Sample records for native enzyme structure

  1. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arber, J.M.; de Boer, E.; Garner, C.D.

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less

  2. The structures of native celluloses, and the origin of their variability

    Treesearch

    R. H. Atalla

    1999-01-01

    The structures of native celluloses have traditionally been presented in terms of two-domain models consisting of crystalline and non-crystalline fractions. Such models have been of little help in advancing understanding of enzyme-substrate interactions. In this report we first address issues that complicate characterization of the structure of native celluloses...

  3. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, E. M., E-mail: e.m.osipov@gmail.com; Polyakov, K. M.; Engelhardt Institute of Molecular Biology, Vavilova str. 32, Moscow 119991

    2015-11-18

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu{sup +}-containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. Withmore » the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu{sup +}- and Cu{sup 2+}-containing solutions. Copper ions were found to be incorporated into the active site only when Cu{sup +} was used. A comparative analysis of the native and depleted forms of the enzymes was performed.« less

  4. Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search.

    PubMed

    Porter, Joanne L; Boon, Priscilla L S; Murray, Tracy P; Huber, Thomas; Collyer, Charles A; Ollis, David L

    2015-02-20

    The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse α/β hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.

  5. Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies

    NASA Astrophysics Data System (ADS)

    ElKaoutit, Mohammed; Naranjo-Rodriguez, Ignacio; Domínguez, Manuel; Hidalgo-Hidalgo-de-Cisneros, José Luis

    2011-10-01

    Use of a mixture of Nafion and glutaraldehyde as new immobilization matrix was described. The percentage of Nafion was optimized to prevent denaturation of horseradish peroxidase enzyme after its crosslinkage with glutaraldehyde on electro-synthesized polypyrrole surface. Topographic study by Atomic Force Microscopy (AFM) shows that the enzyme seems to have been introduced inside the ionic cluster of Nafion. The characterization of the resulting bio-interfaces by UV-vis and FT-IR shows that the intra-crosslinkage phenomena caused by the use of glutaraldehyde can be eliminated by the optimization of the concentration of Nafion additive. The secondary structure contents of native and immobilized enzyme were analyzed by a Gaussian curve fitting of the respective FT-IR spectra in the amide I region. Immobilized enzyme presented notable increasing percentages of globular and short helical structure compared with native enzyme. This indicates that immobilized enzyme was folded which is in accordance with AFM studies and supports the enzyme entrance inside ionic clutter of Nafion. Thanks to synergic effects of the polypyrrole conducting polymer and the perfluorosulfonic acid polymer Nafion, HRP enzyme was immobilized in its "native" state, the resulting biosensor was able to sense peroxide without any chemical mediator and can be categorized as third generation.

  6. Activity, Stability, and Structure of Native and Modified by Woodward Reagent K Mushroom Tyrosinase

    NASA Astrophysics Data System (ADS)

    Emami, S.; Piri, H.; Gheibi, N.

    2018-01-01

    Mushroom tyrosinase (MT) was considered a good model for studying the inhibition, activation, and mutation of tyrosinase as the key enzyme of melanogenesis. In the present study, the activity, structure, reduction, and stability of native and modified enzymes were investigated after the modification of MT carboxylic residues by the Woodward reagent K (WRK). The relative activity of the sole enzyme was reduced from 100 to 77.9, 53.8, 39.4, and 26.4% after its modification by 2.5, 5, 25, and 50 ratios of [WRK]/[MT], respectively. The Tm values were calculated from thermal denaturation curves at 61.2, 60.1, 58.3, 53.9, and 45.5oC for the sole and modified enzymes. The reduction of the Δ {G}_{{H}_2O} values for the modified enzyme in chemical denaturation indicated instability. A structural study by CD and intrinsic fluorescence technique revealed the fluctuation of the secondary and tertiary structures of MT.

  7. Interaction of native and apo-carbonic anhydrase with hydrophobic adsorbents: A comparative structure-function study.

    PubMed

    Salemi, Zahra; Hosseinkhani, Saman; Ranjbar, Bijan; Nemat-Gorgani, Mohsen

    2006-09-30

    Our previous studies indicated that native carbonic anhydrase does not interact with hydrophobic adsorbents and that it acquires this ability upon denaturation. In the present study, an apo form of the enzyme was prepared by removal of zinc and a comparative study was performed on some characteristic features of the apo and native forms by far- and near-UV circular dichroism (CD), intrinsic fluorescent spectroscopy, 1-anilino naphthalene-8-sulfonate (ANS) binding, fluorescence quenching by acrylamide, and Tm measurement. Results indicate that protein flexibility is enhanced and the hydrophobic sites become more exposed upon conversion to the apo form. Accordingly, the apo structure showed a greater affinity for interaction with hydrophobic adsorbents as compared with the native structure. As observed for the native enzyme, heat denaturation of the apo form promoted interaction with alkyl residues present on the adsorbents and, by cooling followed by addition of zinc, catalytically-active immobilized preparations were obtained.

  8. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    PubMed

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion.

  9. Design and characterizations of two novel cellulases through single-gene shuffling of Cel12A (EG3) gene from Trichoderma reseei.

    PubMed

    Yenenler, Asli; Sezerman, Osman Ugur

    2016-06-01

    Cellulases have great potential to be widely used for industrial applications. In general, naturally occurring cellulases are not optimized and limited to meet the industrial needs. These limitations lead to demand for novel cellulases with enhanced enzymatic properties. Here, we describe the enzymatic and structural properties of two novel enzymes, EG3_S1 and EG3_S2, obtained through the single-gene shuffling approach of Cel12A(EG3) gene from Trichoderma reseei EG3_S1 and EG3_S2 shuffled enzymes display 59 and 75% identity in protein sequence with respect to native, respectively. Toward 4-MUC, the minimum activity of EG3_S1 was reported as 5.9-fold decrease in native at 35°C, whereas the maximum activity of EG3_S2 was reported as 15.4-fold increase in native activity at 40°C. Also, the diminished enzyme activity of EG3_S1 was reported within range of 0.6- to 0.8-fold of native and within range of 0.5- to 0.7-fold of native toward CMC and Na-CMC, respectively. For EG3_S2 enzyme, the improved enzymatic activities within range of 1.1- to 1.4-fold of native and within range of 1.1- to 1.6-fold of native were reported toward CMC and Na-CMC, respectively. Moreover, we have reported 6.5-fold increase in the kcat/Km ratio of EG3_S2 with respect to native and suggested EG3_S2 enzyme as more efficient catalysis for hydrolysis reactions than its native counterpart. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment.

    PubMed

    Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel

    2017-08-01

    Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.

    PubMed

    Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N

    2018-05-30

    Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.

    PubMed

    Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.

  13. In silico approach to explore the disruption in the molecular mechanism of human hyaluronidase 1 by mutant E268K that directs Natowicz syndrome.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2017-03-01

    Natowicz syndrome (mucopolysaccharidoses type 9) is a lysosomal storage disorder caused by deficient or defective human hyaluronidase 1. The disorder is not well studied at the molecular level. Therefore, a new in silico approach was proposed to study the molecular basis on which one clinically observed mutation, Glu268Lys, results in a defective enzyme. The native and mutant structures were subjected to comparative analyses using a conformational sampling approach for geometrical variables viz, RMSF, RMSD, and Ramachandran plot. In addition, the strength of a Cys207-Cys221 disulfide bond and electrostatic interaction between Arg265 and Asp206 were studied, as they are known to be involved in the catalytic activity of the enzyme. Native and mutant E268K showed statistically significant variations with p < 0.05 in RMSD, Ramachandran plot, strengths of disulfide bond, and electrostatic interactions. Further, single model analysis showed variations between native and mutant structures in terms of intra-protein interactions, hydrogen bond dilution, secondary structure, and dihedral angles. Docking analysis predicted the mutant to have a less favorable substrate binding energy compared to the native protein. Additionally, steered MD analysis indicated that the substrate should have more affinity to the native than mutant enzymes. The observed changes theoretically explain the less favorable binding energy of substrate towards mutant E268K, thereby providing a structural basis for its reduced catalytic activity. Hence, our study provides a basis for understanding the disruption in the molecular mechanism of human hyaluronidase 1 by mutation E268K, which may prove useful for the development of synthetic chaperones as a treatment option for Natowicz syndrome.

  14. The 46 kDa dimeric protein from Variovorax paradoxus shows faster methotrexate degrading activity in its nanoform compare to the native enzyme.

    PubMed

    Bayineni, Venkata Krishna; Venkatesh, Krishna; Sahu, Chandan Kumar; Kadeppagari, Ravi-Kumar

    2016-04-01

    Methotrexate degrading enzymes are required to overcome the toxicity of the methotrexate while treating the cancer. The enzyme from Variovorax paradoxus converts the methotrexate in to non toxic products. Methotrexate degrading enzyme from V. paradoxus is a dimeric protein with a molecular mass of 46 kDa and it acts on casein and gelatin. This enzyme is optimally active at pH 7.5 and 40°C and nanoparticles of this enzyme were prepared by desolvation-crosslinking method. Enzyme nanoparticles could degrade methotrexate faster than the native enzyme and they show lower Km compare to the native enzyme. Enzyme nanoparticles show better thermostability and they were stable for much longer time in the serum compare to the native enzyme. Enzyme nanoparticles show better functionality than the native enzyme while clearing the methotrexate added to the serum suggesting their advantage over the native enzyme for the therapeutic and biotechnological applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Choreographing an enzyme’s dance

    PubMed Central

    Villali, Janice; Kern, Dorothee

    2010-01-01

    While ground state structures combined with chemical tools and enzyme kinetics deliver useful information on possible chemical mechanisms of enzyme catalysis, they do not unravel the finely balanced energy inventory to explain the impressive rate enhancement of enzymes. For this goal, a complete description of enzyme catalysis in the form of an energy landscape is needed. Since the rate of catalysis is determined by the climb over a sequence of energy barriers, we focus here on the critical question of transition pathways. A combination of time-resolved NMR and simulation deliver a glimpse into how proteins can so efficiently move within the ensemble of the native conformations while avoiding unfolding during that journey. The loss of energy due to breakage of native contacts is compensated by non-native transient hydrogen bonds during the transition thereby “holding on” to the energy until the new native contacts form that define the alternate functional state. The use of kinetic isotope effects (KIE) to study the chemical step show that coordinated atomic fluctuations of the protein component dictate the probability of “correct” distance and orientation, due to its extreme sensitivity to distance. The examples here stress the point that highly choreographed conformational sampling together with chemical integrity is a prerequisite for efficient enzyme catalysis. PMID:20822946

  16. Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5′-phosphate-dependent enzymes

    PubMed Central

    Paiardini, Alessandro; Bossa, Francesco; Pascarella, Stefano

    2004-01-01

    The wealth of biological information provided by structural and genomic projects opens new prospects of understanding life and evolution at the molecular level. In this work, it is shown how computational approaches can be exploited to pinpoint protein structural features that remain invariant upon long evolutionary periods in the fold-type I, PLP-dependent enzymes. A nonredundant set of 23 superposed crystallographic structures belonging to this superfamily was built. Members of this family typically display high-structural conservation despite low-sequence identity. For each structure, a multiple-sequence alignment of orthologous sequences was obtained, and the 23 alignments were merged using the structural information to obtain a comprehensive multiple alignment of 921 sequences of fold-type I enzymes. The structurally conserved regions (SCRs), the evolutionarily conserved residues, and the conserved hydrophobic contacts (CHCs) were extracted from this data set, using both sequence and structural information. The results of this study identified a structural pattern of hydrophobic contacts shared by all of the superfamily members of fold-type I enzymes and involved in native interactions. This profile highlights the presence of a nucleus for this fold, in which residues participating in the most conserved native interactions exhibit preferential evolutionary conservation, that correlates significantly (r = 0.70) with the extent of mean hydrophobic contact value of their apolar fraction. PMID:15498941

  17. Preparation, structure, and digestibility of crystalline A- and B-type aggregates from debranched waxy starches.

    PubMed

    Cai, Liming; Shi, Yong-Cheng

    2014-05-25

    Highly crystalline A- and B-type aggregates were prepared from short linear α-1,4 glucans generated from completely debranched waxy maize and waxy potato starches by manipulating the chain length and crystallization conditions including starch solids concentration and crystallization temperature. The A-type crystalline products were more resistant to enzyme digestion than the B-type crystalline products, and the digestibility of the A- and B-type allomorphs was not correlated with the size of the aggregates formed. Annealing increased the peak melting temperature of the B-type crystallites, making it similar to that of the A-type crystallites, but did not improve the enzyme resistance of the B-type crystalline products. The possible reason for these results was due to the compact morphology as well as the denser packing pattern of double helices in A-type crystallites. Our observations counter the fact that most B-type native starches are more enzyme-resistant than A-type native starches. Crystalline type per se does not seem to be the key factor that controls the digestibility of native starch granules; the resistance of native starches with a B-type X-ray diffraction pattern is probably attributed to the other structural features in starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12 to 102 s

    PubMed Central

    Breuker, Kathrin; McLafferty, Fred W.

    2008-01-01

    Mass spectrometry (MS) has been revolutionized by electrospray ionization (ESI), which is sufficiently “gentle” to introduce nonvolatile biomolecules such as proteins and nucleic acids (RNA or DNA) into the gas phase without breaking covalent bonds. Although in some cases noncovalent bonding can be maintained sufficiently for ESI/MS characterization of the solution structure of large protein complexes and native enzyme/substrate binding, the new gaseous environment can ultimately cause dramatic structural alterations. The temporal (picoseconds to minutes) evolution of native protein structure during and after transfer into the gas phase, as proposed here based on a variety of studies, can involve side-chain collapse, unfolding, and refolding into new, non-native structures. Control of individual experimental factors allows optimization for specific research objectives. PMID:19033474

  19. Expanding the Nucleotide and Sugar 1-Phosphate Promiscuity of Nucleotidyltransferase RmlA via Directed Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, Rocco; Chang, Aram; Peltier-Pain, Pauline

    2012-03-15

    Directed evolution is a valuable technique to improve enzyme activity in the absence of a priori structural knowledge, which can be typically enhanced via structure-guided strategies. In this study, a combination of both whole-gene error-prone polymerase chain reaction and site-saturation mutagenesis enabled the rapid identification of mutations that improved RmlA activity toward non-native substrates. These mutations have been shown to improve activities over 10-fold for several targeted substrates, including non-native pyrimidine- and purine-based NTPs as well as non-native d- and l-sugars (both a- and b-isomers). This study highlights the first broadly applicable high throughput sugar-1-phosphate nucleotidyltransferase screen and the firstmore » proof of concept for the directed evolution of this enzyme class toward the identification of uniquely permissive RmlA variants.« less

  20. Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane

    PubMed Central

    Gao, Xiu-Gong; Maldonado, Ernesto; Pérez-Montfort, Ruy; Garza-Ramos, Georgina; de Gómez-Puyou, Marietta Tuena; Gómez-Puyou, Armando; Rodríguez-Romero, Adela

    1999-01-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2-Å resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 Å from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design. PMID:10468562

  1. Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane.

    PubMed

    Gao, X G; Maldonado, E; Pérez-Montfort, R; Garza-Ramos, G; de Gómez-Puyou, M T; Gómez-Puyou, A; Rodríguez-Romero, A

    1999-08-31

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2-A resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 A from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  2. Self-Assembling Protein Nanostructures - Towards Active Functionality

    DTIC Science & Technology

    2011-04-22

    the (alpha-beta)8 barrel. A model thermophilic enzyme , natively a tetramer, was engineered as a monomer, a dimer (submitted to Biochimica et...problem. Objective one successfully built high surface area nanoscaffolds from amyloid fibrils, and demonstrated that enzyme activity could be attached...quaternary structure, amyloid fibril, organophosphorous hydrolase, enzyme Juliet Gerrard University of Canterbury 20 Kirkwood Ave Ilam 8041 - REPORT

  3. Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642.

    PubMed Central

    Aoki, H; Yopi; Sakano, Y

    1997-01-01

    Isopullulanase (IPU) from Aspergillus niger A.T.C.C. (American Type Culture Collection) 9642 hydrolyses pullulan to isopanose. IPU is important for the production of isopanose and is used in the structural analysis of oligosaccharides with alpha-1,4 and alpha-1,6 glucosidic linkages. We have isolated the ipuA gene encoding IPU from the filamentous fungi A. niger A.T.C.C. 9642. The ipuA gene encodes an open reading frame of 1695 bp (564 amino acids). IPU contained a signal sequence of 19 amino acids, and the molecular mass of the mature form was calculated to be 59 kDa. IPU has no amino-acid-sequence similarity with the other pullulan-hydrolysing enzymes, which are pullulanase, neopullulanase and glucoamylase. However, IPU showed a high amino-acid-sequence similarity with dextranases from Penicillium minioluteum (61%) and Arthrobacter sp. (56%). When the ipuA gene was expressed in Aspergillus oryzae, the expressed protein (recombinant IPU) had IPU activity and was immunologically reactive with antibodies raised against native IPU. The substrate specificity, thermostability and pH profile of recombinant IPU were identical with those of the native enzyme, but recombinant IPU (90 kDa) was larger than the native enzyme (69-71 kDa). After deglycosylation with peptide-N-glycosidase F, the deglycosylated recombinant IPU had the same molecular mass as deglycosylated native enzyme (59 kDa). This result suggests that the carbohydrate chain of recombinant IPU differed from that of the native enzyme. PMID:9169610

  4. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  5. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V

    2012-06-27

    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinantmore » protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.« less

  6. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase

    PubMed Central

    Harijan, Rajesh K.; Zoi, Ioanna; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.

    2017-01-01

    Heavy-enzyme isotope effects (15N-, 13C-, and 2H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (kchem light/kchem heavy > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (kchem light/kchem heavy < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre–steady-state chemistry was slowed 32-fold in F159Y PNP. Pre–steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage. PMID:28584087

  7. A Quantitative Measure of Conformational Changes in Apo, Holo and Ligand-Bound Forms of Enzymes.

    PubMed

    Singh, Satendra; Singh, Atul Kumar; Wadhwa, Gulshan; Singh, Dev Bukhsh; Dwivedi, Seema; Gautam, Budhayash; Ramteke, Pramod W

    2016-06-01

    Determination of the native geometry of the enzymes and ligand complexes is a key step in the process of structure-based drug designing. Enzymes and ligands show flexibility in structural behavior as they come in contact with each other. When ligand binds with active site of the enzyme, in the presence of cofactor some structural changes are expected to occur in the active site. Motivation behind this study is to determine the nature of conformational changes as well as regions where such changes are more pronounced. To measure the structural changes due to cofactor and ligand complex, enzyme in apo, holo and ligand-bound forms is selected. Enzyme data set was retrieved from protein data bank. Fifteen triplet groups were selected for the analysis of structural changes based on selection criteria. Structural features for selected enzymes were compared at the global as well as local region. Accessible surface area for the enzymes in entire triplet set was calculated, which describes the change in accessible surface area upon binding of cofactor and ligand with the enzyme. It was observed that some structural changes take place during binding of ligand in the presence of cofactor. This study will helps in understanding the level of flexibility in protein-ligand interaction for computer-aided drug designing.

  8. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, P. Manish; Brannigan, James A., E-mail: jab@ysbl.york.ac.uk; Prabhune, Asmita

    The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants willmore » provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.« less

  9. Structure of a class I tagatose-1,6-bisphosphate aldolase: investigation into an apparent loss of stereospecificity.

    PubMed

    LowKam, Clotilde; Liotard, Brigitte; Sygusch, Jurgen

    2010-07-02

    Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (alpha/beta)(8) fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys(205), different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2-C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.

  10. Structure of a Class I Tagatose-1,6-bisphosphate Aldolase

    PubMed Central

    LowKam, Clotilde; Liotard, Brigitte; Sygusch, Jurgen

    2010-01-01

    Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (α/β)8 fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys205, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2–C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase. PMID:20427286

  11. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    PubMed Central

    Oikonomakos, N. G.; Zographos, S. E.; Tsitsanou, K. E.; Johnson, L. N.; Acharya, K. R.

    1996-01-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550

  12. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 degrees C. Three-dimensional structure of a treated serine proteinase at 2.2 A resolution.

    PubMed

    Gupta, M N; Tyagi, R; Sharma, S; Karthikeyan, S; Singh, T P

    2000-05-15

    The enzyme behavior in anhydrous media has important applications in biotechnology. So far chemical modifications and protein engineering have been used to alter the catalytic power of the enzymes. For the first time, it is demonstrated that an exposure of enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes: proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin have been exposed to acetonitrile at 70 degrees C for three hours. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, the structure of one of these treated enzymes, proteinase K has been analyzed in detail using X-ray diffraction method. The overall structure of the enzyme is similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad is intact after the treatment. However, the water structure in the substrate binding site undergoes some rearrangement as some of the water molecules are either displaced or completely absent. The most striking observation concerning the water structure pertains to the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules are located in the recognition site. The sites occupied by acetonitrile molecules are independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. All of them are interlinked through water molecules. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu-96, Ile-107, and Leu-133. The development of such a hydrophobic environment at the recognition site introduces a striking conformation change in Ile-107 by rotating its side chain about C(alpha)--C(beta) bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar change has earlier been observed in proteinase K when it is complexed to a substrate analog lactoferrin fragment.

  13. Crystal structures of yellowtail ascites virus VP4 protease: trapping an internal cleavage site trans acyl-enzyme complex in a native Ser/Lys dyad active site.

    PubMed

    Chung, Ivy Yeuk Wah; Paetzel, Mark

    2013-05-03

    Yellowtail ascites virus (YAV) is an aquabirnavirus that causes ascites in yellowtail, a fish often used in sushi. Segment A of the YAV genome codes for a polyprotein (pVP2-VP4-VP3), where processing by its own VP4 protease yields the capsid protein precursor pVP2, the ribonucleoprotein-forming VP3, and free VP4. VP4 protease utilizes the rarely observed serine-lysine catalytic dyad mechanism. Here we have confirmed the existence of an internal cleavage site, preceding the VP4/VP3 cleavage site. The resulting C-terminally truncated enzyme (ending at Ala(716)) is active, as shown by a trans full-length VP4 cleavage assay and a fluorometric peptide cleavage assay. We present a crystal structure of a native active site YAV VP4 with the internal cleavage site trapped as trans product complexes and trans acyl-enzyme complexes. The acyl-enzyme complexes confirm directly the role of Ser(633) as the nucleophile. A crystal structure of the lysine general base mutant (K674A) reveals the acyl-enzyme and empty binding site states of VP4, which allows for the observation of structural changes upon substrate or product binding. These snapshots of three different stages in the VP4 protease reaction mechanism will aid in the design of anti-birnavirus compounds, provide insight into previous site-directed mutagenesis results, and contribute to understanding of the serine-lysine dyad protease mechanism. In addition, we have discovered that this protease contains a channel that leads from the enzyme surface (adjacent to the substrate binding groove) to the active site and the deacylating water.

  14. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Thermostability of glucose oxidase in silica gel obtained by sol-gel method and in solution studied by fluorimetric method.

    PubMed

    Przybyt, Małgorzata; Miller, Ewa; Szreder, Tomasz

    2011-04-04

    The thermostability of glucose oxidase entrapped in silica gel obtained by sol-gel method was studied by thermostimulated fluorescence of FAD at pH 5 and 7 and compared with that of the native enzyme in the solution and at the presence of ethanol. The unfolding temperatures were found to be lower for the enzyme immobilised in gel as compared with the native enzyme but higher as for the enzyme at the presence of ethanol. In gel, the thermal denaturation of glucose oxidase is independent on pH while in solution the enzyme is more stable at pH 5. The investigation the enzyme in different environment by steady-state fluorescence of FAD and tryptophan, synchronous fluorescence and time-resolved fluorescence of tryptophan indicates that the state of the molecule (tertiary structure and molecular dynamics) is different in gel and in solution. The ethanol produced during gel precursor hydrolysis is not the main factor influencing the thermostability of the enzyme but more important are interactions of the protein with the gel lattice. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Computational Design of a Thermostable Mutant of Cocaine Esterase via Molecular Dynamics Simulations

    PubMed Central

    Huang, Xiaoqin; Gao, Daquan; Zhan, Chang-Guo

    2015-01-01

    Cocaine esterase (CocE) has been known as the most efficient native enzyme for metabolizing the naturally occurring cocaine. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only ~11 min at physiological temperature (37°C). It is highly desirable to develop a thermostable mutant of CocE for therapeutic treatment of cocaine overdose and addiction. To establish a structure-thermostability relationship, we carried out molecular dynamics (MD) simulations at 400 K on wild-type CocE and previously known thermostable mutants, demonstrating that the thermostability of the active form of the enzyme correlates with the fluctuation (characterized as the RMSD and RMSF of atomic positions) of the catalytic residues (Y44, S117, Y118, H287, and D259) in the simulated enzyme. In light of the structure-thermostability correlation, further computational modeling including MD simulations at 400 K predicted that the active site structure of the L169K mutant should be more thermostable. The prediction has been confirmed by wet experimental tests showing that the active form of the L169K mutant had a half-life of 570 min at 37°C, which is significantly longer than those of the wild-type and previously known thermostable mutants. The encouraging outcome suggests that the high-temperature MD simulations and the structure-thermostability may be considered as a valuable tool for computational design of thermostable mutants of an enzyme. PMID:21373712

  17. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation.

    PubMed

    Velazquez Camacho, Oscar; Galan, Carmen; Swist-Rosowska, Kalina; Ching, Reagan; Gamalinda, Michael; Karabiber, Fethullah; De La Rosa-Velazquez, Inti; Engist, Bettina; Koschorz, Birgit; Shukeir, Nicholas; Onishi-Seebacher, Megumi; van de Nobelen, Suzanne; Jenuwein, Thomas

    2017-08-01

    The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.

  18. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  19. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions

    PubMed Central

    Manikandan, Karuppasamy; Bhardwaj, Amit; Gupta, Naveen; Lokanath, Neratur K.; Ghosh, Amit; Reddy, Vanga Siva; Ramakumar, Suryanarayanarao

    2006-01-01

    Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Å of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure of BSX with those of other thermostable GH10 xylanases optimally active at acidic or close to neutral pH showed that the solvent-exposed acidic amino acids, Asp and Glu, are markedly enhanced in BSX, while solvent-exposed Asn was noticeably depleted. The BSX crystal structure when compared with putative three-dimensional homology models of other extracellular alkalophilic GH10 xylanases from alkalophilic organisms suggests that a protein surface rich in acidic residues may be an important feature common to these alkali thermostable enzymes. A comparison of the surface features of BSX and of halophilic proteins allowed us to predict the activity of BSX at high salt concentrations, which we verified through experiments. This offered us important lessons in the polyextremophilicity of proteins, where understanding the structural features of a protein stable in one set of extreme conditions provided clues about the activity of the protein in other extreme conditions. The work brings to the fore the role of the nature and composition of solvent-exposed residues in the adaptation of enzymes to polyextreme conditions, as in BSX. PMID:16823036

  20. Systematic optimization model and algorithm for binding sequence selection in computational enzyme design

    PubMed Central

    Huang, Xiaoqiang; Han, Kehang; Zhu, Yushan

    2013-01-01

    A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions. PMID:23649589

  1. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes

    PubMed Central

    Mulder, Monique P.C.; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N.; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C.O.; Schulman, Brenda A.; Komander, David; Neefjes, Jacques; Oualid, Farid El; Ovaa, Huib

    2016-01-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers, orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a staggering breadth of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Akin to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe ‘hops’ and ‘traps’ catalytically active ubiquitin-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activities in living cells, presents novel and versatile tools to interrogate the Ub/Ubl cascades. PMID:27182664

  2. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2007-06-01

    Molecular dynamics simulations, using the AMBER force field, were performed to study Quercetin 2,3-Dioxygenase enzyme (Quercetinase or 2,3QD). We have analyzed the structural modifications of the active site and of the linker region between the native enzyme and the enzyme-substrate complex. New structural informations, such as an allosteric effect in the presence of the substrate, as well as description of the enzyme-substrate interactions and values of binding free energies were brought out. All these results confirm the idea that the linker encloses the substrate in the active site and also enlighten the recognition role of the substrate B-ring by the enzyme. Moreover, a specific interaction scheme has been proposed to explain the relative degradation rate of various flavonoid compounds under the oxygenolysis reaction catalyzed by the Quercetin 2,3-Dioxygenase enzyme. 2007 Wiley-Liss, Inc.

  3. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    PubMed

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.

    PubMed

    Sharma, S; Tyagi, R; Gupta, M N; Singh, T P

    2001-01-01

    For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar change had earlier been observed in proteinase K when it was complexed to a substrate analogue, lactoferrin fragment.

  5. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biochemical characterization of Aspergillus oryzae native tannase and the recombinant enzyme expressed in Pichia pastoris.

    PubMed

    Mizuno, Toshiyuki; Shiono, Yoshihito; Koseki, Takuya

    2014-10-01

    In this study, the biochemical properties of the recombinant tannase from Aspegillus oryzae were compared with those of the native enzyme. Extracellular native tannase was purified from a commercial enzyme source. Recombinant tannase highly expressed in Pichia pastoris was prepared as an active extracellular protein. Purified native and recombinant tannases produced smeared bands with apparent molecular masses of 45-80 kDa and 45-75 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After N-deglycosylation, the native enzyme yielded molecular masses of 33 kDa and 30 kDa, whereas the recombinant enzyme yielded molecular masses of 34 kDa and 30 kDa. Purified native and recombinant tannases had an optimum pH of 4.0-5.0 and 5.0, respectively, and were stable up to 40°C. After N-deglycosylation, both enzymes exhibited reduced thermostability. Catalytic efficiencies of both purified enzymes were greater with natural substrates, such as (-)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallates, than those with synthetic substrates, such as methyl, ethyl, and propyl gallates. However, there were no activities against the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids, which indicate feruloyl esterase activity, or the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid, which indicate paraben hydrolase activity. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Computational design of a thermostable mutant of cocaine esterase via molecular dynamics simulations.

    PubMed

    Huang, Xiaoqin; Gao, Daquan; Zhan, Chang-Guo

    2011-06-07

    Cocaine esterase (CocE) has been known as the most efficient native enzyme for metabolizing naturally occurring cocaine. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only ∼11 min at physiological temperature (37 °C). It is highly desirable to develop a thermostable mutant of CocE for therapeutic treatment of cocaine overdose and addiction. To establish a structure-thermostability relationship, we carried out molecular dynamics (MD) simulations at 400 K on wild-type CocE and previously known thermostable mutants, demonstrating that the thermostability of the active form of the enzyme correlates with the fluctuation (characterized as the root-mean square deviation and root-mean square fluctuation of atomic positions) of the catalytic residues (Y44, S117, Y118, H287, and D259) in the simulated enzyme. In light of the structure-thermostability correlation, further computational modelling including MD simulations at 400 K predicted that the active site structure of the L169K mutant should be more thermostable. The prediction has been confirmed by wet experimental tests showing that the active form of the L169K mutant had a half-life of 570 min at 37 °C, which is significantly longer than those of the wild-type and previously known thermostable mutants. The encouraging outcome suggests that the high-temperature MD simulations and the structure-thermostability relationship may be considered as a valuable tool for the computational design of thermostable mutants of an enzyme.

  8. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Zhen; Horton, John R.; Cheng, Xiadong

    2009-11-02

    Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer.more » The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.« less

  9. Influence of pH on the Structure and Function of Kiwi Pectin Methylesterase Inhibitor.

    PubMed

    Bonavita, Alessandro; Carratore, Vitale; Ciardiello, Maria Antonietta; Giovane, Alfonso; Servillo, Luigi; D'Avino, Rossana

    2016-07-27

    Pectin methylesterase is a pectin modifying enzyme that plays a key role in plant physiology. It is also an important quality-related enzyme in plant-based food products. The pectin methylesterase inhibitor (PMEI) from kiwifruit inhibits this enzyme activity and is widely used as an efficient tool for research purposes and also recommended in the context of fruit and vegetable processing. Using several methodologies of protein biochemistry, including circular dichroism and fluorescence spectroscopy, chemical modifications, direct protein-sequencing, enzyme activity, and bioinformatics analysis of the crystal structure, this study demonstrates that conformational changes occur in kiwi PMEI by the pH rising over 6.0 bringing about structure loosening, exposure, and cleavage of a natively buried disulfide bond, unfolding and aggregation, ultimately determining the loss of ability of kiwi PMEI to bind and inhibit PME. pH-induced structural changes are prevented when PMEI is already engaged in complex or is in a solution of high ionic strength.

  10. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation

    PubMed Central

    Velazquez Camacho, Oscar; Galan, Carmen; Swist-Rosowska, Kalina; Ching, Reagan; Gamalinda, Michael; Karabiber, Fethullah; De La Rosa-Velazquez, Inti; Engist, Bettina; Koschorz, Birgit; Shukeir, Nicholas; Onishi-Seebacher, Megumi; van de Nobelen, Suzanne; Jenuwein, Thomas

    2017-01-01

    The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin. DOI: http://dx.doi.org/10.7554/eLife.25293.001 PMID:28760199

  11. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    PubMed

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  12. Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch.

    PubMed

    Tan, Xiaoyan; Li, Xiaoxi; Chen, Ling; Xie, Fengwei; Li, Lin; Huang, Jidong

    2017-04-01

    Breadfruit starch was subjected to heat-moisture treatment (HMT) at different moisture content (MC). HMT did not apparently change the starch granule morphology but decreased the molecular weight and increased the amylose content. With increased MC, HMT transformed the crystalline structure (B→A+B→A) and decreased the relative crystallinity. With ≥25% MC, the scattering peak at ca. 0.6nm -1 disappeared, suggesting the lamellar structure was damaged. Compared with native starch, HMT-modified samples showed greater thermostability. Increased MC contributed to a higher pasting temperature, lower viscosity, and no breakdown. The pasting temperature of native and HMT samples ranged from 68.8 to 86.2°C. HMT increased the slowly-digestible starch (SDS) and resistant starch (RS) contents. The SDS content was 13.24% with 35% MC, which was 10.25% higher than that of native starch. The increased enzyme resistance could be ascribed to the rearrangement of molecular chains and more compact granule structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An exo-β-(1→3)-D-galactanase from Streptomyces sp. provides insights into type II arabinogalactan structure

    PubMed Central

    Ling, Naomi X.-Y.; Lee, Joanne; Ellis, Miriam; Liao, Ming-Long; Mau, Shaio-Lim; Guest, David; Janssen, Peter H.; Kováč, Pavol; Bacic, Antony; Pettolino, Filomena A.

    2012-01-01

    An exo-β-(1→3)-D-galactanase (SGalase1) that specifically cleaves the β-(1→3)-D-galactan backbone of arabinogalactan-proteins (AGPs) was isolated from culture filtrates of a soil Streptomyces sp. Internal peptide sequence information was used to clone and recombinantly express the gene in E. coli. The molecular mass of the isolated enzyme was ~45 kDa, similar to the 48.2 kDa mass predicted from the amino acid sequence. The pI, pH and temperature optima for the enzyme were ~7.45, 3.8 and 48 °C, respectively. The native and recombinant enzymes specifically hydrolysed β-(1→3)-D-galacto-oligo- or poly-saccharides from the upstream (non-reducing) end, typical of an exo-acting enzyme. A second homologous Streptomyces gene (SGalase2) was also cloned and expressed. SGalase2 was similar in size (47.9 kDa) and enzyme activity to SGalase1 but differed in its pH optimum (pH 5). Both SGalase1 and SGalase2 are predicted to belong to the CAZy glycosyl hydrolase family GH 43 based on activity, sequence homology and phylogenetic analysis. The Km and Vmax of the native exo-β-(1→3)-D-galactanase for de-arabinosylated gum arabic (dGA) were 19 mg/ml and 9.7 μmol D-Gal/min/mg protein, respectively. The activity of these enzymes is well suited for the study of type II galactan structures and provides an important tool for the investigation of the biological role of AGPs in plants. De-arabinosylated gum arabic (dGA) was used as a model to investigate the use of these enzymes in defining type II galactan structure. Exhaustive hydrolysis of dGA resulted in a limited number of oligosaccharide products with a trisaccharide of Gal2GlcA1 predominating. PMID:22464224

  14. Preparation and biophysical characterization of recombinant Pseudomonas aeruginosa phosphorylcholine phosphatase.

    PubMed

    Beassoni, Paola R; Berti, Federico Pérez de; Otero, Lisandro H; Risso, Valeria A; Ferreyra, Raul G; Lisa, Angela T; Domenech, Carlos E; Ermácora, Mario R

    2010-06-01

    Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.

  15. Effects of Short-Term Set-Aside Management Practices on Soil Microorganism and Enzyme Activity in China.

    PubMed

    Li, Guangyu; Wu, Cifang

    2017-08-14

    Set-aside farmland can effectively improve the self-rehabilitation of arable soil. Long-term set-asides however cannot satisfy provisionment, therefore the use of short-term set-asides to restore cultivated soil is a better option. Few studies have compared short-term set-aside patterns, and the effects of set-asides on soil microbial community and enzyme enzymes. We analyzed the bacterial structure, microbial biomass carbon/nitrogen and enzyme activity of farmland soil under different set-aside regimes in the Yellow River Delta of China. Bacterial alpha diversity was relatively lower under only irrigation, and farmyard manure applications showed clear advantages. Set-asides should consider their influence on soil organic carbon and nitrogen, which were correlated with microbial community structure. Nitrospira (0.47-1.67%), Acidobacteria Gp6 (8.26-15.91%) and unclassified Burkholderiales (1.50-2.81%) were significantly altered ( p < 0.01). Based on functions of these genera, some set-aside patterns led to a relative balance in nitrogen and carbon turnover. Partial treatments showed a deficiency in organic matter. In addition, farmyard manure may lead to the increased consumption of organic matter, with the exception of native plants set-asides. Conventional farming (control group) displayed a significant enzyme activity advantage. Set-aside management practices guided soil microbial communities to different states. Integrated soil microbiota and the content of carbon and nitrogen, native plants with farmyard manure showed an equilibrium state relatively, which would be helpful to improve land quality in the short-term.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandao, T.; Robinson, H; Johnson, S

    Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presencemore » of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.« less

  17. Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes.

    PubMed

    Faulkner, Matthew; Rodriguez-Ramos, Jorge; Dykes, Gregory F; Owen, Siân V; Casella, Selene; Simpson, Deborah M; Beynon, Robert J; Liu, Lu-Ning

    2017-08-03

    Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering.

  18. A novel and efficient oxidative functionalization of lignin by layer-by-layer immobilised Horseradish peroxidase.

    PubMed

    Perazzini, Raffaella; Saladino, Raffaele; Guazzaroni, Melissa; Crestini, Claudia

    2011-01-01

    Horseradish peroxidase (HRP) was chemically immobilised onto alumina particles and coated by polyelectrolytes layers, using the layer-by-layer technique. The reactivity of the immobilised enzyme was studied in the oxidative functionalisation of softwood milled wood and residual kraft lignins and found higher than the free enzyme. In order to investigate the chemical modifications in the lignin structure, quantitative (31)P NMR was used. The immobilised HRP showed a higher reactivity with respect to the native enzyme yielding extensive depolymerisation of lignin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Effects of sorbitol and glycerol on the structure, dynamics, and stability of Mycobacterium tuberculosis pyrazinamidase.

    PubMed

    Khajehzadeh, Mehrnoosh; Mehrnejad, Faramarz; Pazhang, Mohammad; Doustdar, Farahnoosh

    2016-12-01

    Mycobacterium tuberculosis pyrazinamidase (PZase) is known an enzyme that is involved in degradation of pyrazinamide to ammonia and pyrazinoic acid. Pyrazinamide is an important first-line drug used in the short-course treatment of tuberculosis. Previous investigations have indicated that the pyrazinamide (PZA)-resistant M. tuberculosis strains are caused by point mutations in the PZase enzyme which is the activator of the prodrug PZA. Although the general fold of PZase was determined, the structural and functional properties of the enzyme in solution were not understood very well. In this study, the PZase enzyme was overexpressed and purified. In addition, two polyols, namely sorbitol and glycerol, were chosen to study their effects on the structure, dynamics, and stability of the enzyme. To gain a deeper insight, molecular dynamics simulation and spectroscopic methods, such as fluorescence spectroscopy and circular dichroism (CD), were used. The genes were cloned in Escherichia coli BL21 (DE3), harboring the recombinant pET-28a (+) plasmid, overexpressed and purified by Ni-NTA Sepharose. The far UV-visible CD spectra were measured by a Jasco-810 spectropolarimeter. The intrinsic fluorescence spectra were measured on a Cary Varian Eclipse spectrofluorometer. For molecular dynamics (MD) simulations, we have applied GROMACS4.6.5. The results showed that glycerol and sorbitol increased the enzyme activity up to 130% and 110%, respectively, at 37°C. The stability of PZase was decreased and the half-life was 20 min. Glycerol and sorbitol increased the PZase half-life to 99 min and 23 min, respectively. The far UV CD measurements of PZase indicated that the CD spectra in glycerol and sorbitol give rise to an increase in the content of α-helix and β-sheets elements. The average enzyme root mean square deviation (RMSD) in sorbitol solution was about 0.416nm, a value that is higher than the enzyme RMSD in the pure water (0.316). In dictionary of protein secondary structure (DSSP) results, we observed that the secondary structures of the protein are partially increased as compared to the native state in water. The experimental and simulation data clearly indicated that the polyols increased the PZase stabilization in the order: glycerol>sorbitol. It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions. Copyright © 2016.

  20. Interaction of divalent metal ions with Zn(2+)-glycerophosphocholine cholinephosphodiesterase from ox brain.

    PubMed

    Lee, K J; Kim, M R; Kim, Y B; Myung, P K; Sok, D E

    1997-12-01

    The effect of divalent metal ions on the activity of glycerophosphocholine cholinephosphodiesterse from ox brain was examined. Zn(2+)- and Co(2+)-glycerophosphocholine cholinephosphodiesterases were prepared from the exposure of apoenzyme to Zn2+ and Co2+, respectively, and the properties of two metallo-phosphodiesterases were compared to those of native phosphodiesterase. Although two metallo-enzymes were similar in expressing Km value, optimum pH or sensitivity to Cu2+, they differed in the susceptibility to the inhibition by thiocholine or tellurite; while Co(2+)-phosphodiesterase was more sensitive to tellurites, Zn(2+)-phosphodiesterase was more susceptible to inhibition by thiocholine. In addition, Zn(2+)-phosphodiesterase was more thermo-stable than Co2+ enzyme. Separately, when properties of native phosphodiesterase were compared to those of each metallo-phosphodiesterase, native phosphodiesterase was found to be quite similar to Zn(2+)-phosphodiesterase in many respects. Even in thermo-stability, native enzyme resembled Zn(2+)-phosphodiesterase rather than Co(2+)-enzyme. Consistent with this, the stability of native phosphodiesterase was maintained in the presence of Zn2+, but not Co2+, Mn2+ was also as effective as Zn2+ in the stabilization of the enzyme. Noteworthy, the native enzyme was found to be inhibited competitively by Cu2+ with a Ki value of 20 microM, and its inhibitory action was antagonized effectively by Zn2+ or Co2+. Also, choline, another competitive inhibitor of the enzyme, appeared to antagonize the inhibitory action of Cu2+. Taken together, it is suggested that there may be multiple binding sites for divalent metal ions in the molecule of glycerophosphocholine cholinephosphodiesterase.

  1. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase.

    PubMed

    Isupov, Michail N; Schröder, Ewald; Gibson, Robert P; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A; McGhie, Emma J; Sayer, Christopher; Davenport, Colin F; Lau, Peter C; Hasegawa, Yoshie; Iwaki, Hiroaki; Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T; Bourenkov, Gleb; Littlechild, Jennifer A

    2015-11-01

    The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.

  2. Structural modification of polysaccharides: A biochemical-genetic approach

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  3. Elucidation of the iron(IV)–oxo intermediate in the non-haem iron halogenase SyrB2

    PubMed Central

    Wong, Shaun D.; Srnec, Martin; Matthews, Megan L.; Liu, Lei V.; Kwak, Yeonju; Park, Kiyoung; Bell, Caleb B.; Alp, E. Ercan; Zhao, Jiyong; Yoda, Yoshitaka; Kitao, Shinji; Seto, Makoto; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.

    2013-01-01

    SUMMARY Mononuclear non-haem iron (NHFe) enzymes catalyse a wide variety of oxidative reactions including halogenation, hydroxylation, ring closure, desaturation, and aromatic ring cleavage. These are highly important for mammalian somatic processes such as phenylalanine metabolism, production of neurotransmitters, hypoxic response, and the biosynthesis of natural products.1–3 The key reactive intermediate in the catalytic cycles of these enzymes is an S = 2 FeIV=O species, which has been trapped for a number of NHFe enzymes4–8 including the halogenase SyrB2, the subject of this study. Computational studies to understand the reactivity of the enzymatic NHFe FeIV=O intermediate9–13 are limited in applicability due to the paucity of experimental knowledge regarding its geometric and electronic structures, which determine its reactivity. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes of Fe on the nature of the FeIV=O active site.14–16 Here we present the first NRVS structural characterisation of the reactive FeIV=O intermediate of a NHFe enzyme. This FeIV=O intermediate reacts via an initial H-atom abstraction step, with its subsquent halogenation (native) or hydroxylation (non-native) rebound reactivity being dependent on the substrate.17 A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate is able to direct the orientation of the FeIV=O intermediate, presenting specific frontier molecular orbitals (FMOs) which can activate the selective halogenation versus hydroxylation reactivity. PMID:23868262

  4. Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils

    PubMed Central

    Flynn, Brendan P.; Tilburey, Graham E.

    2013-01-01

    It has been established that the enzyme susceptibility of collagen, the predominant load-bearing protein in vertebrates, is altered by applied tension. However, whether tensile force increases or decreases the susceptibility to enzyme is a matter of contention. It is critical to establish a definitive understanding of the direction and magnitude of the force versus catalysis rate (kC) relationship if we are to properly interpret connective tissue development, growth, remodeling, repair, and degeneration. In this investigation, we examine collagen/enzyme mechanochemistry at the smallest scale structurally relevant to connective tissue: the native collagen fibril. A single-fibril mechanochemical erosion assay with nN force resolution was developed which permits detection of the loss of a few layers of monomer from the fibril surface. Native type I fibrils (bovine) held at three levels of tension were exposed to Clostridium histolyticum collagenase A. Fibrils held at zero-load failed rapidly and consistently (20 min) while fibrils at 1.8 pN/monomer failed more slowly (35–55 min). Strikingly, fibrils at 23.9 pN/monomer did not exhibit detectable degradation. The extracted force versus kC data were combined with previous single-molecule results to produce a “master curve” which suggests that collagen degradation is governed by an extremely sensitive mechanochemical switch. PMID:22584606

  5. Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia

    PubMed Central

    Hiblot, Julien; Bzdrenga, Janek; Champion, Charlotte; Chabriere, Eric; Elias, Mikael

    2015-01-01

    A new representative of the Phosphotriesterase-Like Lactonases (PLLs) family from the hyperthermophilic crenarchaeon Vulcanisaeta moutnovskia has been characterized and crystallized. VmoLac is a native, proficient lactonase with promiscuous, low phosphotriesterase activity. VmoLac therefore represents an interesting candidate for engineering studies, with the aim of developing an efficient bacterial quorum-quenching agent. Here, we provide an extensive biochemical and kinetic characterization of VmoLac and describe the X-ray structures of the enzyme bound to a fatty acid and to its cognate substrate 3-oxo-C10 AHL (Acyl-Homoserine Lactone). The structures highlight possible structural determinants that may be involved in its extreme thermal stability (Tm = 128°C). Moreover, the structure reveals that the substrate binding mode of VmoLac significantly differs from those of its close homologues, possibly explaining the substrate specificity of the enzyme. Finally, we describe the specific interactions between the enzyme and its substrate, and discuss the possible lactone hydrolysis mechanism of VmoLac. PMID:25670483

  6. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model.more » The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.« less

  7. Active site dynamics of ribonuclease.

    PubMed Central

    Brünger, A T; Brooks, C L; Karplus, M

    1985-01-01

    The stochastic boundary molecular dynamics method is used to study the structure, dynamics, and energetics of the solvated active site of bovine pancreatic ribonuclease A. Simulations of the native enzyme and of the enzyme complexed with the dinucleotide substrate CpA and the transition-state analog uridine vanadate are compared. Structural features and dynamical couplings for ribonuclease residues found in the simulation are consistent with experimental data. Water molecules, most of which are not observed in crystallographic studies, are shown to play an important role in the active site. Hydrogen bonding of residues with water molecules in the free enzyme is found to mimic the substrate-enzyme interactions of residues involved in binding. Networks of water stabilize the cluster of positively charged active site residues. Correlated fluctuations between the uridine vanadate complex and the distant lysine residues are mediated through water and may indicate a possible role for these residues in stabilizing the transition state. Images PMID:3866234

  8. Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation.

    PubMed

    Kivi, Rait; Loog, Mart; Jemth, Per; Järv, Jaak

    2013-10-01

    Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].

  9. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments

    DOE PAGES

    Chavali, Balagopalakrishna; Masquelin, Thierry; Nilges, Mark J.; ...

    2015-05-19

    As an early visitor to the injured loci, neutrophil-derived human Myeloperoxidase (hMPO) offers an attractive protein target to modulate the inflammation of the host tissue through suitable inhibitors. We describe a novel methodology of using low temperature ESR spectroscopy (6 K) and FAST™ technology to screen a diverse series of small molecules that inhibit the peroxidase function through reversible binding to the native state of MPO. Also, our initial efforts to profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide (AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but spurious inhibitors that either do not bindmore » to the heme pocket in the enzyme or retain high (>50 %) anti oxidant potential. Such molecules when taken forward for X-ray did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct binding to the native state enzyme, by measuring the binding-induced shift in the electronic parameter g to rank order the molecules. Molecules with a higher rank order—those with g-shift R relative ≥15—yielded well-formed protein-bound crystals (n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals that the chlorophenyl group projects away from the heme along the edges of the Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access to the heme by the substrates like H 2O 2. Both ESR and antioxidant screens were used to derive the mechanism of action (reversibility, competitive substrate inhibition, and percent antioxidant potential). In conclusion, our results point to a viable path forward to target the native state of MPO to tame local inflammation.« less

  10. Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris.

    PubMed

    Cedillo, Víctor Barba; Plou, Francisco J; Martínez, María Jesús

    2012-06-07

    The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity towards p-nitrophenol, glycerol and sterol esters. Its hydrolytic activity on natural mixtures of triglycerides and sterol esters has been proposed for pitch biocontrol in paper industry since these compounds produce important economic losses during paper pulp manufacture. Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris, and the hydrolytic activity of the recombinant protein (OPE*) studied. After the initial screening of different clones expressing the enzyme, only one was selected for showing the highest production rate. Different culture conditions were tested to improve the expression of the recombinant enzyme. Complex media were better than minimal media for production, but in any case the levels of enzymatic activity were higher (7-fold in the best case) than those obtained from O. piceae. The purified enzyme had a molecular mass of 76 kDa, higher than that reported for the native enzyme under SDS-PAGE (60 kDa). Steady-state kinetic characterization of the recombinant protein showed improved catalytic efficiency for this enzyme as compared to the native one, for all the assayed substrates (p-nitrophenol, glycerol, and cholesterol esters). Different causes for this were studied, as the increased glycosylation degree of the recombinant enzyme, their secondary structures or the oxidation of methionine residues. However, none of these could explain the improvements found in the recombinant protein. N-terminal sequencing of OPE* showed that two populations of this enzyme were expressed, having either 6 or 8 amino acid residues more than the native one. This fact affected the aggregation behaviour of the recombinant protein, as was corroborated by analytical ultracentrifugation, thus improving the catalytic efficiency of this enzyme. P. pastoris resulted to be an optimum biofactory for the heterologous production of recombinant sterol esterase from O. piceae, yielding higher activity levels than those obtained with the saprophytic fungus. The enzyme showed improved kinetic parameters because of its modified N-terminus, which allowed changes in its aggregation behaviour, suggesting that its hydrophobicity has been modified.

  11. Improvement of activity and stability of chloroperoxidase by chemical modification

    PubMed Central

    Liu, Jian-Zhong; Wang, Min

    2007-01-01

    Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF), modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications. PMID:17511866

  12. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions.

    PubMed

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-04-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. © 2014 The Protein Society.

  13. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity.

    PubMed

    Saliou, Jean-Michel; Manival, Xavier; Tillault, Anne-Sophie; Atmanene, Cédric; Bobo, Claude; Branlant, Christiane; Van Dorsselaer, Alain; Charpentier, Bruno; Cianférani, Sarah

    2015-08-01

    Site-specific isomerization of uridines into pseudouridines in RNAs is catalyzed either by stand-alone enzymes or by box H/ACA ribonucleoprotein particles (sno/sRNPs). The archaeal box H/ACA sRNPs are five-component complexes that consist of a guide RNA and the aCBF5, aNOP10, L7Ae, and aGAR1 proteins. In this study, we performed pairwise incubations of individual constituents of archaeal box H/ACA sRNPs and analyzed their interactions by native MS to build a 2D-connectivity map of direct binders. We describe the use of native MS in combination with ion mobility-MS to monitor the in vitro assembly of the active H/ACA sRNP particle. Real-time native MS was used to monitor how box H/ACA particle functions in multiple-turnover conditions. Native MS also unambiguously revealed that a substrate RNA containing 5-fluorouridine (f(5) U) was hydrolyzed into 5-fluoro-6-hydroxy-pseudouridine (f(5) ho(6) Ψ). In terms of enzymatic mechanism, box H/ACA sRNP was shown to catalyze the pseudouridylation of a first RNA substrate, then to release the RNA product (S22 f(5) ho(6) ψ) from the RNP enzyme and reload a new substrate RNA molecule. Altogether, our native MS-based approaches provide relevant new information about the potential assembly process and catalytic mechanism of box H/ACA RNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    PubMed Central

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  15. Stabilization of a metastable state of Torpedo californica acetylcholinesterase by chemical chaperones

    PubMed Central

    Millard, Charles B.; Shnyrov, Valery L.; Newstead, Simon; Shin, Irina; Roth, Esther; Silman, Israel; Weiner, Lev

    2003-01-01

    Chemical modification of Torpedo californica acetylcholinesterase by the natural thiosulfinate allicin produces an inactive enzyme through reaction with the buried cysteine Cys 231. Optical spectroscopy shows that the modified enzyme is “native-like,” and inactivation can be reversed by exposure to reduced glutathione. The allicin-modified enzyme is, however, metastable, and is converted spontaneously and irreversibly, at room temperature, with t1/2 ≃ 100 min, to a stable, partially unfolded state with the physicochemical characteristics of a molten globule. Osmolytes, including trimethylamine-N-oxide, glycerol, and sucrose, and the divalent cations, Ca2+, Mg2+, and Mn2+ can prevent this transition of the native-like state for >24 h at room temperature. Trimethylamine-N-oxide and Mg2+ can also stabilize the native enzyme, with only slight inactivation being observed over several hours at 39°C, whereas in their absence it is totally inactivated within 5 min. The stabilizing effects of the osmolytes can be explained by their differential interaction with the native and native-like states, resulting in a shift of equilibrium toward the native state. The stabilizing effects of the divalent cations can be ascribed to direct stabilization of the native state, as supported by differential scanning calorimetry. PMID:14500892

  16. Stabilization of a protein conferred by an increase in folded state entropy.

    PubMed

    Dagan, Shlomi; Hagai, Tzachi; Gavrilov, Yulian; Kapon, Ruti; Levy, Yaakov; Reich, Ziv

    2013-06-25

    Entropic stabilization of native protein structures typically relies on strategies that serve to decrease the entropy of the unfolded state. Here we report, using a combination of experimental and computational approaches, on enhanced thermodynamic stability conferred by an increase in the configurational entropy of the folded state. The enhanced stability is observed upon modifications of a loop region in the enzyme acylphosphatase and is achieved despite significant enthalpy losses. The modifications that lead to increased stability, as well as those that result in destabilization, however, strongly compromise enzymatic activity, rationalizing the preservation of the native loop structure even though it does not provide the protein with maximal stability or kinetic foldability.

  17. Introduction of unnatural amino acids into chalcone isomerase.

    PubMed

    Bednar, R A; McCaffrey, C; Shan, K

    1991-01-01

    The active site cysteine residue of chalcone isomerase was rapidly and selectively modified under denaturing conditions with a variety of electrophilic reagents. These denatured and modified enzyme were renatured to produce enzyme derivatives containing a series of unnatural amino acids in the active site. Addition of methyl, ethyl, butyl, heptyl, and benzyl groups to the cysteine sulfur does not abolish catalytic activity, although the activity decreases as the steric bulk of the amino acid side-chain increases. Modification of the cysteine to introduce a charged homoglutamate or a neutral homoglutamine analogue results in retention of 22% of the catalytic activity. Addition of a methylthio group (SMe) to the cysteine residue of native chalcone isomerase preserves 85% of the catalytic activity measured with 2',4',4-trihydroxychalcone, 2',4',6',4-tetrahydroxychalcone, or 2'-hydroxy-4-methoxychalcone as substrates. The competitive inhibition constant for 4',4-dihydroxychalcone, the substrate inhibition constant for 2',4',4-trihydroxychalcone, and other steady-state kinetic parameters for the methanethiolated enzyme are very similar to those of the native enzyme. The strong binding of 4',4-dihydroxychalcone to the methanethiolated enzyme shows that there is no steric repulsion between this modified amino acid residue and the substrate analogue. This structure-activity study clearly demonstrates that the active site cysteine residue does not function as an acid-base or nucleophilic group in producing the catalysis or substrate inhibition observed with chalcone isomerase. The method presented in this paper allows for the rapid introduction of a series of unnatural amino acids into the active site as a means of probing the structure-function relationship.

  18. Effects of Short-Term Set-Aside Management Practices on Soil Microorganism and Enzyme Activity in China

    PubMed Central

    Wu, Cifang

    2017-01-01

    Set-aside farmland can effectively improve the self-rehabilitation of arable soil. Long-term set-asides however cannot satisfy provisionment, therefore the use of short-term set-asides to restore cultivated soil is a better option. Few studies have compared short-term set-aside patterns, and the effects of set-asides on soil microbial community and enzyme enzymes. We analyzed the bacterial structure, microbial biomass carbon/nitrogen and enzyme activity of farmland soil under different set-aside regimes in the Yellow River Delta of China. Bacterial alpha diversity was relatively lower under only irrigation, and farmyard manure applications showed clear advantages. Set-asides should consider their influence on soil organic carbon and nitrogen, which were correlated with microbial community structure. Nitrospira (0.47–1.67%), Acidobacteria Gp6 (8.26–15.91%) and unclassified Burkholderiales (1.50–2.81%) were significantly altered (p < 0.01). Based on functions of these genera, some set-aside patterns led to a relative balance in nitrogen and carbon turnover. Partial treatments showed a deficiency in organic matter. In addition, farmyard manure may lead to the increased consumption of organic matter, with the exception of native plants set-asides. Conventional farming (control group) displayed a significant enzyme activity advantage. Set-aside management practices guided soil microbial communities to different states. Integrated soil microbiota and the content of carbon and nitrogen, native plants with farmyard manure showed an equilibrium state relatively, which would be helpful to improve land quality in the short-term. PMID:28805737

  19. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  20. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.

    PubMed

    Trevino, R J; Gliubich, F; Berni, R; Cianci, M; Chirgwin, J M; Zanotti, G; Horowitz, P M

    1999-05-14

    The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.

  1. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  2. Rational protein engineering in action: The first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evdokimov, Artem G.; Mekel, Marlene; Hutchings, Kim

    2008-07-08

    In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality -- they only diffracted X-rays to 3--5 {angstrom} resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2 {angstrom} or better. This methodology is discussed andmore » contrasted with the more traditional domain truncation approach.« less

  3. Caseoperoxidase, Mixed β-Casein-SDS-Hemin-Imidazole Complex: A Nano Artificial Enzyme

    PubMed Central

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S.; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A.; Sheibani, Nader; Moosavi-Movahedi, Ali A.

    2016-01-01

    A novel peroxidase-like artificial enzyme, named “caseoperoxidase”, was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and kcat performance towards the native horseradish peroxidase (HRP) demonstrated by the steady state kinetics using UV-Vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein), with a flexible structure and exalted hydrophobicity, was selected as an appropriate apo-protein for the heme active site using a homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation, and indicated that the obtained structure has a good protective role for the heme active-site. Additional further experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme. PMID:25562503

  4. Conformational changes of a chemically modified HRP: formation of a molten globule like structure at pH 5

    PubMed Central

    Bamdad, Kourosh; Ranjbar, Bijan; Naderi-Manesh, Hossein; Sadeghi, Mehdi

    2014-01-01

    Horseradish peroxidase is an all alpha-helical enzyme, which widely used in biochemistry applications mainly because of its ability to enhance the weak signals of target molecules. This monomeric heme-containing plant peroxidase is also used as a reagent for the organic synthesis, biotransformation, chemiluminescent assays, immunoassays, bioremediation, and treatment of wastewaters as well. Accordingly, enhancing stability and catalytic activity of this protein for biotechnological uses has been one of the important issues in the field of biological investigations in recent years. In this study, pH-induced structural alterations of native (HRP), and modified (MHRP) forms of Horseradish peroxidase have been investigated. Based on the results, dramatic loss of the tertiary structure and also the enzymatic activity for both forms of enzymes recorded at pH values lower than 6 and higher than 8. Ellipticiy measurements, however, indicated very slight variations in the secondary structure for MHRP at pH 5. Spectroscopic analysis also indicated that melting of the tertiary structure of MHRP at pH 5 starts at around 45 °C, which is associated to the pKa of His 42 that has a serious role in keeping of the heme prostethic group in its native position through natural hydrogen bond network in the enzyme structure. According to our data, a molten globule like structure of a chemically modified form of Horseradish peroxidase at pH 5 with initial steps of conformational transition in tertiary structure with almost no changes in the secondary structure has been detected. Despite of some conformational changes in the tertiary structure of MHRP at pH 5, this modified form still keeps its catalytic activity to some extent besides enhanced thermal stability. These findings also indicated that a molten globular state does not necessarily preclude efficient catalytic activity. PMID:26417287

  5. Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies.

    PubMed

    Elia, Francesco; Cantini, Francesca; Chiti, Fabrizio; Dobson, Christopher Martin; Bemporad, Francesco

    2017-06-20

    The acylphosphatase from Sulfolobus solfataricus (Sso AcP) is a globular protein able to aggregate in vitro from a native-like conformational ensemble without the need for a transition across the major unfolding energy barrier. This process leads to the formation of assemblies in which the protein retains its native-like structure, which subsequently convert into amyloid-like aggregates. Here, we investigate the mechanism by which Sso AcP aggregates in vivo to form bacterial inclusion bodies after expression in E. coli. Shortly after the initiation of expression, Sso AcP is incorporated into inclusion bodies as a native-like protein, still exhibiting small but significant enzymatic activity. Additional experiments revealed that this overall process of aggregation is enhanced by the presence of the unfolded N-terminal region of the sequence and by destabilization of the globular segment of the protein. At later times, the Sso AcP molecules in the inclusion bodies lose their native-like properties and convert into β-sheet-rich amyloid-like structures, as indicated by their ability to bind thioflavin T and Congo red. These results show that the aggregation behavior of this protein is similar in vivo to that observed in vitro, and that, at least for a predominant part of the protein population, the transition from a native to an amyloid-like structure occurs within the aggregate state. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS.

    PubMed

    Blanchard, Véronique; Frank, Martin; Leeflang, Bas R; Boelens, Rolf; Kamerling, Johannis P

    2008-03-18

    In glycoanalysis protocols, N-glycans from glycoproteins are most frequently released with peptide- N (4)-( N-acetyl-beta-glucosaminyl)asparagine amidase F (PNGase F). As the enzyme is an amidase, it cleaves the NH-CO linkage between the Asn side chain and the Asn-bound GlcNAc residue. Usually, the enzyme has a low activity, or is not active at all, on native glycoproteins. A typical example is native bovine pancreatic ribonuclease B (RNase B) with oligomannose-type N-glycans at Asn-34. However, native RNase BS, generated by subtilisin digestion of native RNase B, which comprises amino acid residues 21-124 of RNase B, is sensitive to PNGase F digestion. The same holds for carboxymethylated RNase B (RNase B (cm)). In this study, NMR spectroscopy and molecular modeling have been used to explain the differences in PNGase F activity for native RNase B, native RNase BS, and RNase B (cm). NMR analysis combined with literature data clearly indicated that the N-glycan at Asn-34 is more mobile in RNase BS than in RNase B. MD simulations showed that the region around Asn-34 in RNase B is not very flexible, whereby the alpha-helix of the amino acid residues 1-20 has a stabilizing effect. In RNase BS, the alpha-helix formed by amino acid residues 23-32 is significantly more flexible. Using these data, the possibilities for complex formation of both RNase B and RNase BS with PNGase F were studied, and a model for the RNase BS-PNGase F complex is proposed.

  7. Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis.

    PubMed

    Renirie, Rokus; Charnock, John M; Garner, C David; Wever, Ron

    2010-06-01

    Vanadium K-edge X-ray Absorption Spectra have been recorded for the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis at pH 6.0. The Extended X-ray Absorption Fine Structure (EXAFS) regions provide a refinement of previously reported crystallographic data; one short V=O bond (1.54A) is present in both forms. For the native enzyme, the vanadium is coordinated to two other oxygen atoms at 1.69A, another oxygen atom at 1.93A and the nitrogen of an imidazole group at 2.02A. In the peroxo-form, the vanadium is coordinated to two other oxygen atoms at 1.67A, another oxygen atom at 1.88A and the nitrogen of an imidazole group at 1.93A. When combined with the available crystallographic and kinetic data, a likely interpretation of the EXAFS distances is a side-on bound peroxide involving V-O bonds of 1.67 and 1.88A; thus, the latter oxygen would be 'activated' for transfer. The shorter V-N bond observed in the peroxo-form is in line with the previously reported stronger binding of the cofactor in this form of the enzyme. Reduction of the enzyme with dithionite has a clear influence on the spectrum, showing a change from vanadium(V) to vanadium(IV).

  8. Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation.

    PubMed

    Goldberg, M E; Expert-Bezançon, N; Vuillard, L; Rabilloud, T

    1996-01-01

    Attempts to renature proteins often yield aggregates rather than native protein. To minimize aggregation, low protein concentrations and/or solubilizing agents are used. Here, we test new solubilizing molecules, non-detergent sulphobetaines, to improve the renaturation of two very different enzymes, hen egg white lysozyme and bacterial beta-D-galactosidase. The renaturation was conducted in the presence of five different sulphobetaines and the yield of active enzyme was measured. The five sulphobetaines improved the yield of native lysozyme up to 12-fold. Some sulphobetaines improved the yield of galactosidase up to 80-fold, but one reduced it 100-fold. Non-detergent sulphobetaines strongly affect the balance between aggregation and folding. Their effect depends on their structure and on their interactions with folding intermediates. These results should serve as a basis for designing more efficient sulphobetaines; for designing improved renaturation protocols using existing sulphobetaines; and for characterizing folding intermediates that interact with sulphobetaines.

  9. The crystal structures of native hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 and of substrate and inhibitor complexes.

    PubMed

    Ferraroni, Marta; Da Vela, Stefano; Kolvenbach, Boris A; Corvini, Philippe F X; Scozzafava, Andrea

    2017-05-01

    The crystal structure of hydroquinone 1,2-dioxygenase, a Fe(II) ring cleaving dioxygenase from Sphingomonas sp. strain TTNP3, which oxidizes a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes, has been solved by Molecular Replacement, using the coordinates of PnpCD from Pseudomonas sp. strain WBC-3. The enzyme is a heterotetramer, constituted of two subunits α and two β of 19 and 38kDa, respectively. Both the two subunits fold as a cupin, but that of the small α subunit lacks a competent metal binding pocket. Two tetramers are present in the asymmetric unit. Each of the four β subunits in the asymmetric unit binds one Fe(II) ion. The iron ion in each β subunit is coordinated to three protein residues, His258, Glu264, and His305 and a water molecule. The crystal structures of the complexes with the substrate methylhydroquinone, obtained under anaerobic conditions, and with the inhibitors 4-hydroxybenzoate and 4-nitrophenol were also solved. The structures of the native enzyme and of the complexes present significant differences in the active site region compared to PnpCD, the other hydroquinone 1,2-dioxygenase of known structure, and in particular they show a different coordination at the metal center. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    PubMed Central

    Chandra, P. Manish; Brannigan, James A.; Prabhune, Asmita; Pundle, Archana; Turkenburg, Johan P.; Dodson, G. Guy; Suresh, C. G.

    2005-01-01

    The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme. PMID:16508111

  11. Enzyme dehydration using Microglassification™ preserves the protein's structure and function.

    PubMed

    Aniket; Gaul, David A; Bitterfield, Deborah L; Su, Jonathan T; Li, Victoria M; Singh, Ishita; Morton, Jackson; Needham, David

    2015-02-01

    Controlled enzyme dehydration using a new processing technique of Microglassification™ has been investigated. Aqueous solution microdroplets of lysozyme, α-chymotrypsin, catalase, and horseradish peroxidase were dehydrated in n-pentanol, n-octanol, n-decanol, triacetin, or butyl lactate, and changes in their structure and function were analyzed upon rehydration. Water solubility and microdroplet dissolution rate in each solvent decreased in the order: butyl lactate > n-pentanol > triacetin > n-octanol > n-decanol. Enzymes Microglassified™ in n-pentanol retained higher activity (93%-98%) than n-octanol (78%-85%) or n-decanol (75%-89%), whereas those Microglassified™ in triacetin (36%-75%) and butyl lactate (48%-79%) retained markedly lower activity. FTIR spectroscopy analyses showed α-helix to β-sheet transformation for all enzymes upon Microglassification™, reflecting a loss of bound water in the dried state; however, the enzymes reverted to native-like conformation upon rehydration. Accelerated stressed-storage tests using Microglassified™ lysozyme showed a significant (p < 0.01) decrease in enzymatic activity from 46,560 ± 2736 to 31,060 ± 4327 units/mg after 3 months of incubation; however, it was comparable to the activity of the lyophilized formulation throughout the test period. These results establish Microglassification™ as a viable technique for enzyme preservation without affecting its structure or function. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Structural characterization of MAPLE deposited lipase biofilm

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  13. Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica.

    PubMed

    Martelli, Tommaso; Ravera, Enrico; Louka, Alexandra; Cerofolini, Linda; Hafner, Manuel; Fragai, Marco; Becker, Christian F W; Luchinat, Claudio

    2016-01-04

    Among protein immobilization strategies, encapsulation in bioinspired silica is increasingly popular. Encapsulation offers high yields and the solid support is created through a protein-catalyzed polycondensation reaction that occurs under mild conditions. An integrated strategy is reported for the characterization of both the protein and bioinspired silica scaffold generated by the encapsulation of enzymes with an external silica-forming promoter or with the promoter expressed as a fusion to the enzyme. This strategy is applied to the catalytic domain of matrix metalloproteinase 12. Analysis reveals that the structure of the protein encapsulated by either method is not significantly altered with respect to the native form. The structural features of silica obtained by either strategy are also similar, but differ from those obtained by other approaches. In case of the covalently linked R5-enzyme construct, immobilization yields are higher. Encapsulation through a fusion protein, therefore, appears to be the method of choice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  15. Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1,6-bisphosphate.

    PubMed

    Gardberg, Anna; Abendroth, Jan; Bhandari, Janhavi; Sankaran, Banumathi; Staker, Bart

    2011-09-01

    Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=72.39, b=127.71, c=157.63 Å. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site.

  16. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walanj, Rupa; Young, Paul; Baker, Heather M.

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong tomore » the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.« less

  17. The Antibiotic CJ-15,801 is an Antimetabolite which Hijacks and then Inhibits CoA Biosynthesis

    PubMed Central

    van der Westhuyzen, Renier; Hammons, Justin C.; Meier, Jordan L.; Dahesh, Samira; Moolman, Wessel J. A.; Pelly, Stephen C.; Nizet, Victor; Burkart, Michael D.; Strauss, Erick

    2012-01-01

    SUMMARY The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics, and highlight CoA biosynthesis as a viable antimicrobial drug target. PMID:22633408

  18. Structured crowding and its effects on enzyme catalysis.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2013-01-01

    Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of protein-protein and protein-substrate interactions, and changes protein conformational dynamics. Collectively, these effects contribute to enzyme catalysis. Here we describe how crowding may bias the conformational change and dynamics of enzyme populations and in this way affect catalysis. Crowding effects have been studied using artificial crowding agents and in vivo-like environments. These studies revealed a correlation between protein dynamics and function in the crowded environment. We suggest that crowded environments be classified into uniform crowding and structured crowding. Uniform crowding represents random crowding conditions created by synthetic particles with a narrow size distribution. Structured crowding refers to the highly coordinated cellular environment, where proteins and other macromolecules are clustered and organized. In structured crowded environments the perturbation of protein thermal stability may be lower; however, it may still be able to modulate functions effectively and dynamically. Dynamic, allosteric enzymes could be more sensitive to cellular perturbations if their free energy landscape is flatter around the native state; on the other hand, if their free energy landscape is rougher, with high kinetic barriers separating deep minima, they could be more robust. Above all, cells are structured; and this holds both for the cytosol and for the membrane environment. The crowded environment is organized, which limits the search, and the crowders are not necessarily inert. More likely, they too transmit allosteric effects, and as such play important functional roles. Overall, structured cellular crowding may lead to higher enzyme efficiency and specificity.

  19. Roles of water molecules in bacteria and viruses

    NASA Astrophysics Data System (ADS)

    Cox, C. S.

    1993-02-01

    In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).

  20. LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3

    DOE PAGES

    Golczak, Marcin; Sears, Avery E.; Kiser, Philip D.; ...

    2014-11-10

    Cellular uptake of vitamin A, production of visual chromophore and triglyceride homeostasis in adipocytes depend on two representatives of the vertebrate N1pC/P60 protein family, lecithin:retinol acyltransferase (LRAT) and HRAS-like tumor suppressor 3 (HRASLS3). Both proteins function as lipid-metabolizing enzymes but differ in their substrate preferences and dominant catalytic activity. The mechanism of this catalytic diversity is not understood. In this paper, by using a gain-of-function approach, we identified a specific sequence responsible for the substrate specificity of N1pC/P60 proteins. A 2.2-Å crystal structure of the HRASLS3-LRAT chimeric enzyme in a thioester catalytic intermediate state revealed a major structural rearrangement accompaniedmore » by three-dimensional domain swapping dimerization not observed in native HRASLS proteins. Structural changes affecting the active site environment contributed to slower hydrolysis of the catalytic intermediate, supporting efficient acyl transfer. Finally, these findings reveal structural adaptation that facilitates selective catalysis and mechanism responsible for diverse substrate specificity within the LRAT-like enzyme family.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined.more » KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less

  2. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    PubMed Central

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  3. Native denaturation differential scanning fluorimetry: Determining the effect of urea using a quantitative real-time thermocycler.

    PubMed

    Childers, Christine L; Green, Stuart R; Dawson, Neal J; Storey, Kenneth B

    2016-09-01

    The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Thermostability in rubredoxin and its relationship to mechanical rigidity

    NASA Astrophysics Data System (ADS)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  5. On the specificity of a bacteriophage-borne endoglycanase for the native capsular polysaccharide produced by Klebsiella pneumoniae SK1 and its derived polymers.

    PubMed

    Cescutti, P; Paoletti, S

    1994-02-15

    The specificity of the endoglycanase associated with the bacteriophage phi SK1 particles was tested on the native capsular polysaccharide produced by Klebsiella pneumoniae serotype SK1 and on three chemically modified polymers derived from it. The primary structure of the SK1 capsular polysaccharide is: [formula: see text] and the beta 1-3 linkage between the glucose and the galactose residues is the one cleaved by the phage enzyme. The enzyme activity was assayed on the deacetylated polysaccharide and on two derivatives obtained by removal of both the side-chain sugars and of only the alpha-D-galactosyl unit, respectively. The endoglycanase was more active on the deacetylated polysaccharide than on the native one, suggesting that the presence of the acetyl groups interferes with the enzyme-polysaccharide interaction. A possible role of the acetyl groups in the control of the polysaccharide chain length and hence on the rheological behaviour of the capsule cannot be ruled out, as already indicated for other bacterial polysaccharides. On the contrary, the removal of the side chains, either complete or selective, caused the modification of the recognition site in such a way that the enzymatic depolymerization no longer occurred. Therefore, it can be inferred that the phi SK1 endoglycanase requires the presence of both the side chain sugars to exhibit its cleaving activity, although this latter is in the main chain.

  6. Native red electrophoresis--a new method suitable for separation of native proteins.

    PubMed

    Dráb, Tomáš; Kračmerová, Jana; Tichá, Ivana; Hanzlíková, Eva; Tichá, Marie; Ryšlavá, Helena; Doubnerová, Veronika; Maňásková-Postlerová, Pavla; Liberda, Jiří

    2011-12-01

    A new type of native electrophoresis was developed to separate and characterize proteins. In this modification of the native blue electrophoresis, the dye Ponceau Red S is used instead of Coomassie Brilliant Blue to impose uniform negative charge on proteins to enable their electrophoretic separation according to their relative molecular masses. As Ponceau Red S binds less tightly to proteins, in comparison with Coomassie Blue, it can be easily removed after the electrophoretic separation and a further investigation of protein properties is made possible (e.g. an enzyme detection or electroblotting). The tested proteins also kept their native properties (enzyme activity or aggregation state). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center.

    PubMed

    Arakawa, Takatoshi; Kawano, Yoshiaki; Kataoka, Shingo; Katayama, Yoko; Kamiya, Nobuo; Yohda, Masafumi; Odaka, Masafumi

    2007-03-09

    Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase.

  8. Structure-Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode.

    PubMed

    Miller, Lisa M; Keune, Willem-Jan; Castagna, Diana; Young, Louise C; Duffy, Emma L; Potjewyd, Frances; Salgado-Polo, Fernando; Engel García, Paloma; Semaan, Dima; Pritchard, John M; Perrakis, Anastassis; Macdonald, Simon J F; Jamieson, Craig; Watson, Allan J B

    2017-01-26

    Autotaxin (ATX) is a secreted enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) to the bioactive lysophosphatidic acid (LPA) and choline. The ATX-LPA signaling pathway is implicated in cell survival, migration, and proliferation; thus, the inhibition of ATX is a recognized therapeutic target for a number of diseases including fibrotic diseases, cancer, and inflammation, among others. Many of the developed synthetic inhibitors for ATX have resembled the lipid chemotype of the native ligand; however, a small number of inhibitors have been described that deviate from this common scaffold. Herein, we report the structure-activity relationships (SAR) of a previously reported small molecule ATX inhibitor. We show through enzyme kinetics studies that analogues of this chemotype are noncompetitive inhibitors, and by using a crystal structure with ATX we confirm the discrete binding mode.

  9. Extremophiles: developments of their special functions and potential resources.

    PubMed

    Fujiwara, Shinsuke

    2002-01-01

    Extremophilles are valuable resources in biotechnology. Enzymes from extremophiles are expected to fill the gap between biological and chemical processes due to their unusual properties. Especially enzymes from hyperthermophiles that can grow at above 90 degrees C were devoted owing to its extraordinary thermostability and denaturant tolerance. Screening trials of hyperthermophilic microorganisms were performed by a number of microbiologists and various unique strains were isolated from natural environments. One of the most successful uses of thermostable enzymes was DNA polymerase in the polymerase chain reaction (PCR). Thermostable enzymes are used in the chemical, food, pharmaceutical, paper and textile industries. Recombinant forms of thermostable enzymes that have been expressed in Escherichia coli are commonly utilized in industrial applications however their enzymatic characteristics and tertiary structure are different from the native ones produced in the original strains. In vitro heat treatment induces a structural conversion of the recombinant protein to its natural form. High temperature itself plays an important role in determining the specific characteristics and tertiary structure of the enzyme. Recent studies have revealed that hyperthermophiles can grow under numerous conditions not only in geothermal or deep-sea thermal environments. Technological advances have allowed DNA to be isolated from natural environments. Now genes could be isolated from microorganisms that have not been cultured. In this review, innovative approaches to hunt genes from natural environments without pure culturing of microorganisms are also discussed.

  10. Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus.

    PubMed Central

    Sun, M. M.; Tolliday, N.; Vetriani, C.; Robb, F. T.; Clark, D. S.

    1999-01-01

    In this paper, elevated pressures up to 750 atm (1 atm = 101 kPa) were found to have a strong stabilizing effect on two extremely thermophilic glutamate dehydrogenases (GDHs): the native enzyme from the hyperthermophile Pyrococcus furiosus (Pf), and a recombinant GDH mutant containing an extra tetrapeptide at the C-terminus (rGDHt). The presence of the tetrapeptide greatly destabilized the recombinant mutant at ambient pressure; however, the destabilizing effect was largely reversed by the application of pressure. Electron spin resonance (ESR) spectroscopy of a spin-label attached to the terminal cysteine of rGDHt revealed a high degree of mobility, suggesting that destabilization is due to weakened intersubunit ion-pair interactions induced by thermal fluctuations of the tetrapeptide. For both enzymes, the stabilizing effect of pressure increased with temperature as well as pressure, reaching 36-fold for rGDHt at 105 degrees C and 750 atm, the largest pressure-induced thermostabilization of an enzyme reported to date. Stabilization of both native GDH and rGDHt was also achieved by adding glycerol. Based on the kinetics of thermal inactivation and the known effects of glycerol on protein structure, a mechanism of pressure-induced thermostabilization is proposed. PMID:10338016

  11. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme.

    PubMed

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2015-01-01

    A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.

  12. Dissecting structural and electronic effects in inducible nitric oxide synthase.

    PubMed

    Hannibal, Luciana; Page, Richard C; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J

    2015-04-01

    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide a hydrogen bond for oxygen activation (O-O scission). We present a study of native iNOS compared with iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to those of their native counterparts. Single turnover reactions catalysed by iNOSoxy with L-Arg (first reaction step) or N-hydroxy-L-arginine (second reaction step) showed that mesohaem substitution triggered higher rates of Fe(II)O₂ conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared with the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency towards NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations.

  13. DISSECTING STRUCTURAL AND ELECTRONIC EFFECTS IN INDUCIBLE NITRIC OXIDE SYNTHASE

    PubMed Central

    Hannibal, Luciana; Page, Richard C.; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J.

    2015-01-01

    Nitric oxide synthases (NOS) are haem-thiolate enzymes that catalyse the conversion of L-Arginine (LArg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide an H-bond for oxygen activation (O-O scission). We present a comparative study of native iNOS versus iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to their native counterparts. Single turnover reactions catalysed by iNOSoxy with LArg (first reaction step) or N-hydroxyarginine (second reaction step) showed that mesohaem substitution triggered faster rates of FeIIO2 conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared to the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency toward NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations. PMID:25608846

  14. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.

    PubMed

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic efficiencies towards target reactions.

  15. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model

    PubMed Central

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic efficiencies towards target reactions. PMID:27243223

  16. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    PubMed Central

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes. PMID:26340621

  17. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    PubMed

    Borrelli, Grazia M; Trono, Daniela

    2015-09-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  18. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adney, William S.; Baker, John O.; Decker, Stephen R.

    2008-11-11

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation usingmore » purified Cel7A from Trichoderma reesei.« less

  19. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    DOEpatents

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2012-10-09

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A)) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  20. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    DOEpatents

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2008-11-11

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  1. Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1,6-bisphosphate

    PubMed Central

    Gardberg, Anna; Abendroth, Jan; Bhandari, Janhavi; Sankaran, Banumathi; Staker, Bart

    2011-01-01

    Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxy­acetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P212121, with unit-cell parameters a = 72.39, b = 127.71, c = 157.63 Å. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. PMID:21904049

  2. Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and Its Complexes with Moxalactam and Imipenem

    PubMed Central

    Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria

    2016-01-01

    BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower Km values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. PMID:27671060

  3. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production.

    PubMed

    Contreras-Hernández, M G; Ochoa-Martínez, L A; Rutiaga-Quiñones, J G; Rocha-Guzmán, N E; Lara-Ceniceros, T E; Contreras-Esquivel, J C; Prado Barragán, L A; Rutiaga-Quiñones, O M

    2018-02-01

    Approximately 1 million tons of agave plants are processed annually by the Mexican tequila and mezcal industry, generating vast amounts of agroindustrial solid waste. This type of lignocellulosic biomass is considered to be agroindustrial residue, which can be used to produce enzymes, giving it added value. However, the structure of lignocellulosic biomass makes it highly recalcitrant, and results in relatively low yield when used in its native form. The aim of this study was to investigate an effective pre-treatment method for the production of commercially important hydrolytic enzymes. In this work, the physical and chemical modification of Agave durangensis leaves was analysed using ultrasound and high temperature as pre-treatments, and production of enzymes was evaluated. The pre-treatments resulted in modification of the lignocellulosic structure and composition; the ultrasound pre-treatment improved the production of inulinase by 4 U/mg and cellulase by 0.297 U/mg, and thermal pre-treatment improved β-fructofuranosidase by 30 U/mg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Induced-fit Mechanism for Prolyl Endopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Chen, Changqing; Davies, David R.

    2010-11-15

    Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less

  5. Structural Characteristic of the Initial Unfolded State on Refolding Determines Catalytic Efficiency of the Folded Protein in Presence of Osmolytes

    PubMed Central

    Warepam, Marina; Sharma, Gurumayum Suraj; Dar, Tanveer Ali; Khan, Md. Khurshid Alam; Singh, Laishram Rajendrakumar

    2014-01-01

    Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes. PMID:25313668

  6. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2015-01-15

    Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.

  7. Structural properties of pyruvate carboxylases from chicken liver and other sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barden, R.E.; Taylor, B.L.; Isohashi, F.

    1975-11-01

    Varieties of pyruvate carboxylase (pyruvate: CO/sub 2/ ligase (ADP-forming), EC 6.4.1.1) obtained from the livers of several species of vertebrates, including humans, all show the same basic structure. They are composed of large polypeptide chains of molecular weights ranging from 1.2 to 1.3 x 10/sup 5/ for the different varieties of the enzyme. The native form of the enzyme appears to be a tetramer with a molecular weight of about 5 x 10/sup 5/. In the case of pyruvate carboxylase from chicken liver each polypeptide chain contains a biotin moiety, thus supporting the thesis that the tetramer contains four identicalmore » polypeptide chains. Pyruvate carboxylase from yeast appears to be basically similar to those from the vertebrate species and has a tetrameric structure. Each protomer contains a single polypeptide chain with a molecular weight of 1.25 x 10/sup 5/. In contrast, pyruvate carboxylase from two bacterial species, Pseudomonas citronellolis and Azotobacter vinelandii, appears to be a dimer with a molecular weight (2.5 x 10/sup 5/) about half that of the animal and yeast species. As a further difference, each of the protomers of the bacterial enzymes contain two polypeptides of 6.5 and 5.4 x 10/sup 5/ molecular weight in the case of the Pseudomonas enzyme. The larger of the two polypeptides contains the biotin moiety. The functional units of the bacterial enzyme thus appear to contain two polypeptides while that of the liver and yeast enzymes is made up of a single chain. Neither of these arrangements corresponds with those of other biotin enzymes whose structure has been extensively studied (acetyl-CoA carboxylases from liver or Escherichia coli, and transcarboxylase from Propionibacterium). (auth)« less

  8. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  9. Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris.

    PubMed

    Taura, Futoshi; Dono, Emi; Sirikantaramas, Supaart; Yoshimura, Kohji; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-09-28

    Delta(1)-Tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes the oxidative cyclization of cannabigerolic acid into THCA, the acidic precursor of Delta(1)-tetrahydrocannabinol. We developed a novel expression system for THCA synthase using a methylotrophic yeast Pichia pastoris as a host. Under optimized conditions, the transgenic P. pastoris secreted approximately 1.32nkat/l of THCA synthase activity, and the culture medium, from which the cells were removed, effectively synthesized THCA from cannabigerolic acid with a approximately 98% conversion rate. The secreted THCA synthase was readily purified to homogeneity. Interestingly, endoglycosidase treatment afforded a deglycosylated THCA synthase with more catalytic activity than that of the glycosylated form. The non-glycosylated THCA synthase should be suitable for structure-function studies because it displayed much more activity than the previously reported native enzyme from Cannabis sativa as well as the recombinant enzyme from insect cell cultures.

  10. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    PubMed Central

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  11. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    PubMed

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  12. Atomic resolution crystal structures and quantum chemistry meet to reveal subtleties of hydroxynitrile lyase catalysis.

    PubMed

    Schmidt, Andrea; Gruber, Karl; Kratky, Christoph; Lamzin, Victor S

    2008-08-01

    Hydroxynitrile lyases are versatile enzymes that enantiospecifically cope with cyanohydrins, important intermediates in the production of various agrochemicals or pharmaceuticals. We determined four atomic resolution crystal structures of hydroxynitrile lyase from Hevea brasiliensis: one native and three complexes with acetone, isopropyl alcohol, and thiocyanate. We observed distinct distance changes among the active site residues related to proton shifts upon substrate binding. The combined use of crystallography and ab initio quantum chemical calculations allowed the determination of the protonation states in the enzyme active site. We show that His(235) of the catalytic triad must be protonated in order for catalysis to proceed, and we could reproduce the cyanohydrin synthesis in ab initio calculations. We also found evidence for the considerable pK(a) shifts that had been hypothesized earlier. We envision that this knowledge can be used to enhance the catalytic properties and the stability of the enzyme for industrial production of enantiomerically pure cyanohydrins.

  13. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis.

    PubMed

    van der Westhuyzen, Renier; Hammons, Justin C; Meier, Jordan L; Dahesh, Samira; Moolman, Wessel J A; Pelly, Stephen C; Nizet, Victor; Burkart, Michael D; Strauss, Erick

    2012-05-25

    The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics and highlight CoA biosynthesis as a viable antimicrobial drug target. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Unraveling the Deleterious Effects of Cancer-Driven STK11 Mutants Through Conformational Sampling Approach.

    PubMed

    Lopus, Merlin; Paul, D Meshach; Rajasekaran, R

    2016-01-01

    Tumor suppressor gene, STK11, encodes for serine-threonine kinase, which has a critical role in regulating cell growth and apoptosis. Mutations of the same lead to the inactivation of STK11, which eventually causes different types of cancer. In this study, we focused on identifying those driver mutations through analyzing structural variations of mutants, viz., D194N, E199K, L160P, and Y49D. Native and the mutants were analyzed to determine their geometrical deviations such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, potential energy, and solvent-accessible surface area using conformational sampling technique. Additionally, the global minimized structure of native and mutants was further analyzed to compute their intramolecular interactions and distribution of secondary structure. Subsequently, simulated thermal denaturation and docking studies were performed to determine their structural variations, which in turn alter the formation of active complex that comprises STK11, STRAD, and MO25. The deleterious effect of the mutants would result in a comparative loss of enzyme function due to variations in their binding energy pertaining to spatial conformation and flexibility. Hence, the structural variations in binding energy exhibited by the mutants, viz., D194N, E199K, L160P, and Y49D, to that of the native, consequently lead to pathogenesis.

  15. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces

    PubMed Central

    2015-01-01

    Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy. PMID:25420087

  16. Enzymatic Conversion of CO2 to Bicarbonate in Functionalized Mesoporous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuehua; Chen, Baowei; Qi, Wen N.

    2012-05-01

    We report here that carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in functionalized mesoporous silica (FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) due to the dominant electrostatic interaction. The binding of CA to HOOC-FMS can result in the protein’s conformational change comparing to the enzyme free in solution, but can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency. The electrostatically bound CA can bemore » released by changing pH. The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. This work opens up a new approach converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.« less

  17. Strategies for microbial synthesis of high-value phytochemicals

    NASA Astrophysics Data System (ADS)

    Li, Sijin; Li, Yanran; Smolke, Christina D.

    2018-03-01

    Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.

  18. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis.

    PubMed

    de Almeida, Naomi M; Neumann, Sarah; Mesman, Rob J; Ferousi, Christina; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran; van Niftrik, Laura

    2015-07-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central membrane-bound "prokaryotic organelle" called the anammoxosome. The anammoxosome occupies most of the cell volume, has a curved membrane, and contains conspicuous tubule-like structures of unknown identity and function. It was suggested previously that the catalytic reactions of the anammox pathway occur in the anammoxosome, and that proton motive force was established across its membrane. Here, we used antibodies raised against five key enzymes of the anammox catabolism to determine their cellular location. The antibodies were raised against purified native hydroxylamine oxidoreductase-like protein kustc0458 with its redox partner kustc0457, hydrazine dehydrogenase (HDH; kustc0694), hydroxylamine oxidase (HOX; kustc1061), nitrite oxidoreductase (NXR; kustd1700/03/04), and hydrazine synthase (HZS; kuste2859-61) of the anammox bacterium Kuenenia stuttgartiensis. We determined that all five protein complexes were exclusively located inside the anammoxosome matrix. Four of the protein complexes did not appear to form higher-order protein organizations. However, the present data indicated for the first time that NXR is part of the tubule-like structures, which may stretch the whole length of the anammoxosome. These findings support the anammoxosome as the locus of catabolic reactions of the anammox pathway. Anammox bacteria are environmentally relevant microorganisms that contribute significantly to the release of fixed nitrogen in nature. Furthermore, the anammox process is applied for nitrogen removal from wastewater as an environment-friendly and cost-effective technology. These microorganisms feature a unique cellular organelle, the anammoxosome, which was proposed to contain the energy metabolism of the cell and tubule-like structures with hitherto unknown function. Here, we purified five native enzymes catalyzing key reactions in the anammox metabolism and raised antibodies against these in order to localize them within the cell. We showed that all enzymes were located within the anammoxosome, and nitrite oxidoreductase was located exclusively at the tubule-like structures, providing the first insights into the function of these subcellular structures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity.

    PubMed

    Kaltenbach, Miriam; Emond, Stephane; Hollfelder, Florian; Tokuriki, Nobuhiko

    2016-10-01

    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with "evolvability" was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and the emergence of generalist enzymes.

  20. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8.

    PubMed

    Hatta, Takashi; Mukerjee-Dhar, Gouri; Damborsky, Jiri; Kiyohara, Hohzoh; Kimbara, Kazuhide

    2003-06-13

    A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.

  1. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    PubMed

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-10-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme.

  2. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7

    NASA Astrophysics Data System (ADS)

    Zanphorlin, Leticia Maria; de Giuseppe, Priscila Oliveira; Honorato, Rodrigo Vargas; Tonoli, Celisa Caldana Costa; Fattori, Juliana; Crespim, Elaine; de Oliveira, Paulo Sergio Lopes; Ruller, Roberto; Murakami, Mario Tyago

    2016-03-01

    Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of β-glucosidases aiming at cold industrial processes.

  3. Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.

    PubMed Central

    Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M

    1975-01-01

    The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138

  4. Fish trypsins: potential applications in biomedicine and prospects for production.

    PubMed

    Jesús-de la Cruz, Kristal; Álvarez-González, Carlos Alfonso; Peña, Emyr; Morales-Contreras, José Antonio; Ávila-Fernández, Ángela

    2018-04-01

    In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli -based systems have been tested for the production of fish trypsins; however, P. pastoris -based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavva, S.R.; Harris, B.G.; Cook, P.F.

    A thiol group at the malate-binding site of the NAD-malic enzyme from Ascaris suum has been modified to thiocyanate. The modified enzyme generally exhibits slight increases in K{sub NAD} and K{sub i metal} and decreases in V{sub max} as the metal size increases from Mg{sup 2+} to Mn{sup 2+} to Cd{sup 2+}, indicative of crowding in the site. The K{sub malate} value increases 10- to 30-fold, suggesting that malate does not bind optimally to the modified enzyme. Deuterium isotope effects on V and V/K{sub malate} increase with all three metal ions compared to the native enzyme concomitant with a decreasemore » in the {sup 13}C isotope effect, suggesting a switch in the rate limitation of the hydride transfer and decarboxylation steps with hydride transfer becoming more rate limiting. The {sup 13}C effect decreases only slightly when obtained with deuterated malate, suggestive of the presence of a secondary {sup 13}C effect in the hydride transfer step, similar to data obtained with non-nicotinamide-containing dinucleotide substrates for the native enzyme (see the preceding paper in this issue). The native enzyme is inactivated in a time-dependent manner by Cd{sup 2+}. This inactivation occurs whether the enzyme alone is present or whether the enzyme is turning over with Cd{sup 2+} as the divalent metal activator. Upon inactivation, only Cd{sup 2+} ions are bound at high stoichiometry to the enzyme, which eventually becomes denatured. Conversion of the active-site thiol to thiocyanate makes it more difficult to inactivate the enzyme by treatment with Cd{sup 2+}.« less

  6. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Christine A.; Zhou, Mowei; Song, Yang

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase, Mnx, in Bacillus sp. PL-12 is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. However, MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant tomore » crystallization, so its structure is unknown. In this study, native mass spectrometry defines the subunit topology and copper binding of the Mnx complex, while high resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for conceptualizing how Mnx produces nanoparticulate Mn oxides.« less

  7. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  8. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE PAGES

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...

    2017-07-07

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  9. Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi.

    PubMed

    Badhan, Ajay; Huang, Jiangli; Wang, Yuxi; Abbott, D Wade; Di Falco, Marcos; Tsang, Adrian; McAllister, Tim

    2018-05-24

    In the present study, we have characterized high molecular weight multi-enzyme complexes in two commercial enzymes produced by Trichoderma reesei (Spezyme CP) and Penicillium funiculosum (Accellerase XC). We successfully identified 146-1000 kDa complexes using Blue native polyacrylamide gel electrophoresis (BN-PAGE) to fractionate the protein profile in both preparations. Identified complexes dissociated into lower molecular weight constituents when loaded on SDS PAGE. Unfolding of the secondary structure of multi-enzyme complexes with trimethylamine (pH >10) suggested that they were not a result of unspecific protein aggregation. Cellulase (CMCase) profiles of extracts of BN-PAGE fractionated protein bands confirmed cellulase activity within the multi-enzyme complexes. A microassay was used to identify protein bands that promoted high levels of glucose release from barley straw. Those with high saccharification yield were subjected to LC-MS analysis to identify the principal enzymatic activities responsible. The results suggest that secretion of proteins by aerobic fungi leads to the formation of high molecular weight multi-enzyme complexes that display activity against carboxymethyl cellulose and barley straw. Copyright © 2018. Published by Elsevier B.V.

  10. Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family[W

    PubMed Central

    Barleben, Leif; Panjikar, Santosh; Ruppert, Martin; Koepke, Juergen; Stöckigt, Joachim

    2007-01-01

    Strictosidine β-d-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of ∼2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases. PMID:17890378

  11. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  12. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.

    PubMed

    Fritz, Consuelo; Ferrer, Ana; Salas, Carlos; Jameel, Hasan; Rojas, Orlando J

    2015-12-14

    Understanding enzyme-substrate interactions is critical in designing strategies for bioconversion of lignocellulosic biomass. In this study we monitored molecular events, in situ and in real time, including the adsorption and desorption of cellulolytic enzymes on lignins and cellulose, by using quartz crystal microgravimetry and surface plasmon resonance. The effect of a nonionic surface active molecule was also elucidated. Three lignin substrates relevant to the sugar platform in biorefinery efforts were considered, namely, hardwood autohydrolysis cellulolytic (HWAH), hardwood native cellulolytic (MPCEL), and nonwood native cellulolytic (WSCEL) lignin. In addition, Kraft lignins derived from softwoods (SWK) and hardwoods (HWK) were used as references. The results indicated a high affinity between the lignins with both, monocomponent and multicomponent enzymes. More importantly, the addition of nonionic surfactants at concentrations above their critical micelle concentration reduced remarkably (by over 90%) the nonproductive interactions between the cellulolytic enzymes and the lignins. This effect was hypothesized to be a consequence of the balance of hydrophobic and hydrogen bonding interactions. Moreover, the reduction of surface roughness and increased wettability of lignin surfaces upon surfactant treatment contributed to a lower affinity with the enzymes. Conformational changes of cellulases were observed upon their adsorption on lignin carrying preadsorbed surfactant. Weak electrostatic interactions were determined in aqueous media at pH between 4.8 and 5.5 for the native cellulolytic lignins (MPCEL and WSCEL), whereby a ∼20% reduction in the enzyme affinity was observed. This was mainly explained by electrostatic interactions (osmotic pressure effects) between charged lignins and cellulases. Noteworthy, adsorption of nonionic surfactants onto cellulose, in the form cellulose nanofibrils, did not affect its hydrolytic conversion. Overall, our results highlight the benefit of nonionic surfactant pretreatment to reduce nonproductive enzyme binding while maintaining the reactivity of the cellulosic substrate.

  13. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the full variety of indigenous enzymatic activity of the activated sludge source material could not be restored, experimental modifications, e.g. different lysate filtration, significantly enhanced specific enzyme activities (e.g. >96% removal of the antibiotic erythromycin). Therefore, the approach presented in this study provides the experimental basis for a further elucidation of the enzymatic processes underlying wastewater treatment on the level of native proteins. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem.

    PubMed

    Pernot, L; Frénois, F; Rybkine, T; L'Hermite, G; Petrella, S; Delettré, J; Jarlier, V; Collatz, E; Sougakoff, W

    2001-07-20

    The therapeutic problems posed by class D beta-lactamases, a family of serine enzymes that hydrolyse beta-lactam antibiotics following an acylation-deacylation mechanism, are increased by the very low level of sensitivity of these enzymes to beta-lactamase inhibitors. To gain structural and mechanistic insights to aid the design of new inhibitors, we have determined the crystal structure of OXA-13 from Pseudomonas aeruginosa in the apo form and in complex with the carbapenem meropenem. The native form consisted of a dimer displaying an overall organisation similar to that found in the closely related enzyme OXA-10. In the acyl-enzyme complex, the positioning of the antibiotic appeared to be ensured mainly by (i) the covalent acyl bond and (ii) a strong salt-bridge involving the carboxylate moiety of the drug. Comparison of the structures of OXA-13 in the apo form and in complex with meropenem revealed an unsuspected flexibility in the region of the essential serine 115 residue, with possible consequences for the catalytic properties of the enzyme. In the apo form, the Ser115 side-chain is oriented outside the active site, whereas the general base Lys70 adopts a conformation that seems to be incompatible with the activation of the catalytic water molecule required for the deacylation step. In the OXA-13:meropenem complex, a 3.5 A movement of the backbone of the 114-116 loop towards the side-chain of Lys70 was observed, which seems to be driven by a displacement of the neighbouring 91-104 loop and which results in the repositioning of the side-chain hydroxyl group of Ser115 toward the catalytic centre. Concomitantly, the side-chain of Lys70 is forced to curve in the direction of the deacylating water molecule, which is then strongly bound and activated by this residue. However, a distance of ca 5 A separates the catalytic water molecule from the acyl carbonyl group of meropenem, a structural feature that accounts for the inhibition of OXA-13 by this drug. Finally, the low level of penicillinase activity revealed by the kinetic analysis of OXA-13 could be related to the specific presence in position 73 of a serine residue located close to the general base Lys70, which results in a decrease of the number of hydrogen-bonding interactions stabilising the catalytic water molecule. Copyright 2001 Academic Press.

  15. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications

    PubMed Central

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications. PMID:27516755

  16. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications.

    PubMed

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.

  17. Radiation-induced polymerization for the immobilization of penicillin acylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccu, E.; Carenza, M.; Lora, S.

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that ofmore » the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.« less

  18. Limonoate dehydrogenase from Arthrobacter globiformis: the native enzyme and its N-terminal sequence.

    PubMed

    Suhayda, C G; Omura, M; Hasegawa, S

    1995-09-01

    Bitter limonoids in citrus juice lower the quality and value of commercial juices. Limonoate dehydrogenase converts the precursor of bitter limonin, limonoate A-ring lactone, to nonbitter 17-dehydrolimonoate A-ring lactone. This enzyme was isolated from Arthrobacter globiformis cells by a combination of ammonium sulfate fractionation, Cibacron Blue affinity chromatography and DEAE ion exchange HPLC. Using this protocol a 428-fold purification of the enzyme was obtained. Gel filtration HPLC indicated a M(r) of 118,000 for the native enzyme. SDS-PAGE indicated an individual subunit M(r) of 31,000. N-Terminal sequencing of the protein provided a sequence of the first 16 amino acid residues. Since LDH activity in citrus is very low, cloning the gene for this bacterial enzyme into citrus trees should enhance the natural debittering mechanism in citrus fruit.

  19. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.

    PubMed

    Peng, Xiaowei; Qiao, Weibo; Mi, Shuofu; Jia, Xiaojing; Su, Hong; Han, Yejun

    2015-01-01

    Pretreatment is currently the common approach for improving the efficiency of enzymatic hydrolysis on lignocellulose. However, the pretreatment process is expensive and will produce inhibitors such as furan derivatives and phenol derivatives. If the lignocellulosic biomass can efficiently be saccharified by enzymolysis without pretreatment, the bioconversion process would be simplified. The genus Caldicellulosiruptor, an obligatory anaerobic and extreme thermophile can produce a diverse set of glycoside hydrolases (GHs) for deconstruction of lignocellulosic biomass. It gives potential opportunities for improving the efficiency of converting native lignocellulosic biomass to fermentable sugars. Both of the extracellular (extra-) and intracellular (intra-) enzymes of C. owensensis cultivated on corncob xylan or xylose had cellulase (including endoglucanase, cellobiohydrolase and β-glucosidase) and hemicellulase (including xylanase, xylosidase, arabinofuranosidase and acetyl xylan esterase) activities. The enzymes of C. owensensis had high ability for degrading hemicellulose of native corn stover and corncob with the conversion rates of xylan 16.7 % and araban 60.0 %. Moreover, they had remarkable synergetic function with the commercial enzyme cocktail Cellic CTec2 (Novoyzmes). When the native corn stover and corncob were respectively, sequentially hydrolyzed by the extra-enzymes of C. owensensis and CTec2, the glucan conversion rates were 31.2 and 37.9 %,which were 1.7- and 1.9-fold of each control (hydrolyzed by CTec2 alone), whereas the glucan conversion rates of the steam-exploded corn stover and corncob hydrolyzed by CTec2 alone on the same loading rate were 38.2 and 39.6 %, respectively. These results show that hydrolysis by the extra-enzyme of C. owensensis made almost the same contribution as steam-exploded pretreatment on degradation of native lignocellulosic biomass. A new process for saccharification of lignocellulosic biomass by sequential hydrolysis is demonstrated in the present research, namely hyperthermal enzymolysis (70-80 °C) by enzymes of C. owensensis followed with mesothermal enzymolysis (50-55 °C) by commercial cellulase. This process has the advantages of no sugar loss, few inhibitors generation and consolidated with sterilization. The enzymes of C. owensensis demonstrated an enhanced ability to degrade the hemicellulose of native lignocellulose. The pretreatment and detoxification steps may be removed from the bioconversion process of the lignocellulosic biomass by using the enzymes from C. owensensis.

  20. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    PubMed

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  1. A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450BM3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Jeffrey; Yoshikuni, Yasuo; Fisher, Karl

    2009-11-30

    Production of fine heterologus pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved and enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450BM3 from Bacillus megaterium. Using a computer model, we illustrate how key P450BM3 activ site mutations enable binding of non-native substrate amorphadiene, incorporating these mutations into P450BM3 enabled the selective oxidation of amorphadiene arteminsinic-11s,12-epoxide, at titers of 250 mg L"1 in E. coli. We also demonstratemore » high-yeilding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high value anti-malarial drug artemisinin.« less

  2. Structure and properties of native and unfolded lysing enzyme from T. harzianum: Chemical and pH denaturation.

    PubMed

    Bey, Houda; Gtari, Wala; Aschi, Adel; Othman, Tahar

    2016-11-01

    The effect of chemical denaturants and pH on the change of the conformation of the protein Lysing Enzyme from Trichoderma Harzianum has been investigated by dynamic light scattering (DLS) and turbidimetry. Chemical denaturants are frequently used to describe the mechanisms of folding and transition states. We have analyzed the pH effect on the properties and particle size of the protein. The compaction factor CI has shown that the protein is weakly disordered. The molecular dynamics simulations confirm, at neutral pH, that the protein has a low net charge and high hydrophobicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography.

    PubMed

    Vandavasi, Venu Gopal; Weiss, Kevin L; Cooper, Jonathan B; Erskine, Peter T; Tomanicek, Stephen J; Ostermann, Andreas; Schrader, Tobias E; Ginell, Stephan L; Coates, Leighton

    2016-01-14

    The catalytic mechanism of class A β-lactamases is often debated due in part to the large number of amino acids that interact with bound β-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type β-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 β-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzyme's native machinery.

  4. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    DOE PAGES

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.; ...

    2015-12-02

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacksmore » a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.« less

  5. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacksmore » a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.« less

  6. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition

    DOE PAGES

    Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz; ...

    2018-04-03

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less

  7. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory

    2012-07-25

    UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less

  8. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less

  9. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavali, Balagopalakrishna; Masquelin, Thierry; Nilges, Mark J.

    As an early visitor to the injured loci, neutrophil-derived human Myeloperoxidase (hMPO) offers an attractive protein target to modulate the inflammation of the host tissue through suitable inhibitors. We describe a novel methodology of using low temperature ESR spectroscopy (6 K) and FAST™ technology to screen a diverse series of small molecules that inhibit the peroxidase function through reversible binding to the native state of MPO. Also, our initial efforts to profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide (AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but spurious inhibitors that either do not bindmore » to the heme pocket in the enzyme or retain high (>50 %) anti oxidant potential. Such molecules when taken forward for X-ray did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct binding to the native state enzyme, by measuring the binding-induced shift in the electronic parameter g to rank order the molecules. Molecules with a higher rank order—those with g-shift R relative ≥15—yielded well-formed protein-bound crystals (n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals that the chlorophenyl group projects away from the heme along the edges of the Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access to the heme by the substrates like H 2O 2. Both ESR and antioxidant screens were used to derive the mechanism of action (reversibility, competitive substrate inhibition, and percent antioxidant potential). In conclusion, our results point to a viable path forward to target the native state of MPO to tame local inflammation.« less

  11. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  12. Unfolding studies of the cysteine protease baupain, a papain-like enzyme from leaves of Bauhinia forficata: effect of pH, guanidine hydrochloride and temperature.

    PubMed

    Silva-Lucca, Rosemeire A; Andrade, Sheila S; Ferreira, Rodrigo Silva; Sampaio, Misako U; Oliva, Maria Luiza V

    2013-12-24

    Baupain belongs to the α+β class of proteins with a secondary structure-content of 44% α-helix, 16% β-sheet and 12% β-turn. The structural transition induced by pH was found to be noncooperative, with no important differences observed in the pH range from 3.0 to 10.5. At pH 2.0 the protein presented substantial non-native structure with strong ANS binding. Guanidine hydrochloride (GdnHCl)-induced unfolding did not change the protein structure significantly until 4.0 M, indicating the high rigidity of the molecule. The unfolding was cooperative, as seen by the sigmoidal transition curves with midpoints at 4.7±0.2 M and 5.0±0.2 M GdnHCl, as measured by CD and fluorescence spectroscopy. A red shift of 7 nm in intrinsic fluorescence was observed with 6.0 M GdnHCl. Temperature-induced unfolding of baupain was incomplete, and at least 35% of the native structure of the protein was retained, even at high temperature (90 °C). Baupain showed characteristics of a molten globule state, due to preferential ANS binding at pH 2.0 in comparison to the native form (pH 7.0) and completely unfolded (6.0 M GdnHCl) state. Combined with information about N-terminal sequence similarity, these results allow us to include baupain in the papain superfamily.

  13. Effect of enzymatic hydrolysis on native starch granule structure.

    PubMed

    Blazek, Jaroslav; Gilbert, Elliot Paul

    2010-12-13

    Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.

  14. Blue native polyacrylamide gel electrophoresis and the monitoring of malate- and oxaloacetate-producing enzymes.

    PubMed

    Singh, R; Chénier, D; Bériault, R; Mailloux, R; Hamel, R D; Appanna, V D

    2005-09-30

    We demonstrate a facile blue native polyacrylamide gel electrophoresis (BN-PAGE) technique to detect two malate-generating enzymes, namely fumarase (FUM), malate synthase (MS) and four oxaloacetate-forming enzymes, namely pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), citrate lyase (CL) and aspartate aminotransferase (AST). Malate dehydrogenase (MDH) was utilized as a coupling enzyme to detect either malate or oxaloacetate in the presence of their respective substrates and cofactors. The latter four oxaloacetate-forming enzymes were identified by 2,6-dichloroindophenol (DCIP) and p-iodonitrotetrazolium (INT) while the former two malate-producing enzymes were visualized by INT and phenazine methosulfate (PMS) in the reaction mixtures, respectively. The band formed at the site of enzymatic activity was easily quantified, while Coomassie staining provided information on the protein concentration. Hence, the expression and the activity of these enzymes can be readily evaluated. A two-dimensional (2D) BN-PAGE or SDS-PAGE enabled the rapid purification of the enzyme of interest. This technique also provides a quick and inexpensive means of quantifying these enzymatic activities in normal and stressed biological systems.

  15. Specificity of the collagenolytic serine proteinase from the pancreas of the catfish (Parasilurus asotus).

    PubMed

    Yoshinaka, R; Sato, M; Yamashita, M; Itoko, M; Ikeda, S

    1987-01-01

    The collagenolytic serine proteinase from the pancreas of the catfish (Parasilus asotus) had a pH optimum of 7.5 for native, reconstituted calf skin collagen fibrils. The enzyme was most stable at pH 6-9. The enzyme hydrolyzed heat-denatured collagen (gelatin), casein, hemoglobin and elastin in addition to native collagen but not virtually Tos-Arg-OEe, Bz-Tyr-OEe and Suc-(Ala)3-NA. The enzyme cleaved Leu-Gly (or Gln-Gly), Gly-Ile and Ile-Ala bonds on DNP-Pro-Leu-Gly-Ile-Ala-Gly-Arg-NH2 and DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg.

  16. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution

    PubMed Central

    Renata, Hans; Wang, Z. Jane

    2015-01-01

    High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts. Examples of new enzyme functions include epoxide opening reactions with non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries of non-native catalytic functions that may provide future opportunities for expanding the enzyme universe. PMID:25649694

  17. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production.

    PubMed

    Diaz, Ana Belen; Moretti, Marcia Maria de Souza; Bezerra-Bussoli, Carolina; Carreira Nunes, Christiane da Costa; Blandino, Ana; da Silva, Roberto; Gomes, Eleni

    2015-06-01

    A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast®. The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment. Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial β-glucosidase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Benzaldehyde lyase, a novel thiamine PPi-requiring enzyme, from Pseudomonas fluorescens biovar I.

    PubMed Central

    González, B; Vicuña, R

    1989-01-01

    Pseudomonas fluorescens biovar I can grow on benzoin as the sole carbon and energy source. This ability is due to benzaldehyde lyase, a new type of enzyme that irreversibly cleaves the acyloin linkage of benzoin, producing two molecules of benzaldehyde. Benzaldehyde lyase was purified 70-fold and found to require catalytic amounts of thiamine PPi (TPP) and a divalent cation as cofactors. Optimal activity was obtained with a 1.0 mM concentration of Mn2+, Mg2+, or Ca2+. Gel permeation chromatography indicated a native molecular weight of 80,000, whereas the enzyme migrated in sodium dodecyl sulfate-containing polyacrylamide gels as a single polypeptide with a molecular weight of 53,000. Benzaldehyde lyase is highly specific; of a variety of structurally related compounds tested, only benzoin and anisoin (4,4'-dimethoxybenzoin) acted as substrates, their apparent Kms being 9.0 x 10(-3) and 3.25 x 10(-2) mM, respectively. A catalytic mechanism for the enzyme is proposed. Images PMID:2496105

  19. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Ross, P.; Weinhouse, H.

    1991-06-15

    To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- andmore » 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.« less

  20. Expression and purification of pheophorbidase, an enzyme catalyzing the formation of pyropheophorbide during chlorophyll degradation: comparison with the native enzyme.

    PubMed

    Suzuki, Yasuyo; Soga, Keiko; Yoshimatsu, Katsuhiko; Shioi, Yuzo

    2008-10-01

    Formation of pyropheophorbide (PyroPheid) during chlorophyll metabolism in some higher plants has been shown to involve the enzyme pheophorbidase (PPD). This enzyme catalyzes the conversion of pheophorbide (Pheid) a to a precursor of PyroPheid, C-13(2)-carboxylPyroPheid a, by demethylation, and then the precursor is decarboxylated non-enzymatically to yield PyroPheid a. In this study, expression, purification, and biochemical characterization of recombinant PPD from radish (Raphanus sativus L.) were performed, and its properties were compared with those of highly purified native PPD. Recombinant PPD was produced using a glutathione S-transferase (GST) fusion system. The PPD and GST genes were fused to a pGEX-2T vector and expressed in Escherichia coli under the control of a T7 promoter as a fusion protein. The recombinant PPD-GST was expressed as a 55 kDa protein as measured by SDS-PAGE and purified by single-step affinity chromatography through a GSTrap FF column. PPD-GST was purified to homogeneity with a yield of 0.42 mg L(-1) of culture. The protein purified by this method was confirmed to be PPD by measuring its activity. The purified PPD-GST fusion protein revealed potent catalytic activity for demethylation of the methoxycarbonyl group of Pheid a and showed a pH optimum, substrate specificity, and thermal stability quite similar to the native enzyme purified from radish, except for the Km values toward Pheid a: 95.5 microM for PPD-GST and about 15 microM for native PPDs.

  1. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  2. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[superscript 2+] metal-ion preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.

    2011-09-28

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activitymore » in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.« less

  3. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[supscript 2+] metal-ion preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.

    2010-09-20

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activitymore » in the presence of Zn{sup 2+}, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.« less

  4. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pas, H.H.; Robillard, G.T.

    1988-07-26

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less

  5. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme.

  6. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    PubMed Central

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-01-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme. Images PMID:2876430

  7. Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and Its Complexes with Moxalactam and Imipenem.

    PubMed

    Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria; Mangani, Stefano; Docquier, Jean-Denis

    2016-12-01

    BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower K m values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.

    PubMed

    Garcia, Mario Daniel; Wang, Jian-Guo; Lonhienne, Thierry; Guddat, Luke William

    2017-07-01

    Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 Å resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts. The coordinates and structure factors for uninhibited AtAHAS have been deposited in the Protein Data Bank (www.pdb.org) with the PDB ID code 5K6Q. © 2017 Federation of European Biochemical Societies.

  9. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase*

    PubMed Central

    Stojanovski, Bosko M.; Breydo, Leonid; Hunter, Gregory A.; Uversky, Vladimir N.; Ferreira, Gloria C.

    2014-01-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  10. Catalytic activity of various pepsin reduced Au nanostructures towards reduction of nitroarenes and resazurin

    NASA Astrophysics Data System (ADS)

    Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K.

    2015-01-01

    Pepsin, a digestive protease enzyme, could function as a reducing as well as stabilizing agent for the synthesis of Au nanostructures of various size and shape under different reaction conditions. The simple tuning of the pH of the reaction medium led to the formation of spherical Au nanoparticles, anisotropic Au nanostructures such as triangles, hexagons, etc., as well as ultra small fluorescent Au nanoclusters. The activity of the enzyme was significantly inhibited after its participation in the formation of Au nanoparticles due to conformational changes in the native structure of the enzyme which was studied by fluorescence, circular dichroism (CD), and infra red spectroscopy. However, the Au nanoparticle-enzyme composites served as excellent catalyst for the reduction of p-nitrophenol and resazurin, with the catalytic activity varying with size and shape of the nanoparticles. The presence of pepsin as the surface stabilizer played a crucial role in the activity of the Au nanoparticles as reduction catalysts, as the approach of the reacting molecules to the nanoparticle surface was actively controlled by the stabilizing enzyme.

  11. Structure-Function Relationship of Hydrophiidae Postsynaptic Neurotoxins

    DTIC Science & Technology

    1992-03-11

    monster venom concluded that gila toxin is an arginine esterase with kallikrein-like activity causing lethality and gyration in mice. However, it is not a...Fractionation of Lapemis venom ............ 49 Fig 3-4 Fractionation of Gila Toxin ............... 50 Fig 3-5 Fibrinogenolytic Activity of Gila toxin...Sequence of 8 kD Fragment of Lapemis PLA ..... 8 7 Tab 3-9 Enzyme Activity of Native and Metal Pl . 88 Tab 3-10 Amino Acid Analysis of Lapemis 9 kD prorein

  12. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    PubMed

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  13. Immobilization of an L-aminoacylase-producing strain of Aspergillus oryzae into gelatin pellets and its application in the resolution of D,L-methionine.

    PubMed

    Yuan Yj, Ying-jin; Wang Sh, Shu-hao; Song Zx, Zheng-xiao; Gao Rc, Rui-chang

    2002-04-01

    The conditions for immobilization of an l-aminoacylase-producing strain of Aspergillus oryzae in gelatin and the enzymic characteristics of the immobilized pellets were studied. The optimal concentrations of gelatin, glutaraldehyde and ethyldiamine and time of immobilization were determined. Scanning electron micrographs reveal the cross-linked structure differences between the native and immobilized pellets. Optimum pH and temperature of the native and immobilized pellets were determined. Effects of ionic strength and substrate concentration on relative activity of the native and immobilized pellets were investigated in detail. The immobilized pellets were more stable over broader temperature and pH ranges. In addition, the immobilized pellets showed stable activity under operational and storage conditions. The immobilized pellets lost about 20% of their initial activity after five cycles of reuse. The results reported in this paper show the potential for using the immobilized A. oryzae pellets to resolve d,l-methionine.

  14. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10.

    PubMed

    Kaplan, Ondřej; Bezouška, Karel; Plíhal, Ondřej; Ettrich, Rüdiger; Kulik, Natallia; Vaněk, Ondřej; Kavan, Daniel; Benada, Oldřich; Malandra, Anna; Sveda, Ondřej; Veselá, Alicja B; Rinágelová, Anna; Slámová, Kristýna; Cantarella, Maria; Felsberg, Jürgen; Dušková, Jarmila; Dohnálek, Jan; Kotik, Michael; Křen, Vladimír; Martínková, Ludmila

    2011-01-06

    Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult. A nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn₃₅₆) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp₂₉₈-Val₃₁₃ peptide was shortened to Asp₂₉₈-Arg₃₁₀ in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution. The nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.

  15. Hyperexpression of the gene for a Bacillus alpha-amylase in Bacillus subtilis cells: enzymatic properties and crystallization of the recombinant enzyme.

    PubMed

    Ikawa, K; Araki, H; Tsujino, Y; Hayashi, Y; Igarashi, K; Hatada, Y; Hagihara, H; Ozawa, T; Ozaki, K; Kobayashi, T; Ito, S

    1998-09-01

    We have constructed a new excretion vector, pHSP64, to develop a hyperexcretion system for Bacillus subtilis [Sumitomo et al., Biosci. Biotech. Biochem., 59, 2172-2175 (1995)]. The structural gene for a novel liquefying semi-alkaline alpha-amylase from the alkaliphilic Bacillus sp. KSM-1378 was amplified by PCR. It was cloned into a SalI-SmaI site of pHSP64 and the recombinant plasmid obtained was introduced into B. subtilis. The transformed B. subtilis hyperproduced the alpha-amylase activity extracellularly, corresponding to approximately 1.0 g (5 x 10(6) units) per liter of an optimized liquid culture. The recombinant enzyme was purified to homogeneity by a simple purification procedure with very high yield. No significant differences in physiochemical and catalytic properties were observed between the recombinant enzyme and the native enzyme produced by Bacillus sp. KSM-1378. The enzymatic properties of the recombinant enzyme were further examined with respect to the responses to various metal ions. The recombinant enzyme could easily be crystallized at room temperature within one day in a buffered solution of 10% (w/v) ammonium sulfate (pH 6.5).

  16. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c =more » 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.« less

  17. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling.

    PubMed

    Frutos, Silvia; Rodriguez-Mias, Ricard A; Madurga, Sergio; Collinet, Bruno; Reboud-Ravaux, Michèle; Ludevid, Dolors; Giralt, Ernest

    2007-01-01

    HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.

  18. Crystal Structures of Yellowtail Ascites Virus VP4 Protease

    PubMed Central

    Chung, Ivy Yeuk Wah; Paetzel, Mark

    2013-01-01

    Yellowtail ascites virus (YAV) is an aquabirnavirus that causes ascites in yellowtail, a fish often used in sushi. Segment A of the YAV genome codes for a polyprotein (pVP2-VP4-VP3), where processing by its own VP4 protease yields the capsid protein precursor pVP2, the ribonucleoprotein-forming VP3, and free VP4. VP4 protease utilizes the rarely observed serine-lysine catalytic dyad mechanism. Here we have confirmed the existence of an internal cleavage site, preceding the VP4/VP3 cleavage site. The resulting C-terminally truncated enzyme (ending at Ala716) is active, as shown by a trans full-length VP4 cleavage assay and a fluorometric peptide cleavage assay. We present a crystal structure of a native active site YAV VP4 with the internal cleavage site trapped as trans product complexes and trans acyl-enzyme complexes. The acyl-enzyme complexes confirm directly the role of Ser633 as the nucleophile. A crystal structure of the lysine general base mutant (K674A) reveals the acyl-enzyme and empty binding site states of VP4, which allows for the observation of structural changes upon substrate or product binding. These snapshots of three different stages in the VP4 protease reaction mechanism will aid in the design of anti-birnavirus compounds, provide insight into previous site-directed mutagenesis results, and contribute to understanding of the serine-lysine dyad protease mechanism. In addition, we have discovered that this protease contains a channel that leads from the enzyme surface (adjacent to the substrate binding groove) to the active site and the deacylating water. PMID:23511637

  19. Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme.

    PubMed

    Arreola, Rodrigo; Villalpando, José Luis; Puente-Rivera, Jonathan; Morales-Montor, Jorge; Rudiño-Piñera, Enrique; Alvarez-Sánchez, María Elizbeth

    2018-06-23

    Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a "pseudo-homodimer" array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a "pita bread" fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.

  20. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation.

    PubMed

    Hyster, Todd K; Knörr, Livia; Ward, Thomas R; Rovis, Tomislav

    2012-10-26

    Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.

  1. X-ray absorption spectroscopic evidence for binding of the competitive inhibitor 2-mercaptoethanol to the nickel sites of Jack bean urease. A new Ni-Ni interaction in the inhibited enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, P.A.; Wilcox, D.E.; Scott, R.A.

    The enzyme Jack bean urease has been identified as the first nickel-containing metalloenzyme to catalyze the hydrolysis of urea to carbon dioxide and ammonia. Competitive inhibitors such as 2-mercaptoethanol (2-ME) have been shown to dramatically affect the ground-state electronic properties of the urease Ni(II) ions. Results of preliminary structural investigations using x-ray absorption spectroscopy of the nickel salts of urease in its native and 2-ME bound forms are presented. The binding of 2-ME to Ni(II) through the thiolate sulfur is confirmed by the results of this study. 17 refs., 2 figs., 2 tabs.

  2. [PEG-chitosan branched copolymers to improve the biocatalytic properties of Erwinia carotovora recombinant L-asparaginase].

    PubMed

    Kudryashova, E V; Suhoverkov, K V; Sokolov, N N

    2015-01-01

    A new approach to the regulation of catalytic properties of medically relevant enzymes has been proposed using the novel recombinant preparation of L-asparaginase from Erwinia carotovora (EwA), a promising antitumor agent. New branched co-polymers of different composition based on chitosan modified with polyethylene glycol (PEG) molecules, designated as PEG-chitosan, have been synthesized. PEG-chitosan copolymers were further conjugated with EwA. In order to optimize the catalytic properties of asparaginase two types of conjugates differing in their architecture have been synthesized: (1) crown-type conjugates were synthesized by reductive amination reaction between the reducing end of the PEG-chitosan copolymer and enzyme amino groups; (2) multipoint-conjugates were synthesized using the reaction of multipoint amide bond formation between PEG-chitosan amino groups and carboxyl groups of the enzyme in the presence of the Woodward's reagent. The structure and composition of these conjugates were determined by IR spectroscopy. The content of the copolymers in the conjugates was controlled by the characteristic absorption band of C-O-C bonds in the PEG structure at the frequency of 1089 cm-1. The study of catalytic characteristics of EwA preparations by conductometry showed that at physiological pH values the enzyme conjugates with PEG-chitosan with optimized structure and the optimal composition demonstrated 5-8-fold higher catalytic efficiency (kcat/Km) than the native enzyme. To certain extent, this can be attributed to favorable shift of pH-optima in result of positively charged amino-groups introduction in the vicinity of the active site. The proposed approach, chito-pegylation, is effective for regulating the catalytic and pharmacokinetic properties of asparaginase, and is promising for the development of prolonged action dosage forms for other enzyme therapeutics.

  3. Citrate Inhibition-Resistant Form of 6-Phosphofructo-1-Kinase from Aspergillus niger

    PubMed Central

    Mlakar, Tina; Legiša, Matic

    2006-01-01

    Two forms of Aspergillus niger 6-phosphofructo-1-kinase (PFK1) have been described recently, the 85-kDa native enzyme and 49-kDa shorter fragment that is formed from the former by posttranslational modification. So far, kinetic characteristics have never been determined on the enzyme purified to near homogeneity. For the first time, kinetic parameters were determined for individual enzymes with respect to citrate inhibition. The native 85-kDa enzyme was found to be moderately inhibited by citrate, with the Ki value determined to be 1.5 mM, in the system with 5 mM Mg2+ ions, while increasing magnesium concentrations relieved the negative effect of citrate. An identical inhibition coefficient was determined also in the presence of ammonium ions, although ammonium acted as a strong activator of enzyme activity. On the other hand, the shorter fragment of PFK1 proved to be completely resistant to inhibition by citrate. Allosteric citrate binding sites were most probably lost after the truncation of the C-terminal part of the native protein, in which region some binding sites for inhibitor are known to be located. At near physiological conditions, characterized by low fructose-6-phosphate concentrations, a much higher efficiency of the shorter fragment was observed during an in vitro experiment. Since the enzyme became more susceptible to the positive control by specific ligands, while the negative control was lost after posttranslational modification, the shorter PFK1 fragment seems to be the enzyme most responsible for generating undisturbed metabolic flow through glycolysis in A. niger cells. PMID:16820438

  4. citrate inhibition-resistant form of 6-phosphofructo-1-kinase from Aspergillus niger.

    PubMed

    Mlakar, Tina; Legisa, Matic

    2006-07-01

    Two forms of Aspergillus niger 6-phosphofructo-1-kinase (PFK1) have been described recently, the 85-kDa native enzyme and 49-kDa shorter fragment that is formed from the former by posttranslational modification. So far, kinetic characteristics have never been determined on the enzyme purified to near homogeneity. For the first time, kinetic parameters were determined for individual enzymes with respect to citrate inhibition. The native 85-kDa enzyme was found to be moderately inhibited by citrate, with the Ki value determined to be 1.5 mM, in the system with 5 mM Mg2+ ions, while increasing magnesium concentrations relieved the negative effect of citrate. An identical inhibition coefficient was determined also in the presence of ammonium ions, although ammonium acted as a strong activator of enzyme activity. On the other hand, the shorter fragment of PFK1 proved to be completely resistant to inhibition by citrate. Allosteric citrate binding sites were most probably lost after the truncation of the C-terminal part of the native protein, in which region some binding sites for inhibitor are known to be located. At near physiological conditions, characterized by low fructose-6-phosphate concentrations, a much higher efficiency of the shorter fragment was observed during an in vitro experiment. Since the enzyme became more susceptible to the positive control by specific ligands, while the negative control was lost after posttranslational modification, the shorter PFK1 fragment seems to be the enzyme most responsible for generating undisturbed metabolic flow through glycolysis in A. niger cells.

  5. Discovery of d-amino acid oxidase inhibitors based on virtual screening against the lid-open enzyme conformation.

    PubMed

    Szilágyi, Bence; Skok, Žiga; Rácz, Anita; Frlan, Rok; Ferenczy, György G; Ilaš, Janez; Keserű, György M

    2018-06-01

    d-Amino acid oxidase (DAAO) inhibitors are typically small polar compounds with often suboptimal pharmacokinetic properties. Features of the native binding site limit the operational freedom of further medicinal chemistry efforts. We therefore initiated a structure based virtual screening campaign based on the X-ray structures of DAAO complexes where larger ligands shifted the loop (lid opening) covering the native binding site. The virtual screening of our in-house collection followed by the in vitro test of the best ranked compounds led to the identification of a new scaffold with micromolar IC 50 . Subsequent SAR explorations enabled us to identify submicromolar inhibitors. Docking studies supported by in vitro activity measurements suggest that compounds bind to the active site with a salt-bridge characteristic to DAAO inhibitor binding. In addition, displacement of and interaction with the loop covering the active site contributes significantly to the activity of the most potent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Aspartate-90 and arginine-269 of hamster aspartate transcarbamylase affect the oligomeric state of a chimaeric protein with an Escherichia coli maltose-binding domain.

    PubMed Central

    Qiu, Y; Davidson, J N

    1998-01-01

    Residues Asp-90 and Arg-269 of Escherichia coli aspartate transcarbamylase seem to interact at the interface of adjacent catalytic subunits. Alanine substitutions at the analogous positions in the hamster aspartate transcarbamylase of a chimaeric protein carrying an E. coli maltose-binding domain lead to changes in both the kinetics of the enzyme and the quaternary structure of the protein. The Vmax for the Asp-90-->Ala and Arg-269-->Ala substitutions is decreased to 1/21 and 1/50 respectively, the [S]0.5 for aspartate is increased 540-fold and 826-fold respectively, and the [S]0.5 for carbamoyl phosphate is increased 60-fold for both. These substitutions decrease the oligomeric size of the protein. Whereas the native chimaeric protein behaves as a pentamer, the Asp-90 variant is a trimer and the Arg-269 variant is a dimer. The altered enzymes also exhibit marked decreases in thermal stability and are inactivated at much lower concentrations of urea than is the unaltered enzyme. Taken together, these results are consistent with the hypothesis that both Asp-90 and Arg-269 have a role in the enzymic function and structural integrity of hamster aspartate transcarbamylase. PMID:9425105

  7. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography

    PubMed Central

    2017-01-01

    Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn2+ is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn2+, which was established by measuring the activation constants (Kact) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity. PMID:29045784

  8. Purification of alpha-glucosidae and invertase from bakers' yeast on modified polymeric supports.

    PubMed

    Lothe, R R; Purohit, S S; Shaikh, S S; Malshe, V C; Pandit, A B

    1999-01-01

    In the present work Amberlite XAD-16 and Indion NPA-1, Polystyrene Divinylbenzene macroreticular spherical resins, have been evaluated quantitatively as supports for the adsorption and isolation of the yeast proteins and the enzymes, invertase and alpha-glucosidase. Modification of these supports has been carried out by surface grafting using acrylate polymers to reduce the hydrophobicity and nonspecific adsorption of proteins. Good grafting efficiency, in excess of 90%, has been obtained using ultrasonic irradiation for the surface activation of polystyrene resins. XAD-16 has higher adsorption capacities for the total yeast proteins as well as for both the enzymes, alpha-glucosidase and invertase, than NPA-1 in its respective native and grafted form. Adsorption capacities of XAD-16 and NPA-1 in their respective native and grafted forms for alpha-glucosidase are higher than the capacities for invertase. Nonspecific adsorption of total proteins has been reduced considerably after the grafting of acrylate polymers on hydrophobic supports. At the same time selectivity for the adsorption of both the enzymes has been enhanced on grafted supports. The overall solid-liquid adsorption mass transfer coefficient values (Kla) estimated for adsorption of invertase on XAD are lower than those for alpha-glucosidase. Native and grafted resins could be regenerated and reused for adsorption of alpha-glucosidase for two regeneration cycles studied. Storage stability of invertase and alpha-glucosidase is the same on native and grafted form of XAD-16 and is more than the enzymes in the free form.

  9. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites.

    PubMed Central

    Gasset, María; Alfonso, Carlos; Neira, José L; Rivas, Germán; Pajares, María A

    2002-01-01

    The reversible unfolding of rat liver methionine adenosyltransferase dimer by urea under equilibrium conditions has been monitored by fluorescence spectroscopy, CD, size-exclusion chromatography, analytical ultracentrifugation and enzyme activity measurements. The results obtained indicate that unfolding takes place through a three-state mechanism, involving an inactive monomeric intermediate. This intermediate has a 70% native secondary structure, binds less 8-anilinonaphthalene-1-sulphonic acid than the native dimer and has a sedimentation coefficient of 4.24+/-0.15. The variations of free energy in the absence of denaturant [DeltaG(H(2)O)] and its coefficients of urea dependence (m), calculated by the linear extrapolation model, were 36.15+/-2.3 kJ.mol(-1) and 19.87+/-0.71 kJ.mol(-1).M(-1) for the dissociation of the native dimer and 14.77+/-1.63 kJ.mol(-1) and 5.23+/-0.21 kJ.mol(-1).M(-1) for the unfolding of the monomeric intermediate respectively. Thus the global free energy change in the absence of denaturant and the m coefficient were calculated to be 65.69 kJ.mol(-1) and 30.33 kJ.mol(-1).M(-1) respectively. Analysis of the calculated thermodynamical parameters indicate the instability of the dimer in the presence of denaturant, and that the major exposure to the solvent is due to dimer dissociation. Finally, a minimum-folding mechanism for methionine adenosyltransferase III is established. PMID:11772402

  10. Towards Understanding the Catalytic Mechanism of Human Paraoxonase 1: Experimental and In Silico Mutagenesis Studies.

    PubMed

    Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H

    2017-08-01

    Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.

  11. Preparation and characterization of human recombinant protein 1/Clara cell M(r) 10,000 protein.

    PubMed

    Okutani, R; Itoh, Y; Yamada, T; Yamaguchi, T; Singh, G; Yagisawa, H; Kawai, T

    1996-09-01

    Protein 1, which is identical to human Clara cell M(r) 10(4) protein, is a homodimeric, low molecular mass protein (M(r) 14,000) and an effective inhibitor of phospholipase A2 activity. We have expressed this protein in E. coli and characterized its physiochemical and biological properties. Using a pET expression system, about 1.7 mg of purified recombinant protein 1 was obtained from 250 ml of E. coli culture. The amino-terminal sequence of recombinant protein 1 up to the 20th residue was identical to that of native protein 1 except for an extra methionine at the amino-terminus. On reversed-phase HPLC, recombinant protein 1 eluted at the same retention time as native protein 1. The dose-response curves of recombinant protein 1 and native protein 1 in an enzyme-linked immunosorbent assay for protein 1 were identical. Recombinant protein 1 inhibited both porcine pancreas and cobra venom phospholipase A2 activities. These results indicated that recombinant protein 1 is structurally and biologically identical to native protein 1. We found that recombinant protein 1 also inhibits phosphatidylinositol-specific phospholipase C activity.

  12. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    PubMed

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  13. Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase.

    PubMed

    Yang, Su J; Jiang, Shih S; Hsiao, Yi Y; Van, Ru C; Pan, Yih J; Pan, Rong L

    2004-06-07

    Vacuolar H(+)-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) catalyzes both the hydrolysis of PP(i) and the electrogenic translocation of proton from the cytosol to the lumen of the vacuole. Vacuolar H(+)-PPase, purified from etiolated hypocotyls of mung bean (Vigna radiata L.), is a homodimer with a molecular mass of 145 kDa. To investigate the relationship between structure and function of this H(+)-translocating enzyme, thermoinactivation analysis was employed. Thermoinactivation studies suggested that vacuolar H(+)-PPase consists of two distinct states upon heat treatment and exhibited different transition temperatures in the presence and absence of ligands (substrate and inhibitors). Substrate protection of H(+)-PPase stabilizes enzyme structure by increasing activation energy from 54.9 to 70.2 kJ/mol. We believe that the conformation of this enzyme was altered in the presence of substrate to protect against the thermoinactivation. In contrast, the modification of H(+)-PPase by inhibitor (fluorescein 5'-isothiocyanate; FITC) augmented the inactivation by heat treatment. The native, substrate-bound, and FITC-labeled vacuolar H(+)-PPases possess probably distinct conformation and show different modes of susceptibility to thermoinactivation. Our results also indicate that the structure of one subunit of this homodimer exerts long distance effect on the other, suggesting a specific subunit-subunit interaction in vacuolar H(+)-PPase. A working model was proposed to interpret the relationship of the structure and function of vacuolar H(+)-PPase.

  14. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution.

    PubMed

    Renata, Hans; Wang, Z Jane; Arnold, Frances H

    2015-03-09

    High selectivity and exquisite control over the outcome of reactions entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature's known repertoire. In this Review, we outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progression has been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been exploited for chemical synthesis, with an emphasis on reactions that do not have natural counterparts. Non-natural activities can be improved by directed evolution, thus mimicking the process used by nature to create new catalysts. Finally, we describe the discovery of non-native catalytic functions that may provide future opportunities for the expansion of the enzyme universe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less competition with water at the specific hydration layer around the protein, thus reducing protein-solvent interactions and retaining lysozyme's native conformation. The structure-property links established in this study are considered to be applicable to other proteins.

  16. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118

    USDA-ARS?s Scientific Manuscript database

    We have cloned a glucansucrase from the type strain of Leuconostoc mesenteroides (NRRL B-1118; ATCC 8293) and successfully expressed the enzyme in Escherichia coli. The recombinant processed enzyme has a putative sequence identical to the predicted secreted native enzyme (1,473 amino acids; 161,468...

  17. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna

    2010-06-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion ofmore » chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.« less

  18. Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes

    PubMed Central

    López-López, Olalla; Cerdán, María-Esperanza; González-Siso, María-Isabel

    2015-01-01

    Lipolytic enzymes, esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3), catalyze the hydrolysis of ester bonds between alcohols and carboxylic acids, and its formation in organic media. At present, they represent about 20% of commercialized enzymes for industrial use. Lipolytic enzymes from thermophilic microorganisms are preferred for industrial use to their mesophilic counterparts, mainly due to higher thermostability and resistance to several denaturing agents. However, the production at an industrial scale from the native organisms is technically complicated and expensive. The thermophilic bacterium Thermus thermophilus (T. thermophilus) has high levels of lipolytic activity, and its whole genome has been sequenced. One esterase from the T. thermophilus strain HB27 has been widely characterized, both in its native form and in recombinant forms, being expressed in mesophilic microorganisms. Other putative lipases/esterases annotated in the T. thermophilus genome have been explored and will also be reviewed in this paper. PMID:27682117

  19. Changes in sulfhydryl groups of honeybee glyceraldehyde phosphate dehydrogenase associated with generation of the intermediate plateau in its saturation kinetics

    NASA Technical Reports Server (NTRS)

    Gelb, W. G.; Brandts, J. F.; Nordin, J. H.

    1973-01-01

    Honeybee and rabbit muscle GPDH were studied to obtain information at the chemical level regarding anomolous saturation kinetics of the honeybee enzyme. Results demonstrate that the enzyme's sulfhydryl groups are implicated in the process. Measured by DTNB titration, native honeybee GPDH has one less active SH than the native rabbit muscle enzyme and displays changes in overall sulfhydryl reactivity after preincubation with G-3-P or G-3-P plus NAD+. The total DTNB reactive sulfhydryls of rabbit muscle GPDH are not changed by preincubation with NAD+ or G-3-P; honeybee GPDH, under certain conductions of preincubation with these ligands, shows a decrease of two total DTNB reactive SH groups. This difference has been confirmed by an independent experiment in which the two enzymes were carboxymethylated with C-14 bromoacetic acid.

  20. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis*

    PubMed Central

    Le, Nguyen-Hung; Molle, Virginie; Eynard, Nathalie; Miras, Mathieu; Stella, Alexandre; Bardou, Fabienne; Galandrin, Ségolène; Guillet, Valérie; André-Leroux, Gwenaëlle; Bellinzoni, Marco; Alzari, Pedro; Mourey, Lionel; Burlet-Schiltz, Odile; Daffé, Mamadou; Marrakchi, Hedia

    2016-01-01

    Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target. PMID:27590338

  1. Purification and characteristics of an inducible by polycyclic aromatic hydrocarbons NADP(+)-dependent naphthalenediol dehydrogenase (NDD) in Mucor circinelloides YR-1.

    PubMed

    Camacho-Morales, Reyna Lucero; Zazueta-Novoa, Vanesa; Casillas, Juana Lizbeth González; Ballesteros, Elizabeth Aranda; Bote, Juan Antonio Ocampo; Zazueta-Sandoval, Roberto

    2014-05-01

    We detected NADP(+)-dependent dihydrodiol dehydrogenase (DD) activity in a cell-free extract from Mucor circinelloides YR-1, after high-speed centrifugation. We analyzed the enzymatic activity in the cytosolic fraction by zymograms, as described previously, and eight different DD activity bands were revealed. Five constitutive DD activities (DD1-5) were present when glucose was used as carbon source and three inducible activities (NDD, PDD1 and PDD2) when aromatic hydrocarbon compounds were used. NDD activity was induced all of the aromatic hydrocarbon compounds. The highest DD activity inducer was naphthalene and the lowest was pyrene. One of the enzymes showed higher activity with cis-naphthalene-diol rather than with trans-nahthalenediol as a substrate. We purified this particular enzyme to homogeneity and found that it had an isoelectric point of 4.6. The molecular weight for the native protein was 197.4kDa and 49.03±0.5kDa for the monomer that conforms it, suggesting a homotetrameric structure for the complete enzyme. Polyclonal antibodies were raised against it and obtained. NDD activity was almost totally inhibited when antibodies were used at low concentrations, and in native immunoblots only one band, which corresponds to the activity band detected in the zymograms, could be detected. In denaturing PAGE immunoblots only one band was detected. This band corresponds to the purified protein band of 49kDa detected in SDS-PAGE gels. The other two inducible enzymes PDD1 and PDD2 were present only when phenanthrene was used as sole carbon source in the culture media. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Electron Spin Resonance Studies of Carbonic Anhydrase: Transition Metal Ions and Spin-Labeled Sulfonamides*

    PubMed Central

    Taylor, June S.; Mushak, Paul; Coleman, Joseph E.

    1970-01-01

    Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide < SH- < N3- ≤ CN-. Well-resolved superhyperfine structure in the spectrum of the cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976

  3. Localization of yeast RNA polymerase I core subunits by immunoelectron microscopy.

    PubMed Central

    Klinger, C; Huet, J; Song, D; Petersen, G; Riva, M; Bautz, E K; Sentenac, A; Oudet, P; Schultz, P

    1996-01-01

    Immunoelectron microscopy was used to determine the spatial organization of the yeast RNA polymerase I core subunits on a three-dimensional model of the enzyme. Images of antibody-labeled enzymes were compared with the native enzyme to determine the localization of the antibody binding site on the surface of the model. Monoclonal antibodies were used as probes to identify the two largest subunits homologous to the bacterial beta and beta' subunits. The epitopes for the two monoclonal antibodies were mapped using subunit-specific phage display libraries, thus allowing a direct correlation of the structural data with functional information on conserved sequence elements. An epitope close to conserved region C of the beta-like subunit is located at the base of the finger-like domain, whereas a sequence between conserved regions C and D of the beta'-like subunit is located in the apical region of the enzyme. Polyclonal antibodies outlined the alpha-like subunit AC40 and subunit AC19 which were found co-localized also in the apical region of the enzyme. The spatial location of the subunits is correlated with their biological activity and the inhibitory effect of the antibodies. Images PMID:8887555

  4. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2.

    PubMed

    Kohler-Staub, D; Leisinger, T

    1985-05-01

    Dichloromethane dehalogenase, a highly inducible glutathione-dependent enzyme catalyzing the conversion of dichloromethane into formaldehyde and inorganic chloride, was purified fivefold with 60% yield from Hyphomicrobium sp. strain DM2. The electrophoretically homogeneous purified enzyme exhibited a specific activity of 17.3 mkat/kg of protein. Its pH optimum was 8.5. The enzyme was stable at -20 degrees C for at least 6 months. A subunit molecular weight of 33,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration of native dichloromethane dehalogenase yielded a molecular weight of 195,000. Subunit cross-linking with dimethyl suberimidate confirmed the hexameric tertiary structure of the enzyme. Dichloromethane dehalogenase was highly specific for dihalomethanes. Its apparent Km values were 30 microM for CH2Cl2, 15 microM for CH2BrCl, 13 microM for CH2Br2, 5 microM for CH2I2, and 320 microM for glutathione. Several chlorinated aliphatic compounds inhibited the dichloromethane dehalogenase activity of the pure enzyme. The Ki values of the competitive inhibitors 1,2-dichloroethane and 1-chloropropane were 3 and 56 microM, respectively.

  5. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2.

    PubMed Central

    Kohler-Staub, D; Leisinger, T

    1985-01-01

    Dichloromethane dehalogenase, a highly inducible glutathione-dependent enzyme catalyzing the conversion of dichloromethane into formaldehyde and inorganic chloride, was purified fivefold with 60% yield from Hyphomicrobium sp. strain DM2. The electrophoretically homogeneous purified enzyme exhibited a specific activity of 17.3 mkat/kg of protein. Its pH optimum was 8.5. The enzyme was stable at -20 degrees C for at least 6 months. A subunit molecular weight of 33,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration of native dichloromethane dehalogenase yielded a molecular weight of 195,000. Subunit cross-linking with dimethyl suberimidate confirmed the hexameric tertiary structure of the enzyme. Dichloromethane dehalogenase was highly specific for dihalomethanes. Its apparent Km values were 30 microM for CH2Cl2, 15 microM for CH2BrCl, 13 microM for CH2Br2, 5 microM for CH2I2, and 320 microM for glutathione. Several chlorinated aliphatic compounds inhibited the dichloromethane dehalogenase activity of the pure enzyme. The Ki values of the competitive inhibitors 1,2-dichloroethane and 1-chloropropane were 3 and 56 microM, respectively. Images PMID:3988708

  6. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  7. Thermal and urea-induced unfolding in T7 RNA polymerase: Calorimetry, circular dichroism and fluorescence study

    PubMed Central

    Griko, Yuri; Sreerama, Narasimha; Osumi-Davis, Patricia; Woody, Robert W.; Woody, A-Young Moon

    2001-01-01

    Structural changes in T7 RNA polymerase (T7RNAP) induced by temperature and urea have been studied over a wide range of conditions to obtain information about the structural organization and the stability of the enzyme. T7RNAP is a large monomeric enzyme (99 kD). Calorimetric studies of the thermal transitions in T7RNAP show that the enzyme consists of three cooperative units that may be regarded as structural domains. Interactions between these structural domains and their stability strongly depend on solvent conditions. The unfolding of T7RNAP under different solvent conditions induces a highly stable intermediate state that lacks specific tertiary interactions, contains a significant amount of residual secondary structure, and undergoes further cooperative unfolding at high urea concentrations. Circular dichroism (CD) studies show that thermal unfolding leads to an intermediate state that has increased β-sheet and reduced α-helix content relative to the native state. Urea-induced unfolding at 25°C reveals a two-step process. The first transition centered near 3 M urea leads to a plateau from 3.5 to 5.0 M urea, followed by a second transition centered near 6.5 M urea. The CD spectrum of the enzyme in the plateau region, which is similar to that of the enzyme thermally unfolded in the absence of urea, shows little temperature dependence from 15° to 60°C. The second transition leads to a mixture of poly(Pro)II and unordered conformations. As the temperature increases, the ellipticity at 222 nm becomes more negative because of conversion of poly(Pro)II to the unordered conformation. Near-ultraviolet CD spectra at 25°C at varying concentrations of urea are consistent with this picture. Both thermal and urea denaturation are irreversible, presumably because of processes that follow unfolding. PMID:11274475

  8. Zika Virus Protease: An Antiviral Drug Target.

    PubMed

    Kang, CongBao; Keller, Thomas H; Luo, Dahai

    2017-10-01

    The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects.

    PubMed

    Zhang, Yi; Zeng, Hongliang; Wang, Ying; Zeng, Shaoxiao; Zheng, Baodong

    2014-07-15

    Lotus seed resistant starch (LRS) is a type of retrograded starch that is commonly known as resistant starch type 3 (RS3). The structural and crystalline properties of unpurified LRS (NP-LRS3), enzyme purified LRS after drying (GP-LRS3), and enzyme purified LRS (ZP-LRS3) were characterized. The result showed that the molecular weights of NP-LRS3, GP-LRS3, and ZP-LRS3 were 0.102 × 10(6), 0.014 × 10(6), and 0.025 × 10(6)Da, respectively. Compared with native starch and high amylose maize starch (HAMS), LRS lacked the polarization cross and the irregularly shaped LRS granules had a rougher surface, B-type crystal structure, and greater level of molecular order. The FT-IR measurements indicated no differences in the chemical groups. Analysis by (13)C NMR indicated an increased propensity for double helix formation and higher crystallinity in LRS than in the two other types of starch. Moreover, LRS was more effective than either glucose or HAMS in promoting the proliferation of bifidobacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases

    PubMed Central

    Turk, Dušan; Janjić, Vojko; Štern, Igor; Podobnik, Marjetka; Lamba, Doriano; Weis Dahl, Søren; Lauritzen, Connie; Pedersen, John; Turk, Vito; Turk, Boris

    2001-01-01

    Dipeptidyl peptidase I (DPPI) or cathepsin C is the physiological activator of groups of serine proteases from immune and inflammatory cells vital for defense of an organism. The structure presented shows how an additional domain transforms the framework of a papain-like endopeptidase into a robust oligomeric protease-processing enzyme. The tetrahedral arrangement of the active sites exposed to solvent allows approach of proteins in their native state; the massive body of the exclusion domain fastened within the tetrahedral framework excludes approach of a polypeptide chain apart from its termini; and the carboxylic group of Asp1 positions the N-terminal amino group of the substrate. Based on a structural comparison and interactions within the active site cleft, it is suggested that the exclusion domain originates from a metallo-protease inhibitor. The location of missense mutations, characterized in people suffering from Haim–Munk and Papillon–Lefevre syndromes, suggests how they disrupt the fold and function of the enzyme. PMID:11726493

  11. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    PubMed

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  12. The H159A mutant of yeast enolase 1 has significant activity.

    PubMed

    Brewer, J M; Holland, M J; Lebioda, L

    2000-10-05

    The function of His159 in the enolase mechanism is disputed. Recently, Vinarov and Nowak (Biochemistry (1999) 38, 12138-12149) prepared the H159A mutant of yeast enolase 1 and expressed this in Escherichia coli. They reported minimal (ca. 0.01% of the native value) activity, though the protein appeared to be correctly folded, according to its CD spectrum, tryptophan fluorescence, and binding of metal ion and substrate. We prepared H159A enolase using a multicopy plasmid and expressed the enzyme in yeast. Our preparations of H159A enolase have 0.2-0.4% of the native activity under standard assay conditions and are further activated by Mg(2+) concentrations above 1 mM to 1-1.5% of the native activity. Native enolase 1 (and enolase 2) are inhibited by such Mg(2+) concentrations. It is possible that His159 is necessary for correct folding of the enzyme and that expression in E. coli leads to largely misfolded protein. Copyright 2000 Academic Press.

  13. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    PubMed

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Saccharomyces cerevisiae asparaginase II, a potential antileukemic drug: Purification and characterization of the enzyme expressed in Pichia pastoris.

    PubMed

    Facchinetti de Castro Girão, Luciana; Gonçalves da Rocha, Surza Lucia; Sobral, Ricardo Sposina; Dinis Ano Bom, Ana Paula; Franco Sampaio, André Luiz; Godinho da Silva, José; Ferrara, Maria Antonieta; Pinto da Silva Bon, Elba; Perales, Jonas

    2016-04-01

    Asparaginase obtained from Escherichia coli and Erwinia chrysanthemi are used to treat acute lymphocytic leukaemia and non-Hodgkin's lymphoma. However, these agents cause severe adverse effects. Saccharomyces cerevisiae asparaginase II, encoded by the ASP3 gene, could be a potential candidate for the formulation of new drugs. This work aimed to purify and characterize the periplasmic asparaginase produced by a recombinant Pichia pastoris strain harbouring the ASP3 gene. The enzyme was purified to homogeneity with an activity recovery of 51.3%. The estimated molecular mass of the enzyme was 136 kDa (under native conditions) and 48.6 kDa and 44.6 kDa (under reducing conditions), suggesting an oligomeric structure. The recombinant asparaginase is apparently non-phosphorylated, and the major difference between the monomers seems to be their degree of glycosylation. The enzyme showed an isoelectric point of 4.5 and maximum activity at 46 °C and pH 7.2, retaining 92% of the activity at 37 °C. Circular dichroism and fluorescence analyses showed that the enzyme structure is predominantly α-helical with the contribution of β-sheet and that it remains stable up to 45 °C and in the pH range of 6-10. In vitro tests indicated that the recombinant asparaginase demonstrated antitumoural activity against K562 leukaemic cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Purification and preliminary characterization of (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin.

    PubMed

    Parry, R J; Hoyt, J C

    1997-02-01

    Sparsomycin is an antitumor antibiotic produced by Streptomyces sparsogenes. Biosynthetic experiments have previously demonstrated that one component of sparsomycin is derived from L-tryptophan via the intermediacy of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid and (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid. An enzyme which catalyzes the conversion of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid to (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid has been purified 740-fold to homogeneity from S. sparsogenes. The molecular mass of the native and denatured enzyme was 87 kDa, indicating that the native enzyme is monomeric. The enzyme required NAD+ for activity but lacked rigid substrate specificity, since analogs of both NAD+ and 3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid could serve as substrates. The enzyme was very weakly inhibited by mycophenolic acid. Monovalent cations were required for activity, with potassium ions being the most effective. The enzyme exhibited sensitivity toward diethylpyrocarbonate and some thiol-directed reagents, and it was irreversibly inhibited by 6-chloropurine. The properties of the enzyme suggest it is mechanistically related to inosine-5'-monophosphate dehydrogenase.

  16. Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into alpha-chymotrypsin provide additional activation and stabilization effects.

    PubMed

    Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V

    1997-07-20

    Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.

  17. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad,more » is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.« less

  18. Design of activated serine-containing catalytic triads with atomic level accuracy

    PubMed Central

    Rajagopalan, Sridharan; Wang, Chu; Yu, Kai; Kuzin, Alexandre P.; Richter, Florian; Lew, Scott; Miklos, Aleksandr E.; Matthews, Megan L.; Seetharaman, Jayaraman; Su, Min; Hunt, John. F.; Cravatt, Benjamin F.; Baker, David

    2014-01-01

    A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents. PMID:24705591

  19. Structure-Function Studies with the Unique Hexameric Form II Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) from Rhodopseudomonas palustris*

    PubMed Central

    Satagopan, Sriram; Chan, Sum; Perry, L. Jeanne; Tabita, F. Robert

    2014-01-01

    The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a “closed” conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile165 and Met331) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala47) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. PMID:24942737

  20. Structure-function studies with the unique hexameric form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodopseudomonas palustris.

    PubMed

    Satagopan, Sriram; Chan, Sum; Perry, L Jeanne; Tabita, F Robert

    2014-08-01

    The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a "closed" conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile(165) and Met(331)) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala(47)) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's kcat for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Alcohol consumption and tolerance of Neurospora crassa

    USDA-ARS?s Scientific Manuscript database

    The alcohol consumption and tolerance of the ascomycete Neurospora crassa was investigated in this study. This fungus is able to utilize both native alcohol and non-native alcohols as carbon sources, yet little is known about the enzymes involved in these processes. The deletion of alcohol dehydroge...

  2. Monooxygenase, a Novel Beta-Cypermethrin Degrading Enzyme from Streptomyces sp

    PubMed Central

    Xiao, Ying; Deng, Yinyue; Chang, Changqing; Zhong, Guohua; Hu, Meiying; Zhang, Lian-Hui

    2013-01-01

    The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5–8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe2+, but strongly inhibited by Ag+, Al3+, and Cu2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS) and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection. PMID:24098697

  3. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    PubMed

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn 2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13 C ENDOR then reveals the locations of 13 C10 and reactive 13 C11 of linoleic acid relative to the metal; 1 H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  4. Thin-Layer Polymer Wrapped Enzymes Encapsulated in Hierarchically Mesoporous Silica with High Activity and Enhanced Stability

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Meitao; Liang, Chao; Jiang, Huangyong; Shen, Jian; Li, Hexing

    2014-03-01

    A novel soft-hard cooperative approach was developed to synthesize bioactive mesoporous composite by pre-wrapping Penicillin G amidase with poly(acrylaimde) nanogel skin and subsequently incorporating such Penicillin G amidase nanocapsules into hierarchically mesoporous silica. The as-received bioactive mesoporous composite exhibited comparable activity and extraordinarily high stability in comparison with native Penicillin G amidase and could be used repetitively in the water-medium hydrolysis of penicillin G potassium salt. Furthermore, this strategy could be extended to the synthesis of multifunctional bioactive mesoporous composite by simultaneously introducing glucose oxidase nanocapsules and horseradish peroxidase nanocapsules into hierarchically mesoporous silica, which demonstrated a synergic effect in one-pot tandem oxidation reaction. Improvements in the catalytic performances were attributed to the combinational unique structure from soft polymer skin and hard inorganic mesoporous silica shell, which cooperatively helped enzyme molecules to retain their appropriate geometry and simultaneously decreased the enzyme-support negative interaction and mass transfer limitation under heterogeneous conditions.

  5. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  6. In Silico Identification of Bioremediation Potential: Carbamazepine and Other Recalcitrant Personal Care Products.

    PubMed

    Aukema, Kelly G; Escalante, Diego E; Maltby, Meghan M; Bera, Asim K; Aksan, Alptekin; Wackett, Lawrence P

    2017-01-17

    Emerging contaminants are principally personal care products not readily removed by conventional wastewater treatment and, with an increasing reliance on water recycling, become disseminated in drinking water supplies. Carbamazepine, a widely used neuroactive pharmaceutical, increasingly escapes wastewater treatment and is found in potable water. In this study, a mechanism is proposed by which carbamazepine resists biodegradation, and a previously unknown microbial biodegradation was predicted computationally. The prediction identified biphenyl dioxygenase from Paraburkholderia xenovorans LB400 as the best candidate enzyme for metabolizing carbamazepine. The rate of degradation described here is 40 times greater than the best reported rates. The metabolites cis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine were demonstrated with the native organism and a recombinant host. The metabolites are considered nonharmful and mitigate the generation of carcinogenic acridine products known to form when advanced oxidation methods are used in water treatment. Other recalcitrant personal care products were subjected to prediction by the Pathway Prediction System and tested experimentally with P. xenovorans LB400. It was shown to biodegrade structurally diverse compounds. Predictions indicated hydrolase or oxygenase enzymes catalyzed the initial reactions. This study highlights the potential for using the growing body of enzyme-structural and genomic information with computational methods to rapidly identify enzymes and microorganisms that biodegrade emerging contaminants.

  7. [Regulation of thermal stability of enzymes by changing the composition of media. Native and modified alpha-chymotrypsin].

    PubMed

    Levitskiĭ, V Iu; Melik-Nubarov, N S; Slepnev, V I; Shikshnis, V A; Mozhaev, V V

    1990-01-01

    Stabilizing effect of denaturing salts on irreversible thermoinactivation of native and modified alpha-chymotrypsin at elevated temperatures is observed. The effect is caused by a shift of conformational equilibrium, at the primary step of reversible unfolding in the course of thermoinactivation, to a more unfolded form which is not able to refold "incorrectly". The stability of alpha-chymotrypsin is regulated within a wide range by medium alteration: the stabilizing effects are similar to those achieved by multipoint attachment of the enzyme to a support or by hydrophilization of protein by covalent modification.

  8. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. What is the role of the second "structural" NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    PubMed

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M S; Engel, Paul C

    2008-08-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable "structural" NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of "stripped" enzyme by gel filtration was approximately 100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for "catalytic" NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37 degrees C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4 degrees C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The Kd values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of Kd constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations.

  10. Activities of native and tyrosine-69 mutant phospholipases A2 on phospholipid analogues. A reevaluation of the minimal substrate requirements.

    PubMed

    Kuipers, O P; Dekker, N; Verheij, H M; de Haas, G H

    1990-06-26

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69. Modifications in the phospholipids included introduction of a sulfur at the phosphorus (thionophospholipids), removal of the negative charge at phosphorus (phosphatidic acid dimethyl ester), and reduction (phosphonolipids) or extension (diacylbutanetriol choline phosphate) of the distance between the phosphorus and the acyl ester bond. Replacement of Tyr-69 by Lys reduces enzymatic activity, but the mutant enzyme retains both the stereospecificity and positional specificity of native phospholipase A2. The Phe-69 mutant not only hydrolyzes the Rp isomer of thionophospholipids more efficiently than the wild-type enzyme, but the Sp thiono isomer is hydrolyzed too, although at a low (approximately 4%) rate. Phosphonolipids are hydrolyzed by native phospholipase A2 about 7 times more slowly than natural phospholipids, with retention of positional specificity and a (partial) loss of stereospecificity. The dimethyl ester of phosphatidic acid is degraded efficiently in a calcium-dependent and positional-specific way by native phospholipase A2 and by the mutants, indicating that a negative charge at phosphorus is not an absolute substrate requirement. The activities on the phosphatidic acid dimethyl ester of native enzyme and the Lys-69 mutant are lower than those on the corresponding lecithin, in contrast to the Phe-69 mutant, which has equal activities on both substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.

    PubMed

    Sarkar, Ranja

    2018-01-01

    SUMO (small ubiquitin-like modifier) proteins interact with a large number of target proteins via a key regulatory event called sumoylation that encompasses activation, conjugation and ligation of SUMO proteins through specific E1, E2, and E3-type enzymes respectively. Single-molecule atomic force microscopic (AFM) experiments performed to unravel bound SUMO1 along its NC termini direction reveal that E3-ligases (in the form of small peptides) increase mechanical stability (along the axis) of the flexible protein upon binding. The experimental results are expected to correlate with the intrinsic flexibility of bound SUMO1 protein in the native state i.e., the bound conformation of SUMO1 without the binding peptide. The native protein flexibility/stiffness can be measured as a spring constant by normal mode analysis. In the present study, protein normal modes are computed from the protein structural data (as input from protein databank) via a simple anisotropic network model (ANM). ANM is computationally inexpensive and hence, can be explored to investigate and compare the native conformational dynamics of unbound and bound (without the binding partner) structures, if the corresponding structural data (NMR/X-ray) are available. The paper illustrates that SUMO1 stiffens (native flexibility decreases) along the NC termini (end-to-end) direction of the protein upon binding to small peptides; however, the degree of stiffening is peptide sequence-specific. The theoretical results are demonstrated for NMR structures of unbound SUMO1 and that bound to two peptides having short amino acid motifs and of similar size, one being an M-IR2 peptide derived from RanBP2 protein and the other one derived from PIASX protein. The peptide derived from PIASX stiffens SUMO1 remarkably which is evident from an atomic-level normal mode analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Import of fructose bisphosphate aldolase into the glycosomes of Trypanosoma brucei

    PubMed Central

    1987-01-01

    The glycolytic enzymes of Trypanosomatids are compartmentalized within peroxisome-like microbodies called glycosomes. Fructose bisphosphate aldolase is synthesized on free polysomes and imported into glycosomes within 5 min. Peptide mapping reveals no primary structural differences between the in vivo-synthesized protein and that made in vitro from a synthetic template. However, native aldolase from glycosomes is partially protease resistant, whereas the in vitro translation product is not. Pulse-chase results indicate that aldolase in bloodstream trypanosomes has a much longer half-life than in the procyclic tsetse fly form. PMID:3320052

  13. Protein crystallography and infectious diseases.

    PubMed Central

    Verlinde, C. L.; Merritt, E. A.; Van den Akker, F.; Kim, H.; Feil, I.; Delboni, L. F.; Mande, S. C.; Sarfaty, S.; Petra, P. H.; Hol, W. G.

    1994-01-01

    The current rapid growth in the number of known 3-dimensional protein structures is producing a database of structures that is increasingly useful as a starting point for the development of new medically relevant molecules such as drugs, therapeutic proteins, and vaccines. This development is beautifully illustrated in the recent book, Protein structure: New approaches to disease and therapy (Perutz, 1992). There is a great and growing promise for the design of molecules for the treatment or prevention of a wide variety of diseases, an endeavor made possible by the insights derived from the structure and function of crucial proteins from pathogenic organisms and from man. We present here 2 illustrations of structure-based drug design. The first is the prospect of developing antitrypanosomal drugs based on crystallographic, ligand-binding, and molecular modeling studies of glycolytic glycosomal enzymes from Trypanosomatidae. These unicellular organisms are responsible for several tropical diseases, including African and American trypanosomiases, as well as various forms of leishmaniasis. Because the target enzymes are also present in the human host, this project is a pioneering study in selective design. The second illustrative case is the prospect of designing anti-cholera drugs based on detailed analysis of the structure of cholera toxin and the closely related Escherichia coli heat-labile enterotoxin. Such potential drugs can be targeted either at inhibiting the toxin's receptor binding site or at blocking the toxin's intracellular catalytic activity. Study of the Vibrio cholerae and E. coli toxins serves at the same time as an example of a general approach to structure-based vaccine design. These toxins exhibit a remarkable ability to stimulate the mucosal immune system, and early results have suggested that this property can be maintained by engineered fusion proteins based on the native toxin structure. The challenge is thus to incorporate selected epitopes from foreign pathogens into the native framework of the toxin such that crucial features of both the epitope and the toxin are maintained. That is, the modified toxin must continue to evoke a strong mucosal immune response, and this response must be directed against an epitope conformation characteristic of the original pathogen. PMID:7849584

  14. Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli.

    PubMed

    Liang, Xiaobo; Jia, Shifang; Sun, Yufang; Chen, Meiling; Chen, Xiuzhu; Zhong, Jin; Huan, Liandong

    2007-11-01

    Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l(-1) isopropyl-beta-D- thiogalactopyranoside (IPTG) at 20 degrees C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.

  15. Protein Structure Prediction Using Gas Phase Molecular Dynamics Simulation: EOTAXIN-3 Cytokine as a Case Study

    NASA Astrophysics Data System (ADS)

    Khairudin, Nurul Bahiyah Ahmad; Wahab, Habibah A.

    In the current work, the structure of the enzyme CC chemokine eotaxin-3 (1G2S) was chosen as a case study to investigate the effects of gas phase on the predicted protein conformation using molecular dynamics simulation. Generally, simulating proteins in the gas phase tend to suffer from various drawbacks, among which excessive numbers of protein-protein hydrogen bonds. However, current results showed that the effects of gas phase simulation on 1G2S did not amplify the protein-protein hydrogen bonds. It was also found that some of the hydrogen bonds which were crucial in maintaining the secondary structural elements were disrupted. The predicted models showed high values of RMSD, 11.5 Å and 13.5 Å for both vacuum and explicit solvent simulations, respectively, indicating that the conformers were very much different from the native conformation. Even though the RMSD value for the in vacuo model was slightly lower, it somehow suffered from lower fraction of native contacts, poor hydrogen bonding networks and fewer occurrences of secondary structural elements compared to the solvated model. This finding supports the notion that water plays a dominant role in guiding the protein to fold along the correct path.

  16. Application of Time-Resolved Tryptophan Phosphorescence Spectroscopy to Protein Folding Studies.

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vinod

    This thesis presents studies of the protein folding problem, one of the most significant questions in contemporary biophysics. Sensitive biophysical techniques, including room temperature tryptophan phosphorescence, which reports on the local environment of the residue, and the lability of proteins to denaturation, a global parameter, were used to assess the validity of the traditional assumption that the biologically active state of a protein is the 'native' state, and to determine whether the pathways of folding in vitro lead to the folded state achieved in vivo. Phosphorescence techniques have also been extended to study, for the first time, emission from tryptophan residues engineered into specific positions as reporters of protein structure. During in vitro refolding of E. coli alkaline phosphatase and bovine 13-lactoglobulin, significant differences were found between the refolded proteins and the native conformations, which have no apparent effect on the biological functions. Slow conformational transitions, termed 'annealing,' that occur long after the return of enzyme activity of alkaline phosphatase are manifested in the retarded recovery of phosphorescence intensity, lifetime, and protein lability. While 'annealing' is not observed for beta -lactoglobulin, both phosphorescence and lability experiments reveal changes in the structure of the refolded protein, even though its biological activity, retinol binding, is fully recovered. This result suggests that the pathways of folding in vitro need not lead to the structure formed in vivo. We have used phosphorescence techniques to study the refolding of ribonuclease T1, which exhibits slow kinetics characteristic of proline isomerization. Furthermore, the ability to extract structural information from phosphorescent tryptophan probes engineered into selected regions represents an important advance in studying protein structure; we have reported the first such results from a mutant staphylococcal nuclease. The refolding data have been interpreted in the context of recent theoretical work on rugged energy landscape models of protein folding. Our results suggest that the barriers to folding can be as large as ~ 20 kcal-mol^{-1}, and imply that the conventional definition of the 'native' state as the biologically active conformation may need revision to acknowledge that the active state may represent a long-lived intermediate on the pathway to the native structure.

  17. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  18. Chemical modification of L-asparaginase from Cladosporium sp. for improved activity and thermal stability.

    PubMed

    Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K

    2014-01-01

    L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.

  19. Use of 5-deazaFAD to study hydrogen transfer in the D-amino acid oxidase reaction.

    PubMed

    Hersh, L B; Jorns, M S

    1975-11-25

    The apoprotein of hog kidney D-amino acid oxidase was reconstituted with 5-deazaflavin adenine dinucleotide (5-deazaFAD) to yield a protein which contains 1.5 mol of 5-deazaFAD/mol of enzyme. The deazaFAD-containing enzyme forms complexes with benzoate, 2-amino benzoate, and 4-aminobenzoate which are both qualitatively and quantitatively similar to those observed with native enzyme. The complex with 2-aminobenzoate exhibits a new long wavelength absorption band characteristic of a flavin charge-transfer complex. The reconstituted enzyme exhibits no activity when assayed by D-alanine oxidation. However, the bound chromophore can be reduced by alanine, phenylalanine, proline, methionine, and valine, but not by glutamate or aspartate, indicating the deazaFAD enzyme retains the substrate specificity of the native enzyme. Reduction of the enzyme by D-alanine exhibits a 1.6-fold deuterium isotope effect. Reoxidation of the reduced enzyme occurred in the presence of pyruvate plus ammonia, but not with pyruvate alone or ammonia alone. beta-Phenylpyruvate and alpha-ketobutyrate, but not alpha-ketoglutarate could replace pyruvate. Reduced enzyme isolated following reaction with [alpha-3H]alanine was found to contain 0.5 mol of tritium/mol of deazaFADH2. After denaturation of the tritium-labeled enzyme, the radioactivity was identified as deazaFADH2. Reaction of the reduced tritium-labeled enzyme with pyruvate plus ammonia prior to denaturation yields [alpha-3H]alanine and unlabeled deazaFAD. These results suggest that reduction and reoxidation of enzyme-bound deazaFAD involves the stereo-specific transfer of alpha-hydrogen from substrate to deazaFAD.

  20. The Aminoacyl-tRNA Synthetase Complex.

    PubMed

    Mirande, Marc

    2017-01-01

    Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.

  1. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions.

    PubMed

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P; Geddes, Ryan D; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2013-05-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol. Saturation mutagenesis was combined with growth-based selection to isolate a mutated form of fucO that confers increased furfural tolerance. The mutation responsible, L7F, is located within the interfacial region of FucO homodimers, replacing the most abundant codon for leucine with the most abundant codon for phenylalanine. Plasmid expression of the mutant gene increased FucO activity by more than 10-fold compared to the wild-type fucO gene and doubled the rate of furfural metabolism during fermentation. No inclusion bodies were evident with either the native or the mutated gene. mRNA abundance for the wild-type and mutant fucO genes differed by less than 2-fold. The Km (furfural) for the mutant enzyme was 3-fold lower than that for the native enzyme, increasing efficiency at low substrate concentrations. The L7F mutation is located near the FucO N terminus, within the ribosomal binding region associated with translational initiation. Free-energy calculations for mRNA folding in this region (nucleotides -7 to +37) were weak for the native gene (-4.1 kcal mol(-1)) but weaker still for the fucO mutant (-1.0 to -0.1 kcal mol(-1)). The beneficial L7F mutation in FucO is proposed to increase furfural tolerance by improving gene expression and increasing enzyme effectiveness at low substrate levels.

  2. Improving Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions

    PubMed Central

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P.; Geddes, Ryan D.; Shanmugam, Keelnatham T.

    2013-01-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol. Saturation mutagenesis was combined with growth-based selection to isolate a mutated form of fucO that confers increased furfural tolerance. The mutation responsible, L7F, is located within the interfacial region of FucO homodimers, replacing the most abundant codon for leucine with the most abundant codon for phenylalanine. Plasmid expression of the mutant gene increased FucO activity by more than 10-fold compared to the wild-type fucO gene and doubled the rate of furfural metabolism during fermentation. No inclusion bodies were evident with either the native or the mutated gene. mRNA abundance for the wild-type and mutant fucO genes differed by less than 2-fold. The Km (furfural) for the mutant enzyme was 3-fold lower than that for the native enzyme, increasing efficiency at low substrate concentrations. The L7F mutation is located near the FucO N terminus, within the ribosomal binding region associated with translational initiation. Free-energy calculations for mRNA folding in this region (nucleotides −7 to +37) were weak for the native gene (−4.1 kcal mol−1) but weaker still for the fucO mutant (−1.0 to −0.1 kcal mol−1). The beneficial L7F mutation in FucO is proposed to increase furfural tolerance by improving gene expression and increasing enzyme effectiveness at low substrate levels. PMID:23475621

  3. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.

  4. Super RLuc8: A novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission.

    PubMed

    Rahnama, Somaieh; Saffar, Behnaz; Kahrani, Zahra Fanaei; Nazari, Mahboobeh; Emamzadeh, Rahman

    2017-01-01

    Renilla luciferase is a bioluminescent enzyme which is broadly used as a reporter protein in molecular biosensors. In this study, a novel luciferase with desired light emission wavelength and thermostability is reported. The results indicated that the new luciferase, namely super RLuc8, had a red-shifted spectrum and showed stable light emission. Super RLuc8 showed a 10-fold (p-value=0.0084) increase in the thermostability at 37°C after 20min incubation, in comparison to the native enzyme. The optimum temperature of the mutant increased from 30 to 37°C. Molecular dynamics simulation analysis indicated that the increased thermostability was most probably caused by a better structural compactness and more local rigidity in the regions out of the emitter site. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Molecular dynamics characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant: structural determinants for the impaired tetramerization.

    PubMed

    Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro

    2018-05-01

    Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.

  6. Molecular dynamics characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant: structural determinants for the impaired tetramerization

    NASA Astrophysics Data System (ADS)

    Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro

    2018-05-01

    Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.

  7. Molecular dynamics characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant: structural determinants for the impaired tetramerization

    NASA Astrophysics Data System (ADS)

    Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro

    2018-03-01

    Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.

  8. Optical characterization of glutamate dehydrogenase monolayers chemisorbed on SiO2

    NASA Astrophysics Data System (ADS)

    Pompa, P. P.; Blasi, L.; Longo, L.; Cingolani, R.; Ciccarella, G.; Vasapollo, G.; Rinaldi, R.; Rizzello, A.; Storelli, C.; Maffia, M.

    2003-04-01

    This paper describes the formation of glutamate dehydrogenase monolayers on silicon dioxide, and their characterization by means of physical techniques, i.e., fluorescence spectroscopy and Fourier-transform infrared spectroscopy. Detailed investigations of the intrinsic stability of native proteins in solution were carried out to elucidate the occurrence of conformational changes induced by the immobilization procedure. The enzyme monolayers were deposited on SiO2 after preexposing silicon surfaces to 3-aminopropyltriethoxysilane and reacting the silylated surfaces with glutaric dialdehyde. The optical characterization demonstrates that the immobilization does not interfere with the fold pattern of the native enzyme. In addition, fluorescence spectroscopy, thermal denaturation, and quenching studies performed on the enzyme in solution well describe the folding and unfolding properties of glutamate dehydrogenase. The photophysical studies reported here are relevant for nanobioelectronics applications requiring protein immobilization on a chip.

  9. Recent Advances in Immobilization Strategies for Glycosidases

    PubMed Central

    Karav, Sercan; Cohen, Joshua L.; Barile, Daniela; de Moura Bell, Juliana Maria Leite Nobrega

    2017-01-01

    Glycans play important biological roles in cell-to-cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large-scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo-β-N-acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI-1) that cleaves N-N′-diacetyl chitobiose moieties found in the N-linked glycan (N-glycan) core of high mannose, hybrid, and complex N-glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N-glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state-of-the-art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. PMID:27718339

  10. Enzyme-mediated self-assembly of highly ordered structures from disordered proteins

    NASA Astrophysics Data System (ADS)

    Athamneh, Ahmad I.; Barone, Justin R.

    2009-10-01

    Wheat gluten is an amorphous storage protein. Trypsin hydrolysis of wheat gluten produced glutamine-rich peptides. Some peptides were able to self-assemble into fibrous structures extrinsic to native wheat gluten. The final material was an in situ formed peptide composite of highly ordered nanometer-sized fibrils and micron-sized fibers embedded in an unassembled peptide matrix. Fourier transform infrared spectroscopic and x-ray diffraction data suggested that the new structures resembled that of cross- β fibrils found in some insect silk and implicated in prion diseases. The largest self-assembled fibers were about 10 µm in diameter with right-handed helicity and appeared to be bundles of smaller nanometer-sized fibrils. Results demonstrated the potential for utilizing natural mechanisms of protein self-assembly to design advanced materials that can provide a wide range of structural and chemical functionality.

  11. Structure-Specificity Relationships of an Intracellular Xylanase from Geobacillus stearothermophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon,V.; Teplitsky, A.; Shulami, S.

    2007-01-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 {angstrom} resolution to a final R factormore » of 15.0% and an R{sub free} of 19.0%. As expected, the structure forms the classical ({alpha}/{beta}){sub 8} fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes.« less

  12. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches.

    PubMed

    Kanokratana, Pattanop; Wongwilaiwalin, Sarunyou; Mhuantong, Wuttichai; Tangphatsornruang, Sithichoke; Eurwilaichitr, Lily; Champreda, Verawat

    2018-04-01

    Energy grass is a promising substrate for production of biogas by anaerobic digestion. However, the conversion efficiency is limited by the enzymatically recalcitrant nature of cellulosic wastes. In this study, an active, structurally stable mesophilic lignocellulolytic degrading microbial consortium (Np-LMC) was constructed from forest compost soil microbiota by successive subcultivation on Napier grass under facultative anoxic conditions. According to tagged 16S rRNA gene amplicon sequencing, increasing abundance of facultative Proteobacteria was found in the middle of batch cycle which was then subsequently replaced by the cellulose degraders Firmicutes and Bacteroidetes along with decreasing CMCase, xylanase, and β-glucanase activity profiles in the supernatant after 5 days of incubation. Anaerobic/facultative bacteria Dysgonomonas and Sedimentibacter and aerobic bacteria Comamonas were the major genera found in Np-LMC. The consortium was active on degradation of the native and delignified grass. Direct shotgun sequencing of the consortium metagenome revealed relatively high abundance of genes encoding for various lignocellulose degrading enzymes in 23 glycosyl hydrolase (GH) families compared to previously reported cellulolytic microbial communities in mammalian digestive tracts. Enzymes attacking cellulose and hemicellulose were dominated by GH2, 3, 5, 9, 10, 26, 28 and 43 in addition to a variety of carbohydrate esterases (CE) and auxiliary activities (AA), reflecting adaptation of the enzyme systems to the native herbaceous substrate. The consortium identified here represents the microcosm specifically bred on energy grass, with potential for enhancing degradation of fibrous substrates in bioenergy industry. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Mechanisms of Mitochondrial Defects in Gulf War Syndrome

    DTIC Science & Technology

    2014-10-01

    parameters: uncoupling ratio, net routine flux control ratio, respiratory control ratio, leak flux control ratio, phosphorylation respiratory... oxidative phosphorylation subunit) Quantitative analysis of individual mitochondrial proteins. The technique has been established and validated for muscle...Blue Native and Clear Native Analyses (non-denatured analysis of supercomplex formation and monomeric oxidative phosphorylation enzyme assembly

  14. Levels of house dust mite-specific serum immunoglobulin E (IgE) in different cat populations using a monoclonal based anti-IgE enzyme-linked immunosorbent assay.

    PubMed

    Bexley, Jennifer; Hogg, Janice E; Hammerberg, Bruce; Halliwell, Richard E W

    2009-10-01

    Levels of serum immunoglobulin E (IgE) specific for the house dust mites (HDMs) Dermatophagoides farinae (DF) and Dermatophagoides pteronyssinus (DP) in 58 cats with clinical signs suggestive of atopic dermatitis (allergic dermatitis cats), 52 cats with no history of allergic or immunological disease (nonallergic cats) and 26 specific pathogen-free (SPF) cats were measured using a monoclonal anti-IgE enzyme-linked immunosorbent assay. Reactivity to both native and reduced HDM allergens was compared. SPF cats had significantly lower levels of HDM-specific serum IgE than cats with allergic dermatitis and nonallergic cats. The difference in levels of HDM-specific IgE in the serum of cats with allergic dermatitis and nonallergic cats was significant for native DF allergen, but not for native DP allergen or reduced HDM allergens. The results suggest that DF in its native form may be a significant allergen in cats with allergic dermatitis. The clinical relevance of these reactions, however, remains to be proven.

  15. Diversity of Ligninolytic Enzymes and Their Genes in Strains of the Genus Ganoderma: Applicable for Biodegradation of Xenobiotic Compounds?

    PubMed Central

    Torres-Farradá, Giselle; Manzano León, Ana M.; Rineau, François; Ledo Alonso, Lucía L.; Sánchez-López, María I.; Thijs, Sofie; Colpaert, Jan; Ramos-Leal, Miguel; Guerra, Gilda; Vangronsveld, Jaco

    2017-01-01

    White-rot fungi (WRF) and their ligninolytic enzymes (laccases and peroxidases) are considered promising biotechnological tools to remove lignin related Persistent Organic Pollutants from industrial wastewaters and contaminated ecosystems. A high diversity of the genus Ganoderma has been reported in Cuba; in spite of this, the diversity of ligninolytic enzymes and their genes remained unexplored. In this study, 13 native WRF strains were isolated from decayed wood in urban ecosystems in Havana (Cuba). All strains were identified as Ganoderma sp. using a multiplex polymerase chain reaction (PCR)-method based on ITS sequences. All Ganoderma sp. strains produced laccase enzymes at higher levels than non-specific peroxidases. Native-PAGE of extracellular enzymatic extracts revealed a high diversity of laccase isozymes patterns between the strains, suggesting the presence of different amino acid sequences in the laccase enzymes produced by these Ganoderma strains. We determined the diversity of genes encoding laccases and peroxidases using a PCR and cloning approach with basidiomycete-specific primers. Between two and five laccase genes were detected in each strain. In contrast, only one gene encoding manganese peroxidase or versatile peroxidase was detected in each strain. The translated laccases and peroxidases amino acid sequences have not been described before. Extracellular crude enzymatic extracts produced by the Ganoderma UH strains, were able to degrade model chromophoric compounds such as anthraquinone and azo dyes. These findings hold promises for the development of a practical application for the treatment of textile industry wastewaters and also for bioremediation of polluted ecosystems by well-adapted native WRF strains. PMID:28588565

  16. Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population.

    PubMed

    Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W

    1999-01-01

    Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.

  17. β-Glucoside Activators of Mung Bean UDP-Glucose: β-Glucan Synthase 1

    PubMed Central

    Callaghan, Theresa; Ross, Peter; Weinberger-Ohana, Patricia; Benziman, Moshe

    1988-01-01

    n-Alkyl (C6-C12) β-d-monoglucopyranosides have been found to be highly potent activators of mung bean β-glucan synthase in vitro, increasing the Vmax of the enzyme as much as 60-fold and with Ka values as low as 10 micromolar. Activation is highly specific for the β-linked terminal glucose residue; other alkyl glycosides such as, octyl-α-glucoside, dodecyl β-maltoside, 6-lauryl sucrose, 6-lauryl glucose, which lack this structure, are ineffective as activators. Based on the similarities in their structure and effects on β-glucan synthesis under a variety of conditions, it is proposed that the alkyl β-glucosides are structural analogs of the native glucolipid activator of β-glucan synthase isolated from mung bean extracts. PMID:16666039

  18. Single Molecular Level Probing of Structure and Dynamics of Papain Under Denaturation.

    PubMed

    Sengupta, Bhaswati; Chaudhury, Apala; Das, Nilimesh; Sen, Pratik

    2017-01-01

    Papain is a cysteine protease enzyme present in papaya and known to help in digesting peptide. Thus the structure and function of the active site of papain is of interest. The objective of present study is to unveil the overall structural transformation and the local structural change around the active site of papain as a function of chemical denaturant. Papain has been tagged at Cys-25 with a thiol specific fluorescence probe N-(7- dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA). Guanidine hydrochloride (GnHCl) has been used as the chemical denaturant. Steady state, time-resolved, and single molecular level fluorescence techniques was applied to map the change in the local environment. It is found that papain undergoes a two-step denaturation in the presence of GnHCl. Fluorescence correlation spectroscopic (FCS) data indicate that the size (hydrodynamic diameter) of native papain is ~36.8 Å, which steadily increases to ~53 Å in the presence of 6M GnHCl. FCS study also reveals that the conformational fluctuation time of papain is 6.3 µs in its native state, which decreased to 2.7 µs in the presence of 0.75 M GnHCl. Upon further increase in GnHCl concentration the conformational fluctuation time increase monotonically till 6 M GnHCl, where the time constant is measured as 14 µs. On the other hand, the measurement of ellipticity, hence the helical structure, by circular dichroism spectroscopy is found to be incapable to capture such structural transformation. It is concluded that in the presence of small amount of GnHCl the active site of papain takes up a more compact structure (although the overall size increases) than in the native state, which has been designated as the intermediate state. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. XAFS of human tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Meyer, W.; Haavik, J.; Winkler, H.; Trautwein, A. X.; Nolting, H.-F.

    1995-02-01

    Tyrosine hydroxylase (TH) catalyses the rate-limiting step (hydroxylation of tyrosine to form dihydroxyphenylalanine) in the biosynthetic pathway leading to the catecholamines dopamine, noradrenaline and adrenaline. The human enzyme (hTH) is present in four isoforms, generated by splicing of pre-mRNA. The purified apoenzyme (metal free) binds stoichiometric amounts of iron. The incorporation of Fe(II) results in a rapid and up to 40-fold increase of activity [1]. Besides the coordination of the metal centers in native enzyme we studied the purported inhibition of TH by its immediate products. So we analysed Fe-hTH isoform 1 native as well as oxidized with dopamine and Co-hTH isoform 2.

  20. Role of Disulfide Bridges in the Activity and Stability of a Cold-Active α-Amylase

    PubMed Central

    Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo

    2005-01-01

    The cold-adapted α-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30°C and unfolds reversibly and sequentially with two transitions at temperatures below 12°C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with β-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity. PMID:16109962

  1. Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1-beta-lactamase.

    PubMed

    Margreiter, Gerd; Schwanninger, Manfred; Bayer, Karl; Obinger, Christian

    2008-10-01

    The enzyme TEM1-beta-lactamase has been used as a model to study the impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies (IBs). The protein has been heterologously expressed in Escherichia coli in fed-batch cultivations at different temperatures (30, 37, and 40 degrees C) as well as induction regimes that guaranteed distinct product formation rates and ratios of soluble to aggregated protein. Additionally, shake flask cultivations at 20, 30, and 37 degrees C were performed. IBs were sampled during the whole bioprocess and structural analysis was performed by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. This work clearly demonstrates that the tested production regimes and rates had no impact on the IB structure, which was characterized by decreased alpha-helical and increased and modified beta-sheet contents compared to the native protein. Moreover, aggregates formed during refolding of IBs by solubilization and simple dilution showed very similar FT-IR spectra suggesting (i) the existence of only one critical folding step from which either aggregation (IB formation) or native folding branches off, and (ii) underlining the important role of the specific amino acid sequence in aggregation. The findings are discussed with respect to the known structure of TEM1-beta-lactamase and the reported kinetics of its (un)folding as well as contradictory data on the effect of cultivation regimes on IB structure(s) of other proteins.

  2. Structure and inhibition of orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum.

    PubMed

    Langley, David B; Shojaei, Maryam; Chan, Camilla; Lok, Hiu Chuen; Mackay, Joel P; Traut, Thomas W; Guss, J Mitchell; Christopherson, Richard I

    2008-03-25

    Orotidine 5'-monophosphate (OMP) decarboxylase from Plasmodium falciparum (PfODCase, EC 4.1.1.23) has been overexpressed, purified, subjected to kinetic and biochemical analysis, and crystallized. The native enzyme is a homodimer with a subunit molecular mass of 38 kDa. The saturation curve for OMP as a substrate conformed to Michaelis-Menten kinetics with K m = 350 +/- 60 nM and V max = 2.70 +/- 0.10 micromol/min/mg protein. Inhibition patterns for nucleoside 5'-monophosphate analogues were linear competitive with respect to OMP with a decreasing potency of inhibition of PfODCase in the order: pyrazofurin 5'-monophosphate ( K i = 3.6 +/- 0.7 nM) > xanthosine 5'-monophosphate (XMP, K i = 4.4 +/- 0.7 nM) > 6-azauridine 5'-monophosphate (AzaUMP, K i = 12 +/- 3 nM) > allopurinol-3-riboside 5'-monophosphate ( K i = 240 +/- 20 nM). XMP is an approximately 150-fold more potent inhibitor of PfODCase compared with the human enzyme. The structure of PfODCase was solved in the absence of ligand and displays a classic TIM-barrel fold characteristic of the enzyme. Both the phosphate-binding loop and the betaalpha5-loop have conformational flexibility, which may be associated with substrate capture and product release along the reaction pathway.

  3. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xianzhi; Sun, Qining; Kosa, Matyas

    Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less

  4. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis

    DOE PAGES

    Meng, Xianzhi; Sun, Qining; Kosa, Matyas; ...

    2016-07-27

    Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less

  5. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newlymore » modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.« less

  6. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence TimeS⃞

    PubMed Central

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J. G.

    2011-01-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  7. Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmer, Nicholas J., E-mail: nic@cryst.bioc.cam.ac.uk; King, Jerry D.; Department of Veterinary Medicine, Cambridge CB3 0ES

    2007-08-01

    The expression, purification, and crystallisation of the short-chain dehydrogenases WbmF, WbmG and WbmH from B. bronchiseptica are described. Native diffraction data to 1.5, 2.0, and 2.2 Å were obtained for the three proteins, together with complexes with nucleotides. The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, whichmore » are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 Å at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules.« less

  8. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  9. Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe(2+)-ascorbate system.

    PubMed

    Wei, C H; Chou, W Y; Huang, S M; Lin, C C; Chang, G G

    1994-06-28

    Pigeon liver malic enzyme was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at neutral pH and 0 or 25 degrees C. Omitting the ascorbate or replacing the ferrous ion with manganese ion did not lead to any inactivation. Manganese, magnesium, zinc, cobalt, or calcium ion at 200 molar excess over ferrous ion offered complete protection of the enzyme from Fe(2+)-induced inactivation. Ni2+ provided partial protection, while Ba2+ or imidazole was ineffective in protection. Addition of 4 mM Mn2+ or 5 mM EDTA into a partially modified enzyme stopped further inactivation of the enzyme. Inclusion of substrates (L-malate or NADP+, singly or in combination) in the incubation mixture did not affect the inactivation rate. The enzyme inactivation was demonstrated to be followed by protein cleavage. Native pigeon liver malic enzyme had a subunit M(r) of 65,000. The inactivated enzyme with residual activity of only 0.3% was cleaved into two fragments with M(r) of 31,000 and 34,000, respectively. The cleavage site was identified as the peptide bond between Asp258 and Ile259. Native pigeon liver malic enzyme was blocked at the N-terminus. Cleavage at the putative metal-binding site exposed a new N-terminus, which was identified to be at the 34-kDa fragment containing the C-terminal half of original sequence 259-557. Our results indicated that Fe2+ catalyzed a specific oxidation of pigeon liver malic enzyme at Asp258 and/or some other essential amino acid residues that caused enzyme inactivation. The modified enzyme was then affinity cleaved at the Mn(2+)-binding site.

  10. [Priming effect of biochar on the minerialization of native soil organic carbon and the mechanisms: A review.

    PubMed

    Chen, Ying; Liu, Yu Xue; Chen, Chong Jun; Lyu, Hao Hao; Wa, Yu Ying; He, Li Li; Yang, Sheng Mao

    2018-01-01

    In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms. Based on the analysis of biochar characteristics, such as its carbon composition and stability, pore structure and surface morphology, research progress on the priming effect of biochar on the decomposition of native soil organic carbon was reviewed in this paper. Furthermore, possible mechanisms of both positive and negative priming effect, that is promoting and suppressing the mineralization, were put forward. Positive priming effect is mainly due to the promotion of soil microbial activity caused by biochar, the preferential mineralization of easily decomposed components in biochar, and the co-metabolism of soil microbes. While negative priming effect is mainly based on the encapsulation and adsorption protection of soil organic matter due to the internal pore structure and the external surface of biochar. Other potential reasons for negative priming effect can be the stabilization resulted from the formation of organic-inorganic complex promoted by biochar in the soil, and the inhibition of activity of soil microbes and its enzymes by biochar. Finally, future research directions were proposed in order to provide theoretical basis for the application of biochar in soil carbon sequestration.

  11. Active-site protein dynamics and solvent accessibility in native Achromobacter cycloclastes copper nitrite reductase.

    PubMed

    Sen, Kakali; Horrell, Sam; Kekilli, Demet; Yong, Chin W; Keal, Thomas W; Atakisi, Hakan; Moreau, David W; Thorne, Robert E; Hough, Michael A; Strange, Richard W

    2017-07-01

    Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (Asp CAT and His CAT ) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the Asp CAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (Ile CAT ), a determinant of ligand binding, are influenced both by temperature and by the protonation state of Asp CAT . A previously unobserved conformation of Ile CAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.

  12. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.

    PubMed

    Kofoed, Melissa A; Wampler, David A; Pandey, Arti S; Peters, John W; Ensign, Scott A

    2011-09-01

    NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the aforementioned site-directed mutants. We interpreted and rationalized these results in terms of a mechanism of catalysis for 2-KPCC employing a unique hydrophobic active-site architecture promoting thioether bond cleavage and enolacetone formation not seen for other DSOR enzymes. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  13. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    PubMed

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

    PubMed Central

    Makhmoudova, Amina; Williams, Declan; Brewer, Dyanne; Massey, Sarah; Patterson, Jenelle; Silva, Anjali; Vassall, Kenrick A.; Liu, Fushan; Subedi, Sanjeena; Harauz, George; Siu, K. W. Michael; Tetlow, Ian J.; Emes, Michael J.

    2014-01-01

    Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application. PMID:24550386

  15. Protein Conformational Populations and Functionally Relevant Sub-states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K; Burger, Virginia; Savol, Andrej

    2013-01-01

    Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of themore » protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow it to attain the transition state, therefore promoting the reaction mechanism. In the long term, this emerging view of proteins with conformational substates has broad implications for improving our understanding of enzymes, enzyme engineering, and better drug design. Researchers have already used photoactivation to modulate protein conformations as a strategy to develop a hypercatalytic enzyme. In addition, the alteration of the conformational substates through binding of ligands at locations other than the active site provides the basis for the design of new medicines through allosteric modulation.« less

  16. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.

    PubMed

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2015-05-01

    Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. © 2014 Wiley Periodicals, Inc.

  17. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonas putida 40.

    PubMed Central

    Woolfolk, C A

    1985-01-01

    The isolation of a xanthine dehydrogenase from Pseudomonas putida 40 which utilizes ferricyanide as an electron acceptor at high efficiency is presented. The new activity is separate from the NAD+ and oxygen-utilizing activities of the same organism but displays a broad pattern for reducing substrates typical of those of previously studied xanthine-oxidizing enzymes. Unlike the previously studied enzymes, the new enzyme appears to lack flavin but possess heme and is resistant to cyanide treatment. However, sensitivity of the purified enzyme to methanol and the selective elimination of the activity when tungstate is added to certain growth media suggest a role for molybdenum. The enzyme is subject to a selective proteolytic action during processing which is not accompanied by denaturation or loss of activity and which is minimized by the continuous exposure of the activity to EDTA and phenylmethylsulfonyl fluoride. Electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate suggests that the enzyme is constructed of subunits with a molecular weight of approximately 72,000. Electrophoresis under native conditions of a purified enzyme previously exposed to magnesium ion reveals a series of major and minor activity bands which display some selectivity toward both electron donors and acceptors. An analysis of the effect of gel concentration on this pattern suggests that the enzyme forms a series of charge and size isomers with a pair of trimeric forms predominating. Comparison of the rate of sedimentation of the enzyme in sucrose gradients with its elution profile from standardized Sepharose 6B columns suggests a molecular weight of 255,000 for the major form of the native enzyme. Images PMID:3860496

  19. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas

    The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.

  20. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography

    DOE PAGES

    Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas; ...

    2017-08-23

    The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.

  1. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    PubMed Central

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-01-01

    Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes. PMID:18607083

  2. Vitamin K2 (menaquinone) biosynthesis in Escherichia coli: evidence for the presence of an essential histidine residue in o-succinylbenzoyl coenzyme A synthetase.

    PubMed Central

    Bhattacharyya, D K; Kwon, O; Meganathan, R

    1997-01-01

    o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme. PMID:9324253

  3. Benchmark analysis of native and artificial NAD+-dependent enzymes generated by a sequence based design method with or without phylogenetic data.

    PubMed

    Nakano, Shogo; Motoyama, Tomoharu; Miyashita, Yurina; Ishizuka, Yuki; Matsuo, Naoya; Tokiwa, Hiroaki; Shinoda, Suguru; Asano, Yasuhisa; Ito, Sohei

    2018-05-22

    The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full consensus design (FCD) and ancestral sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial L-threonine 3-dehydrogenase (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1 and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH): the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5°C higher than CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were two- and seven-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.

  4. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.

    PubMed

    Simon, Gabriel M; Cravatt, Benjamin F

    2010-04-09

    Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.

  5. Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization.

    PubMed

    Russell, Thomas R; Tu, Shiao-Chun

    2004-10-12

    Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.

  6. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule.more » Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.« less

  7. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose

    PubMed Central

    Payne, Christina M.; Resch, Michael G.; Chen, Liqun; Crowley, Michael F.; Himmel, Michael E.; Taylor, Larry E.; Sandgren, Mats; Ståhlberg, Jerry; Stals, Ingeborg; Tan, Zhongping; Beckham, Gregg T.

    2013-01-01

    Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls. PMID:23959893

  8. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Różycki, Bartosz, E-mail: rozycki@ifpan.edu.pl; Cieplak, Marek

    2014-12-21

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kineticsmore » of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.« less

  9. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    NASA Astrophysics Data System (ADS)

    RóŻycki, Bartosz; Cieplak, Marek

    2014-12-01

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.

  10. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  11. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    PubMed

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  12. Purification of active chloroplast sedoheptulose-1,7-bisphosphatase expressed in Escherichia coli.

    PubMed

    Dunford, R P; Catley, M A; Raines, C A; Lloyd, J C; Dyer, T A

    1998-10-01

    Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme unique to photosynthetic organisms and has a key role in regulating the photosynthetic Calvin cycle through which nearly all carbon enters the biosphere. This makes SBPase an appropriate target for intensive study. We have expressed wheat SBPase in Escherichia coli either with or without an N-terminal polyhistidine tag. The identity of the recombinant SBPases was confirmed by SDS-PAGE analysis and immunological detection with a specific antibody. Recombinant SBPase with a polyhistidine tag (His-SBPase) was obtained in soluble, active form and purified by one-step metal-chelate chromatography. Like the native enzyme, recombinant His-SBPase was specific for the substrate sedoheptulose-1,7-bisphosphate and required the presence of a reducing agent for activity. Polyclonal antibodies were raised against recombinant SBPase and were then used to determine relative levels of the enzyme in plant extracts. The availability of large amounts of active recombinant SBPase will also allow detailed structural studies by site-directed mutagenesis and X-ray crystallography. Copyright 1998 Academic Press.

  13. Keratinolytic activity of Aspergillus fumigatus fresenius.

    PubMed

    Santos RMDB; Firmino, A A; de Sá, C M; Felix, C R

    1996-12-01

    Aspergillus fumigatus can utilize chicken feather keratin as its sole carbon and nitrogen source. Because enzymatic conversion of native keratin into readily usable products is of economic interest, this fungus was studied for its capacity to produce and secrete keratin-hydrolyzing proteinases. Substantial keratin-azure hydrolyzing activity was present in the culture fluid of keratin-containing media. Considerably lower activity was present in cultures containing glucose and nitrate as the carbon and nitrogen sources, or keratin plus glucose and nitrate. Secretion of keratin-hydrolyzing activity in A. fumigatus was induced by keratin but repressed by low-molecular-weight carbon and nitrogen sources. The amount of keratinolytic enzyme present in the culture fluid was dependent on the initial pH of the culture medium. The crude enzyme also hydrolyzed native keratin and casein in vitro. Hydrolysis was optimal at pH 9 and 45 degrees C. The crude enzyme was remarkably thermostable. At 70 degrees C, it retained about 90% of its original activity for 1.5 h. The obtained results indicated that the A. fumigatus keratinolytic enzyme may be suitable for enzymatic improvement of feather meal.

  14. Carbon-cycle effects of differences in soil moisture and soil extracellular enzyme activity at sites representing different land-use histories in high-elevation Ecuadorian páramo landscapes

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Harden, C. P.; Schaeffer, S. M.

    2016-12-01

    Ecuadorian páramo grasslands are important regional soil carbon sinks. In the páramo of the Mazar Wildlife Reserve, differences in soil carbon content among different types of land use may reflect changes in soil carbon-acquisition related microbial enzyme activity after land cover and soil moisture are altered; however, this hypothesis has not been tested explicitly for Ecuadorian páramos. This study used a fluorescence enzyme assay to assess the activities of four different extracellular enzymes representing carbon acquisition: α-glucosidase, β-glucosidase, β-D-cellulobiohydrolase, and β-xylosidase in Andean páramo soils. Acquisition activities were also measured for nitrogen (N-acetyl-β-glucosidase and leucine aminopeptidase) and phosphorus (phosphatase) to assess stoichiometric differences between land-uses, which can affect soil microbial activity related to carbon acquisition. Soils were analyzed from four land uses: native forest, grass páramo, recently burned grass páramo, and non-native pine plantation. Carbon acquisition activity was highest at the pine site (678 nmol h-1 g-1) and lowest at the recently burned páramo site (252 nmol h-1 g-1), indicating the lowest and highest available soil carbon, respectively. Carbon-acquisition EE activity was significantly higher at the grass páramo site (595 nmol h-1 g-1) than at the recently burned páramo and native forest sites. At the grass páramo site, a history of burning as a management strategy and high carbon-acquisition EE activity could indicate the presence of pyrogenic soil organic matter, which is more resistant to microbial decomposition. Soils at the native forest and both grassland sites were phosphorus limited, and soil at the pine site had higher nitrogen-acquisition activity, indicative of a shift to nitrogen-limited soil stoichiometric conditions. To our knowledge these are the first data reported for soil extracellular enzyme activities for Ecuadorian páramos.

  15. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    PubMed Central

    Zhou, Xingding; Tan, Tien-Chye; Valiyaveettil, S.; Go, Mei Lin; Kini, R. Manjunatha; Velazquez-Campoy, Adrian; Sivaraman, J.

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmon resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes. PMID:18586854

  16. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Tan, T; Valiyaveettil, S

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmonmore » resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes.« less

  17. [Modification of L-asparaginase with colominic acid and the new characteristics of the modified enzyme].

    PubMed

    Wang, Y D; Guo, L; Qian, S J; Meng, G Z; Zhang, S Z

    2000-07-01

    The colominic acid was covalently coupled to L-asparaginase molecule by reductive amination. Depending on the molar ratios of colominic acid-asparaginase (30:1, 50:1 and 100:1), a modified enzyme molecule contained 4.7, 7.2 and 12 colominic acid molecule, they retained 58%, 56% and 33.2% of the initial asparaginase activity, respectively. In comparison with the native enzyme, modified enzyme had lower immunogenicity and antigenicity, longer half-life time (in vitro), more resistance ability to trypsin proteolysis, and similar Km value for L-asparagine.

  18. The purification, crystallization and preliminary structural characterization of FAD-dependent monooxygenase PhzS, a phenazine-modifying enzyme from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohain, Neelakshi; Thomashow, Linda S.; USDA Agricultural Research Service, Root Disease and Biological Control Research Unit, Pullman, Washington 99164-6430

    2006-10-01

    PhzS, an FAD-dependent monooxygenase that catalyzes a reaction involved in the biosynthesis of the virulence factor pyocyanin in P. aeruginosa, was cloned, overexpressed and crystallized. Data collection from native and seleno-l-methionine-labelled crystals is reported. The blue chloroform-soluble bacterial metabolite pyocyanin (1-hydroxy-5-methyl-phenazine) contributes to the survival and virulence of Pseudomonas aeruginosa, an important Gram-negative opportunistic pathogen of humans and animals. Little is known about the two enzymes, designated PhzM and PhzS, that function in the synthesis of pyocyanin from phenazine-1-carboxylic acid. In this study, the FAD-dependent monooxygenase PhzS was purified and crystallized from lithium sulfate/ammonium sulfate/sodium citrate pH 5.5. Native crystalsmore » belong to space group C2, with unit-cell parameters a = 144.2, b = 96.2, c = 71.7 Å, α = γ = 90, β = 110.5°. They contain two monomers of PhzS in the asymmetric unit and diffract to a resolution of 2.4 Å. Seleno-l-methionine-labelled PhzS also crystallizes in space group C2, but the unit-cell parameters change to a = 70.6, b = 76.2, c = 80.2 Å, α = γ = 90, β = 110.5° and the diffraction limit is 2.7 Å.« less

  19. Biochemical characterisation of urease from urease-positive thermophilic campylobacter (UPTC).

    PubMed

    Tazumi, A; Nakajima, T; Sekizuka, A; Arikawa, K; Nakanishi, S; Hayashi, K; Tasaki, E; Moore, J E; Millar, B C; Matsuda, M

    2012-01-01

    This study aims to characterise biochemically urease from an atypical Campylobacter lari, namely urease-positive thermophilic Campylobacter (UPTC). Urease was purified from cells of a Japanese UPTC isolate (CF89-12) using phenyl-Sepharose chromatography. Two protein components (estimates molecular masses 24 kDa and 61 kDa) were obtained that appeared to be structural proteins of urease (subunits A and B), and these were fractionated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (PAGE). The native molecular weight for the final purified UPTC urease was estimated to be approximately 186,000 Da which is close to the calculated molecular weight (182,738 Da) based on all six open reading frames of UPTC CF89-12 urease genes (ureA, B, E, F, G and H), as described previously. Moreover, an active band was observed on phenol red staining after a nondenaturing native PAGE of the crude extract from the UPTC cells. In addition, the purified urease of UPTC CF8912 showed enzyme activity over a broad pH range (pH 6-10), with maximal activity at pH 8.0. The urease was also stable against heat treatment, with almost no loss of enzyme activity seen following 60-min incubation at temperatures of 20-60 degrees C. Urease subunits A and B were identified immunologically by Western blot analysis with rabbit anti-urease alpha (A) and beta (B) raised against Helicobacter pylori.

  20. Crystallization and X-ray diffraction analysis of a putative bacterial class I labdane-related diterpene synthase.

    PubMed

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; Stojanoff, Vivian; Rodríguez-Sanoja, Romina; Rudiño-Piñera, Enrique; Sánchez, Sergio

    2015-09-01

    Labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg(2+) (LrdC-Mg(2+)) and in complex with inorganic pyrophosphate (PPi) (LrdC-Mg(2+)-PPi). Crystals of native LrdC-Mg(2+) diffracted to 2.50 Å resolution and belonged to the trigonal space group P3221, with unit-cell parameters a = b = 107.1, c = 89.2 Å. Crystals of the LrdC-Mg(2+)-PPi complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3221. Crystals of the LrdC-Mg(2+)-PPi complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.

  1. ACTION OF A COMPLEX RADIATION FLUX ON ERYTHROCYTE PHOSPHOMONOESTERASE (in Rumanian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buruiana, L.M.; Hadarag, El.; Dema, A.

    To study the effect of radiation on the enzyme, erythrocytes were irradiated in the reactor of the Institute of Atomic Physics of the Romanian Academy of Sciences, Bucharest, in which the intensity of the various radiation components is: thermal neutrons 2.3 x 10/sup 7//cm/sup 2//sec, epithermal neutrons 7.1 x 10/sup 5//cm/sup 2//sec, fast neutrons 4.0 x 10/sup 7//cm/sup 2// sec, and gamma radiation 0.06 r/sec. In general, irradiation lowered the enzyme activity of solutions of the enzyme from horse erythrocytes, this reduction depending on the duration of irradiation and the initial enzyme activity. Kinetics of the nonirradiated and irradiated enzymemore » with respect to its substrate, alpha -glycerophosphate, were studied at various temperatures and substrate concentrations, according to the formulations of Lineweaver and Burk and the Michaelis constant (K/sub m/) was determined. The value of K/sub m/ was 0.0294 and 0.10 mole/l after 30 and 60 min irradiation, respectively, in contrast to 0.04 mole/l for the native enzyme. The corresponding hydrolysis rates at a substrate concentration of 0.50 g/100 ml were 0.036, 0.025, and 0.045, as g P per 100 ml erythrocytes at 37 deg C. Impairment of quality of the enzyme during irradiation was shown by the progressive increase in activation energy, which rose from 8955 cal/mole in native enzyme to 11500 and 11666 cal/mole in solutions of enzyme irradiated for 15 and 30 min, respectively. Although the above data apply to the equine enzyme only, similar changes in kinetics were observed following irradiation of the enzyme in bovine erythrocytes. (BBB)« less

  2. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway.

    PubMed

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-02-03

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4-5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.

  3. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway

    PubMed Central

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-01-01

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers. PMID:28157181

  4. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  5. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface.

    PubMed

    Forest, K T; Langford, P R; Kroll, J S; Getzoff, E D

    2000-02-11

    Macrophages and neutrophils protect animals from microbial infection in part by issuing a burst of toxic superoxide radicals when challenged. To counteract this onslaught, many Gram-negative bacterial pathogens possess periplasmic Cu,Zn superoxide dismutases (SODs), which act on superoxide to yield molecular oxygen and hydrogen peroxide. We have solved the X-ray crystal structure of the Cu,Zn SOD from Actinobacillus pleuropneumoniae, a major porcine pathogen, by molecular replacement at 1.9 A resolution. The structure reveals that the dimeric bacterial enzymes form a structurally homologous class defined by a water-mediated dimer interface, and share with all Cu,Zn SODs the Greek-key beta-barrel subunit fold with copper and zinc ions located at the base of a deep loop-enclosed active-site channel. Our structure-based sequence alignment of the bacterial enzymes explains the monomeric nature of at least two of these, and suggests that there may be at least one additional structural class for the bacterial SODs. Two metal-mediated crystal contacts yielded our C222(1) crystals, and the geometry of these sites could be engineered into proteins recalcitrant to crystallization in their native form. This work highlights structural differences between eukaryotic and prokaryotic Cu,Zn SODs, as well as similarities and differences among prokaryotic SODs, and lays the groundwork for development of antimicrobial drugs that specifically target periplasmic Cu,Zn SODs of bacterial pathogens. Copyright 12000 Academic Press.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rejda, J.M.; Johal, S.; Chollet, R.

    Homogeneous preparations of ribulose 1,5-bisphosphate carboxylase/oxygenase were isolated from several diploid and tetraploid cultivars of perennial ryegrass by three different purification protocols. The apparent K/sub m/ values for substrate CO/sub 2/ were essentially identical for the fully CO/sub 2//Mg/sup 2 +/-activated diploid and tetraploid enzymes, as were the kinetics for deactivation and activation of the CO/sub 2//Mg/sup 2 +/-activated and -depleted carboxylases, respectively. Similarly, virtually indistinguishable electrophoretic properties were observed for both the native and dissociated diploid and tetraploid ryegrass proteins, including native and subunit molecular weights and the isoelectric points of the native proteins and the large and smallmore » subunit component polypeptides. The quantity of carboxylase protein or total soluble leaf protein did not differ significantly between the diploid and tetraploid cultivars. Contrary to a previous report, these results indicate that increased ploidy level has had essentially no effect on the quantity or enzymic and physicochemical properties of ribulosebisphosphate carboxylase/oxygenase in perennial ryegrass.« less

  7. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  8. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1.

    PubMed

    Blaha-Nelson, David; Krüger, Dennis M; Szeler, Klaudia; Ben-David, Moshe; Kamerlin, Shina Caroline Lynn

    2017-01-25

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70-81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1's lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1's lactonase activity is minimal, whereas the k cat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1's active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar "gating loop" or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates.

  9. Structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi

    PubMed Central

    Gardberg, Anna; Sankaran, Banumathi; Davies, Doug; Bhandari, Janhavi; Staker, Bart; Stewart, Lance

    2011-01-01

    Fructose bisphosphate aldolose (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxy­acetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources. Bioinformatic analysis of the genome of the eukaryotic microsporidian parasite Encephalitozoon cuniculi revealed an FBPA homolog. The structures of this enzyme in the presence of the native substrate FBP and also with the partial substrate analog phosphate are reported. The purified enzyme crystallized in 90 mM Bis-Tris propane pH 6.5, 18% PEG 3350, 18 mM NaKHPO4, 10 mM urea for the phosphate-bound form and 100 mM Bis-Tris propane pH 6.5, 20% PEG 3350, 20 mM fructose 1,6-­bisphosphate for the FBP-bound form. In both cases protein was present at 25 mg ml−1 and the sitting-drop vapour-diffusion method was used. For the FBP-bound form, a data set to 2.37 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group C2221, with unit-cell parameters a = 121.46, b = 135.82, c = 61.54 Å. The structure was refined to a final free R factor of 20.8%. For the phosphate-bound form, a data set was collected to 2.00 Å resolution. The space group was also C2221 and the unit-cell parameters were a = 121.96, b = 137.61, c = 62.23 Å. The structure shares the typical barrel tertiary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. The quaternary structure is dimeric. This work provides a direct experimental result for the substrate-binding conformation of the product state of E. cuniculi FBPA. PMID:21904050

  10. Structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi.

    PubMed

    Gardberg, Anna; Sankaran, Banumathi; Davies, Doug; Bhandari, Janhavi; Staker, Bart; Stewart, Lance

    2011-09-01

    Fructose bisphosphate aldolose (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources. Bioinformatic analysis of the genome of the eukaryotic microsporidian parasite Encephalitozoon cuniculi revealed an FBPA homolog. The structures of this enzyme in the presence of the native substrate FBP and also with the partial substrate analog phosphate are reported. The purified enzyme crystallized in 90 mM Bis-Tris propane pH 6.5, 18% PEG 3350, 18 mM NaKHPO(4), 10 mM urea for the phosphate-bound form and 100 mM Bis-Tris propane pH 6.5, 20% PEG 3350, 20 mM fructose 1,6-bisphosphate for the FBP-bound form. In both cases protein was present at 25 mg ml(-1) and the sitting-drop vapour-diffusion method was used. For the FBP-bound form, a data set to 2.37 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group C222(1), with unit-cell parameters a=121.46, b=135.82, c=61.54 Å. The structure was refined to a final free R factor of 20.8%. For the phosphate-bound form, a data set was collected to 2.00 Å resolution. The space group was also C222(1) and the unit-cell parameters were a=121.96, b=137.61, c=62.23 Å. The structure shares the typical barrel tertiary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. The quaternary structure is dimeric. This work provides a direct experimental result for the substrate-binding conformation of the product state of E. cuniculi FBPA.

  11. Regulation of hydantoin-hydrolyzing enzyme expression in Agrobacterium tumefaciens strain RU-AE01.

    PubMed

    Jiwaji, Meesbah; Dorrington, Rosemary Ann

    2009-10-01

    Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.

  12. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, DA; Bertolani, SJ; Siegel, JB

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  13. The effects of genetic manipulation of putrescine biosynthesis on transcription and activities of the other polyamine biosynthetic enzymes

    Treesearch

    Andrew F. Page; Sridev Mohapatra; Rakesh Minocha; Subhash C. Minocha

    2007-01-01

    We have studied the effects of overproduction of putrescine (Put) via transgenic expression of a mouse ornithine decarboxylase (ODC) gene on the expression of native genes for four enzymes involved in polyamine biosynthesis in hybrid poplar (Populus nigra x maximowiczii) cells. An examination of the transcript levels of arginine...

  14. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  15. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications.

    PubMed

    Zhao, Bin; Liu, Xinlong; Jiang, Yanjun; Zhou, Liya; He, Ying; Gao, Jing

    2014-08-01

    Lipase Candida sp. 99-125 has been proved to be quite effective in catalyzing organic synthesis reactions and is much cheaper than commercial lipases. Mesoporous silicates are attractive materials for the immobilization of enzymes due to their unique structures. The present research designed a hydrophobic silicate with uniform pore size suitable for the comfort of lipase Candida sp. 99-125 for improving its activity and stability. The resulting immobilized lipase (LP@PMO) by adsorption was employed to catalyze hydrolysis, esterification, and transesterification reactions, and the performances were compared with the lipase immobilized on hydrophilic silicate (LP@PMS) and native lipase. The LP@PMO showed as high activity as that of native lipase in hydrolysis and much increased catalytic activity and reusability in the reactions for biodiesel production. Besides, LP@PMO also possessed better organic stability. Such results demonstrate that immobilization of lipase onto hydrophobic supports is a promising strategy to fabricate highly active and stable biocatalysts for applications.

  16. Overproduction in Escherichia coli and Characterization of a Soybean Ferric Leghemoglobin Reductase.

    PubMed Central

    Ji, L.; Becana, M.; Sarath, G.; Shearman, L.; Klucas, R. V.

    1994-01-01

    We previously cloned and sequenced a cDNA encoding soybean ferric leghemoglobin reductase (FLbR), an enzyme postulated to play an important role in maintaining leghemoglobin in a functional ferrous state in nitrogen-fixing root nodules. This cDNA was sub-cloned into an expression plasmid, pTrcHis C, and overexpressed in Escherichia coli. The recombinant FLbR protein, which was purified by two steps of column chromatography, was catalytically active and fully functional. The recombinant FLbR cross-reacted with antisera raised against native FLbR purified from soybean root nodules. The recombinant FLbR, the native FLbR purified from soybean (Glycine max L.) root nodules, and dihydrolipoamide dehydrogenases from pig heart and yeast had similar but not identical ultraviolet-visible absorption and fluorescence spectra, cofactor binding, and kinetic properties. FLbR shared common structural features in the active site and prosthetic group binding sites with other pyridine nucleotide-disulfide oxidoreductases such as dihydrolipoamide dehydrogenases, but displayed different microenvironments for the prosthetic groups. PMID:12232320

  17. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.

    PubMed

    Jakobi, Stephan; Nguyen, Tran Xuan Phong; Debaene, François; Metz, Alexander; Sanglier-Cianférani, Sarah; Reuter, Klaus; Klebe, Gerhard

    2014-10-01

    Interference with protein-protein interactions of interfaces larger than 1500 Ų by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © 2014 Wiley Periodicals, Inc.

  18. D2N: Distance to the native.

    PubMed

    Mishra, Avinash; Rana, Prashant Singh; Mittal, Aditya; Jayaram, B

    2014-10-01

    Root-mean-square-deviation (RMSD), of computationally-derived protein structures from experimentally determined structures, is a critical index to assessing protein-structure-prediction-algorithms (PSPAs). The development of PSPAs to obtain 0Å RMSD from native structures is considered central to computational biology. However, till date it has been quite challenging to measure how far a predicted protein structure is from its native - in the absence of a known experimental/native structure. In this work, we report the development of a metric "D2N" (distance to the native) - that predicts the "RMSD" of any structure without actually knowing the native structure. By combining physico-chemical properties and known universalities in spatial organization of soluble proteins to develop D2N, we demonstrate the ability to predict the distance of a proposed structure to within ±1.5Ǻ error with a remarkable average accuracy of 93.6% for structures below 5Ǻ from the native. We believe that this work opens up a completely new avenue towards assigning reliable structures to whole proteomes even in the absence of experimentally determined native structures. The D2N tool is freely available at http://www.scfbio-iitd.res.in/software/d2n.jsp. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.

    PubMed

    Szefler, Beata; Diudea, Mircea V; Putz, Mihai V; Grudzinski, Ireneusz P

    2016-10-27

    Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H₂O₂). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of -5.8 kcal/mol and (LIG2) of -4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  20. Activity of disaccharidases in arctic populations: evolutionary aspects disaccharidases in arctic populations.

    PubMed

    Kozlov, Andrew; Vershubsky, Galina; Borinskaya, Svetlana; Sokolova, Maria; Nuvano, Vladislav

    2005-07-01

    Disorders of dietary sugar assimilation occur more often among native people of the Arctic then in temperate climate inhabitants. It is hypothesized that the limited variety of natural exogenous sugars in the Arctic, and their low content in the traditional diets of native northerners in accordance with a "protein-lipid" type of metabolism weakened selection, favoring diversity of disaccharidase enzymes.

  1. Biochemical and structural characterizations of two Dictyostelium cellobiohydrolases from the amoebozoa kingdom reveal a high level of conservation between distant phylogenetic trees of life

    DOE PAGES

    Hobdey, Sarah E.; Knott, Brandon C.; Momeni, Majid Haddad; ...

    2016-04-01

    Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes often employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7Amore » and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7A CBM and DpuCel7A CBM, which were recombinantly expressed in T. reesei. DdiCel7A CBM and DpuCel7A CBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The K i of cellobiose was significantly higher for DdiCel7A CBM and DpuCel7A CBM than for TreCel7A: 205, 130, and 29 μM, respectively. Finally, taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life.« less

  2. Biochemical and structural characterizations of two Dictyostelium cellobiohydrolases from the amoebozoa kingdom reveal a high level of conservation between distant phylogenetic trees of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobdey, Sarah E.; Knott, Brandon C.; Momeni, Majid Haddad

    Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes often employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7Amore » and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7A CBM and DpuCel7A CBM, which were recombinantly expressed in T. reesei. DdiCel7A CBM and DpuCel7A CBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The K i of cellobiose was significantly higher for DdiCel7A CBM and DpuCel7A CBM than for TreCel7A: 205, 130, and 29 μM, respectively. Finally, taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life.« less

  3. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain.

    PubMed

    Cabukusta, Birol; Kol, Matthijs; Kneller, Laura; Hilderink, Angelika; Bickert, Andreas; Mina, John G M; Korneev, Sergei; Holthuis, Joost C M

    2017-01-25

    SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca 2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.

  4. Functional Studies on Oligotropha carboxidovorans Molybdenum-Copper CO Dehydrogenase Produced in Escherichia coli.

    PubMed

    Kaufmann, Paul; Duffus, Benjamin R; Teutloff, Christian; Leimkühler, Silke

    2018-04-30

    The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO 2 and the oxidation of H 2 to protons and electrons. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H 2 oxidation of Mo/Cu-dependent CODHs in the future.

  5. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis.

    PubMed

    Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G

    1993-08-05

    The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.

  6. Computational characterization of DNA/peptide/nanotube self assembly for bioenergy applications

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa; Araki, Ruriko; Collier, Galen

    2012-02-01

    Multi-enzyme pathways have become a subject of increasing interest for their role in the engineering of biomimetic systems for applications including biosensors, bioelectronics, and bioenergy. The efficiencies found in natural metabolic pathways partially arise from biomolecular self-assembly of the component enzymes in an effort to avoid transport limitations. The ultimate goal of this effort is to design and build biofuel cells with efficiencies similar to those of native systems by introducing biomimetic structures that immobilize multiple enzymes in specific orientations on a bioelectrode. To achieve site-specific immobilization, the specificity of DNA-binding domains is exploited with an approach that allows any redox enzyme to be modified to site-specifically bind to double stranded (ds) DNA while retaining activity. Because of its many desirable properties, the bioelectrode of choice is single-wall carbon nanotubes (SWNTs), but little is known about dsDNA/SWNT assembly and how this might affect the activity of the DNA-binding domains. Here we evaluate the feasibility of the proposed assembly by performing atomistic molecular dynamics simulations to look at the stability and conformations adopted by dsDNA when bound to a SWNT. We also evaluate the effects of the presence of a SWNT on the stability of the complex formed by a DNA-binding domain and DNA.

  7. Optimization of Enzyme-Substrate Pairing for Bioluminescence Imaging of Gene Transfer Using Renilla and Gaussia Luciferases

    PubMed Central

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R.

    2010-01-01

    Background Bioluminescence imaging (BLI) permits the noninvasive quantitation and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. Methods With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. Results In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were 8–15 times higher than that of the prototypical RLuc-native coelenterazine combination. Conclusions Our results demonstrate that substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and that appropriate selection of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI. PMID:20527045

  8. Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases.

    PubMed

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R

    2010-06-01

    Bioluminescence imaging (BLI) permits the non-invasive quantification and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were eight- to 15-fold higher than that of the prototypical RLuc-native coelenterazine combination. Substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and appropriate choice of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI.

  9. A cheap, simple high throughput method for screening native Helicobacter pylori urease inhibitors using a recombinant Escherichia coli, its validation and demonstration of Pistacia atlantica methanolic extract effectivity and specificity.

    PubMed

    Amar, Natalie; Peretz, Avi; Gerchman, Yoram

    2017-02-01

    Helicobacter pylori is the most frequent and persistent bacterial infection worldwide, and a risk factor for active gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Although combined antibiotics treatment is effective cases of antibiotic resistance are reported at an alarming rate. The H. pylori urease enzyme is essential for the bacteria establishment in the gastric mucosa, resulting urease inhibitors being sought after as effective and specific anti- H. pylori treatment. To-date, screening assays are based mostly on the analog plant urease enzyme but difference in properties of the plant and bacterial enzymes hamper these efforts. We have developed a screening assay based on recombinant Escherichia coli expressing native H. pylori urease, and validated this assay using thiourea and a methanolic extract of Pistacia atlantica. The assay demonstrated the thiourea and the extract to be potent urease inhibitors, with the extract having strong bacteriostatic activity against clinical isolates of H. pylori, including such with antibiotic resistance. The extract was also found to be neutral toward common probiotic bacteria, supporting its specificity and compatibility with digestive system desired microflora and suggesting it could be a good source for anti-H. pylori compounds. The assay has proven to be cheap, simple and native alternative to the plant enzyme based assay and could allow for high throughput screening for new urease inhibitors and could expedite screening and development of novel, better H. pylori remedies helping us to combat this infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography

    PubMed Central

    Allison, Kim; Robbins, Thomas; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Khosla, Chaitan; DeMirci, Hasan; McPhillips, Scott E.; Hollenbeck, Michael; Soltis, Michael; Cohen, Aina E.

    2017-01-01

    The crystal structure of the trans-acyltrans-ferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for the direct delivery of the sample into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes for polyketide synthase reaction dynamics are discussed. PMID:28832129

  11. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    PubMed

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  12. Toward a generalized computational workflow for exploiting transient pockets as new targets for small molecule stabilizers: Application to the homogentisate 1,2-dioxygenase mutants at the base of rare disease Alkaptonuria.

    PubMed

    Bernini, Andrea; Galderisi, Silvia; Spiga, Ottavia; Bernardini, Giulia; Niccolai, Neri; Manetti, Fabrizio; Santucci, Annalisa

    2017-10-01

    Alkaptonuria (AKU) is an inborn error of metabolism where mutation of homogentisate 1,2-dioxygenase (HGD) gene leads to a deleterious or misfolded product with subsequent loss of enzymatic degradation of homogentisic acid (HGA) whose accumulation in tissues causes ochronosis and degeneration. There is no licensed therapy for AKU. Many missense mutations have been individuated as responsible for quaternary structure disruption of the native hexameric HGD. A new approach to the treatment of AKU is here proposed aiming to totally or partially rescue enzyme activity by targeting of HGD with pharmacological chaperones, i.e. small molecules helping structural stability. Co-factor pockets from oligomeric proteins have already been successfully exploited as targets for such a strategy, but no similar sites are present at HGD surface; hence, transient pockets are here proposed as a target for pharmacological chaperones. Transient pockets are detected along the molecular dynamics trajectory of the protein and filtered down to a set of suitable sites for structural stabilization by mean of biochemical and pharmacological criteria. The result is a computational workflow relevant to other inborn errors of metabolism requiring rescue of oligomeric, misfolded enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability.

    PubMed

    Merlino, Antonello; Russo Krauss, Irene; Castellano, Immacolata; Ruocco, Maria Rosaria; Capasso, Alessandra; De Vendittis, Emmanuele; Rossi, Bianca; Sica, Filomena

    2014-03-01

    A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Heme Structural Perturbation of PEG-Modified Horseradish Peroxidase C in Aromatic Organic Solvents Probed by Optical Absorption and Resonance Raman Dispersion Spectroscopy

    PubMed Central

    Huang, Qing; Al-Azzam, Wasfi; Griebenow, Kai; Schweitzer-Stenner, Reinhard

    2003-01-01

    The heme structure perturbation of poly(ethylene glycol)-modified horseradish peroxidase (HRP-PEG) dissolved in benzene and toluene has been probed by resonance Raman dispersion spectroscopy. Analysis of the depolarization ratio dispersion of several Raman bands revealed an increase of rhombic B1g distortion with respect to native HRP in water. This finding strongly supports the notion that a solvent molecule has moved into the heme pocket where it stays in close proximity to one of the heme's pyrrole rings. The interactions between the solvent molecule, the heme, and the heme cavity slightly stabilize the hexacoordinate high spin state without eliminating the pentacoordinate quantum mixed spin state that is dominant in the resting enzyme. On the contrary, the model substrate benzohydroxamic acid strongly favors the hexacoordinate quantum mixed spin state and induces a B2g-type distortion owing to its position close to one of the heme methine bridges. These results strongly suggest that substrate binding must have an influence on the heme geometry of HRP and that the heme structure of the enzyme-substrate complex (as opposed to the resting state) must be the key to understanding the chemical reactivity of HRP. PMID:12719258

  15. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  16. Functional properties and structural characterization of rice δ 1-pyrroline-5-carboxylate reductase

    DOE PAGES

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; ...

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice ( Oryza sativa L.) for δ 1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was ablemore » to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP + were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP + ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  17. Dynamic Folding Pathway Models of the Trp-Cage Protein

    PubMed Central

    Kim, Seung-Yeon

    2013-01-01

    Using action-derived molecular dynamics (ADMD), we study the dynamic folding pathway models of the Trp-cage protein by providing its sequential conformational changes from its initial disordered structure to the final native structure at atomic details. We find that the numbers of native contacts and native hydrogen bonds are highly correlated, implying that the native structure of Trp-cage is achieved through the concurrent formations of native contacts and native hydrogen bonds. In early stage, an unfolded state appears with partially formed native contacts (~40%) and native hydrogen bonds (~30%). Afterward, the folding is initiated by the contact of the side chain of Tyr3 with that of Trp6, together with the formation of the N-terminal α-helix. Then, the C-terminal polyproline structure docks onto the Trp6 and Tyr3 rings, resulting in the formations of the hydrophobic core of Trp-cage and its near-native state. Finally, the slow adjustment processes of the near-native states into the native structure are dominant in later stage. The ADMD results are in agreement with those of the experimental folding studies on Trp-cage and consistent with most of other computational studies. PMID:23865078

  18. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm.

    PubMed

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-11-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.

  19. Structure of the Arabidopsis Glucan Phosphatase LIKE SEX FOUR2 Reveals a Unique Mechanism for Starch Dephosphorylation[W

    PubMed Central

    Meekins, David A.; Guo, Hou-Fu; Husodo, Satrio; Paasch, Bradley C.; Bridges, Travis M.; Santelia, Diana; Kötting, Oliver; Vander Kooi, Craig W.; Gentry, Matthew S.

    2013-01-01

    Starch is a water-insoluble, Glc-based biopolymer that is used for energy storage and is synthesized and degraded in a diurnal manner in plant leaves. Reversible phosphorylation is the only known natural starch modification and is required for starch degradation in planta. Critical to starch energy release is the activity of glucan phosphatases; however, the structural basis of dephosphorylation by glucan phosphatases is unknown. Here, we describe the structure of the Arabidopsis thaliana starch glucan phosphatase LIKE SEX FOUR2 (LSF2) both with and without phospho-glucan product bound at 2.3Å and 1.65Å, respectively. LSF2 binds maltohexaose-phosphate using an aromatic channel within an extended phosphatase active site and positions maltohexaose in a C3-specific orientation, which we show is critical for the specific glucan phosphatase activity of LSF2 toward native Arabidopsis starch. However, unlike other starch binding enzymes, LSF2 does not possess a carbohydrate binding module domain. Instead we identify two additional glucan binding sites located within the core LSF2 phosphatase domain. This structure is the first of a glucan-bound glucan phosphatase and provides new insights into the molecular basis of this agriculturally and industrially relevant enzyme family as well as the unique mechanism of LSF2 catalysis, substrate specificity, and interaction with starch granules. PMID:23832589

  20. Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5.

    PubMed

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-08-01

    Many proteins exhibit conformation flexibility as part of their biological function, whether through the presence of a series of well-defined states or by the existence of intrinsic disorder. Ion mobility spectrometry, in combination with MS (IM-MS), offers a rapid and sensitive means of probing ensembles of protein structures through measurement of gas-phase collisional cross sections. We have applied IM-MS analysis to the multidomain deubiquitinating enzyme ubiquitin specific protease 5 (USP5), which is believed to exhibit significant conformational flexibility. Native ESI-MS measurement of the 94-kDa USP5 revealed two distinct charge-state distributions: [M + 17H](+) to [M + 21H](+) and [M + 24H](+) to [M + 29H](+). The collisional cross sections of these ions revealed clear groupings of 52 ± 4 nm(2) for the lower charges and 66 ± 6 nm(2) for the higher charges. Molecular dynamics simulation of a compact form of USP5, based on a crystal structure, produced structures of 53-54 nm(2) following 2 ns in the gas phase, while simulation of an extended form (based on small-angle X-ray scattering data) led to structures of 64 nm(2). These data demonstrate that IM-MS is a valuable tool in studying proteins with different discrete conformational states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Molecular structure of leucine aminopeptidase at 2. 7- angstrom resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burley, S.K.; David, P.R.; Lipscomb, W.N.

    1990-09-01

    The three-dimensional structure of bovine lens leucine aminopeptidase complexed with bestatin, a slow-binding inhibitor, has been solved to 3.0-{angstrom} resolution by the multiple isomorphous replacement method with phase combination and density modification. In addition, the structure of the isomorphous native enzyme has been refined at 2.7-{angstrom} resolution, and the current crystallographic R factor is 0.169 for a model that includes the two zinc ions and all 487 amino acid residues comprising the asymmetric unit. The enzyme is physiologically active as a hexamer, which has 32 symmetry and is triangular in shape with a triangle edge length of 115 {angstrom} andmore » maximal thickness of 90 {angstrom}. The monomers are crystallographically equivalent and each is folded into two unequal {alpha}/{beta} domains connected by an {alpha}-helix to give a comma-like shape with approximate maximal dimensions of 90 x 55 x 55 {angstrom}{sup 3}. The secondary structural composition is 40% {alpha}-helix and 19% {beta}-strand. The active site also contains two positively charged residues, Lys-250 and Arg-336. The six active sites are themselves located in the interior of the hexamer, where they line a disk-shaped cavity of radius 15 {angstrom} and thickness 10 {angstrom}. Access to this cavity is provided by solvent channels that run along the twofold symmetry axes.« less

  2. Structural stability of E. coli transketolase to temperature and pH denaturation.

    PubMed

    Jahromi, Raha R F; Morris, Phattaraporn; Martinez-Torres, Ruben J; Dalby, Paul A

    2011-09-10

    We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    NASA Astrophysics Data System (ADS)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice ( Oryza sativa L.) for δ 1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was ablemore » to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP + were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP + ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  5. Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties.

    PubMed

    Brewer, J M; Glover, C V; Holland, M J; Lebioda, L

    1997-06-20

    The X-ray structure of yeast enolase shows His373 interacting with a water molecule also held by residues Glu168 and Glu211. The water molecule is suggested to participate in the catalytic mechanism (Lebioda, L. and Stec, B. (1991) Biochemistry 30, 2817-2822). Replacement of His373 with asparagine (H373N enolase) or phenylalanine (H373F enolase) reduces enzymatic activity to ca. 10% and 0.0003% of the native enzyme activity, respectively. H373N enolase exhibits a reduced Km for the substrate, 2-phosphoglycerate, and produces the same absorbance changes in the chromophoric substrate analogues TSP1 and AEP1, relative to native enolase. H373F enolase binds AEP less strongly, producing a smaller absorbance change than native enolase, and reacts very little with TSP. H373F enolase dissociates to monomers in the absence of substrate; H373N enolase subunit dissociation is less than H373F enolase but more than native enolase. Substrate and Mg2+ increase subunit association in both mutants. Differential scanning calorimetric experiments indicate that the interaction with substrate that stabilizes enolase to thermal denaturation involves His373. We suggest that the function of His373 in the enolase reaction may involve hydrogen bonding rather than acid/base catalysis, through interaction with the Glu168/Glu211/H2O system, which produces removal or addition of hydroxyl at carbon-3 of the substrate.

  6. Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution.

    PubMed

    Chandrakasan, G; Torchia, D A; Piez, K A

    1976-10-10

    Procedures for the preparation of soluble collagen from rat skin and tail tendon were reviewed and revised to permit the preparation of native monomeric collagen with intact nonhelical ends. The degree of intactness was estimated from the tyrosine content, which is present only in the nonhelical ends, and by mobility of the COOH-terminal cyanogen bromide peptide of the alpha1 chain on sodium dodecyl sulfate gels. The amount of covalently cross-linked polymeric material present was estimated by molecular sieve chromatography of denatured samples. Rapid purification in the cold was sufficient to prevent or greatly reduce proteolytic alteration. Fractionation by salt precipitation at acid pH was effective in reducing the content of polymeric material. Rat tail tendon yielded completely intact native collagen, but some high molecular weight aggregates remained. Collagen from the skin of lathyritic rats was easier to obtain free of aggregates, but contained about 1 less tyrosine residue per alpha1 chain even when isolated in the presence of enzyme inhibitors. Proton NMR spectra of denatured acidic solutions of these preparations showed that 4 to 5 tyrosine residues per alpha chain were present, confirming the chemical analysis. Spectra of the native molecule showed that about the same number of tyrosine residues per chain are in rapid motion, unlike residues in the helical portion of the molecule, a result which shows that the nonhelical ends of the native molecule are unstructured in acidic solution.

  7. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6more » of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.« less

  8. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5'-monophosphate decarboxylase.

    PubMed

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F

    2009-04-17

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  9. Micromechanical study of mitotic chromosome structure

    NASA Astrophysics Data System (ADS)

    Marko, John

    2011-03-01

    Our group has developed micromanipulation techniques for study of the highly compacted mitotic form of chromosome found in eukaryote cells during cell division. Each metaphase chromosome contains two duplicate centimeter-long DNA molecules, folded up by proteins into cylindrical structures several microns in length. Native chromosomes display linear and reversible stretching behavior over a wide range of extensions (up to 5x native length for amphibian chromosomes), described by a Young modulus of about 300 Pa. Studies using DNA-cutting and protein-cutting enzymes have revealed that metaphase chromosomes behave as a network of chromatin fibers held together by protein-based isolated crosslinks. Our results are not consistent with the more classical model of loops of chromatin attached to a protein-based structural organizer or ``scaffold". In short, our experiments indicate that metaphase chromosomes can be considered to be ``gels" of chromatin; the stretching modulus of a whole chromosome is consistent with stretching of the chromatin fibers contained within it. Experiments using topoisomerases suggest that topological constraints may play an appreciable role in confining chromatin in the metaphase chromosome. Finally, recent experiments on human chromosomes will be reviewed, including results of experiments where chromosome-folding proteins are specifically depleted using siRNA methods. Supported by NSF-MCB-1022117, DMR-0715099, PHY-0852130, DMR-0520513, NCI 1U54CA143869-01 (NU-PS-OC), and the American Heart Association.

  10. Bacterial expression and re-engineering of Gaussia princeps luciferase and its use as a reporter protein.

    PubMed

    Wu, Nan; Rathnayaka, Tharangani; Kuroda, Yutaka

    2015-10-01

    Bioluminescence, the generation of visible light in a living organism, is widely observed in nature, and a large variety of bioluminescent proteins have been discovered and characterized. Luciferase is a generic term for bioluminescent enzymes that catalyze the emission of light through the oxidization of a luciferin (also a generic term). Luciferase are not necessarily evolutionary related and do not share sequence or structural similarities. Some luciferases, such as those from fireflies and Renilla, have been thoroughly characterized and are being used in a wide range of applications in bio-imaging. Gaussia luciferase (GLuc) from the marine copepod Gaussia princeps is the smallest known luciferase, and it is attracting much attention as a potential reporter protein. GLuc identification is relatively recent, and its structure and its biophysical properties remain to be fully characterized. Here, we review the bacterial production of natively folded GLuc with special emphasis on its disulfide bond formation and the re-engineering of its bioluminescence properties. We also compare the bioluminescent properties under a strictly controlled in vitro condition of selected GLuc's variants using extensively purified proteins with native disulfide bonds. Furthermore, we discuss and predict the domain structure and location of the catalytic core based on literature and on bioinformatics analysis. Finally, we review some examples of GLuc's emerging use in biomolecular imaging and biochemical assay systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. New Method To Generate Enzymatically Deficient Clostridium difficile Toxin B as an Antigen for Immunization

    PubMed Central

    Genth, Harald; Selzer, Jörg; Busch, Christian; Dumbach, Jürgen; Hofmann, Fred; Aktories, Klaus; Just, Ingo

    2000-01-01

    The family of the large clostridial cytotoxins, encompassing Clostridium difficile toxins A and B as well as the lethal and hemorrhagic toxins from Clostridium sordellii, monoglucosylate the Rho GTPases by transferring a glucose moiety from the cosubstrate UDP-glucose. Here we present a new detoxification procedure to block the enzyme activity by treatment with the reactive UDP-2′,3′-dialdehyde to result in alkylation of toxin A and B. Alkylation is likely to occur in the catalytic domain, because the native cosubstrate UDP-glucose completely protected the toxins from inactivation and the alkylated toxin competes with the native toxin at the cell receptor. Alkylated toxins are good antigens resulting in antibodies recognizing only the C-terminally located receptor binding domain, whereas formaldehyde treatment resulted in antibodies recognizing both the receptor binding domain and the catalytic domain, indicating that the catalytic domain is concealed under native conditions. Antibodies against the native catalytic domain (amino acids 1 through 546) and those holotoxin antibodies recognizing the catalytic domain inhibited enzyme activity. However, only antibodies against the receptor binding domain protected intact cells from the cytotoxic activity of toxin B, whereas antibodies against the catalytic domain were protective only when inside the cell. PMID:10678912

  12. A novel process for direct production of acetone-butanol-ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4.

    PubMed

    Thang, Vu Hong; Kobayashi, Genta

    2014-02-01

    In this work, a new approach for acetone-butanol-ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3 ± 0.4 to 22.4 ± 0.4 g/L), butanol concentration (17.5 ± 0.4 to 17.8 ± 0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.

  13. Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture.

    PubMed

    Furlund, Camilla B; Kristoffersen, Anja B; Devold, Tove G; Vegarud, Gerd E; Jonassen, Christine M

    2012-07-01

    Many infant formulas are enriched with lactoferrin (Lf) because of its claimed beneficial effects on health. Native bovine Lf (bLf) is known to inhibit in vitro replication of human enteroviruses, a group of pathogenic viruses that replicate in the gut as their primary infection site. On the basis of a model digestion and human gastrointestinal enzymes, we hypothesized that bLf could retain its antiviral properties against enterovirus in the gastrointestinal tract, either as an intact protein or through bioactive peptide fragments released by digestive enzymes. To test our hypothesis, bLf was digested with human gastric juice and duodenal juice in a 2-step in vitro digestion model. Two gastric pH levels and reduction conditions were used to simulate physiological conditions in adults and infants. The antiviral activity of native bLf and of the digested fractions was studied on echovirus 5 in vitro, using various assay conditions, addressing several mechanisms for replication inhibition. Both native and digested bLf fractions revealed a significant inhibitory effect, when added before or simultaneously with the virus onto the cells. Furthermore, a significant stronger sustained antiviral effect was observed when bLf was fully digested in the gastric phase with fast pH reduction to 2.5, compared with native bLf, suggesting the release of antiviral peptides from bLf during the human digestion process. In conclusion, this study demonstrates that bLf may have a role in the prevention of human gastrointestinal virus infection under physiological conditions and that food containing bLf may protect against infection in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. In vivo, cardiac-specific knockdown of target protein, Malic Enzyme-1, in rat via adenoviral delivery of DNA for non-native miRNA

    PubMed Central

    O'Donnell, J. Michael; Kalichira, Asha; Bi, Jian; Lewandowski, E. Douglas

    2013-01-01

    This study examines the feasibility of using the adenoviral delivery of DNA for a non-native microRNA to suppress expression of a target protein (cytosolic NADP+-dependent malic-enzyme 1, ME1) in whole heart in vivo, via an isolated-heart coronary perfusion approach. Complementary DNA constructs for ME1 microRNA were inserted into adenoviral vectors. Viral gene transfer to neonatal rat cardiomyocytes yielded 65% suppression of ME1 protein. This viral package was delivered to rat hearts in vivo (Adv.miR_ME1, 1013 vp/ml PBS) via coronary perfusion, using a cardiac-specific isolation technique. ME1 mRNA was reduced by 73% at 2-6 days post-surgery in heart receiving the Adv.miR_ME1. Importantly, ME1 protein was reduced by 66% (p<0.0002) at 5-6 days relative to sham-operated control hearts. Non-target protein expression for GAPDH, calsequestrin, and mitochondrial malic enzyme, ME3, were all unchanged. The non-target isoform, ME2, was unchanged at 2-5 days and reduced at day 6. This new approach demonstrates for the first time significant and acute silencing of target RNA translation and protein content in whole heart, in vivo, via non-native microRNA expression. PMID:22974418

  15. Long Circulating Enzyme Replacement Therapy Rescues Bone Pathology in Mucopolysaccharidosis VII Murine Model

    PubMed Central

    Rowan, Daniel J.; Tomatsu, Shunji; Grubb, Jeffrey H.; Haupt, Bisong; Montaño, Adriana M.; Oikawa, Hirotaka; Sosa, Catalina; Chen, Anping; Sly, William S.

    2012-01-01

    Mucopolysaccharidosis (MPS) type VII is a lysosomal storage disease caused by deficiency of the lysosomal enzyme β-glucuronidase (GUS), leading to accumulation of glycosaminoglycans (GAGs). Enzyme replacement therapy (ERT) effectively clears GAG storage in the viscera. Recent studies showed that a chemically modified form of GUS (PerT-GUS), which escaped clearance by mannose 6-phosphate and mannose receptors and showed prolonged circulation, reduced CNS storage more effectively than native GUS. Clearance of storage in bone has been limited due to the avascularity of the growth plate. To evaluate the effectiveness of long-circulating PerT-GUS in reducing the skeletal pathology, we treated MPS VII mice for 12 weeks beginning at 5 weeks of age with PerT-GUS or native GUS and used micro-CT, radiographs, and quantitative histopathological analysis for assessment of bones. Micro-CT findings showed PerT-GUS treated mice had a significantly lower BMD. Histopathological analysis also showed reduced storage material and a more organized growth plate in PerT-GUS treated mice compared with native GUS treated mice. Long term treatment with PerT-GUS from birth up to 57 weeks also significantly improved bone lesions demonstrated by micro-CT, radiographs and quantitative histopathological assay. In conclusion, long-circulating PerT-GUS provides a significant impact to rescue of bone lesions and CNS involvement. PMID:22902520

  16. Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor.

    PubMed Central

    Aghajari, N.; Feller, G.; Gerday, C.; Haser, R.

    1998-01-01

    Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. PMID:9541387

  17. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism

    PubMed Central

    Bordbar, Aarash; Palsson, Bernhard O.

    2016-01-01

    Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein’s structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism. PMID:27467583

  18. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism.

    PubMed

    Mih, Nathan; Brunk, Elizabeth; Bordbar, Aarash; Palsson, Bernhard O

    2016-07-01

    Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.

  19. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterialmore » cellulases relevant to lignocellulosic biofuel production.« less

  20. IMP dehydrogenase. II. Purification and properties of the enzyme from Yoshida sarcoma ascites tumor cells.

    PubMed

    Okada, M; Shimura, K; Shiraki, H; Nakagawa, H

    1983-11-01

    The preceding paper showed that IMP dehydrogenase [IMP:NAD+ oxidoreductase, EC 1.2.1.14] tended to form a precipitable complex(es) through ionic and hydrophobic interactions. On the basis of these observations, a method was developed for purification of IMP dehydrogenase from Yoshida sarcoma ascites cells. On SDS-polyacrylamide gel electrophoresis, the purified preparation (1.19 U/mg protein) appeared homogeneous and its minimum molecular weight was estimated to be 68K daltons. Amino acid analyses indicated a subunit molecular weight of 68,042. Molecular sieve chromatography in the presence of 10% (NH4)2SO4 showed that the molecular weight of the native enzyme was 127K daltons. These values indicate that the native enzyme is composed of two identical subunits. However, the purified enzyme gave 4 protein bands on polyacrylamide gel electrophoresis under non-denaturing conditions, and appeared as a single fraction in the vicinity of the void volume on Ultrogel AcA 34 column chromatography at low salt concentration, indicating that its molecular weight exceeded 200K daltons. These findings indicate that the enzyme tends to aggregate owing to its own physicochemical characteristics. The Km values for IMP and NAD were calculated to be 12 and 25 microM, respectively, and the Ki values for XMP, GMP, and AMP to be 109, 130, and 854 microM, respectively. The purified enzyme showed full activity in the presence of K+, and K+ could be partially replaced by Na+. PCMB inactivated the enzyme, but the activity was completely restored by the addition of DTT. Cl-IMP also inactivated the enzyme and IMP prevented this inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Engineering acidic Streptomyces rubiginosus D-xylose isomerase by rational enzyme design.

    PubMed

    Waltman, Mary Jo; Yang, Zamin Koo; Langan, Paul; Graham, David E; Kovalevsky, Andrey

    2014-02-01

    To maximize bioethanol production from lignocellulosic biomass, all sugars must be utilized. Yeast fermentation can be improved by introducing the d-xylose isomerase enzyme to convert the pentose sugar d-xylose, which cannot be fermented by Saccharomyces cerevisiae, into the fermentable ketose d-xylulose. The low activity of d-xylose isomerase, especially at the low pH required for optimal fermentation, limits its use. A rational enzyme engineering approach was undertaken, and seven amino acid positions were replaced to improve the activity of Streptomyces rubiginosus d-xylose isomerase towards its physiological substrate at pH values below 6. The active-site design was guided by mechanistic insights and the knowledge of amino acid protonation states at low pH obtained from previous joint X-ray/neutron crystallographic experiments. Tagging the enzyme with 6 or 12 histidine residues at the N-terminus resulted in a significant increase in the active-site affinity towards substrate at pH 5.8. Substituting an asparagine at position 215, which hydrogen bonded to the metal-bound Glu181 and Asp245, with an aspartate gave a variant with almost an order of magnitude lower KM than measured for the native enzyme, with a 4-fold increase in activity. Other studied variants showed similar (Asp57Asn, Glu186Gln/Asn215Asp), lower (Asp57His, Asn247Asp, Lys289His, Lys289Glu) or no (Gln256Asp, Asp287Asn, ΔAsp287) activity in acidic conditions relative to the native enzyme.

  2. Wild-type catalase peroxidase vs G279D mutant type: Molecular basis of Isoniazid drug resistance in Mycobacterium tuberculosis.

    PubMed

    Singh, Aishwarya; Singh, Aditi; Grover, Sonam; Pandey, Bharati; Kumari, Anchala; Grover, Abhinav

    2018-01-30

    Mycobacterium tuberculosis katG gene is responsible for production of an enzyme catalase peroxidase that peroxidises and activates the prodrug Isoniazid (INH), a first-line antitubercular agent. INH interacts with catalase peroxidase enzyme within its heme pocket and gets converted to an active form. Mutations occurring in katG gene are often linked to reduced conversion rates for INH. This study is focussed on one such mutation occurring at residue 279, where glycine often mutates to aspartic acid (G279D). In the present study, several structural analyses were performed to study the effect of this mutation on functionality of KatG protein. On comparison, mutant protein exhibited a lower docking score, smaller binding cavity and reduced affinity towards INH. Molecular dynamics analysis revealed the mutant to be more rigid and less compact than the native protein. Essential dynamics analysis determined correlated motions of residues within the protein structure. G279D mutant was found to have many residues that showed related motions and an undesirable effect on the functionality of protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sulfonyl 3-alkynyl pantetheinamides as mechanism-based crosslinkers of ACP dehydratase

    PubMed Central

    Ishikawa, Fumihiro; Haushalter, Robert W.; Lee, D. John; Finzel, Kara; Burkart, Michael D.

    2013-01-01

    The acyl carrier protein (ACP) plays a central function in acetate biosynthetic pathways, serving as a tether for substrates and growing intermediates. Activity and structural studies have highlighted the complexities of this role, and its protein-protein interactions have recently come under scrutiny as a regulator of catalysis. As existing methods to interrogate these interactions have fallen short, we have sought to develop new tools to aid their study. Here we describe the design, synthesis, and application of pantetheinamides capable of crosslinking ACPs with catalytic β-hydroxyacyl carrier protein dehydratase (DH) domains based upon a 3-alkynyl sulfone warhead. We demonstrate this process by application to the Escherichia coli fatty acid synthase and apply it to probe protein-protein interactions with non-cognate carrier proteins. Finally, we use solution phase protein NMR to demonstrate that sulfonyl-3-alkynyl pantetheinamide is fully sequestered by the ACP, indicating that the crypto-ACP closely mimics the natural DH substrate. This crosslinking technology offers immediate potential to lock these biosynthetic enzymes in their native binding states by providing access to mechanistically-crosslinked enzyme complexes, presenting a solution to ongoing structural challenges. PMID:23718183

  4. What is the role of the second “structural” NADP+-binding site in human glucose 6-phosphate dehydrogenase?

    PubMed Central

    Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M.S.; Engel, Paul C.

    2008-01-01

    Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable “structural” NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of “stripped” enzyme by gel filtration was ∼100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for “catalytic” NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37°C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4°C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The K d values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of K d constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations. PMID:18493020

  5. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    PubMed

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baowei; Shah, Saumil S.; Shin, Yongsoon

    We report here that under different physiological conditions, biomolecular drugs can be stockpiled in a nanoporous support and afterward can be instantly released when needed for acute responses, and the biomolecular drug molecules can also be gradually released from the nanoporous support over a long time for a complete recovery. Organophosphorus acid anhydrolase (OPAA) was spontaneously and largely entrapped in functionalized mesoporous silica (FMS) due to the dominant electrostatic interaction. The OPAA-FMS composite exhibited a burst release in a pH 9.0 NaHCO(3)-Na(2)CO(3) buffer system and a gradual release in pH 7.4 simulated body fluid. The binding of OPAA to NH(2)-FMSmore » can result in less tyrosinyl and tryptophanyl exposure OPAA molecules to aqueous environment. The bound OPAA in FMS displayed lower activity than the free OPAA in solution prior to the enzyme entrapment. However, the released enzyme maintained the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. The in vitro results in the rabbit serum demonstrate that both OPAA-FMS and the released OPAA may be used as a medical countermeasure against the organophosphorus nerve agents.« less

  7. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradationmore » pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.« less

  8. Induction of amyloidogenicity in wild type HEWL by a dialdehyde: analysis involving multi dimensional approach.

    PubMed

    Fazili, Naveed Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena

    2014-03-01

    Physiological conditions corresponding to oxidative stress deplete the level of enzyme glyoxalase, facilitating a hike in the serum concentration of glyoxal. Simulating an elevated in vivo level of glyoxal, we tested (50%, v/v) concentration of glyoxal to interact with HEWL. Initially, docking study revealed that glyoxal binds in the hydrophobic core of the enzyme. The interaction between the dialdehyde (glyoxal) and the enzyme (HEWL) followed a three step transition involving pre-molten and molten globule states formed on days 7 and 15 of incubation respectively, which were characterised by an increase in the ANS fluorescence intensity compared to the native state. These molten globule states upon further incubation on day 20 resulted in the formation of aggregates which were characterised by an increase in ThT fluorescence intensity, red shift in Congo red absorbance, negative ellipticity peak at 217 nm in the far-UV CD and the loss of signals at 284, 290 and 294 nm in the near-UV CD spectra. Finally, TEM confirmed the authenticity of lysozyme fibril formation by displaying rod like fibrillar structure. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. N5-(L-1-carboxyethyl)-L-ornithine synthase: physical and spectral characterization of the enzyme and its unusual low pKa fluorescent tyrosine residues.

    PubMed Central

    Sackett, D. L.; Ruvinov, S. B.; Thompson, J.

    1999-01-01

    N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed. PMID:10548058

  10. Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5'-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer.

    PubMed Central

    Lehto, M T; Sharom, F J

    1998-01-01

    Many hydrolytic enzymes are attached to the extracellular face of the plasma membrane of eukaryotic cells by a glycosylphosphatidylinositol (GPI) anchor. Little is currently known about the consequences for enzyme function of anchor cleavage by phosphatidylinositol-specific phospholipase C. We have examined this question for the GPI-anchored protein 5'-nucleotidase (5'-ribonucleotide phosphohydrolase; EC 3.1.3.5), both in the native lymphocyte plasma membrane, and following purification and reconstitution into defined lipid bilayer vesicles, using Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC). Membrane-bound, detergent-solubilized and cleaved 5'-nucleotidase all obeyed Michaelis-Menten kinetics, with a Km for 5'-AMP in the range 11-16 microM. The GPI anchor was removed from essentially all 5'-nucleotidase molecules, indicating that there is no phospholipase-resistant pool of enzyme. However, the phospholipase was much less efficient at cleaving the GPI anchor when 5'-nucleotidase was present in detergent solution, dimyristoyl phosphatidylcholine, egg phosphatidylethanolamine and sphingomyelin, compared with the native plasma membrane, egg phosphatidylcholine and a sphingolipid/cholesterol-rich mixture. Lipid molecular properties and bilayer packing may affect the ability of PI-PLC to gain access to the GPI anchor. Catalytic activation, characterized by an increase in Vmax, was observed following PI-PLC cleavage of reconstituted 5'-nucleotidase from vesicles of several different lipids. The highest degree of activation was noted for 5'-nucleotidase in egg phosphatidylethanolamine. An increase in Vmax was also noted for a sphingolipid/cholesterol-rich mixture, the native plasma membrane and egg phosphatidylcholine, whereas vesicles of sphingomyelin and dimyristoyl phosphatidylcholine showed little activation. Km generally remained unchanged following cleavage, except in the case of the sphingolipid/cholesterol-rich mixture. Insertion of the GPI anchor into a lipid bilayer appears to reduce the catalytic efficiency of 5'-nucleotidase, possibly via a conformational change in the enzyme, and activity is restored on release from the membrane. PMID:9576857

  11. Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes.

    PubMed

    Sezer, Murat; Frielingsdorf, Stefan; Millo, Diego; Heidary, Nina; Utesch, Tillman; Mroginski, Maria-Andrea; Friedrich, Bärbel; Hildebrandt, Peter; Zebger, Ingo; Weidinger, Inez M

    2011-09-01

    The role of the diheme cytochrome b (HoxZ) subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase (MBH) heterotrimer from Ralstonia eutropha H16 has been investigated. The MBH in its native heterotrimeric state was immobilized on electrodes and subjected to spectroscopic and electrochemical analysis. Surface enhanced resonance Raman spectroscopy was used to monitor the redox and coordination state of the HoxZ heme cofactors while concomitant protein film voltammetric measurements gave insights into the catalytic response of the enzyme on the electrode. The entire MBH heterotrimer as well as its isolated HoxZ subunit were immobilized on silver electrodes coated with self-assembled monolayers of ω-functionalized alkylthiols, displaying the preservation of the native heme pocket structure and an electrical communication between HoxZ and the electrode. For the immobilized MBH heterotrimer, catalytic reduction of the HoxZ heme cofactors was observed upon H(2) addition. The catalytic currents of MBH with and without the HoxZ subunit were measured and compared with the heterogeneous electron transfer rates of the isolated HoxZ. On the basis of the spectroscopic and electrochemical results, we conclude that the HoxZ subunit under these artificial conditions is not primarily involved in the electron transfer to the electrode but plays a crucial role in stabilizing the enzyme on the electrode. © 2011 American Chemical Society

  12. Reshaping the folding energy landscape of human carbonic anhydrase II by a single point genetic mutation Pro237His.

    PubMed

    Jiang, Yan; Su, Jing-Tan; Zhang, Jun; Wei, Xiang; Yan, Yong-Bin; Zhou, Hai-Meng

    2008-01-01

    Human carbonic anhydrase (HCA) II participates in a variety of important biological processes, and it has long been known that genetic mutations of HCA II are closely correlated to human disease. In this research, we investigated the effects of a genetic single point mutation P237, which is located on the surface of the molecule and does not participate in the HCA II catalysis, on HCA II activity, stability and folding. Spectroscopic studies revealed that the mutation caused more buried Trp residues to become accessible by solvent and caused the NMR signals to become less dispersed, but did not affect the secondary structure or the hydrophobic exposure of the protein. The mutant was less stable than the wild type enzyme against heat- and GdnHCl-induced inactivation, but its pH adaptation was similar to the wild type. The mutation slightly decreased the stability of the molten globular intermediate, but gradually affected the stability of the native state by a 10-fold reduction of the Gibbs free energy for the transition from the native state to the intermediate. This might have led to an accumulation of the aggregation-prone molten globular intermediate, which further trapped the proteins into the off-pathway aggregates during refolding and reduced the levels of active enzyme in vivo. The results herein suggested that the correct positioning of the long loop around P237 might be crucial to the folding of HCA II, particularly the formation of the active site.

  13. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages.

    PubMed

    Rico-Díaz, Agustín; Ramírez-Escudero, Mercedes; Vizoso-Vázquez, Ángel; Cerdán, M Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2017-06-01

    β-Galactosidases are biotechnologically interesting enzymes that catalyze the hydrolysis or transgalactosylation of β-galactosides. Among them, the Aspergillus niger β-galactosidase (AnβGal) belongs to the glycoside hydrolase family 35 (GH35) and is widely used in the industry due to its high hydrolytic activity which is used to degrade lactose. We present here its three-dimensional structure in complex with different oligosaccharides, to illustrate the structural determinants of the broad specificity of the enzyme against different glycoside linkages. Remarkably, the residues Phe264, Tyr304, and Trp806 make a dynamic hydrophobic platform that accommodates the sugar at subsite +1 suggesting a main role on the recognition of structurally different substrates. Moreover, complexes with the trisaccharides show two potential subsites +2 depending on the substrate type. This feature and the peculiar shape of its wide cavity suggest that AnβGal might accommodate branched substrates from the complex net of polysaccharides composing the plant material in its natural environment. Relevant residues were selected and mutagenesis analyses were performed to evaluate their role in the catalytic performance and the hydrolase/transferase ratio of AnβGal. Thus, we generated mutants with improved transgalactosylation activity. In particular, the variant Y304F/Y355H/N357G/W806F displays a higher level of galacto-oligosaccharides production than the Aspergillus oryzae β-galactosidase, which is the preferred enzyme in the industry owing to its high transferase activity. Our results provide new knowledge on the determinants modulating specificity and the catalytic performance of fungal GH35 β-galactosidases. In turn, this fundamental background gives novel tools for the future improvement of these enzymes, which represent an interesting target for rational design. Structural data are available in PDB database under the accession numbers 5IFP (native form), 5IHR (in complex with 6GalGlu), 5IFT (in complex with 3GalGlu), 5JUV (in complex with 6GalGal), 5MGC (in complex with 4GalLac), and 5MGD (in complex with 6GalLac). © 2017 Federation of European Biochemical Societies.

  15. Modulation of individual steps in group I intron catalysis by a peripheral metal ion.

    PubMed

    Forconi, Marcello; Piccirilli, Joseph A; Herschlag, Daniel

    2007-10-01

    Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.

  16. Structure of Insoluble Rat Sperm Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) via Heterotetramer Formation with Escherichia coli GAPDH Reveals Target for Contraceptive Design*

    PubMed Central

    Frayne, Jan; Taylor, Abby; Cameron, Gus; Hadfield, Andrea T.

    2009-01-01

    Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown to be a successful target for a non-hormonal contraceptive approach, but the agents tested to date have had unacceptable side effects. Obtaining the structure of the sperm-specific isoform to allow rational inhibitor design has therefore been a goal for a number of years but has proved intractable because of the insoluble nature of both native and recombinant protein. We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1:3 and have solved the structure of the heterotetramer which we believe represents a novel strategy for structure determination of an insoluble protein. A structure was also obtained where glyceraldehyde 3-phosphate binds in the Ps pocket in the active site of the sperm enzyme subunit in the presence of NAD. Modeling and comparison of the structures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few differences at the active site and hence rebut the long presumed structural specificity of 3-chlorolactaldehyde for the sperm isoform. The contraceptive activity of α-chlorohydrin and its apparent specificity for the sperm isoform in vivo are likely to be due to differences in metabolism to 3-chlorolactaldehyde in spermatozoa and somatic cells. However, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revealed sites in the enzyme that do show significant difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that could be exploited by structure-based drug design to identify leads for novel male contraceptives. PMID:19542219

  17. The phosphorylation site in double helical amylopectin as investigated by a combined approach using chemical synthesis, crystallography and molecular modeling.

    PubMed

    Engelsen, Søren Balling; Madsen, Anders Østergaard; Blennow, Andreas; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Larsen, Sine

    2003-04-24

    The only known in planta substitution of starch is phosphorylation. Whereas the function of starch phosphorylation is poorly understood, phosphorylated starch possesses improved functionality in vitro. Molecular models of native crystalline starch are currently being developed and the starch phosphorylating enzyme has recently been discovered. Accordingly, it is desirable to obtain a more exact description of the molecular structures of phosphorylated starch. We have determined the crystal structure of methyl alpha-D-glucopyranoside 6-O-phosphate as its potassium salt which is thought to be the starch phosphate counterion in vivo. From this structure and previously known glucophosphate structures we describe the possible 6-O-phosphate geometries and through modeling extrapolate the results to the double helical structure of the crystalline part of amylopectin. The geometries of the existing crystal structures of 6-O-phosphate groups were found to belong to two main adiabatic valleys. One of these conformations could be fitted into the double helical amylopectin part without perturbing the double helical amylopectin structure and without creating steric problems for the hexagonal chain-chain packing.

  18. Identification of intracellular degradation intermediates of aldolase B by antiserum to the denatured enzyme.

    PubMed Central

    Reznick, A Z; Rosenfelder, L; Shpund, S; Gershon, D

    1985-01-01

    A method has been developed that enables us to identify intracellular degradation intermediates of fructose-bisphosphate aldolase B (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13). This method is based on the use of antibody against thoroughly denatured purified aldolase. This antibody has been shown to recognize only denatured molecules, and it did not interact with "native" enzyme. supernatants (24,000 X g for 30 min) of liver and kidney homogenates were incubated with antiserum to denatured enzyme. The antigen-antibody precipitates thus formed were subjected to NaDodSO4/PAGE, followed by electrotransfer to nitrocellulose paper and immunodecoration with antiserum to denatured enzyme and 125I-labeled protein A. Seven peptides with molecular weights ranging from 38,000 (that of the intact subunit) to 18,000, which cross-reacted antigenically with denatured fructose-bisphosphate aldolase, could be identified in liver. The longest three peptides were also present in kidney. The possibility that these peptides were artifacts of homogenization was ruled out as follows: 125I-labeled tagged purified native aldolase was added to the buffer prior to liver homogenization. The homogenates were than subjected to NaDodSO4/PAGE followed by autoradiography, and the labeled enzyme was shown to remain intact. This method is suggested for general use in the search for degradation products of other cellular proteins. Images PMID:3898080

  19. CMPF: class-switching minimized pathfinding in metabolic networks.

    PubMed

    Lim, Kevin; Wong, Limsoon

    2012-01-01

    The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.

  20. The individual structures of native celluloses

    Treesearch

    R. H. Atalla

    1999-01-01

    Our understanding of the diversity of native celluloses has been limited by the fact that studies of their structures have sought to establish ideal crystal lattice forms for the native state. Departures from ideal structures in the native state are viewed as defects in the ideal lattice. In most instances real celluloses have been regarded as departing from the ideal...

  1. Combining Physicochemical and Evolutionary Information for Protein Contact Prediction

    PubMed Central

    Schneider, Michael; Brock, Oliver

    2014-01-01

    We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/. PMID:25338092

  2. Structure of the beta-galactosidase gene from Thermus sp. strain T2: expression in Escherichia coli and purification in a single step of an active fusion protein.

    PubMed

    Vian, A; Carrascosa, A V; García, J L; Cortés, E

    1998-06-01

    The nucleotide sequence of both the bgaA gene, coding for a thermostable beta-galactosidase of Thermus sp. strain T2, and its flanking regions was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 645 amino acids (Mr, 73,595). Comparative analysis of the open reading frames located in the flanking regions of the bgaA gene revealed that they might encode proteins involved in the transport and hydrolysis of sugars. The observed homology between the deduced amino acid sequences of BgaA and the beta-galactosidase of Bacillus stearothermophilus allows us to classify the new enzyme within family 42 of glycosyl hydrolases. BgaA was overexpressed in its active form in Escherichia coli, but more interestingly, an active chimeric beta-galactosidase was constructed by fusing the BgaA protein to the choline-binding domain of the major pneumococcal autolysin. This chimera illustrates a novel approach for producing an active and thermostable hybrid enzyme that can be purified in a single step by affinity chromatography on DEAE-cellulose, retaining the catalytic properties of the native enzyme. The chimeric enzyme showed a specific activity of 191,000 U/mg at 70 degrees C and a Km value of 1.6 mM with o-nitrophenyl-beta-D-galactopyranoside as a substrate, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C.

  3. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system.

    PubMed

    Mizukami, Makoto; Onishi, Hiromasa; Hanagata, Hiroshi; Miyauchi, Akira; Ito, Yuji; Tokunaga, Hiroko; Ishibashi, Matsujiro; Arakawa, Tsutomu; Tokunaga, Masao

    2018-10-01

    The Brevibacillus expression system has been successfully employed for the efficient productions of a variety of recombinant proteins, including enzymes, cytokines, antigens and antibody fragments. Here, we succeeded in secretory expression of Trastuzumab Fab antibody fragments using B. choshinensis/BIC (Brevibacillus in vivocloning) expression system. In the fed-batch high-density cell culture, recombinant Trastuzumab Fab with amino-terminal His-tag (His-BcFab) was secreted at high level, 1.25 g/liter, and Fab without His-tag (BcFab) at ∼145 mg/L of culture supernatant. His-BcFab and BcFab were purified to homogeneity using combination of conventional column chromatographies with a yield of 10-13%. This BcFab preparation exhibited native structure and functions evaluated by enzyme-linked immunosorbent assay, surface plasmon resonance, circular dichroism measurements and size exclusion chromatography. To our knowledge, this is the highest production of Fab antibody fragments in gram-positive bacterial expression/secretion systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  5. Salmonella Typhimurium Enzymatically Landscapes the Host Intestinal Epithelial Cell (IEC) Surface Glycome to Increase Invasion*

    PubMed Central

    Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.

    2016-01-01

    Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876

  6. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  7. Application of activity-based protein profiling to study enzyme function in adipocytes.

    PubMed

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique

    2014-01-01

    Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. © 2014 Elsevier Inc. All rights reserved.

  8. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    PubMed

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  9. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  10. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  11. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.

    PubMed

    Cravatt, Benjamin F; Wright, Aaron T; Kozarich, John W

    2008-01-01

    Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.

  12. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    PubMed

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  13. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakane, Takanori; Song, Changyong; POSTECH, Pohang 790-784

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  14. Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to beta-glucosidases.

    PubMed

    Zechel, David L; Boraston, Alisdair B; Gloster, Tracey; Boraston, Catherine M; Macdonald, James M; Tilbrook, D Matthew G; Stick, Robert V; Davies, Gideon J

    2003-11-26

    The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the "family GH-1" beta-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond beta-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567-8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond beta-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima beta-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at approximately 2.1 A resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.

  15. Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy.

    PubMed

    Majkowska-Skrobek, Grażyna; Łątka, Agnieszka; Berisio, Rita; Maciejewska, Barbara; Squeglia, Flavia; Romano, Maria; Lavigne, Rob; Struve, Carsten; Drulis-Kawa, Zuzanna

    2016-12-01

    The rise of antibiotic-resistant Klebsiella pneumoniae , a leading nosocomial pathogen, prompts the need for alternative therapies. We have identified and characterized a novel depolymerase enzyme encoded by Klebsiella phage KP36 (depoKP36), from the Siphoviridae family. To gain insights into the catalytic and structural features of depoKP36, we have recombinantly produced this protein of 93.4 kDa and showed that it is able to hydrolyze a crude exopolysaccharide of a K. pneumoniae host. Using in vitro and in vivo assays, we found that depoKP36 was also effective against a native capsule of clinical K. pneumoniae strains, representing the K63 type, and significantly inhibited Klebsiella -induced mortality of Galleria mellonella larvae in a time-dependent manner. DepoKP36 did not affect the antibiotic susceptibility of Klebsiella strains. The activity of this enzyme was retained in a broad range of pH values (4.0-7.0) and temperatures (up to 45 °C). Consistently, the circular dichroism (CD) spectroscopy revealed a highly stability with melting transition temperature (T m ) = 65 °C. In contrast to other phage tailspike proteins, this enzyme was susceptible to sodium dodecyl sulfate (SDS) denaturation and proteolytic cleavage. The structural studies in solution showed a trimeric arrangement with a high β-sheet content. Our findings identify depoKP36 as a suitable candidate for the development of new treatments for K. pneumoniae infections.

  16. Enhanced hepatic insulin signaling in the livers of high altitude native rats under basal conditions and in the livers of low altitude native rats under insulin stimulation: a mechanistic study.

    PubMed

    Al Dera, Hussain; Eleawa, Samy M; Al-Hashem, Fahaid H; Mahzari, Moeber M; Hoja, Ibrahim; Al Khateeb, Mahmoud

    2017-07-01

    This study was designed to investigate the role of the liver in lowering fasting blood glucose levels (FBG) in rats native to high (HA) and low altitude (LA) areas. As compared with LA natives, besides the improved insulin and glucose tolerance, HA native rats had lower FBG, at least mediated by inhibition of hepatic gluconeogenesis and activation of glycogen synthesis. An effect that is mediated by the enhancement of hepatic insulin signaling mediated by the decreased phosphorylation of TSC induced inhibition of mTOR function. Such effect was independent of activation of AMPK nor stabilization of HIF1α, but most probably due to oxidative stress induced REDD1 expression. However, under insulin stimulation, and in spite of the less activated mTOR function in HA native rats, LA native rats had higher glycogen content and reduced levels of gluconeogenic enzymes with a more enhanced insulin signaling, mainly due to higher levels of p-IRS1 (tyr612).

  17. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  18. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    PubMed

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  19. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    PubMed

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  20. The Hydrogenase Activity of the Molybdenum/Copper-containing Carbon Monoxide Dehydrogenase of Oligotropha carboxidovorans*

    PubMed Central

    Wilcoxen, Jarett; Hille, Russ

    2013-01-01

    The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123

  1. A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization.

    PubMed

    Wang, Hualei; Li, Guinan; Li, Mingyang; Wei, Dongzhi; Wang, Xuedong

    2014-01-01

    In this study, a novel nitrilase gene from Rhodobacter sphaeroides was cloned and overexpressed in Escherichia coli. The open reading frame of the nitrilase gene includes 969 base pairs, which encodes a putative polypeptide of 322 amino acid residues. The molecular weight of the purified native nitrilase was about 560 kDa determined by size exclusion chromatography. This nitrilase showed one single band on SDS-PAGE with a molecular weight of 40 kDa. This suggested that the native nitrilase consisted of 14 subunits with identical size. The optimal pH and temperature of the purified enzyme were 7.0 and 40 °C, respectively. The kinetic parameters V max and K m toward 3-cyanopyridine were 77.5 μmol min(-1) mg(-1) and 73.1 mmol/l, respectively. The enzyme can easily convert aliphatic nitrile and aromatic nitriles to their corresponding acids. Furthermore, this enzyme demonstrated regioselectivity in hydrolysis of aliphatic dinitriles. This specific characteristic makes this nitrilase have a great potential for commercial production of various cyanocarboxylic acids by hydrolyzing readily available dinitriles.

  2. Site-directed mutagenesis of mouse glutathione transferase P1-1 unlocks masked cooperativity, introduces a novel mechanism for 'ping pong' kinetic behaviour, and provides further structural evidence for participation of a water molecule in proton abstraction from glutathione.

    PubMed

    McManus, Gavin; Costa, Marta; Canals, Albert; Coll, Miquel; Mantle, Timothy J

    2011-01-01

    Mouse liver glutathione transferase P1-1 has three cysteine residues at positions 14, 47 and 169. We have constructed the single, double and triple cysteine to alanine mutants to define the behaviour of all three thiols. We confirm that C47 is the 'fast' thiol (pK 7.4), and define C169 as the alkaline reactive residue with a pK(a) of 8.6. Only a small proportion of C14 is reactive with 5,5'-dithiobis-(2-nitrobenoic acid) (DTNB) at pH 9 in the C47A/C169A double mutant. The native enzyme and the C169A mutant exhibited Michaelis-Menten kinetics, but all other thiol to alanine mutants exhibited sigmoidal kinetics to varying degrees. The C169A mutant exhibited 'ping pong' kinetics, consistent with a mechanism whereby liberation of a proton from a reduced enzyme-glutathione (GSH) complex to form an enzyme-GS(-) (unprotonated) complex is essentially irreversible. Intriguingly, similar behaviour has recently been reported for a mutant of the yeast prion Ure2p. This cooperative behaviour is 'mirrored' in the crystal structure of the C47A mutant, which binds the p-nitrobenzyl moiety of p-nitrobenzyglutathione in distinct orientations in the two crystallographic subunits. The asymmetry seen in this structure for product binding is associated with absence of a water molecule W0 in the standard wild-type conformation of product binding that is clearly identifiable in the new structure, which may represent a structural model for binding of incoming GSH prior to displacement of W0. Elimination of W0 as a hydroxonium ion may be the mechanism for the initial proton extrusion from the active site. © 2010 The Authors Journal compilation © 2010 FEBS.

  3. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation.

    PubMed

    Santos, Clelton A; Ferreira-Filho, Jaire A; O'Donovan, Anthonia; Gupta, Vijai K; Tuohy, Maria G; Souza, Anete P

    2017-05-16

    Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology.

  4. Expression and refolding of tobacco anionic peroxidase from E. coli inclusion bodies.

    PubMed

    Hushpulian, D M; Savitski, P A; Rojkova, A M; Chubar, T A; Fechina, V A; Sakharov, I Yu; Lagrimini, L M; Tishkov, V I; Gazaryan, I G

    2003-11-01

    Coding DNA of the tobacco anionic peroxidase gene was cloned in pET40b vector. The problem of 11 arginine codons, rare in procaryotes, in the tobacco peroxidase gene was solved using E. coli BL21(DE3) Codon Plus strain. The expression level of the tobacco apo-peroxidase in the above strain was approximately 40% of the total E. coli protein. The tobacco peroxidase refolding was optimized based on the earlier developed protocol for horseradish peroxidase. The reactivation yield of recombinant tobacco enzyme was about 7% with the specific activity of 1100-1200 U/mg towards 2,2;-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). It was shown that the reaction of ABTS oxidation by hydrogen peroxide catalyzed by recombinant tobacco peroxidase proceeds via the ping-pong kinetic mechanism as for the native enzyme. In the presence of calcium ions, the recombinant peroxidase exhibits a 2.5-fold decrease in the second order rate constant for hydrogen peroxide and 1.5-fold decrease for ABTS. Thus, calcium ions have an inhibitory effect on the recombinant enzyme like that observed earlier for the native tobacco peroxidase. The data demonstrate that the oligosaccharide part of the enzyme has no effect on the kinetic properties and calcium inhibition of tobacco peroxidase.

  5. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    PubMed

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  6. [Native, modified, and immobilized chymotrypsin in chaotropic media. Stabilization limits].

    PubMed

    Panova, A A; Levitskiĭ, V Iu; Mozhaev, V V

    1994-07-01

    To stabilize alpha-chymotrypsin against irreversible thermal inactivation at high temperatures, methods of covalent modification and multi-point immobilization in combination with the addition of salting-in compounds were used. The upper limit of the protein stability proved to be the same for a combination of the modification and salting-in media and for each of these methods separately. The limit of stabilization reached by means of covalent immobilization is higher than the limit of stabilization reached by two other methods. The greatest stabilization of immobilized alpha-chymotrypsin by the salting-in media (a 10000 fold increase in the native enzyme's stability level) takes place only in the case of the protein with the minimum number of bonds with the support. Stabilization of the enzyme by these methods is explained in terms of the suppression of the conformational inactivation processes.

  7. Unusual hepatic mitochondrial arginase in an Indian air-breathing teleost, Heteropneustes fossilis: purification and characterization.

    PubMed

    Srivastava, Shilpee; Ratha, B K

    2013-02-01

    A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS-PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The K(m) of purified ARG II for l-arginine was 5.25±1.12 mM. L-Ornithine and N(ω)-hydroxy-L-arginine showed mixed inhibition with K(i) values 2.16±0.08 and 0.02±0.004 mM respectively. Mn(+2) and Co(+2) were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS-PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Native and Non-Native Plants Provide Similar Refuge to Invertebrate Prey, but Less than Artificial Plants

    PubMed Central

    Grutters, Bart M. C.; Pollux, Bart J. A.; Verberk, Wilco C. E. P.; Bakker, Elisabeth S.

    2015-01-01

    Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known about how the replacement of native by non-native vegetation affects predator-prey dynamics. We hypothesize that plant refuge provisioning depends on (1) the plant’s native status, (2) plant structural complexity and morphology, (3) predator identity, and (4) prey identity, as well as that (5) structurally similar living and artificial plants provide similar refuge. We used aquatic communities as a model system and compared the refuge provided by plants to macroinvertebrates (Daphnia pulex, Gammarus pulex and damselfly larvae) in three short-term laboratory predation experiments. Plant refuge provisioning differed between plant species, but was generally similar for native (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus) and non-native plants (Vallisneria spiralis, Myriophyllum heterophyllum, Cabomba caroliniana). However, plant refuge provisioning to macroinvertebrate prey depended primarily on predator (mirror carp: Cyprinus carpio carpio and dragonfly larvae: Anax imperator) and prey identity, while the effects of plant structural complexity were only minor. Contrary to living plants, artificial plant analogues did improve prey survival, particularly with increasing structural complexity and shoot density. As such, plant rigidity, which was high for artificial plants and one of the living plant species evaluated in this study (Ceratophyllum demersum), may interact with structural complexity to play a key role in refuge provisioning to specific prey (Gammarus pulex). Our results demonstrate that replacement of native by structurally similar non-native vegetation is unlikely to greatly affect predator-prey dynamics. We propose that modification of predator-prey interactions through plant invasions only occurs when invading plants radically differ in growth form, density and rigidity compared to native plants. PMID:25885967

  9. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  10. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  11. Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli

    PubMed Central

    Ortiz-Soto, Maria Elena; Seibel, Jürgen

    2016-01-01

    Sialyltransferases (STs) are disulfide-containing, type II transmembrane glycoproteins that catalyze the transfer of sialic acid to proteins and lipids and participate in the synthesis of the core structure oligosaccharides of human milk. Sialic acids are found at the outermost position of glycostructures, playing a key role in health and disease. Sialylation is also essential for the production of recombinant therapeutic proteins (RTPs). Despite their importance, availability of sialyltransferases is limited due to the low levels of stable, soluble and active protein produced in bacterial expression systems, which hampers biochemical and structural studies on these enzymes and restricts biotechnological applications. We report the successful expression of active human sialyltransferases ST3Gal1 and ST6Gal1 in commercial Escherichia coli strains designed for production of disulfide-containing proteins. Fusion of hST3Gal1 with different solubility enhancers and substitution of exposed hydrophobic amino acids by negatively charged residues (supercharging-like approach) were performed to promote solubility and folding. Co-expression of sialyltransferases with the chaperon/foldases sulfhydryl oxidase, protein disulfide isomerase and disulfide isomerase C was explored to improve the formation of native disulfide bonds. Active sialyltransferases fused with maltose binding protein (MBP) were obtained in sufficient amounts for biochemical and structural studies when expressed under oxidative conditions and co-expression of folding factors increased the yields of active and properly folded sialyltransferases by 20%. Mutation of exposed hydrophobic amino acids increased recovery of active enzyme by 2.5-fold, yielding about 7 mg of purified protein per liter culture. Functionality of recombinant enzymes was evaluated in the synthesis of sialosides from the β-d-galactoside substrates lactose, N-acetyllactosamine and benzyl 2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl)-α-d-galactopyranoside. PMID:27166796

  12. Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution.

    PubMed

    Prajapat, Amrutlal L; Subhedar, Preeti B; Gogate, Parag R

    2016-03-01

    The present work investigates the effectiveness of application of low intensity ultrasonic irradiation for the intensification of enzymatic depolymerization of aqueous guar gum solution. The extent of depolymerization of guar gum has been analyzed in terms of intrinsic viscosity reduction. The effect of ultrasonic irradiation on the kinetic and thermodynamic parameters related to the enzyme activity as well as the intrinsic viscosity reduction of guar gum using enzymatic approach has been evaluated. The kinetic rate constant has been found to increase with an increase in the temperature and cellulase loading. It has been observed that application of ultrasound not only enhances the extent of depolymerization but also reduces the time of depolymerization as compared to conventional enzymatic degradation technique. In the presence of cellulase enzyme, the maximum extent of depolymerization of guar gum has been observed at 60 W of ultrasonic rated power and ultrasonic treatment time of 30 min. The effect of ultrasound on the kinetic and thermodynamic parameters as well as the molecular structure of cellulase enzyme was evaluated with the help of the chemical reaction kinetics model and fluorescence spectroscopy. Application of ultrasound resulted in a reduction in the thermodynamic parameters of activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) by 47%, 50%, 65% and 1.97%, respectively. The changes in the chemical structure of guar gum treated using ultrasound assisted enzymatic approach in comparison to the native guar gum were also characterized by FTIR. The results revealed that enzymatic depolymerization of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency index without any change in the core chemical structure which could make it useful for incorporation in food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Human acid sphingomyelinase.

    PubMed

    Lansmann, Stephanie; Schuette, Christina G; Bartelsen, Oliver; Hoernschemeyer, Joerg; Linke, Thomas; Weisgerber, Judith; Sandhoff, Konrad

    2003-03-01

    Human acid sphingomyelinase (haSMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to ceramide and phosphorylcholine. An inherited haSMase deficiency leads to Niemann-Pick disease, a severe sphingolipid storage disorder. The enzyme was purified and cloned over 10 years ago. Since then, only a few structural properties of haSMase have been elucidated. For understanding of its complex functions including its role in certain signaling and apoptosis events, complete structural information about the enzyme is necessary. Here, the identification of the disulfide bond pattern of haSMase is reported for the first time. Functional recombinant enzyme expressed in SF21 cells using the baculovirus expression system was purified and digested by trypsin. MALDI-MS analysis of the resulting peptides revealed the four disulfide bonds Cys120-Cys131, Cys385-Cys431, Cys584-Cys588 and Cys594-Cys607. Two additional disulfide bonds (Cys221-Cys226 and Cys227-Cys250) which were not directly accessible by tryptic cleavage, were identified by a combination of a method of partial reduction and MALDI-PSD analysis. In the sphingolipid activator protein (SAP)-homologous N-terminal domain of haSMase, one disulfide bond was assigned as Cys120-Cys131. The existence of two additional disulfide bridges in this region was proved, as was expected for the known disulfide bond pattern of SAP-type domains. These results support the hypothesis that haSMase possesses an intramolecular SAP-type activator domain as predicted by sequence comparison [Ponting, C.P. (1994) Protein Sci., 3, 359-361]. An additional analysis of haSMase isolated from human placenta shows that the recombinant and the native human protein possess an identical disulfide structure.

  14. Structural analysis and molecular modelling of the Cu/Zn-SOD from fungal strain Humicola lutea 103

    NASA Astrophysics Data System (ADS)

    Dolashka, Pavlina; Moshtanska, Vesela; Dolashki, Aleksander; Velkova, Lyudmila; Rao, Gita Subba; Angelova, Maria; Betzel, Christian; Voelter, Wolfgang; Atanasov, Boris

    2011-12-01

    The native form of Cu/Zn-superoxide dismutase, isolated from fungal strain Humicola lutea 103 is a homodimer that coordinates one Cu(2+) and one Zn(2+) per monomer. Cu(2+) and Zn(2+) ions play crucial roles in enzyme activity and structural stability, respectively. It was established that HLSOD shows high pH and temperature stability. Thermostability of the glycosylated enzyme Cu/Zn-SOD, isolated from fungal strain H. lutea 103, was determined by CD spectroscopy. Determination of reversibility toward thermal denaturation for HLSOD allowed several thermodynamic parameters to be calculated. In this communication we report the conditions under which reversible denaturation of HLSOD exists. The narrow range over which the system is reversible has been determined using the strongest test of two important thermodynamic independent variables (T and pH). Combining both these variables, the "phase diagram" was determined, as a result of which the real thermodynamic parameters (Δ Cp, ΔHexp°, and ΔGexp°) was established. Because very narrow pH-interval of transitions we assume they are as result of overlapping of two simple transitions. It was found that Δ Ho is independent from pH with a value of 1.3 kcal/mol and 2.8 kcal/mol for the first and the second transition, respectively. Δ Go was pH-dependent in all studied pH-interval. This means that the transitions are entropically driven, these. Based on this, these processes can be described as hydrophobic rearrangement of the quaternary structure. It was also found that glycosylation does not influence the stability of the enzyme because the carbohydrate chain is exposed on the surface of the molecule.

  15. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins.

    PubMed Central

    Lindqvist, Y; Huang, W; Schneider, G; Shanklin, J

    1996-01-01

    The three-dimensional structure of recombinant homodimeric delta9 stearoyl-acyl carrier protein desaturase, the archetype of the soluble plant fatty acid desaturases that convert saturated to unsaturated fatty acids, has been determined by protein crystallographic methods to a resolution of 2.4 angstroms. The structure was solved by a combination of single isomorphous replacement, anomalous contribution from the iron atoms to the native diffraction data and 6-fold non-crystallographic symmetry averaging. The 363 amino acid monomer consists of a single domain of 11 alpha-helices. Nine of these form an antiparallel helix bundle. The enzyme subunit contains a di-iron centre, with ligands from four of the alpha-helices in the helix bundle. The iron ions are bound in a highly symmetric environment, with one of the irons forming interactions with the side chains of E196 and H232 and the second iron with the side chains of E105 and H146. Two additional glutamic acid side chains, from E143 and E229, are within coordination distance to both iron ions. A water molecule is found within the second coordination sphere from the iron atoms. The lack of electron density corresponding to a mu-oxo bridge, and the long (4.2 angstroms) distance between the iron ions suggests that this probably represents the diferrous form of the enzyme. A deep channel which probably binds the fatty acid extends from the surface into the interior of the enzyme. Modelling of the substrate, stearic acid, into this channel places the delta9 carbon atom in the vicinity of one of the iron ions. Images PMID:8861937

  16. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins.

    PubMed

    Lindqvist, Y; Huang, W; Schneider, G; Shanklin, J

    1996-08-15

    The three-dimensional structure of recombinant homodimeric delta9 stearoyl-acyl carrier protein desaturase, the archetype of the soluble plant fatty acid desaturases that convert saturated to unsaturated fatty acids, has been determined by protein crystallographic methods to a resolution of 2.4 angstroms. The structure was solved by a combination of single isomorphous replacement, anomalous contribution from the iron atoms to the native diffraction data and 6-fold non-crystallographic symmetry averaging. The 363 amino acid monomer consists of a single domain of 11 alpha-helices. Nine of these form an antiparallel helix bundle. The enzyme subunit contains a di-iron centre, with ligands from four of the alpha-helices in the helix bundle. The iron ions are bound in a highly symmetric environment, with one of the irons forming interactions with the side chains of E196 and H232 and the second iron with the side chains of E105 and H146. Two additional glutamic acid side chains, from E143 and E229, are within coordination distance to both iron ions. A water molecule is found within the second coordination sphere from the iron atoms. The lack of electron density corresponding to a mu-oxo bridge, and the long (4.2 angstroms) distance between the iron ions suggests that this probably represents the diferrous form of the enzyme. A deep channel which probably binds the fatty acid extends from the surface into the interior of the enzyme. Modelling of the substrate, stearic acid, into this channel places the delta9 carbon atom in the vicinity of one of the iron ions.

  17. A synthetic system for expression of components of a bacterial microcompartment.

    PubMed

    Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy

    2013-11-01

    In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.

  18. Kinetic intermediates of unfolding of dimeric prostatic phosphatase.

    PubMed

    Kuciel, Radosława; Mazurkiewicz, Aleksandra; Dudzik, Paulina

    2007-01-01

    Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on the dimeric structure of the native hPAP.

  19. Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239

    PubMed Central

    2010-01-01

    Background Chitosanases (EC 3.2.1.132) hydrolyze the polysaccharide chitosan, which is composed of partially acetylated β-(1,4)-linked glucosamine residues. In nature, chitosanases are produced by a number of Gram-positive and Gram-negative bacteria, as well as by fungi, probably with the primary role of degrading chitosan from fungal and yeast cell walls for carbon metabolism. Chitosanases may also be utilized in eukaryotic cell manipulation for intracellular delivery of molecules formulated with chitosan as well as for transformation of filamentous fungi by temporal modification of the cell wall structures. However, the chitosanases used so far in transformation and transfection experiments show optimal activity at high temperature, which is incompatible with most transfection and transformation protocols. Thus, there is a need for chitosanases, which display activity at lower temperatures. Results This paper describes the isolation of a chitosanase-producing, cold-active bacterium affiliated to the genus Janthinobacterium. The 876 bp chitosanase gene from the Janthinobacterium strain was isolated and characterized. The chitosanase was related to the Glycosyl Hydrolase family 46 chitosanases with Streptomyces chitosanase as the closest related (64% amino acid sequence identity). The chitosanase was expressed recombinantly as a periplasmic enzyme in Escherichia coli in amounts about 500 fold greater than in the native Janthinobacterium strain. Determination of temperature and pH optimum showed that the native and the recombinant chitosanase have maximal activity at pH 5-7 and at 45°C, but with 30-70% of the maximum activity at 10°C and 30°C, respectively. Conclusions A novel chitosanase enzyme and its corresponding gene was isolated from Janthinobacterium and produced recombinantly in E. coli as a periplasmic enzyme. The Janthinobacterium chitosanase displayed reasonable activity at 10°C to 30°C, temperatures that are preferred in transfection and transformation experiments. PMID:20096097

  20. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.

    Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. Finally, we expect the design rules that we uncovered and the thioesterase variants that we identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain-length oleochemicals.« less

  1. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids

    DOE PAGES

    Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.; ...

    2017-04-20

    Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. Finally, we expect the design rules that we uncovered and the thioesterase variants that we identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain-length oleochemicals.« less

  2. Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers

    PubMed Central

    2012-01-01

    In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa. PMID:23190610

  3. Dicamba Monooxygenase: Structural Insights into a Dynamic Rieske Oxygenase that Catalyzes an Exocyclic Monooxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ordine, Robert L.; Rydel, Timothy J.; Storek, Michael J.

    2009-09-08

    Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O{sub 2} into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer ({alpha}{sub 3}) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While themore » Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co{sup 2+}, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 {angstrom}, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.« less

  4. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.

    PubMed

    Betzel, C; Klupsch, S; Papendorf, G; Hastrup, S; Branner, S; Wilson, K S

    1992-01-20

    Savinase (EC3.4.21.14) is secreted by the alkalophilic bacterium Bacillus lentus and is a representative of that subgroup of subtilisin enzymes with maximum stability in the pH range 7 to 10 and high activity in the range 8 to 12. It is therefore of major industrial importance for use in detergents. The crystal structure of the native form of Savinase has been refined using X-ray diffraction data to 1.4 A resolution. The starting model was that of subtilisin Carlsberg. A comparison to the structures of the closely related subtilisins Carlsberg and BPN' and to the more distant thermitase and proteinase K is presented. The structure of Savinase is very similar to those of homologous Bacillus subtilisins. There are two calcium ions in the structure, equivalent to the strong and the weak calcium-binding sites in subtilisin Carlsberg and subtilisin BPN', well known for their stabilizing effect on the subtilisins. The structure of Savinase shows novel features that can be related to its stability and activity. The relatively high number of salt bridges in Savinase is likely to contribute to its high thermal stability. The non-conservative substitutions and deletions in the hydrophobic binding pocket S1 result in the most significant structural differences from the other subtilisins. The different composition of the S1 binding loop as well as the more hydrophobic character of the substrate-binding region probably contribute to the alkaline activity profile of the enzyme. The model of Savinase contains 1880 protein atoms, 159 water molecules and two calcium ions. The crystallographic R-factor [formula; see text].

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stols, L.; Donnelly, M.I.; Kulkarni, G.

    The malic enzyme gene of Ascaris suum was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.

  6. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation.

    PubMed

    Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Perera, Rodrigo Casasnovas; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo

    2017-02-17

    Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.

  7. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation

    PubMed Central

    Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Casasnovas Perera, Rodrigo; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo

    2017-01-01

    Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to up-regulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields. PMID:28536352

  8. Purification and properties of aryl acylamidase from Pseudomonas fluorescens ATCC 39004.

    PubMed

    Hammond, P M; Price, C P; Scawen, M D

    1983-05-16

    Aryl acylamidase has been purified from a strain of Pseudomonas fluorescens ATCC 39004, selected from soil on the basis of its ability to utilise acylanilide compounds as a sole source of carbon. The enzyme was purified to homogeneity by a combination of ion-exchange, hydrophobic and gel-permeation chromatography. A relative molecular mass of about 52 500 was estimated by gel filtration. The native enzyme was shown to be a monomeric protein by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. The enzyme was maximally active at a pH of 8.6 and at a temperature of 45 degrees C. The enzyme shows Michaelis-Menten kinetics; Km values for nitroacetanilide (69 microM) and hydroxyacetanilide (6.1 microM) were low, indicating that the enzyme has a very high affinity for both substrates.

  9. The SalGI restriction endonuclease. Purification and properties

    PubMed Central

    Maxwell, Anthony; Halford, Stephen E.

    1982-01-01

    The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898

  10. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    PubMed

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  11. Rescore protein-protein docked ensembles with an interface contact statistics.

    PubMed

    Mezei, Mihaly

    2017-02-01

    The recently developed statistical measure for the type of residue-residue contact at protein complex interfaces, based on a parameter-free definition of contact, has been used to define a contact score that is correlated with the likelihood of correctness of a proposed complex structure. Comparing the proposed contact scores on the native structure and on a set of model structures the proposed measure was shown to generally favor the native structure but in itself was not able to reliably score the native structure to be the best. Adjusting the scores of redocking experiments with the contact score showed that the adjusted score was able to move up the ranking of the native-like structure among the proposed complexes when the native-like was not ranked the best by the respective program. Tests on docking of unbound proteins compared the contact scores of the complexes with the contact score of the crystal structure again showing the tendency of the contact score to favor native-like conformations. The possibility of using the contact score to improve the determination of biological dimers in a crystal structure was also explored. Proteins 2017; 85:235-241. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Crystallization and x-ray diffraction analysis of a putative bacterial class I labdane-related diterpene synthase [Crysallization and preliminary x-ray diffraction analysis of a bacterial class I labdane-related diterpene synthase

    DOE PAGES

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; ...

    2015-08-25

    Here, labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg 2+ (LrdC-Mg 2+) and in complex with inorganic pyrophosphate (PP i) (LrdC-Mg 2+–PP i). Crystals of native LrdC-Mg 2+ diffracted to 2.50 Å resolution and belonged to the trigonal space group P3 221, with unit-cell parameters a = b = 107.1, c = 89.2 Å.more » Crystals of the LrdC-Mg 2+–PP i complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3 221. Crystals of the LrdC-Mg 2+–PP i complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P2 1, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.« less

  13. Alpha 2-macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity.

    PubMed

    Raymond, Wilfred W; Su, Sharon; Makarova, Anastasia; Wilson, Todd M; Carter, Melody C; Metcalfe, Dean D; Caughey, George H

    2009-05-01

    Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by mast cells. When secreted from degranulating cells, it can interact with a variety of circulating antipeptidases, but is mostly captured by alpha(2)-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that alpha(2)-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used alpha(2)-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of approximately 1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. alpha(2)-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and it appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin-converting enzyme. These findings suggest that chymase bound to alpha(2)-macroglobulin is active, that the complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that alpha(2)-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases.

  14. α2-Macroglobulin Capture Allows Detection of Mast Cell Chymase in Serum and Creates a Circulating Reservoir of Angiotensin II-generating Activity1

    PubMed Central

    Raymond, Wilfred W.; Su, Sharon; Makarova, Anastasia; Wilson, Todd M.; Carter, Melody C.; Metcalfe, Dean D.; Caughey, George H.

    2009-01-01

    Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by the MCTC subset of mast cells. When secreted from degranulating cells, it can interact with a variety of circulating anti-peptidases, but is mostly captured by α2-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that α2-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used α2-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of ~1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. α2-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin converting enzyme. These findings suggest that chymase bound to α2-macroglobulin is active, that the circulating complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that α2-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases. PMID:19380825

  15. Purification and structure of human liver aspartylglucosaminidase.

    PubMed Central

    Rip, J W; Coulter-Mackie, M B; Rupar, C A; Gordon, B A

    1992-01-01

    We have recently diagnosed aspartylglucosaminuria (AGU) in four members of a Canadian family. AGU is a lysosomal storage disease in which asparagine-linked glycopeptides accumulate to particularly high concentrations in liver, spleen and thyroid of affected individuals. A lesser accumulation of these glycopeptides is seen in the kidney and brain, and they are also excreted in the urine. The altered metabolism in AGU results from a deficiency of the enzyme aspartylglucosaminidase (1-aspartamido-beta-N-acetylglucosamine amidohydrolase), which hydrolyses the asparagine to N-acetylglucosamine linkages of glycoproteins and glycopeptides. We have used human liver as a source of material for the purification of aspartylglucosaminidase. The enzyme has been purified to homogeneity by using heat treatment, (NH4)2SO4 fractionation, and chromatography on concanavalin A-Sepharose, DEAE-Sepharose, sulphopropyl-Sephadex, hydroxyapatite, DEAE-cellulose and Sephadex G-100. Enzyme activity was followed by measuring colorimetrically the N-acetylglucosamine released from aspartylglucosamine at 56 degrees C. The purified enzyme protein ran at a 'native' molecular mass of 56 kDa in SDS/12.5%-PAGE gels, and the enzyme activity could be quantitatively recovered at this molecular mass by using gel slices as enzyme source in the assay. After denaturation by boiling in SDS the 56 kDa protein was lost with the corresponding appearance of polypeptides alpha,beta and beta 1, lacking enzyme activity, at 24.6, 18.4 and 17.4 kDa respectively. Treatment of heat-denatured enzyme with N-glycosidase F resulted in the following decreases in molecular mass; 24.6 to 23 kDa and 18.4 and 17.4 to 15.8 kDa. These studies indicate that human liver aspartylglucosaminidase is composed of two non-identical polypeptides, each of which is glycosylated. The N-termini of alpha,beta and beta 1 were directly accessible for sequencing, and the first 21, 26 and 22 amino acids respectively were identified. Images Fig. 4. Fig. 7. Fig. 8. PMID:1281977

  16. Nature of alpha and beta particles in glycogen using molecular size distributions.

    PubMed

    Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G

    2010-04-12

    Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.

  17. Amino acid sequence of tyrosinase from Neurospora crassa.

    PubMed Central

    Lerch, K

    1978-01-01

    The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279

  18. The Unfolding and Refolding Reactions of Triosephosphate Isomerase from Trypanosoma Cruzi Follow Similar Pathways. Guanidinium Hydrochloride Studies

    NASA Astrophysics Data System (ADS)

    Vázquez-Contreras, Edgar; Pérez Hernández, Gerardo; Sánchez-Rebollar, Brenda Guadalupe; Chánez-Cárdenas, María Elena

    2005-04-01

    The unfolding and refolding reactions of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was studied under equilibrium conditions at increasing guanidinium hydrochloride concentrations. The changes in activity intrinsic fluorescence and far-ultraviolet circular dichroism as a function of denaturant were used as a quaternary, tertiary and secondary structural probes respectively. The change in extrinsic ANS fluorescence intensity was also investigated. The results show that the transition between the homodimeric native enzyme to the unfolded monomers (unfolding), and its inverse reaction (refolding) are described by similar pathways and two equilibrium intermediates were detected in both reactions. The mild denaturant concentrations intermediate is active and contains significant amount of secondary and tertiary structures. The medium denaturant concentrations intermediate is inactive and able to bind the fluorescent dye. This intermediates are maybe related with those observed in the denaturation pattern of TIMs from other species; the results are discussed in this context.

  19. Sucralose Destabilization of Protein Structure.

    PubMed

    Chen, Lee; Shukla, Nimesh; Cho, Inha; Cohn, Erin; Taylor, Erika A; Othon, Christina M

    2015-04-16

    Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein model. For sucralose solutions, however, the diffusion is dependent on the concentration, strongly diverging from the viscosity predictions, and results in heterogeneous rotational diffusion.

  20. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm

    PubMed Central

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-01-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646

  1. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.

    PubMed

    Brown, I; Dafforn, T R; Fryer, P J; Cox, P W

    2013-12-01

    Hyperthermophilic enzymes are of industrial importance and interest, especially due to their denaturation kinetics at commercial sterilisation temperatures inside safety indicating time-temperature integrators (TTIs). The thermal stability and irreversible thermal inactivation of native extracellular Pyrococcus furiosus α-amylase were investigated using differential scanning calorimetry, circular dichroism and Fourier transform infrared spectroscopy. Denaturation of the amylase was irreversible above a Tm of approximately 106°C and could be described by a one-step irreversible model. The activation energy at 121°C was found to be 316kJ/mol. Using CD and FT-IR spectroscopy it was shown that folding and stability greatly increase with temperature. Under an isothermal holding temperature of 121°C, the structure of the PFA changes during denaturation from an α-helical structure, through a β-sheet structure to an aggregated protein. Such data reinforces the use of P. furiosus α-amylase as a labile species in TTIs. © 2013.

  2. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolasemore » activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific glycosyl hydrolase activities. It remains unclear whether loss of endocellulase activity to lignin binding is problematic for biomass conversion.« less

  3. Stability improvement of immobilized lactoperoxidase using polyaniline polymer.

    PubMed

    Jafary, Fariba; Kashanian, Soheila; Sharieat, Ziadin Samsam; Jafary, Farzaneh; Omidfar, Kobra; Paknejad, Maliheh

    2012-12-01

    Enzyme engineering via immobilization techniques is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto polyaniline polymer activated with glutaraldehyde as a bifunctional agent, to improve enzyme properties. Polyaniline polymer was used due its unique physical and chemical properties to immobilize lactoperoxidase (LPO). The optimum activity of immobilized LPO was observed at pH 6 and 55 °C, which has been increased about 10 °C for the immobilized enzyme. The immobilized enzyme maintained absolutely active for 60 days whereas the native enzyme lost 80 % of its initial activity within this period of time. Moreover, the immobilized enzyme can be reused for several times without loss of activity. The kinetic parameter studies showed slight differences between free and immobilized enzymes. The K(m) and K(m.app) were calculated to be 0.6 and 0.4; also V(max) and V(max.app) were 1.3 and 0.9 respectively.

  4. A Patatin-Like Protein Associated with the Polyhydroxyalkanoate (PHA) Granules of Haloferax mediterranei Acts as an Efficient Depolymerase in the Degradation of Native PHA

    PubMed Central

    Liu, Guiming; Hou, Jing; Cai, Shuangfeng; Zhao, Dahe; Cai, Lei; Han, Jing; Zhou, Jian

    2015-01-01

    The key enzymes and pathways involved in polyhydroxyalkanoate (PHA) biosynthesis in haloarchaea have been identified in recent years, but the haloarchaeal enzymes for PHA degradation remain unknown. In this study, a patatin-like PHA depolymerase, PhaZh1, was determined to be located on the PHA granules in the haloarchaeon Haloferax mediterranei. PhaZh1 hydrolyzed the native PHA (nPHA) [including native polyhydroxybutyrate (nPHB) and native poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (nPHBV) in this study] granules in vitro with 3-hydroxybutyrate (3HB) monomer as the primary product. The site-directed mutagenesis of PhaZh1 indicated that Gly16, Ser47 (in a classical lipase box, G-X-S47-X-G), and Asp195 of this depolymerase were essential for its activity in nPHA granule hydrolysis. Notably, phaZh1 and bdhA (encoding putative 3HB dehydrogenase) form a gene cluster (HFX_6463 to _6464) in H. mediterranei. The 3HB monomer generated from nPHA degradation by PhaZh1 could be further converted into acetoacetate by BdhA, indicating that PhaZh1-BdhA may constitute the first part of a PHA degradation pathway in vivo. Interestingly, although PhaZh1 showed efficient activity and was most likely the key enzyme in nPHA granule hydrolysis in vitro, the knockout of phaZh1 had no significant effect on the intracellular PHA mobilization, implying the existence of an alternative PHA mobilization pathway(s) that functions effectively within the cells of H. mediterranei. Therefore, identification of this patatin-like depolymerase of haloarchaea may provide a new strategy for producing the high-value-added chiral compound (R)-3HB and may also shed light on the PHA mobilization in haloarchaea. PMID:25710370

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimalmore » frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.« less

  6. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase.

    PubMed

    Klema, Valerie J; Wilmot, Carrie M

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O(2) to H(2)O(2). These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer's disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  7. The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    PubMed Central

    Klema, Valerie J.; Wilmot, Carrie M.

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography. PMID:22754303

  8. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.

    PubMed

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-12-01

    Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  9. Synthesis of native-like crosslinked duplex RNA and study of its properties.

    PubMed

    Onizuka, Kazumitsu; Hazemi, Madoka E; Thomas, Justin M; Monteleone, Leanna R; Yamada, Ken; Imoto, Shuhei; Beal, Peter A; Nagatsugi, Fumi

    2017-04-01

    A variety of enzymes have been found to interact with double-stranded RNA (dsRNA) in order to carry out its functions. We have endeavored to prepare the covalently crosslinked native-like duplex RNA, which could be useful for biochemical studies and RNA nanotechnology. In this study, the interstrand covalently linked duplex RNA was formed by a crosslinking reaction between vinylpurine (VP) and the target cytosine or uracil in RNA. We measured melting temperatures and CD spectra to identify the properties of the VP crosslinked duplex RNA. The crosslinking formation increased the thermodynamic stability without disturbing the natural conformation of dsRNA. In addition, a competitive binding experiment with the duplex RNA binding enzyme, ADAR2, showed the crosslinked dsRNA bound the protein with nearly the same binding affinity as the natural dsRNA, confirming that it has finely preserved the natural traits of duplex RNA. Copyright © 2017. Published by Elsevier Ltd.

  10. Cation binding to a Bacillus (1,3-1,4)-beta-glucanase. Geometry, affinity and effect on protein stability.

    PubMed

    Keitel, T; Meldgaard, M; Heinemann, U

    1994-05-15

    The hybrid Bacillus (1,3-1,4)-beta-glucanase H(A16-M), consisting of 16 N-terminal amino acids derived from the mature form of the B. amyloliquefaciens enzyme and of 198 C-proximal amino acids from the B. macerans enzyme, binds a calcium ion at a site at its molecular surface remote from the active center [T. Keitel, O. Simon, R. Borriss & U. Heinemann (1993) Proc. Natl Acad. Sci. USA 90, 5287-5291]. X-ray diffraction analysis at 0.22-nm resolution of crystals grown in the absence of calcium and in the presence of EDTA shows this site to be occupied by a sodium ion. Whereas the calcium ion has six oxygen atoms in its coordination sphere, two of which are from water molecules, sodium is fivefold coordinated with a fifth ligand belonging to a symmetry-related protein molecule in the crystal lattice. The affinity of H(A16-M) for calcium over sodium has been determined calorimetrically. Calcium binding stabilizes the native three-dimensional structure of the protein as shown by guanidinium chloride unfolding and thermal inactivation experiments. The enhanced enzymic activity of Bacillus beta-glucanases at elevated temperatures in the presence of calcium ions is attributed to a general stabilizing effect by the cation.

  11. Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases

    PubMed Central

    Lambert, Abigail R.; Kuhar, Ryan; Jarjour, Jordan; Kulshina, Nadia; Parmeggiani, Fabio; Danaher, Patrick; Gano, Jacob; Baker, David; Stoddard, Barry L.; Scharenberg, Andrew M.

    2012-01-01

    Although engineered LAGLIDADG homing endonucleases (LHEs) are finding increasing applications in biotechnology, their generation remains a challenging, industrial-scale process. As new single-chain LAGLIDADG nuclease scaffolds are identified, however, an alternative paradigm is emerging: identification of an LHE scaffold whose native cleavage site is a close match to a desired target sequence, followed by small-scale engineering to modestly refine recognition specificity. The application of this paradigm could be accelerated if methods were available for fusing N- and C-terminal domains from newly identified LHEs into chimeric enzymes with hybrid cleavage sites. Here we have analyzed the structural requirements for fusion of domains extracted from six single-chain I-OnuI family LHEs, spanning 40–70% amino acid identity. Our analyses demonstrate that both the LAGLIDADG helical interface residues and the linker peptide composition have important effects on the stability and activity of chimeric enzymes. Using a simple domain fusion method in which linker peptide residues predicted to contact their respective domains are retained, and in which limited variation is introduced into the LAGLIDADG helix and nearby interface residues, catalytically active enzymes were recoverable for ∼70% of domain chimeras. This method will be useful for creating large numbers of chimeric LHEs for genome engineering applications. PMID:22684507

  12. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    PubMed

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  13. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian

    2015-06-01

    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.

  14. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them

    PubMed Central

    Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian

    2015-01-01

    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica. PMID:26047489

  15. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them.

    PubMed

    Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian

    2015-06-05

    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.

  16. Synthesis and degradation of phenylalanine ammonia-lyase of Rhodosporidium toruloides.

    PubMed

    Gilbert, H J; Tully, M

    1982-05-01

    The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme.

  17. Protonated o-semiquinone radical as a mimetic of the humic acids native radicals: A DFT approach to the molecular structure and EPR properties

    NASA Astrophysics Data System (ADS)

    Witwicki, Maciej; Jezierska, Julia

    2012-06-01

    Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.

  18. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    PubMed

    Kimata-Ariga, Yoko; Hase, Toshiharu

    2014-01-01

    Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  19. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.

    PubMed

    Kang, Donggu; Ahn, Geunseon; Kim, Donghwan; Kang, Hyun-Wook; Yun, Seokhwan; Yun, Won-Soo; Shim, Jin-Hyung; Jin, Songwan

    2018-06-06

    Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs.

  20. Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant.

    PubMed

    Zhong, Wei; Kuntz, Douglas A; Ember, Brian; Singh, Harminder; Moremen, Kelley W; Rose, David R; Boons, Geert-Jan

    2008-07-16

    Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.

  1. High-resolution crystal structures of Drosophila melanogaster angiotensin-converting enzyme in complex with novel inhibitors and antihypertensive drugs.

    PubMed

    Akif, Mohd; Georgiadis, Dimitris; Mahajan, Aman; Dive, Vincent; Sturrock, Edward D; Isaac, R Elwyn; Acharya, K Ravi

    2010-07-16

    Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE. 2010 Elsevier Ltd. All rights reserved.

  2. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.

    2008-06-01

    The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target formore » tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.« less

  3. Autolysis and extension of isolated walls from growing cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Durachko, D. M.

    1994-01-01

    Walls isolated from cucumber hypocotyls retain autolytic activities and the ability to extend when placed under the appropriate conditions. To test whether autolysis and extension are related, we treated the walls in various ways to enhance or inhibit long-term wall extension ('creep') and measured autolysis as release of various saccharides from the wall. Except for some non-specific inhibitors of enzymatic activity, we found no correlation between wall extension and wall autolysis. Most notably, autolysis and extension differed strongly in their pH dependence. We also found that exogenous cellulases and pectinases enhanced extension in native walls, but when applied to walls previously inactivated with heat or protease these enzymes caused breakage without sustained extension. In contrast, pretreatment of walls with pectinase or cellulase, followed by boiling in methanol to inactivate the enzymes, resulted in walls with much stronger expansin-mediated extension responses. Crude protein preparations from the digestive tracts of snails enhanced extension of both native and inactivated walls, and these preparations contained expansin-like proteins (assessed by Western blotting). Our results indicate that the extension of isolated cucumber walls does not depend directly on the activity of endogenous wall-bound autolytic enzymes. The results with exogenous enzymes suggest that the hydrolysis of matrix polysaccharides may not induce wall creep by itself, but may act synergistically with expansins to enhance wall extension.

  4. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalyzing de novo diamine to triamine formation

    PubMed Central

    Green, Robert; Hanfrey, Colin C.; Elliott, Katherine A.; McCloskey, Diane E.; Wang, Xiaojing; Kanugula, Sreenivas; Pegg, Anthony E.; Michael, Anthony J.

    2011-01-01

    Summary We have identified gene fusions of polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC, speD) and aminopropyltransferase (speE) orthologues in diverse bacterial phyla. Both domains are functionally active and we demonstrate the novel de novo synthesis of the triamine spermidine from the diamine putrescine by fusion enzymes from β-proteobacterium Delftia acidovorans and δ-proteobacterium Syntrophus aciditrophicus, in a ΔspeDE gene deletion strain of Salmonella enterica sv. Typhimurium. Fusion proteins from marine α-proteobacterium Candidatus Pelagibacter ubique, actinobacterium Nocardia farcinica, chlorobi species Chloroherpeton thalassium, and β-proteobacterium Delftia acidovorans each produce a different profile of non-native polyamines including sym-norspermidine when expressed in Escherichia coli. The different aminopropyltransferase activities together with phylogenetic analysis confirm independent evolutionary origins for some fusions. Comparative genomic analysis strongly indicates that gene fusions arose by merger of adjacent open reading frames. Independent fusion events, and horizontal and vertical gene transfer contributed to the scattered phyletic distribution of the gene fusions. Surprisingly, expression of fusion genes in E. coli and S. Typhimurium revealed novel latent spermidine catabolic activity producing non-native 1,3-diaminopropane in these species. We have also identified fusions of polyamine biosynthetic enzymes agmatine deiminase and N-carbamoylputrescine amidohydrolase in archaea, and of S-adenosylmethionine decarboxylase and ornithine decarboxylase in the single-celled green alga Micromonas. PMID:21762220

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Grace H.; Rana, Ambar S. J. B.; Korkmaz, E. Nihal

    Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post-translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non-enzymatic methods to synthesize Ub chains of well-defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non-native linkages; however, few studies have examined the extent to which non-native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we comparemore » the structure and function of Ub dimers bearing native and non-native linkages. Using small-angle X-ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non-native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady-state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non-native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non-native linkages can serve as surrogate substrates for explorations of Ub function.« less

  6. A Cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases.

    PubMed

    Roussel, Alain; Amara, Sawsan; Nyyssölä, Antti; Mateos-Diaz, Eduardo; Blangy, Stéphanie; Kontkanen, Hanna; Westerholm-Parvinen, Ann; Carrière, Frédéric; Cambillau, Christian

    2014-11-11

    Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The potential impact of carboxylic-functionalized multi-walled carbon nanotubes on trypsin: A Comprehensive spectroscopic and molecular dynamics simulation study.

    PubMed

    Noordadi, Maryam; Mehrnejad, Faramarz; Sajedi, Reza H; Jafari, Majid; Ranjbar, Bijan

    2018-01-01

    In this study, we report a detailed experimental, binding free energy calculation and molecular dynamics (MD) simulation investigation of the interactions of carboxylic-functionalized multi-walled carbon nanotubes (COOH-f-MWCNTs) with porcine trypsin (pTry). The enzyme exhibits decreased thermostability at 330K in the presence of COOH-f-MWCNTs. Furthermore, the activity of pTry also decreases in the presence of COOH-f-MWCNTs. The restricted diffusion of the substrate to the active site of the enzyme was observed in the experiment. The MD simulation analysis suggested that this could be because of the blocking of the S1 pocket of pTry, which plays a vital role in the substrate selectivity. The intrinsic fluorescence of pTry is quenched with increase in the COOH-f-MWCNTs concentration. Circular dichroism (CD) and UV-visible absorption spectroscopies indicate the ability of COOH-f-MWCNTs to experience conformational change in the native structure of the enzyme. The binding free energy calculations also show that electrostatics, π-cation, and π-π stacking interactions play important roles in the binding of the carboxylated CNTs with pTry. The MD simulation results demonstrated that the carboxylated CNTs adsorb to the enzyme stronger than the CNT without the-COOH groups. Our observations can provide an example of the nanoscale toxicity of COOH-f-MWCNTs for proteins, which is a critical issue for in vivo application of COOH-f-MWCNTs.

  8. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  9. Crystallization and preliminary X-ray analysis of native and selenomethionyl vinorine synthase from Rauvolfia serpentina.

    PubMed

    Ma, Xueyan; Koepke, Juergen; Bayer, Anja; Fritzsch, Günter; Michel, Hartmut; Stöckigt, Joachim

    2005-06-01

    Vinorine synthase (VS) is a central enzyme of the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure with significant sequence homology with VS is known. Crystals of VS and selenomethionyl-labelled VS from the medicinal plant Rauvolfia serpentina have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. VS crystals diffract to 2.8 A and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 82.3, b = 89.6, c = 136.2 A. The selenomethionyl VS crystal was nearly isomorphous with the VS crystal.

  10. Simple, high-yield purification of xanthine oxidase from bovine milk.

    PubMed

    Ozer, N; Müftüoglu, M; Ataman, D; Ercan, A; Ogüs, I H

    1999-05-13

    Xanthine oxidase, a commercially important enzyme with a wide area of application, was extracted from fresh milk, without added preservatives, using toluene and heat. The short purification procedure, with high yield, consisted of extraction, ammonium sulfate fractionation, and DEAE-Sepharose (fast flow) column chromatography. Xanthine oxidase was eluted as a single activity peak from the column using a buffer gradient. The purification fold, specific activity and yield for the purified xanthine oxidase were 328, 10.161 U/mg and 69%, respectively. The enzyme was concentrated by ultrafiltration, although 31% of the activity was lost during concentration, no change in specific activity was observed. Activity and protein gave coincident staining bands on native polyacrylamide gels. The intensity and the number of bands were dependent on the oxidative state(s) of the enzyme; reduction by 2-mercaptoethanol decreased the intensity of the slow-moving bands and increased the intensity of the fastest-moving band. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands (molecular masses of 152 and 131 kDa) were observed, accounting for > or = 95% of xanthine oxidase. Native- and SDS-PAGE showed that the purified xanthine oxidase becomes a heterodimer due to endogenous proteases.

  11. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme.

    PubMed

    Ishida, Yuko; Leal, Walter S

    2008-07-01

    The sophistication of the insect olfactory system is elegantly demonstrated by the reception of sex pheromone by the Japanese beetle. In this insect, two olfactory receptor neurons housed in antennal sensilla placodea are highly sensitive. One neuron specifically detects the sex pheromone produced by conspecific females (R,Z)-5-(-)-(1-decenyl)oxacyclopentan-2-one [(R)-japonilure]. The other neuron is tuned to (S)-japonilure, a sex pheromone from a closely related species and a behavioral antagonist for the Japanese beetle. These chemical signals are enzymatically terminated by antennal esterases that open the lactone rings to form physiologically inactive hydroxyacids. We have isolated a pheromone-degrading enzyme, PjapPDE, from >100,000 antennae of the Japanese beetle. PjapPDE was demonstrated to be expressed only in the antennal tissues housing the pheromone-detecting sensilla placodea. Baculovirus expression generated recombinant PjapPDE with likely the same posttranslational modifications as the native enzyme. Kinetic studies with pure native and recombinant PjapPDE showed a clear substrate preference, with an estimated half-life in vivo for the sex pheromone and a behavioral antagonist of approximately 30 and approximately 90 ms, respectively.

  12. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability.

    PubMed

    Cox, Julia M; Davis, Caroline A; Chan, Chikio; Jourden, Michael J; Jorjorian, Andrea D; Brym, Melissa J; Snider, Mark J; Borders, Charles L; Edmiston, Paul L

    2003-02-25

    Cytosolic creatine kinase exists in native form as a dimer; however, the reasons for this quaternary structure are unclear, given that there is no evidence of active site communication and more primitive guanidino kinases are monomers. Three fully conserved residues found in one-half of the dimer interface of the rabbit muscle creatine kinase (rmCK) were selectively changed to alanine by site-directed mutagenesis. Four mutants were prepared, overexpressed, and purified: R147A, R151A, D209A, and R147A/R151A. Both the R147A and R147A/R151A were confirmed by size-exclusion chromatography and analytical ultracentrifugation to be monomers, whereas R151A was dimeric and D209A appeared to be an equilibrium mixture of dimers and monomers. Kinetic analysis showed that the monomeric mutants, R147A and R147A/R151A, showed substantial enzymatic activity. Substrate binding affinity by R147A/R151A was reduced approximately 10-fold, although k(cat) was 60% of the wild-type enzyme. Unlike the R147A/R151A, the kinetic data for the R147A mutant could not be fit to a random-order rapid-equilibrium mechanism characteristic of the wild-type, but could only be fit to an ordered mechanism with creatine binding first. Substrate binding affinities were also significantly lower for the R147A mutant, but k(cat) was 11% that of the native enzyme. Fluorescence measurements using 1-anilinonaphthalene-8-sufonate showed that increased amounts of hydrophobic surface area are exposed in all of the mutants, with the monomeric mutants having the greatest amounts of unfolding. Thermal inactivation profiles demonstrated that protein stability is significantly decreased in the monomeric mutants compared to wild-type. Denaturation experiments measuring lambda(max) of the intrinsic fluorescence as a function of guanidine hydrochloride concentration helped confirm the quaternary structures and indicated that the general unfolding pathway of all the mutants are similar to that of the wild-type. Collectively, the data show that dimerization is not a prerequisite for activity, but there is loss of structure and stability upon formation of a CK monomer.

  13. Digestive physiology comparisons of aquatic invertebrates in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Haro, Roger J.; Gaikowski, Mark

    2016-01-01

    Limited information is available on the composition of digestive enzymes present in unionid mussels and the zebra mussel, Dreissena polymorpha. Available information is nearly exclusive to species used for culture purposes. A commercially available enzyme assay kit was used to examine the effect of habitat within an ecosystem, season, and species on the activities of several digestive enzymes. We used Amblema plicata to represent native unionids, D. polymorpha, and also Hydropsyche orris as an outgroup to compare differences between mussels and other macroinvertebrates. The data indicated that neither location nor time affect the activities of the digestive enzymes tested; species was the only factor to affect the activity. Differences were found mostly between four enzymes: naphthol-AS-BI-phosphohydrolase, acid phosphatase, alkaline phosphatase, and β-galactosidase.

  14. Mold Pectinase Modified with Dialdehyde Derivatives of Dextran and Cellulose.

    PubMed

    Kobayashi, M; Chiba, Y; Funane, K; Ohya, S; Kato, Y

    1996-01-01

    Chemical modification of mold pectinase with dextran- and cellulose-dialdehydes was examined to improve the enzyme characteristics. The modified pectinase with dextran-dialdehyde retained about 50% of the original activity, and more than 80% of the total amino groups were modified. HPLC gel filtration analysis showed an increase in molecular weight of the reaction product. Reaction with cellulose-dialdehyde provided an immobilized form of pectinase. The immobilized pectinase was resistant to both acidic and alkaline pHs, and also acquired heat stability at 60°C. The optimum pH of the modified enzyme shifted from pH 4.5 to 5.0-5.5, and this enzyme had higher activity at neutral pH regions than the native enzyme. A rather low recovery of immobilized enzyme (14.5%) should be improved by the combination with various methods hitherto established.

  15. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure-activity relationships.

    PubMed

    Hernández González, Jorge Enrique; Hernández Alvarez, Lilian; Pascutti, Pedro Geraldo; Valiente, Pedro A

    2017-09-01

    Falcipain-2 (FP-2) is a major hemoglobinase of Plasmodium falciparum, considered an important drug target for the development of antimalarials. A previous study reported a novel series of 20 reversible peptide-based inhibitors of FP-2. However, the lack of tridimensional structures of the complexes hinders further optimization strategies to enhance the inhibitory activity of the compounds. Here we report the prediction of the binding modes of the aforementioned inhibitors to FP-2. A computational approach combining previous knowledge on the determinants of binding to the enzyme, docking, and postdocking refinement steps, is employed. The latter steps comprise molecular dynamics simulations and free energy calculations. Remarkably, this approach leads to the identification of near-native ligand conformations when applied to a validation set of protein-ligand structures. Overall, we proposed substrate-like binding modes of the studied compounds fulfilling the structural requirements for FP-2 binding and yielding free energy values that correlated well with the experimental data. Proteins 2017; 85:1666-1683. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Robustness of atomistic Gō models in predicting native-like folding intermediates

    NASA Astrophysics Data System (ADS)

    Estácio, S. G.; Fernandes, C. S.; Krobath, H.; Faísca, P. F. N.; Shakhnovich, E. I.

    2012-08-01

    Gō models are exceedingly popular tools in computer simulations of protein folding. These models are native-centric, i.e., they are directly constructed from the protein's native structure. Therefore, it is important to understand up to which extent the atomistic details of the native structure dictate the folding behavior exhibited by Gō models. Here we address this challenge by performing exhaustive discrete molecular dynamics simulations of a Gō potential combined with a full atomistic protein representation. In particular, we investigate the robustness of this particular type of Gō models in predicting the existence of intermediate states in protein folding. We focus on the N47G mutational form of the Spc-SH3 folding domain (x-ray structure) and compare its folding pathway with that of alternative native structures produced in silico. Our methodological strategy comprises equilibrium folding simulations, structural clustering, and principal component analysis.

  17. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization.

    PubMed

    Sheng, Jia; Hassan, Abdalla E A; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S; Huang, Zhen

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. © The Author(s) 2011. Published by Oxford University Press.

  18. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    PubMed Central

    Sheng, Jia; Hassan, Abdalla E. A.; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S.; Huang, Zhen

    2011-01-01

    We report here the first synthesis of 5-phenyl–telluride–thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. PMID:21245037

  19. Synthesis Structure and Imaging of Oligodeoxyribonucleotides with Tellurium-nucleobase Derivatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Sheng; A Hassan; W Zhang

    2011-12-31

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less

  20. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, J.; Soares, A.; Hassan, A. E. A.

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less

Top