each module must have its own unique identification (module name), clear interface specifications (data inputs and outputs), and internal documentation. It is vitally important to the NIF Program that all shot-related data be processed and analyzed in a consistent way that is reviewed by scientific and engineering experts. SDA is part of a NIF Integrated Product Team (IPT) whose goal is to provide timely and accurate reporting of shot results to NIF campaign experimentalists. Other elements of the IPT include the Campaign Management Tool (CMT) for configuring experiments, a data archive and provisioning system called CMS, a calibration and configuration database (CDMS), and a shot data visualization tool (SDV). We restrict our scope at this time to guidelines for modules written in Interactive Data Language, or IDL1. This document has sections describing example IDL modules and where to find them, how to set up a development environment, IDL programming guidelines, shared IDL procedures for general use, and revision control.

  1. The National Ignition Facility modular Kirkpatrick-Baez microscope

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Ayers, J.; Bell, P.; Brejnholt, N. F.; Buscho, J. G.; Bradley, D.; Decker, T.; Hau-Riege, S.; Kilkenny, J.; McCarville, T.; Pardini, T.; Vogel, J.; Walton, C.

    2016-11-01

    Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ˜10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ˜5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ˜12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with ΔE ˜ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

  2. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Volegov, P.; Danly, C. R.; Fittinghoff, D. N.; Grim, G. P.; Guler, N.; Izumi, N.; Ma, T.; Merrill, F. E.; Warrick, A. L.; Wilde, C. H.; Wilson, D. C.

    2014-02-01

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (˜100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

  3. The Wavefront Control System for the National Ignition Facility

    SciTech Connect

    Van Atta, L; Perez, M; Zacharias, R; Rivera, W

    2001-10-15

    The National Ignition Facility (NIF) requires that pulses from each of the 192 laser beams be positioned on target with an accuracy of 50 {micro}m rms. Beam quality must be sufficient to focus a total of 1.8 MJ of 0.351-{micro}m light into a 600-{micro}m-diameter volume. An optimally flat beam wavefront can achieve this pointing and focusing accuracy. The control system corrects wavefront aberrations by performing closed-loop compensation during laser alignment to correct for gas density variations. Static compensation of flashlamp-induced thermal distortion is established just prior to the laser shot. The control system compensates each laser beam at 10 Hz by measuring the wavefront with a 77-lenslet Hartmann sensor and applying corrections with a 39-actuator deformable mirror. The distributed architecture utilizes SPARC AXi computers running Solaris to perform real-time image processing of sensor data and PowerPC-based computers running VxWorks to compute mirror commands. A single pair of SPARC and PowerPC processors accomplishes wavefront control for a group of eight beams. The software design uses proven adaptive optic control algorithms that are implemented in a multi-tasking environment to economically control the beam wavefronts in parallel. Prototype tests have achieved a closed-loop residual error of 0.03 waves rms. aberrations, the spot size requirement and goal could not be met without a wavefront control system.

  4. Direct drive: Simulations and results from the National Ignition Facility

    SciTech Connect

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Dixit, S. N.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Moody, J.; Myatt, J. F.; Petrasso, R. D.; Regan, S. P.; Sangster, T. C.; Sio, H.; Skupsky, S.; Zylstra, A.

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  5. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  6. Imaging VISAR diagnostic for the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Bower, John R.; Bradley, David K.; Capelle, Gene A.; Celeste, John R.; Celliers, Peter M.; Collins, Gilbert W.; Eckart, Mark J.; Eggert, Jon H.; Frogget, Brent C.; Guyton, Robert L.; Hicks, Damien G.; Kaufman, Morris I.; MacGowan, Brian J.; Montelongo, Samuel; Ng, Edmund W.; Robinson, Ronald B.; Tunnell, Thomas W.; Watts, Phillip W.; Zapata, Paul G.

    2005-03-01

    The National Ignition Facility (NIF) requires diagnostics to analyze high-energy density physics experiments. A VISAR (Velocity Interferometry System for Any Reflector) diagnostic has been designed to measure shock velocities, shock breakout times, and shock emission of targets with sizes from 1 to 5 mm. An 8-inch-diameter fused silica triplet lens collects light at f/3 inside the 30-foot-diameter vacuum chamber. The optical relay sends the image out an equatorial port, through a 2-inch-thick vacuum window, and into two interferometers. A 60-kW VISAR probe laser operates at 659.5 nm with variable pulse width. Special coatings on the mirrors and cutoff filters are used to reject the NIF drive laser wavelengths and to pass a band of wavelengths for VISAR, passive shock breakout light, or thermal imaging light (bypassing the interferometers). The first triplet can be no closer than 500 mm from the target chamber center and is protected from debris by a blast window that is replaced after every event. The front end of the optical relay can be temporarily removed from the equatorial port, allowing other experimenters to use that port. A unique resolution pattern has been designed to validate the VISAR diagnostic before each use. All optical lenses are on kinematic mounts so that the pointing accuracy of the optical axis can be checked. Seven CCD cameras monitor the diagnostic alignment.

  7. Automatic Alignment System for the National Ignition Facility

    SciTech Connect

    Wilhlelmsen, K C; Awwal, A S; Ferguson, S W; Horowitz, B; Miller Kamm, V J; Reynolds, C A

    2007-10-04

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 30 minutes. The system commands 9,000 stepping motors to adjust mirrors and other optics. Twenty-two control loops per beamline request image processing services running on a LINUX cluster to analyze high-resolution images of the beam and references. Process-leveling assures the computational load is evenly spread on the cluster. Algorithms also estimate measurement accuracy and reject off-normal images. One challenge to achieving rapid alignment of beams in parallel is the efficient coordination of shared laser devices, such as sensors that are configurable to monitor multiple beams. Contention for shared resources is managed by the Component Mediation System, which precludes deadlocks and optimizes device motions using a hierarchical component structure. A reservation service provided by the software framework prevents interference from competing instances of automated controls or from the actions of system operators. The design, architecture and performance of the system will be discussed.

  8. Programmable Beam Spatial Shaping System for the National Ignition Facility

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

    2011-01-21

    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

  9. 75 FR 18850 - National Protection and Programs Directorate; Chemical Facility Anti-Terrorism Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... SECURITY National Protection and Programs Directorate; Chemical Facility Anti-Terrorism Standards Personnel... commercial or financial information, Chemical-terrorism Vulnerability Information (CVI), Sensitive Security... Facility Anti-Terrorism Standards (CFATS), 6 CFR part 27, require high-risk chemical facilities to...

  10. 15 CFR 923.52 - Consideration of the national interest in facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN..., and managing the coastal zone, including the siting of facilities such as energy facilities which are of greater than local significance. In the case of energy facilities, the State must have considered...

  11. Assessing the quality of care in a new nation: South Sudan's first national health facility assessment.

    PubMed

    Berendes, Sima; Lako, Richard L; Whitson, Donald; Gould, Simon; Valadez, Joseph J

    2014-10-01

    We adapted a rapid quality of care monitoring method to a fragile state with two aims: to assess the delivery of child health services in South Sudan at the time of independence and to strengthen local capacity to perform regular rapid health facility assessments. Using a two-stage lot quality assurance sampling (LQAS) design, we conducted a national cross-sectional survey among 156 randomly selected health facilities in 10 states. In each of these facilities, we obtained information on a range of access, input, process and performance indicators during structured interviews and observations. Quality of care was poor with all states failing to achieve the 80% target for 14 of 19 indicators. For example, only 12% of facilities were classified as acceptable for their adequate utilisation by the population for sick-child consultations, 16% for staffing, 3% for having infection control supplies available and 0% for having all child care guidelines. Health worker performance was categorised as acceptable in only 6% of cases related to sick-child assessments, 38% related to medical treatment for the given diagnosis and 33% related to patient counselling on how to administer the prescribed drugs. Best performance was recorded for availability of in-service training and supervision, for seven and ten states, respectively. Despite ongoing instability, the Ministry of Health developed capacity to use LQAS for measuring quality of care nationally and state-by-state, which will support efficient and equitable resource allocation. Overall, our data revealed a desperate need for improving the quality of care in all states. © 2014 John Wiley & Sons Ltd.

  12. Development of a national spill test facility data base. Topical report, February 1994--February 1995

    SciTech Connect

    1995-02-01

    In the United States, the production of gas, liquid and solid fuels and the associated chemical use accounts for significant volumes of material with the potential of becoming hazardous. Accidental spills or releases of these hazardous materials do occur, and action must be taken to minimize damage to life, property, and the environment. Because of the hazards of testing with chemical spills, a national spill test facility (STF) and an associated testing program have been established to systematically develop new data on the effects and mitigation of hazardous chemical spills Western Research Institute (WRI), in conjunction with the DOE, is developing a comprehensive national spill test data base. I The data base will be easily accessible by industry and the public on the Spill Research Bulletin Board System and will allow users to download spill test data and test descriptions, as well as an extensive bibliography. The 1990 Clean Air Act and Amendments (CAAA) requires that at least two chemicals be field tested at the STF and at least 10 chemicals be studied each year. The chemicals to be studied are chosen with priority given to those that present the greatest risk to human health. The National Spill Test Facility Data Base will include a common chemical data base covering the overlap of federal chemical lists and significant information from other sources. Also, the (CAAA) directs the DOE and EPA to work together with the STF and industry to provide a scientific and engineering basis for writing regulations for implementation of the (CAAA). The data base will be a primary resource in this effort.

  13. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  14. Data Analysis Software Tools for Enhanced Collaboration at the DIII-D National Fusion Facility

    SciTech Connect

    Schachter, J.; Peng, Q.; Schissel, D.P.

    1999-07-01

    Data analysis at the DIII-D National Fusion Facility is simplified by the use of two software packages in analysis codes. The first is GAP1otObj, an IDL-based object-oriented library used in visualization tools for dynamic plotting. GAPlotObj gives users the ability to manipulate graphs directly through mouse and keyboard-driven commands. The second software package is MDSplus, which is used at DIED as a central repository for analyzed data. GAPlotObj and MDSplus reduce the effort required for a collaborator to become familiar with the DIII-D analysis environment by providing uniform interfaces for data display and retrieval. Two visualization tools at DIII-D that benefit from them are ReviewPlus and EFITviewer. ReviewPlus is capable of displaying interactive 2D and 3D graphs of raw, analyzed, and simulation code data. EFITviewer is used to display results from the EFIT analysis code together with kinetic profiles and machine geometry. Both bring new possibilities for data exploration to the user, and are able to plot data from any fusion research site with an MDSplus data server.

  15. The Fluids And Combustion Facility Combustion Integrated Rack And The Multi-User Droplet Combustion Apparatus: Microgravity Combustion Science Using Modular Multi-User Hardware

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Myhre, Craig A.

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.

  16. Are Health Facility Management Committees in Kenya ready to implement financial management tasks: findings from a nationally representative survey.

    PubMed

    Waweru, Evelyn; Opwora, Antony; Toda, Mitsuru; Fegan, Greg; Edwards, Tansy; Goodman, Catherine; Molyneux, Sassy

    2013-10-10

    Community participation in peripheral public health facilities has in many countries focused on including community representatives in Health Facility Management Committees (HFMCs). In Kenya, HFMC roles are being expanded with the phased implementation of the Health Sector Services Fund (HSSF). Under HSSF, HFMCs manage facility funds which are dispersed directly from central level into facility bank accounts. We assessed how prepared HFMCs were to undertake this new role in advance of HSSF roll out, and considered the implications for Kenya and other similar settings. Data were collected through a nationally representative sample of 248 public health centres and dispensaries in 24 districts in 2010. Data collection included surveys with in-charges (n = 248), HFMC members (n = 464) and facility users (n = 698), and record reviews. These data were supplemented by semi-structured interviews with district health managers in each district. Some findings supported preparedness of HFMCs to take on their new roles. Most facilities had bank accounts and HFMCs which met regularly. HFMC members and in-charges generally reported positive relationships, and HFMC members expressed high levels of motivation and job satisfaction. Challenges included users' low awareness of HFMCs, lack of training and clarity in roles among HFMCs, and some indications of strained relations with in-charges. Such challenges are likely to be common to many similar settings, and are therefore important considerations for any health facility based initiatives involving HFMCs. Most HFMCs have the basic requirements to operate. However to manage their own budgets effectively and meet their allocated roles in HSSF implementation, greater emphasis is needed on financial management training, targeted supportive supervision, and greater community awareness and participation. Once new budget management roles are fully established, qualitative and quantitative research on how HFMCs are adapting to

  17. Inadvertent Detachment of a Retrievable Intracranial Stent: Review of Manufacturer and User Facility Device Experience.

    PubMed

    Yub Lee, Sang; Won Youn, Sung; Kyun Kim, Ho; Rok Do, Young

    2015-04-01

    Few systematic surveys have dealt with the potential procedural risks associated with the use of retrievable intracranial stents [Solitaire Flow Restoration (Solitaire FR)], which have become effective tools for recanalizing acutely occluded cerebral arteries. The aim of this study was to present the real-world experiences of Solitaire-FR-related adverse events by reviewing the MAUDE (Manufacturer and User Facility Device Experience) as published on the United States Food and Drug Administration website. In total, 85 adverse events related to the use of the Solitaire FR stent were reported between March 2012 and October 2014. In 80 patients these adverse events were attributable to inadvertent detachment of the device. Thirteen of these 80 patients (16%) died after the procedure. Morbidity data were available in 62 patients, among whom 11 (18%) had suffered a procedure-related injury. Detachment occurred at the first, second, and third pass in nine (21%), 21 (49%), and 13 (30%) of the 43 patients for whom this information was available, respectively. Resistance was perceived by the physician during retrieval of the device in 12 patients, and lesion characteristics were noted in 13. A rescue maneuver was reported in 20 (25%) of the 80 patients in whom the adverse event was attributable to detachment of the device, resulting in flow reestablishment in 13 (65%). The risk of inadvertent detachment during stent retrieval cannot be overemphasized in real-world scenarios, and careful consideration of the "dos and don'ts" is essential for the achievement of a safe procedure. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  19. National Deep Submergence Facility Data Report: Data Systems, Processing and Visualization

    NASA Astrophysics Data System (ADS)

    Gegg, S.; Ferrini, V.; Chandler, R.

    2006-12-01

    The vehicles operated by the National Deep Submergence Facility (NDSF) at the Woods Hole Oceanographic Institution (WHOI) include the remotely operated vehicle (ROV) Jason2, the submersible Alvin and the Autonomous Benthic Explorer (ABE). All of these vehicles are equipped with precision navigational systems and can utilize a variety of sensors for high-resolution data acquisition. Advances in deep submergence vehicle technology and data quality require the continued development of data display and processing tools to ensure that science objectives can be met efficiently. The NDSF utilizes a variety of software tools to display data in real-time or near real-time, including the Alvin Frame-grabber system and the Jason2 Virtual Control Van. Three-dimensional visualization software has recently been installed in the Jason2 control van, to provide science users with a perspective view of real-time vehicle position within the framework of bathymetric data sets. Additional software tools are available through the facility for advanced processing of sonar data and high-resolution imagery. We summarize the status of current NDSF data tools and standard products as well as future directions for NDSF data management and manipulation.

  20. Safety and environmental process for the design and construction of the National Ignition Facility

    SciTech Connect

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  1. 77 FR 6172 - Discretionary Bus and Bus Facilities Program and National Research Program Funds.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... applicant will need to apply separately in TEAM for these funds. Research funds must adhere to the... Federal Transit Administration Discretionary Bus and Bus Facilities Program and National Research Program...) of FTA Section 5309 Bus and Bus Facilities Program and Section 5312 National Research Program Funds...

  2. National forest trail users: Planning for recreation opportunities. Forest Service research paper (Final)

    SciTech Connect

    Daigle, J.J.; Watson, A.E.; Haas, G.E.

    1994-03-01

    National forest trail users in four geographical regions of the United States are described based on participation in clusters of recreation activities. Visitors are classified into day hiking, undeveloped recreation, and two developed camping and hiking activity clusters for the Appalachian, Pacific, Rocky Mountain, and Southwestern regions. Distance and time traveled to national forest sites from home varied for activity clusters. Length of time at the site varied across activity clusters. Recreation activities combined with home range allows for assessing relative availability of, and demand for, different types of place-related opportunities and experiences users seek within a particular region.

  3. A user-friendly approach to cost accounting in laboratory animal facilities.

    PubMed

    Baker, David G

    2011-08-19

    Cost accounting is an essential management activity for laboratory animal facility management. In this report, the author describes basic principles of cost accounting and outlines steps for carrying out cost accounting in laboratory animal facilities. Methods of post hoc cost accounting analysis for maximizing the efficiency of facility operations are also described.

  4. Implosion dynamics measurements at the National Ignition Facility

    SciTech Connect

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  5. Implosion dynamics measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  6. Polar-direct-drive experiments on the National Ignition Facility

    DOE PAGES

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; ...

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  7. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Bates, J. W.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Fitzsimmons, P.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Harding, D. R.; Kalantar, D. H.; Karasik, M.; Kessler, T. J.; Kilkenny, J. D.; Knauer, J. P.; Kurz, C.; Lafon, M.; LaFortune, K. N.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McCrory, R. L.; McKenty, P. W.; Meeker, J. F.; Meyerhofer, D. D.; Nagel, S. R.; Nikroo, A.; Obenschain, S.; Petrasso, R. D.; Ralph, J. E.; Rinderknecht, H. G.; Rosenberg, M. J.; Schmitt, A. J.; Wallace, R. J.; Weaver, J.; Widmayer, C.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  8. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H.; and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ∼500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 × 10{sup 14} to 1.2 × 10{sup 15 }W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  9. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Bates, J. W.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Fitzsimmons, P.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Harding, D. R.; Kalantar, D. H.; Karasik, M.; Kessler, T. J.; Kilkenny, J. D.; Knauer, J. P.; Kurz, C.; Lafon, M.; LaFortune, K. N.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McCrory, R. L.; McKenty, P. W.; Meeker, J. F.; Meyerhofer, D. D.; Nagel, S. R.; Nikroo, A.; Obenschain, S.; Petrasso, R. D.; Ralph, J. E.; Rinderknecht, H. G.; Rosenberg, M. J.; Schmitt, A. J.; Wallace, R. J.; Weaver, J.; Widmayer, C.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  10. Nuclear Diagnostics at the National Ignition Facility, 2013-2015

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.

    2016-05-01

    The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced

  11. The injection laser system on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bowers, Mark; Burkhart, Scott; Cohen, Simon; Erbert, Gaylen; Heebner, John; Hermann, Mark; Jedlovec, Don

    2007-02-01

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also pre-compensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with pre-compensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed. Work performed under the auspices of the U. S. Department of Energy under contract W-7405-Eng-48.

  12. First beryllium capsule implosions on the National Ignition Facility

    SciTech Connect

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  13. First beryllium capsule implosions on the National Ignition Facility

    SciTech Connect

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; and others

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  14. Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

    SciTech Connect

    Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A; Schneider, M B; Kline, J L; Thomas, C A; Milovich, J L; Callahan, D A; Meezan, N B; Hinkel, D E; Williams, E A; Berger, R L; Edwards, M J; Suter, L J; Haan, S W; Lindl, J D; Dixit, S; Glenzer, S H; Landen, O L; Moses, E I; Scott, H A; Harte, J A; Zimmerman, G B

    2010-11-22

    A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.

  15. Indirect drive ignition at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; Patel, P. K.; Callahan, D. A.; Hsing, W. W.; Town, R. P. J.; Albert, F.; Amendt, P. A.; Berzak Hopkins, L. F.; Bradley, D. K.; Casey, D. T.; Clark, D. S.; Dewald, E. L.; Dittrich, T. R.; Divol, L.; Döppner, T.; Field, J. E.; Haan, S. W.; Hall, G. N.; Hammel, B. A.; Hinkel, D. E.; Ho, D. D.; Hohenberger, M.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Landen, O. L.; LePape, S.; Ma, T.; MacKinnon, A. J.; MacPhee, A. G.; Masse, L.; Milovich, J. L.; Nikroo, A.; Pak, A.; Park, H.-S.; Peterson, J. L.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Smalyuk, V. A.; Spears, B. K.; Stadermann, M.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Turnbull, D. P.; Weber, C. R.

    2017-01-01

    This paper reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program’s forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v  >  350 km s-1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seeded by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009-2012. Experiments using a ‘high-foot’ drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. Future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.

  16. Indirect drive ignition at the National Ignition Facility

    DOE PAGES

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...

    2016-10-27

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s-1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seeded bymore » target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  17. Indirect drive ignition at the National Ignition Facility

    SciTech Connect

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; Patel, P. K.; Callahan, D. A.; Hsing, W. W.; Town, R. P. J.; Albert, F.; Amendt, P. A.; Berzak Hopkins, L. F.; Bradley, D. K.; Casey, D. T.; Clark, D. S.; Dewald, E. L.; Dittrich, T. R.; Divol, L.; Döppner, T.; Field, J. E.; Haan, S. W.; Hall, G. N.; Hammel, B. A.; Hinkel, D. E.; Ho, D. D.; Hohenberger, M.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Landen, O. L.; LePape, S.; Ma, T.; MacKinnon, A. J.; MacPhee, A. G.; Masse, L.; Milovich, J. L.; Nikroo, A.; Pak, A.; Park, H-S; Peterson, J. L.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Smalyuk, V. A.; Spears, B. K.; Stadermann, M.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Turnbull, D. P.; Weber, C. R.

    2016-10-27

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s-1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seeded by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.

  18. Overview of small optics for the National Ignition Facility

    SciTech Connect

    Aikens, D; Bissinger, H D

    1999-07-01

    LLNL's project to construct the National Ignition Facility (NIF), a 192 beam laser system capable of generating enough light energy necessary to achieve fusion ignition, will require 26,641 small optics, many of which will be supplied in the form of cleaned, tested and aligned assemblies. These assemblies will be built to print, cleaned to specifications, and tested to performance specifications, ready to be installed in the laser system. A wide range of potential suppliers will participate in the manufacture of these sophisticated opto-mechanical systems. The injection laser system requires 7,440 precision optical components manufactured to state of the art performance specifications. In addition to 550 aspheric lenses, almost 2,000 precision spherical elements are required. Wave-fronts are specified in terms of P-V, RMS and RMS Gradient wave-front error, with strict requirements on the filtering and resolution which is required. Precision polarizers, high reflectors, leaking mirrors, high damage threshold coatings and cleanliness levels of 50 to 100 are also specified for this section of the NIF laser. The alignment and diagnostics systems for the NIF require 19,201 optics, many of which have requirements that exceed those of the injection laser system. All of these optics will be purchased using the ISO 10110 drawing notations. Other sections of the laser system will utilize commercial, off the shelf components to control cost. This paper will give an overview of the project and its objectives, with specific attention to the small optics required for the NIF. Keywords: NIF, small optics, overview, components.

  19. The National Ignition Facility modular Kirkpatrick-Baez microscope

    SciTech Connect

    Pickworth, L. A. Ayers, J.; Bell, P.; Brejnholt, N. F.; Buscho, J. G.; Bradley, D.; Decker, T.; Hau-Riege, S.; McCarville, T.; Pardini, T.; Vogel, J.; Walton, C.; Kilkenny, J.

    2016-11-15

    Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766–774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a “narrow band” energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

  20. First Beryllium Capsule implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kline, John

    2015-11-01

    The first implosion experiments using Beryllium (Be) capsules have been conducted at the National Ignition Facility (NIF) to confirm the superior ablation properties and to elucidate possible Be-ablator issues. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs have measured the laser energy backscatter, shock velocities, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable, if not better, for Be than for plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results demonstrate good coupling of laser energy to the target and control over the implosion shape indicating the feasibility of Be capsule design opening up a larger design space for ICF. In addition, this data, together with data for low fill-density hohlraum performance, indicates that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules.