Science.gov

Sample records for natural abundance 13c

  1. 13C NMR Metabolomics: Applications at Natural Abundance

    PubMed Central

    2015-01-01

    13C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality 13C NMR spectra obtained using a custom 13C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D 13C and 1H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful 13C–13C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of 13C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The 13C and 1H data together led to 15 matches in the database compared to just 7 using 1H alone, and the 13C correlated peak lists had far fewer false positives than the 1H generated lists. In addition, the 13C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum. PMID:25140385

  2. Detection of human muscle glycogen by natural abundance /sup 13/C NMR

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-03-01

    Natural abundance /sup 13/C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated /sup 1/H decoupling was used to obtain decoupled natural abundance /sup 13/C NMR spectra of the C-1 position of muscle glycogen.

  3. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  4. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  5. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    NASA Astrophysics Data System (ADS)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root

  6. Measuring tree root respiration using (13)C natural abundance: rooting medium matters.

    PubMed

    Cheng, Weixin; Fu, Shenglei; Susfalk, Richard B; Mitchell, Robert J

    2005-07-01

    Tree root respiration utilizes a major portion of the primary production in forests and is an important process in the global carbon cycle. Because of the lack of ecologically relevant methods, tree root respiration in situ is much less studied compared with above-ground processes such as photosynthesis and leaf respiration. This study introduces a new (13)C natural tracer method for measuring tree root respiration in situ. The method partitions tree root respiration from soil respiration in buried root chambers. Rooting media substantially influenced root respiration rates. Measured in three media, the fine root respiration rates of longleaf pine were 0.78, 0.27 and 0.18 mg CO(2) carbon mg(-1) root nitrogen d(-1) at 25 degrees C in the native soil, tallgrass prairie soil, and sand-vermiculite mixture, respectively. Compared with the root excision method, the root respiration rate of longleaf pine measured by the field chamber method was 18% higher when using the native soil as rooting medium, was similar in the prairie soil, but was 42% lower if in the sand-vermiculite medium. This natural tracer method allows the use of an appropriate rooting medium and is capable of measuring root respiration nondestructively in natural forest conditions.

  7. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    PubMed

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.

  8. Dynamics of shoot vs. root C assessed by natural 13C abundance of their biomarkers

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie

    2010-05-01

    Cutins and suberins are biopolyesters that have been suggested to significantly contribute to the stable pool of soil organic matter (SOM). They might be used as tracers for the above- or belowground origin of plant material. The aim of this study was to evaluate the dynamics of shoot and root-derived biomarkers in soils using a wheat/maize (C3/C4) chronosequence. Our results suggest that α,?-alkanedioic acids can be considered as root specific markers and mid-chain hydroxy acids as shoot specific markers of wheat and maize in this agricultural soil. The changes of the 13C isotopic signatures of these markers with years of maize cropping after wheat evidenced their contrasted behaviour in soil. After 12 years of maize cropping, shoot markers present in soils probably originated from old C3 vegetation suggesting that new maize cutin added to soils was mostly degraded within a year. The reasons for long-term stabilisation of shoot biomarkers remain unclear. By contrast, maize root markers were highly incorporated into SOM during the first six years of maize crop, which suggested a selective preservation of root biomass when compared to shoots, possibly due to physical protection. The contrasting distribution of the plant-specific monomers in plants and soils might be explained by different chemical mechanisms leading to selective degradation or stabilization of some biomarkers.

  9. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.

  10. 13C Natural Abundance in Serum Retinol Acts as a Biomarker for Increases in Dietary Provitamin A

    PubMed Central

    Howe, Julie A; Valentine, Ashley R; Hull, Angela K; Tanumihardjo, Sherry A

    2009-01-01

    The natural isotopic composition of 13C and 12C in tissues is largely determined by the diet. Sources of provitamin A carotenoids (e.g., vegetables) typically have a lower 13C to 12C ratio (13C:12C) than preformed vitamin A sources (i.e., dairy and meat) from corn-fed animals, which are prevalent in the US. The 13C:12C of serum retinol (13C:12C-retinol) was evaluated as a biomarker for vegetable intake in a 3-mo dietary intervention designed to promote weight-loss by increased vegetable consumption or reduced calorie and fat intake. Subjects were 21–50 y of age with a BMI between 30–40 kg/m2 and were enrolled from one geographic area in the US. The high vegetable group (n = 20) was encouraged to increase daily vegetable and fruit consumption to 0.95 liter vegetables and 0.24–0.35 liter fruits. The caloric reduction group (n = 17) was encouraged to lower caloric intake by 500 kcal and consume ≤25% kcal from fat daily. Provided meals supplied 75–100% vegetable and fruit goals and 50–67% kcal and fat g per day. Carotenoid supplementation was discontinued by subjects during the study. Serum retinol and provitamin A carotenoid concentrations; intake of preformed vitamin A, provitamin A, and fat; and body weight, fat mass, and lean mass were analyzed for correlations to 13C:12C-retinol. 13C:12C-Retinol decreased in the vegetable group after intervention (P = 0.050) and the correlation with provitamin A intake was approaching significance (P = 0.079). 13C:12C-Retinol did not change in the caloric reduction group (P = 0.43). 13C:12C-Retinol changes with the vitamin A source in the diet and can be used as a biomarker for increases in dietary provitamin A vegetable intake. PMID:19116317

  11. Effect of petroleum products on the decomposition of soil organic matter as assessed by 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Stelmach, Wioleta; Szarlip, Paweł; Trembaczowski, Andrzej; Bieganowski, Andrzej

    2016-04-01

    Petroleum products are common contaminants in soils due to human activities. They are toxic for microorganisms and threat their functions, including decomposition of soil organic matter (SOM). The direct estimation of altered SOM decomposition - based on the CO2 emission - is impossible after oil contamination, because oil decomposition also contributes to the CO2 release. We used the natural differences in the isotopic signature (δ13C) of SOM and of oil products to partition the total CO2 for both sources and to analyze the suppression of SOM decomposition. The dynamics of 13C fractionation during the mineralization of gasoline and diesel was measured during 42 days. The 13C fractionation varied between -8.8‰ and +3.6‰ within the first 10 days, and stabilized thereafter at about -5.3‰ for gasoline and +3.2‰ for diesel. These 13C fractionations and δ13C values of CO2 emitted from the soil were used for correct partitioning of the total CO2. Contamination with gasoline reduced the CO2 efflux from SOM decomposition by a factor of 25 (from 151 to 6 mg C-CO2 kg-1 soil during 42 days). The negative effect of diesel was much lower: the CO2 efflux from SOM was decreased by less than a factor of 2. The strong effect of gasoline versus diesel reflects the lower absorption of gasoline to mineral particles and the development of a thin film on water surfaces, leading to toxicity for microorganisms. We conclude that the small differences of 13C of SOM and of organic pollutants can be used to partition CO2 fluxes and analyze pollutant effects on SOM decomposition.

  12. Prediction of successive steps of SOM formation in aggregates and density fractions based on the 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov

    2014-05-01

    Aggregate formation is a key process of soil development, which promotes carbon (C) stabilization by hindering decomposition of particulate organic matter (POM) and its interactions with mineral particles. C stabilization processes lead to 13C fractionation and consequently to various δ13C values of soil organic matter (SOM) fractions. Differences in δ13C within the aggregates and fractions may have two reasons: 1) preferential stabilization of organic compounds with light or heavy δ13C and/or 2) stabilization of organic materials after passing one or more microbial utilization cycles, leading to heavier δ13C in remaining C. We hypothesized that: 1) 13C enrichment between the SOM fractions corresponds to successive steps of SOM formation; 2) 13C fractionation (but not the δ13C signature) depends mainly on the transformation steps and not on the C precursors. Consequently, minimal differences between Δ13C of SOM fractions between various ecosystems correspond to maximal probability of the SOM formation pathways. We tested these hypotheses on three soils formed from cover loam during 45 years of growth of coniferous or deciduous forests or arable crops. Organic C pools in large macroaggregates, small macroaggregates, and microaggregates were fractionated sequentially for four density fractions to obtain free POM with ρ

  13. Strong Coupling of Shoot Assimilation and Soil Respiration during Drought and Recovery Periods in Beech As Indicated by Natural Abundance δ(13)C Measurements.

    PubMed

    Blessing, Carola H; Barthel, Matti; Gentsch, Lydia; Buchmann, Nina

    2016-01-01

    Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO2. We independently measured shoot and soil CO2 fluxes of beech saplings (Fagus sylvatica L.) and their respective δ(13)C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO2. Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ(13)C of recent metabolites (1.5-2.5‰) and in δ(13)C of SR (1-1.5‰). Generally, shoot and soil CO2 fluxes and their δ(13)C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ(13)C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ(13)C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days - and

  14. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance sup 13 C chemical shift editing of sup 1 H- sup 1 H COSY spectra

    SciTech Connect

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P. )

    1989-01-18

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with {sup 13}C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs.

  15. Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics

    SciTech Connect

    Garten Jr, Charles T; Hanson, Paul J; Todd Jr, Donald E; Lu, Benwhea Bonnie; Brice, Deanne Jane

    2007-09-01

    This book highlights new and emerging uses of stable isotope analysis in a variety of ecological disciplines. While the use of natural abundance isotopes in ecological research is now relatively standard, new techniques and ways of interpreting patterns are developing rapidly. The second edition of this book provides a thorough, up-to-date examination of these methods of research. As part of the Ecological Methods and Concepts series which provides the latest information on experimental techniques in ecology, this book looks at a wide range of techniques that use natural abundance isotopes to: {sm_bullet} follow whole ecosystem element cycling {sm_bullet} understand processes of soil organic matter formation {sm_bullet} follow the movement of water in whole watersheds {sm_bullet} understand the effects of pollution in both terrestrial and aquatic environments {sm_bullet} study extreme systems such as hydrothermal vents {sm_bullet}follow migrating organisms In each case, the book explains the background to the methodology, looks at the underlying principles and assumptions, and outlines the potential limitations and pitfalls. Stable Isotopes in Ecology and Environmental Science is an ideal resource for both ecologists who are new to isotopic analysis, and more experienced isotope ecologists interested in innovative techniques and pioneering new uses.

  16. Natural abundance 13C and 14C analysis of water-soluble organic carbon in atmospheric aerosols.

    PubMed

    Kirillova, Elena N; Sheesley, Rebecca J; Andersson, August; Gustafsson, Örjan

    2010-10-01

    Water-soluble organic carbon (WSOC) constitutes a large fraction of climate-forcing organic aerosols in the atmosphere, yet the sources of WSOC are poorly constrained. A method was developed to measure the stable carbon isotope (δ(13)C) and radiocarbon (Δ(14)C) composition of WSOC for apportionment between fossil fuel and different biogenic sources. Synthetic WSOC test substances and ambient aerosols were employed to investigate the effect of both modern and fossil carbon contamination and any method-induced isotope fractionation. The method includes extraction of aerosols collected on quartz filters followed by purification and preparation for off-line δ(13)C and Δ(14)C determination. The preparative freeze-drying step for isotope analysis yielded recoveries of only ∼70% for ambient aerosols and WSOC probes. However, the δ(13)C of the WSOC isolates were in agreement with the δ(13)C of the unprocessed starting material, even for the volatile oxalic acid probe (6.59 ± 0.37‰ vs 6.33 ± 0.31‰; 2 sd). A (14)C-fossil phthalic acid WSOC probe returned a fraction modern biomass of <0.008 whereas a (14)C-modern sucrose standard yielded a fraction modern of >0.999, indicating the Δ(14)C-WSOC method to be free of both fossil and contemporary carbon contamination. Application of the δ(13)C/Δ(14)C-WSOC method to source apportion climate-affecting aerosols was illustrated be constraining that WSOC in ambient Stockholm aerosols were 88% of contemporary biogenic C3 plant origin.

  17. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  18. Strong Coupling of Shoot Assimilation and Soil Respiration during Drought and Recovery Periods in Beech As Indicated by Natural Abundance δ13C Measurements

    PubMed Central

    Blessing, Carola H.; Barthel, Matti; Gentsch, Lydia; Buchmann, Nina

    2016-01-01

    Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO2. We independently measured shoot and soil CO2 fluxes of beech saplings (Fagus sylvatica L.) and their respective δ13C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO2. Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ13C of recent metabolites (1.5–2.5‰) and in δ13C of SR (1–1.5‰). Generally, shoot and soil CO2 fluxes and their δ13C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ13C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ13C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days – and within 7

  19. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    PubMed

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  20. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  1. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.

    PubMed

    Kurdali, F; Al-Shamma'a, M

    2009-09-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the (15)N and (13)C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the delta(15)N values in four legume species (Acacia cyanophylla,-1.73 per thousand Acacia farnesiana,-0.55 per thousand Prosopis juliflora,-1.64 per thousand; and Medicago arborea,+1.6 \\textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,-0.46 to-2.1 per thousand) were found to be close to that of the atmospheric value pointing to a major contribution of N(2) fixing in these species; whereas, delta(15)N values of the non-fixing plant species were highly positive. delta(13)C per thousand; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of-28.67 per thousand; to a maximum of-23 per thousand. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Delta(13)C per thousand) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its delta(15)N was highly positive (+7.03 per thousand) suggesting a negligible contribution of the fixed N(2). Hence, it was concluded that the enhancement of N(2) fixation might be achieved by selection of salt-tolerant Rhizobium strains.

  2. Conformational study of C8 diazocine turn mimics using {sup 3}J{sub CH} coupling constants with {sup 13}C in natural abundance

    SciTech Connect

    Bean, J.W.; Briand, J.; Burgess, J.L.; Callahan, J.F.

    1994-12-01

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-{omega}-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-{omega}-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, {sup 3}J{sub HH} values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the H{alpha}1 and H{gamma}1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central H{beta}1 and H{beta}2 protons made it impossible to measure {sup 3}J{sub HH} values from the P.E.COSY spectrum. We therefore used a {sup 13}C-filtered TOCSY experiment to measure the {sup 3}J{sub CH} values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with {sup 13}C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation.

  3. 13C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils123

    PubMed Central

    Pungarcher, India; Mourao, Luciana; Davis, Christopher R; Simon, Philipp; Pixley, Kevin V; Tanumihardjo, Sherry A

    2016-01-01

    Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of 13C/12C (δ13C) caused by natural 13C fractionation in C3 compared with C4 plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 × 2 × 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA−) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 5−7/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for 13C. Results: Treatments affected liver VA concentrations (0.048 ± 0.039 to 0.79 ± 0.24 μmol/g; P < 0.0001) but not overall serum retinol concentrations (1.38 ± 0.22 μmol/L). Serum retinol and liver VA δ13C were significantly correlated (R2 = 0.92; P < 0.0001). Serum retinol δ13C differentiated control groups that consumed white maize and white carrots (−27.1 ± 1.2 δ13C‰) from treated groups that consumed orange maize and white carrots (−21.6 ± 1.4 δ13C‰ P < 0.0001) and white maize and orange carrots (−30.6 ± 0.7 δ13C‰ P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol δ13C. This method could be used for maize efficacy or effectiveness studies and with

  4. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  5. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Gélinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).

  6. An overview of methods using (13)C for improved compound identification in metabolomics and natural products.

    PubMed

    Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  7. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.

  8. An overview of methods using 13C for improved compound identification in metabolomics and natural products

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S.

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest. PMID:26379677

  9. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.

  10. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  11. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  12. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  13. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods.

  14. Comparing Soil and Bison δ13C to Field Estimates of C4 Plant Abundances in North America

    NASA Astrophysics Data System (ADS)

    Griffith, D.; Still, C. J.; Cotton, J.; Powell, B.

    2015-12-01

    Stable carbon isotope data (i.e., δ13C) from soils and herbivore tissue are commonly used as a proxy for the relative abundance of C4 and C3 plants at a site. These data are also increasingly used to represent other climatologically relevant properties of vegetated environments, such as productivity, aridity, water use efficiency, and tree cover. The δ13C values of soils and herbivore tissues are generally assumed to resemble their source vegetation, after accounting for diverse fractionation processes during litter decomposition and tissue metabolism and turnover. However, δ13C values have rarely been compared to source vegetation at a regional to continental scale. As a result, the quality of δ13C as a proxy has not been thoroughly evaluated, and the importance of modifying factors have not been assessed at biogeographically relevant scales. To address some of these issues, we combined three multi-source datasets from North America: herbaceous C4 plant abundances from thousands of vegetation plots, hundreds of soil δ13C measurements, and hundreds of bison collagen, hair, and enamel δ13C data (tissues with different turnover rates). These datasets were resampled to common grid for comparison. A stronger relationship with C4 vegetation existed for bison as compared to soil δ13C. To determine which factors might explain deviations in the vegetation plot and isotopic data, we used statistical models to quantify the influence of soil variables, mean annual precipitation and temperature, tree cover, presence of invasives, and fire frequency in conjunction with plot-based C4 abundance data. Our bison model was only improved by the addition of invasives. In contrast, our soil model was significantly improved when accounting for tree cover (C3 vegetation and shade), precipitation, various soil parameters, and invasive grasses, suggesting that soils are more likely to be biased from source vegetation in ways that could influence interpretation as a proxy at broad

  15. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F.

    2014-05-01

    We study the s-process abundances (A >~ 90) at the epoch of the solar system formation. Asymptotic giant branch yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic chemical evolution (GCE) model: (1) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s distribution of isotopes with A > 130; and (2) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C pocket, which may affect the efficiency of the 13C(α, n)16O reaction, the major neutron source of the s process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s predictions at the epoch of the solar system formation marginally depend on the size and shape of the 13C pocket once a different weighted range of 13C-pocket strengths is assumed. We obtain that, independently of the internal structure of the 13C pocket, the missing solar system s-process contribution in the range from A = 90 to 130 remains essentially the same.

  16. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-03-25

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.

  17. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1-3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60-70 and 30-35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  18. ¹³C NMR metabolomics: applications at natural abundance.

    PubMed

    Clendinen, Chaevien S; Lee-McMullen, Brittany; Williams, Caroline M; Stupp, Gregory S; Vandenborne, Krista; Hahn, Daniel A; Walter, Glenn A; Edison, Arthur S

    2014-09-16

    (13)C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality (13)C NMR spectra obtained using a custom (13)C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D (13)C and (1)H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful (13)C-(13)C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of (13)C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The (13)C and (1)H data together led to 15 matches in the database compared to just 7 using (1)H alone, and the (13)C correlated peak lists had far fewer false positives than the (1)H generated lists. In addition, the (13)C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum.

  19. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd.

  20. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  1. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  2. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  3. A Critical Evaluation of the Quality of Published (13)C NMR Data in Natural Product Chemistry.

    PubMed

    Robien, Wolfgang

    2017-01-01

    Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called "combinatorial explosion" in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.This contribution presents a comprehensive analysis of frequently occurring errors with respect to (13)C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.

  4. The new face of isotopic NMR at natural abundance.

    PubMed

    Jézéquel, Tangi; Joubert, Valentin; Giraudeau, Patrick; Remaud, Gérald S; Akoka, Serge

    2017-02-01

    The most widely used method for isotope analysis at natural abundance is isotope ratio monitoring by Mass Spectrometry (irm-MS) which provides bulk isotopic composition in (2) H, (13) C, (15) N, (18) O or (34) S. However, in the 1980s, the direct access to Site-specific Natural Isotope Fractionation by Nuclear Magnetic Resonance (SNIF-NMR(TM) ) was immediately recognized as a powerful technique to authenticate the origin of natural or synthetic products. The initial - and still most popular - application consisted in detecting the chaptalization of wines by irm-(2) H NMR. The approach has been extended to a wide range of methodologies over the last decade, paving the way to a wide range of applications, not only in the field of authentication but also to study metabolism. In particular, the emerging irm-(13) C NMR approach delivers direct access to position-specific (13) C isotope content at natural abundance. After highlighting the application scope of irm-NMR ((2) H and (13) C), this article describes the major improvements which made possible to reach the required accuracy of 1‰ (0.1%) in irm-(13) C NMR. The last part of the manuscript summarizes the different steps to perform isotope analysis as a function of the sample properties (concentration, peak overlap) and the kind of targeted isotopic information (authentication, affiliation). Copyright © 2016 John Wiley & Sons, Ltd.

  5. 13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.

    2011-06-01

    The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition

  6. Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hatcher, P.G.

    1987-01-01

    Two natural lignins, one from a gymnosperm wood the other from angiosperm wood, were examined by conventional solid-state and dipolar dephasing 13C nuclear magnetic resonance (NMR) techniques. The results obtained from both techniques show that the structure of natural lignins is consistent with models of softwood and hardwood lignin. The dipolar dephasing NMR data provide a measure of the degree of substitution on aromatic rings which is consistent with the models. ?? 1987.

  7. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    PubMed

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  8. A paleothermometer based on abundances of 13C-18O bonds in bioapatite: Calibration and reconstruction of the body temperatures of extinct Cenozoic mammals and Mesozoic dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, R.; Schauble, E. A.; Tripati, A. K.; Fricke, H. C.; Tuetken, T.; Eiler, J. M.

    2009-12-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms, and to reconstruct past climate in terrestrial and marine settings. Here we report the application of a new type of geochemical measurement to bioapatite, a ‘clumped isotope’ thermometer based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the crystal lattice of apatite. This effect is dependent on temperature but unlike conventional stable isotope paleotemperature proxies, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of apatite from modern teeth is proportional to the body temperature of the organism, with an accuracy of 1-2oC, and that the empirical calibration is supported by a theoretical model of isotopic ordering. We also report initial paleothermometry results from analyses of Cenozoic fossil mammal teeth and Mesozoic dinosaur teeth. Therefore, clumped isotope analysis of bioapatite represents a new approach in the study of the physiology of extinct species by allowing the first relatively assumption-free measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurements of clumped isotopes in apatite from fossils, such as conodonts and brachiopods, as well as phosphorites, have the potential to record environmental temperatures.

  9. Short-Term Effects of Tillage Practices on Soil Organic Carbon Turnover Assessed by δ13C Abundance in Particle-Size Fractions of Black Soils from Northeast China

    PubMed Central

    Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ13C natural abundance to assess SOC turnover in the 0–20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ13C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC. PMID:25162052

  10. Short-term effects of tillage practices on soil organic carbon turnover assessed by δ13C abundance in particle-size fractions of black soils from northeast China.

    PubMed

    Liang, Aizhen; Chen, Shenglong; Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ (13)C natural abundance to assess SOC turnover in the 0-20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ (13)C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC.

  11. Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice.

    PubMed

    Kanstrup, Marie; Thomsen, Ingrid K; Andersen, Astrid J; Bogaard, Amy; Christensen, Bent T

    2011-10-15

    The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.

  12. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  13. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  14. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  15. Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada.

    PubMed

    Drucker, Dorothee G; Hobson, Keith A; Ouellet, Jean-Pierre; Courtois, Rehaume

    2010-03-01

    Stable isotope composition (delta(13)C and delta(15)N) of moose (Alces alces) and caribou (Rangifer tarandus) hair from the boreal forest of Jacques-Cartier Park and Cote-Nord (Quebec) and arctic tundra of Queen Maud Gulf and Southampton Island (Nunavut) was investigated as an indicator of dietary preferences and habitat use. Values of delta(13)C(hair) and delta(15)N(hair) in moose were consistently lower compared to those of caribou. This is consistent with the depletion in (13)C and (15)N in the plants preferred by moose, essentially browse (shrub and tree leaves), compared to caribou forage, which included significant amounts of graminoids, lichen and fungi. The delta(13)C(hair) values of caribou differed between closed boreal forest and open-tundra ecosystems. This pattern followed that expected from the canopy effect observed in plant communities. Variation in delta(15)N(hair) values of caribou was probably linked to the effect of different climatic conditions on plant communities. This study underlines the potential of isotopic analysis for studies on diet and habitat selection within a pure C(3) plant environment.

  16. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  17. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  18. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  19. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  20. Speleothem calcite farmed in situ: Modern calibration of δ 18O and δ 13C paleoclimate proxies in a continuously-monitored natural cave system

    NASA Astrophysics Data System (ADS)

    Tremaine, Darrel M.; Froelich, Philip N.; Wang, Yang

    2011-09-01

    Understanding the relationships between speleothem stable isotopes (δ 13C δ 18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ 18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ 18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave. Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s -1 in winter and 0.4 m s -1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO 2. A clear relationship is found between calcite δ 13C and cave air ventilation rates estimated by proxies pCO 2 and 222Rn. Calcite δ 13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ 13C CaCO3 = -7‰. A whole-cave "Hendy test" at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ 13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the "Hendy test" has implications for interpreting δ 13C records in ancient speleothems. Calcite δ 13C CaCO3 may be a proxy not only for atmospheric CO 2 or overlying vegetation shifts but also for

  1. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  2. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  3. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  4. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  5. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  6. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire

    NASA Astrophysics Data System (ADS)

    Nelson, David M.; Urban, Michael A.; Kershaw, A. Peter; Hu, Feng Sheng

    2016-05-01

    Climate, atmospheric pCO2, and fire all may exert major influences on the relative abundance of C3 and C4 grasses in the present-day vegetation. However, the relative role of these factors in driving variation in C3 and C4 grass abundances in the paleorecord is uncertain, and C4 abundance is often interpreted narrowly as a proxy indicator of aridity or pCO2. We measured δ13C values of individual grains of grass (Poaceae) pollen in the sediments of two sites in southeastern Australia to assess changes in the proportions of C3 and C4 grasses during the past 25,000 years. These data were compared with shifts in pCO2, temperature, moisture balance, and fire to assess how these factors were related to long-term variation of C4 grass abundance during the late Quaternary. At Caledonia Fen, a high-elevation site in the Snowy Mountains, C4 grass abundance decreased from an average of 66% during the glacial period to 11% during the Holocene, primarily in response to increased pCO2 and temperature. In contrast, this pattern did not exist in low-elevation savannah woodlands around Tower Hill Northwest Crater, where C4 grass abundance instead varied in response to shifts in regional aridity. Fire did not appear to have strongly influenced the proportions of C3 and C4 grasses on the landscape at millennial timescales at either site. These patterns are similar to those of a recent study in East Africa, suggesting that elevation-related climatic differences influence how the abundance of C3 and C4 grasses responds to shifts in climate and pCO2. These results caution against using C4 plant abundance as a proxy indicator of either climate or pCO2 without an adequate understanding of key controlling factors.

  7. Use of 13C NMR and ftir for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation

    USGS Publications Warehouse

    Wershaw, R. L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I.

    1996-01-01

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols.

  8. Position dependence of the 13C chemical shifts of α-helical model peptides. Fingerprint of the 20 naturally occurring amino acids

    PubMed Central

    Vila, Jorge A.; Baldoni, Héctor A.; Scheraga, Harold A.

    2004-01-01

    The position dependence of the 13C chemical shifts was investigated at the density functional level for α-helical model peptides represented by the sequence Ac-(Ala)i-X-(Ala)j-NH2, where X represents any of the 20 naturally occurring amino acids, with 0 ≤ i ≤ 8 and i + j = 8. Adoption of the locally dense basis approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 20 naturally occurring amino acids in α-helices, there is (1) significant variability of the computed 13C shielding as a function of both the guest residue (X) and the position along the sequence; for example, at the N terminus, the 13Cα and 13Cβ shieldings exhibit a uniform pattern of variation with respect to both the central or the C-terminal positions; (2) good agreement between computed and observed 13Cα and 13Cβ chemical shifts in the interior of the helix, with correlation coefficients of 0.98 and 0.99, respectively; for 13Cα chemical shifts, computed in the middle of the helix, only five residues, namely Asn, Asp, Ser, Thr, and Leu, exhibit chemical shifts beyond the observed standard deviation; and (3) better agreement for four of these residues (Asn, Asp, Ser, and Thr) only for the computed values of the 13Cα chemical shifts at the N terminus. The results indicate that 13Cβ, but not 13Cβ, chemical shifts are sensitive enough to reflect the propensities of some amino acids for specific positions within an α-helix, relative to the N and C termini of peptides and proteins. PMID:15498939

  9. Long-term Trends and Confidence in Global Natural Gas Fugitive Emissions Rates Based on δ13C-CH4

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Sherwood, O.; Tans, P. P.; Michel, S. E.; Miller, J. B.; Dlugokencky, E. J.; Griffin, W. M.; Bruhwiler, L.

    2014-12-01

    Numerous life cycle assessment (LCA) and field studies have estimated natural gas (NG) fugitive emissions rates (FER) - the fraction of produced NG, mostly CH4, emitted to the atmosphere, unintentionally or by design, during extraction, processing, transport, and distribution - at local, regional, and national scales. In a recent study, we estimated for the first time the global mean FER using long-term (three decades) atmospheric CH4, δ13C-CH4, and C2H6 measurements from global monitoring networks. As a further development, this work investigates the global mean FER uncertainty range (factor of 2) in more detail to increase confidence in the results. The objectives of this research are to (i) estimate probability distribution functions (PDF) of global mean FER, and (ii) identify long-term trends in global fossil fuel (FF) and other CH4 sources. In order to achieve these objectives, global atmospheric δ13C-CH4 measurements since the mid-1980s are analyzed using a box-model of the global CH4 sources and sinks. First, we derive PDFs of the key model parameters including literature isotopic source signatures, atmospheric lifetimes, natural and anthropogenic emissions, and FF hydrocarbon gas composition. Second, a Monte Carlo simulation of the box-model is performed to quantify FER confidence intervals. While our model attributes the majority of increased CH4 levels over the past three decades to microbial sources, FF sources have also increased slightly. However, FER - an indicator of NG life cycle efficiency - has decreased over the same period given the large NG production increase worldwide. Results are most sensitive to global average microbial isotopic signatures (weighted by source strength) and bottom-up estimates of biomass burning emissions, which will be discussed in more detail.

  10. The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy.

    PubMed

    Ahmad, R; Kookana, R S; Alston, A M; Skjemstad, J O

    2001-03-01

    The structural composition of soil organic matter (SOM) was determined in twenty-seven soils with different vegetation from several ecological zones of Australia and Pakistan using solid-state CPMAS 13C NMR. The SOM was characterized using carbon types derived from the NMR spectra. Relationships were determined between Koc (sorption per unit organic C) of carbaryl(1-naphthylmethylcarbamate) and phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O,O-diethyl phosphorodithioate) and the nature of organic matter in the soils. Substantial variations were revealed in the structural composition of organic matter in the soils studied. The variations in Koc values of the pesticides observed for the soils could be explained only when variations in the aromatic components of SOM were taken into consideration. The highly significant positive correlations of aromaticity of SOM and Koc values of carbaryl and phosalone revealed that the aromatic component of SOM is a good predictor of a soil's ability to bind such nonionic pesticides.

  11. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  12. A study of the abundance and {sup 13}C/{sup 12}C ratio of atmospheric carbon dioxide and oceanic carbon in relation to the global carbon cycle. Final technical report, February 15, 1990--July 31, 1995

    SciTech Connect

    Keeling, C.D.

    1995-12-31

    Knowledge can be gained about the fluxes and storage of carbon in natural systems and their relation to climate by detecting temporal and spatial patterns in atmospheric CO{sub 2}. When patterns in its {sup 13}C/{sup 12}C isotopic ratio are included in the analysis, there is also a basis for distinguishing organic and inorganic processes. The authors systematically measured the concentration and {sup 13}C/{sup 12}C ratio of atmospheric CO{sub 2} to produce time series data essential to reveal these temporal and spatial patterns. To pursue the significance of these patterns further, the result also involved measurements of inorganic carbon in sea water and of CO{sub 2} in air near growing land plants. The study was coordinated with a study of the same title concurrently funded by the National Science Foundation (NSF). The study called for continued atmospheric measurements at an array of ten stations from the Arctic Basin to the South Pole. Air was collected in flasks brought back to the laboratory for analysis, except at Mauna Loa. Observatory, Hawaii, where continuous measurements were also carried out.

  13. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  14. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    SciTech Connect

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  15. Quantitative 13C traces of glucose fate in hepatitis B virus infected hepatocytes.

    PubMed

    Wan, Qianfen; Wang, Yulan; Tang, Huiru

    2017-02-21

    Quantitative characterization of 13C-labeled metabolites is an important part of the stable isotope tracing method widely used in metabolic flux analysis. Due to long relaxation time and low sensitivity of 13C nuclei, direct measurement of 13C labeled metabolites using one dimensional 13C NMR often fails to meet the demand of metabolomics studies especially with large number of samples and metabolites having low abundance. Although HSQC-based 2D NMR methods have improved sensitivity with inversion detection, they are time-consuming thus unsuitable for high-throughput absolute quantification of 13C-labeled metabolites. In this study, we developed a method for absolute quantification of 13C labeled metabolites using naturally abundant TSP as a reference with the first increment of HMQC pulse sequence, taking polarization transfer efficiencies into consideration. We validated this method using a mixture of 13C-labeled alanine, methionine, glucose and formic acid together with a mixture of alanine, lactate, glycine, uridine, cytosine, and hypoxanthine having natural 13C abundance with known concentrations. We subsequently applied this method to analyze the flux of glucose in HepG2 cells infected with hepatitis B virus (HBV). The results showed that HBV infection increased the cellular uptake of glucose, stimulated glycolysis and enhanced the pentose phosphate and hexosamine pathways for biosynthesis of RNA and DNA and nucleotide sugars to facilitate HBV replication. This method saves experimental time and provides a possibility for absolute quantitative tracking of the 13C labeled metabolites for high throughput studies.

  16. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  17. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    USGS Publications Warehouse

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  18. Does Bienertia cycloptera with the single-cell system of C(4) photosynthesis exhibit a seasonal pattern of delta (13)C values in nature similar to co-existing C (4) Chenopodiaceae having the dual-cell (Kranz) system?

    PubMed

    Akhani, Hossein; Lara, María Valeria; Ghasemkhani, Maryam; Ziegler, Hubert; Edwards, Gerald E

    2009-01-01

    Family Chenopodiaceae is an intriguing lineage, having the largest number of C(4) species among dicots, including a number of anatomical variants of Kranz anatomy and three single-cell C(4) functioning species. In some previous studies, during the culture of Bienertia cycloptera Bunge ex Boiss., carbon isotope values (delta(13)C values) of leaves deviated from C(4) to C(3)-C(4) intermediate type, raising questions as to its mode of photosynthesis during growth in natural environments. This species usually co-occurs with several Kranz type C(4) annuals. The development of B. cycloptera morphologically and delta(13)C values derived from plant samples (cotyledons, leaves, bracts, shoots) were analyzed over a complete growing season in a salt flat in north central Iran, along with eight Kranz type C(4) species and one C(3) species. For a number of species, plants were greenhouse-grown from seeds collected from the site, in order to examine leaf anatomy and C(4) biochemical subtype. Among the nine C(4) species, the cotyledons of B. cycloptera, and of the Suaeda spp. have the same respective forms of C(4) anatomy occurring in leaves, while cotyledons of members of tribe Caroxyloneae lack Kranz anatomy, which is reflected in the delta(13)C values found in plants grown in the natural habitat. The nine C(4) species had average seasonal delta(13)C values of -13.9 per thousand (with a range between species from -11.3 to -15.9 per thousand). The measurements of delta(13)C values over a complete growing season show that B. cycloptera performs C(4) photosynthesis during its life cycle in nature, similar to Kranz type species, with a seasonal average delta(13)C value of -15.2 per thousand.

  19. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  20. Compound-specific stable carbon isotope ratios (delta13C values) of the halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1).

    PubMed

    Vetter, Walter; Gleixner, Gerd

    2006-01-01

    Compound-specific isotope analysis using gas chromatography interfaced to isotope ratio mass spectrometry (GC/IRMS) was applied for the determination of delta13C values of the marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1). The delta13C value of a lab-made Q1 standard (-34.20 +/- 0.27 per thousand) was depleted in 13C by more than 11 per thousand relative to the residues of Q1 in dolphin blubber from Australia and skua liver from Antarctica. This clarified that the synthesized Q1 was not the source for Q1 in the biota samples. However, two Australian marine mammals showed a large variation in the delta13C value, which, in our experience, was implausible. Since the GC/IRMS system was connected to a conventional ion trap mass spectrometer by a post-column splitter, we were able to closely inspect the peak purity of Q1 in the respective samples. While the mass spectra of Q1 did not indicate any impurity, a fronting peak of PCB 101 was identified in one sample. This interference falsified the delta13C value of the respective sample. Once this sample was excluded, we found that the delta13C values of the remaining samples, i.e. liver of Antarctic brown skua (-21.47 +/- 1.47 per thousand) and blubber of Australian melon-headed whale (-22.80 +/- 0.33 per thousand), were in the same order. The standard deviation for Q1 was larger in the skua samples than in the standard and the whale blubber sample. This was due to lower amounts of skua sample available. It remained unclear if the Q1 residues originate from the same producer and location.

  1. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    NASA Technical Reports Server (NTRS)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  2. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  3. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images.

  4. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  5. Development of new method of δ(13)C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C1-C4) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C5-C14) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ(13)C signatures determined by SPME-GC/IRMS were in good agreement with the known δ(13)C values of C5-C14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ(13)C values for C5-C14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas.

  6. Gastrointestinal handling of [1-13C]palmitic acid in healthy controls and patients with cystic fibrosis

    PubMed Central

    Murphy, J.; Jones, A.; Stolinski, M.; Wootton, S.

    1997-01-01

    Accepted 2 January 1997
 AIM—To examine the gastrointestinal handling of [1-13C]palmitic acid given as the free acid by measuring the excretion of 13C label in stool in 16 healthy children and 11 patients with cystic fibrosis on their habitual enzyme replacement treatment.
METHODS—After an overnight fast, each child ingested 10 mg/kg body weight [1-13C]palmitic acid with a standardised test meal of low natural 13C abundance. A stool sample was collected before the test and all stools were collected thereafter for a period of up to five days. The total enrichment of 13C in stool and the species bearing the 13C label was measured using isotope ratio mass spectrometry.
RESULTS—The proportion of administered 13C label excreted in stool was 24.0% (range 10.7-64.9%) in healthy children and only 4.4% (range 1.2-11.6%) in cystic fibrosis patients. The enrichment of 13C in stool was primarily restricted to the species consumed by the subjects (that is as palmitic acid).
CONCLUSION—There does not appear to be a specific defect in the absorption of [1-13C]palmitic acid in patients with cystic fibrosis. The reasons why cystic fibrosis patients appear to absorb more of this saturated fatty acid than healthy children is not clear and requires further investigation.

 PMID:9196358

  7. Chlorine-36 abundance in natural and synthetic perchlorate

    SciTech Connect

    Heikoop, Jeffrey M; Dale, M; Sturchio, Neil C; Caffee, M; Belosa, A D; Heraty, Jr., L J; Bohike, J K; Hatzinger, P B; Jackson, W A; Gu, B

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  8. Motion-Insensitive Localized 13C Spectroscopy Using Cyclic and Slice-Selective J Cross Polarization

    NASA Astrophysics Data System (ADS)

    Kunze, C.; Kimmich, R.

    Several new methods are proposed for the sensitive localized detection of 13C nuclei on the basis of cyclic and slice-selective J cross polarization in 13C 1H x spin systems. The 13C nuclei are detected either directly after the amplitude is enhanced by polarization transfer in the rotating frame or, preferably, indirectly by heteronuclear editing of signals of the 1H nuclei coupled to 13C. In the latter case, the sensitivity corresponds to that of 1H rather than to that of 13C resonance. Test experiments are reported. In vitro applications to a hen egg and a fresh porcine shank prove the applicability of the methods to biological objects with 13C in natural abundance. A particular advantage of the new rotating-frame methods over laboratory-frame techniques serving the same purpose is the insensitivity to motions of the object. This is demonstrated by experiments with a moving sample. Hartmann/Hahn mismatch can be compensated using the MOIST modification. The time-averaged absorbed radiofrequency power per kilogram body weight was estimated on the basis of a model for surface power absorption. The result lies well below the standard safety limits for clinical applications.

  9. Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material.

    PubMed

    Sun, Chengjun; Goharpey, Amir Hossein; Rai, Ayush; Zhang, Teng; Ko, Dong-Kyun

    2016-08-31

    The development of paper-based sensors, antennas, and energy-harvesting devices can transform the way electronic devices are manufactured and used. Herein we describe an approach to fabricate paper thermoelectric generators for the first time by directly impregnating naturally abundant cellulose materials with p- or n-type colloidal semiconductor quantum dots. We investigate Seebeck coefficients and electrical conductivities as a function of temperature between 300 and 400 K as well as in-plane thermal conductivities using Angstrom's method. We further demonstrate equipment-free fabrication of flexible thermoelectric modules using p- and n-type paper strips. Leveraged by paper's inherently low thermal conductivity and high flexibility, these paper modules have the potential to efficiently utilize heat available in natural and man-made environments by maximizing the thermal contact to heat sources of arbitrary geometry.

  10. 13C/12C isotope ratio MS analysis of testosterone, in chemicals and pharmaceutical preparations.

    PubMed

    de la Torre, X; González, J C; Pichini, S; Pascual, J A; Segura, J

    2001-02-01

    The 13C/12C ratio can be used to detect testosterone misuse in sport because (semi)-synthetic testosterone is supposed to have a 13C abundance different from that of endogenous natural human testosterone. In this study, gas chromatography/combustion isotope ratio mass spectrometry (GC/C/IRMS) analysis for the measurement of the delta 13C/1000 value of testosterone from esterified forms of 13 pharmaceutical preparations, six reagent grade chemicals and three bulk materials (raw materials used in pharmaceutical proarations) obtained world-wide was investigated after applying a strong acidic solvolytic procedure. Mean delta 13C/1000 values of non esterified (free) testosterone from chemicals and bulk materials of several testosterone esters were in the range: -25.91/-32.82/1000 while the value obtained for a (semi)-synthetic, reagent grade, free testosterone was -27.36/1000. The delta 13C/1000 results obtained for testosterone from the pharmaceuticals investigated containing testosterone esters were quite homogeneous (mean and S.D. of delta 13C/1000 values of free testosterone: 27.43 +/- 0.76/1000), being the range between -26.18 and -30.04/1000. Values described above were clearly different from those reported by several authors for endogenous natural human testosterone and its main metabolites excreted into the urine in non-consumers of testosterone (delta 13C/1000 range: from -21.3 to -24.4/1000), while they were similar to those of urinary testosterone and metabolites from individuals treated with testosterone esters and testosterone precursors. This finding justifies the fact that administration of these pharmaceutical formulations led to a statistical decrease of carbon isotope ratio of urinary testosterone and its main metabolites in treated subjects.

  11. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  12. In search of the mechanisms behind soil carbon metabolism of a Douglas fir forest in complex terrain using naturally abundant 13C

    NASA Astrophysics Data System (ADS)

    Kayler, Z. E.; Sulzman, E. W.; Barnard, H. R.; Kennedy, A.; Phillips, C.; Mix, A.; Bond, B. J.

    2008-12-01

    Soil is well known for being highly variable, spatially and temporally, in moisture, texture, nutrients, carbon content and organisms. The magnitude of variation in soil characteristics represented in a study is, in part, determined by the choice in site location. Choosing sites that are topographically flat reduces variability due to environmental gradients, variability that is amplified in sites of complex terrain. We measured soil respiration, an integrative measure of ecosystem biological and physical processes, and its isotopic signature (δ13CR-s) to accomplish two goals: 1. Explore how gradients in temperature and moisture within a steeply sloped watershed affect the flux and isotopic signature of soil CO2 2. Deconvolve the isotopic signature of soil respiration into autotrophic and heterotrophic sources using a multi-source mixing model constrained by samples of soil organic matter and water soluble extracts of leaf foliage. Our site is located in a steep catchment within the central Cascades of Oregon (HJ Andrews LTER) where we made respiration measurements in plots established along side a sensor transect that continuously measures soil moisture and temperature; air relative humidity and temperature; and tree transpiration. There was a distinct difference in soil metabolism between the south and north aspects in the watershed. Temperature-corrected basal respiration of the south facing slope was 1 μmol m-2s-1 greater than the north facing slope. There was also a difference in isotopic signature between the two slopes that could be as great as 2 per mil depending on the period within the growing season. The strength of the correlation between environmental variables and soil carbon flux was non-uniform across the catchment. There was, however, a strong positive correlation between soil flux with recent transpiration rates (0 to 3 days prior) as well as with transpiration rates that occurred up to 9 days previously. This pattern was especially prevalent for locations near the ridge of each slope and dampened with a decrease in plot elevation. The correlation between δ13CR-s and transpiration, as well as vapor pressure deficit, was similar with a high degree of correlation that occurred 0-3 and 8 days before sampling. The correlation analysis suggests that soil flux in this forest is primarily controlled by aboveground inputs throughout the growing season. The source partitioning analysis confirms this observation although the magnitude of the aboveground contribution varies with season and topographic position.

  13. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean cultivars under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change resulting from global warming is expected to affect crop production and seed quality. The objective of this research was to evaluate the response of soybean cultivars to the effect of drought and elevated temperature on seed composition and mineral nutrition. In a repeated growth cham...

  14. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean under controlled environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate changes due to elevated temperature and CO2 is expected to lead to high heat and drought in some regions, affecting crop production and seed nutrition. Soybean is one of the most valuable crops worldwide because of its content of protein (40%) and oil (20%), fatty acids, amino acids, ...

  15. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  16. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  17. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  18. Synthesis of exemestane labelled with (13)C.

    PubMed

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  19. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  20. Seasonal variations in bulk tissue, fatty acid and monosaccharide delta(13)C values of leaves from mesotrophic grassland plant communities under different grazing managements.

    PubMed

    Dungait, Jennifer A J; Docherty, Gordon; Straker, Vanessa; Evershed, Richard P

    2010-03-01

    Leaves of 26 grass, herb, shrub and tree species were collected from mesotrophic grasslands to assess natural variability in bulk, fatty acid and monosaccharide delta(13)C values under different grazing management (cattle- or deer-grazed) on three sample dates (May, July and October) such that interspecific and spatiotemporal variations in whole leaf tissues and compound-specific delta(13)C values could be determined. The total mean leaf bulk delta(13)C value for plants was -28.9 per thousand with a range of values spanning 7.5 per thousand. Significant interspecific variation between bulk leaf delta(13)C values was only determined in October (P=<0.001) when delta(13)C values of the leaf tissues from both sites was on average 1.5 per thousand depleted compared to during July and May. Samples from May were significantly different between fields (P=0.03) indicating an effect from deer- or cattle-grazing in young leaves. The average individual monosaccharide delta(13)C value was 0.8 per thousand higher compared with whole leaf tissues. Monosaccharides were the most abundant components of leaf biomass, i.e. arabinose, xylose, mannose, galactose and glucose, and therefore, fluctuations in their individual delta(13)C values had a major influence on bulk delta(13)C values. An average depletion of ca. 1 per thousand in the bulk delta(13)C values of leaves from the deer-grazed field compared to the cattle-grazed field could be explained by a general depletion of 1.1 per thousand in glucose delta(13)C values, as glucose constituted >50% total leaf monosaccharides. In October, delta(13)C values of all monosaccharides varied between species, with significant variation in delta(13)C values of mannose and glucose in July, and mannose in May. This provided an explanation for the noted variability in the tissue bulk delta(13)C values observed in October 1999. The fatty acids C(16:0), C(18:2) and C(18:3) were highly abundant in all plant species. Fatty acid delta(13)C values were

  1. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  2. Sparse (13)C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins.

    PubMed

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A; Ladizhansky, Vladimir; Brown, Leonid S; Wang, Shenlin

    2016-05-01

    We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  3. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  4. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation

    PubMed Central

    Yeung, Laurence Y.; Affek, Hagit P.; Hoag, Katherine J.; Guo, Weifu; Wiegel, Aaron A.; Atlas, Elliot L.; Schauffler, Sue M.; Okumura, Mitchio; Boering, Kristie A.; Eiler, John M.

    2009-01-01

    The stratospheric CO2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO2 isotopologue 16O13C18O, in concert with 18O and 17O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO2 sample to date. We show, through photochemical experiments, that lower 16O13C18O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher 16O13C18O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric 16O13C18O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change. PMID:19564595

  5. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, John Karl

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  6. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, J.K.

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  7. Integrated Computational Protocol for Analyzing Quadrupolar Splittings from Natural Abundance Deuterium NMR Spectra in (Chiral) Oriented Media.

    PubMed

    Navarro-Vazquez, Armando; Berdagué, Philippe; Lesot, Philippe Georges Julien

    2017-03-03

    Despite its low natural abundance, deuterium NMR in weakly oriented (chiral) solvents gives easy access to deuterium residual quadrupolar couplings (2H-RQCs), which are formally equivalent to one-bond 1DCH (13C-1H)-RDCs for calculation of the Saupe order matrix, furnishing similar information to study molecular structure and orientational behavior. In addition, the quadrupolar interaction is one order of magnitude larger than the dipolar interaction, making 2H-RQC analysis much more sensitive tool for structural analysis. Subtle structural differences as well as tiny differences in the molecular alignment of different enantiomers in chiral aligning media can be detected. In order to promote this approach towards organic chemists interested in exploiting the analytical advantages of anisotropic, natural abundance deuterium NMR (NAD NMR), we describe a 2H-RQC/DFT-based integrated computational protocol for the evaluation of the order parameters of aligned solutes via singular value decomposition. Examples of 2H-RQC-assisted analysis of chiral and prochiral molecules dissolved in various polypeptide lyotropic chiral liquid crystals are reported. They illustrate the power of this hyphenated approach and in particular to understand the alignment processes and the role of molecular shape in the ordering mechanism through the determination of inter-tensor angles between alignment tensors and inertia tensors.

  8. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.

  9. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  10. Identification of Biodegradation Pathways in a Multi-Process Phytoremediation System (MPPS) Using Natural Abundance 14C Analysis of PLFA

    NASA Astrophysics Data System (ADS)

    Cowie, B. R.; Greenberg, B. M.; Slater, G. F.

    2008-12-01

    Optimizing remediation of petroleum-contaminated soils requires thorough understanding of the mechanisms and pathways involved in a proposed remediation system. In many engineered and natural attenuation systems, multiple degradation pathways may contribute to observed contaminant mass losses. In this study, biodegradation in the soil microbial community was identified as a major pathway for petroleum hydrocarbon removal in a Multi-Process Phytoremediation System (MPPS) using natural abundance 14C analysis of Phospholipid Fatty Acids (PLFA). In contaminated soils, PLFA were depleted in Δ14C to less than -800‰, directly demonstrating microbial uptake and utilization of petroleum derived carbon (Δ14C = -992‰) during bioremediation. Mass balance indicated that more than 80% of microbial carbon was derived from petroleum hydrocarbons and a maximum of 20% was produced from metabolism of modern carbon sources. In contrast, in a nearby uncontaminated control soil, the microbial community maintained a nearly modern 14C signature, suggesting preferential degradation of more labile, recent carbon. Mass balance using δ13C and Δ14C of soil CO2 demonstrated that mineralization of petroleum carbon contributed 60-65% of soil CO2 at the contaminated site. The remainder was derived from atmospheric (27-30%) and decomposition of non- petroleum natural organic carbon (5-10%). The clean control exhibited substantially lower CO2 concentrations that were derived from atmospheric (55%) and natural organic carbon (45%) sources. This study highlights the value of using multiple carbon isotopes to identify degradation pathways in petroleum- contaminated soils undergoing phytoremediation and the power of natural abundance 14C to detect petroleum metabolism in natural microbial communities.

  11. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  12. Diversity and abundance of phosphonate biosynthetic genes in nature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  13. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error.

    PubMed

    Schenk, David J; Lockley, William J S; Elmore, Charles S; Hesk, Dave; Roberts, Drew

    2016-04-01

    When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction.

  14. Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T

    NASA Astrophysics Data System (ADS)

    Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.

    2000-04-01

    13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.

  15. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  16. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  17. Transposases are the most abundant, most ubiquitous genes in nature

    PubMed Central

    Aziz, Ramy K.; Breitbart, Mya; Edwards, Robert A.

    2010-01-01

    Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and—consequently—evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist. PMID:20215432

  18. Natural variability in abundance of prevalent soybean proteins.

    PubMed

    Natarajan, Savithiry S

    2010-12-01

    Soybean is an inexpensive source of protein for humans and animals. Genetic modifications (GMO) to soybean have become inevitable on two fronts, both quality and yield will need to improve to meet increasing global demand. To ensure the safety of the crop for consumers it is important to determine the natural variation in seed protein constituents as well as any unintended changes that may occur in the GMO as a result of genetic modification. Understanding the natural variation of seed proteins in wild and cultivated soybeans that have been used in conventional soybean breeding programs is critical for determining unintended protein expression in GMO soybeans. In recent years, proteomic technologies have been used as an effective analytical tool for examining modifications of protein profiles. We have standardized and applied these technologies to determine and quantify the spectrum of proteins present in soybean seed. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and liquid chromatography mass spectrometry (LC-MS) for the separation, quantification, and identification of different classes of soybean seed proteins. We have observed significant variations in different classes of proteins, including storage, allergen and anti-nutritional protein profiles, between non-GMO cultivated and wild soybean varieties. This information is useful for scientists and regulatory agencies to determine whether the unintended expression of proteins found in transgenic soybean is within the range of natural variation.

  19. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    PubMed

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  20. Application of 13C Nuclear Magnetic Resonance To Elucidate the Unexpected Biosynthesis of Erythritol by Leuconostoc oenos

    PubMed Central

    Veiga-Da-Cunha, Maria; Firme, Paula; Romão, M. Vitória San; Santos, Helena

    1992-01-01

    Natural-abundance 13C nuclear magnetic resonance (13C-NMR) revealed the production of erythritol and glycerol by nongrowing cells of Leuconostoc oenos metabolizing glucose. The ratio of erythritol to glycerol was strongly influenced by the aeration conditions of the medium. The elucidation of the metabolic pathway responsible for erythritol production was achieved by 13C-NMR and 1H-NMR spectroscopy using specifically 13C-labelled d-glucose. The 1H-NMR spectrum of the cell supernatant resulting from the metabolism of [2-13C]glucose showed that only 75% of the glucose supplied was metabolized heterofermentatively and that the remaining 25% was channelled to the production of erythritol. The synthesis of this polyol resulted from the reduction of the C-4 moiety of the intermediate fructose 6-phosphate. Oxygen has an inhibitory effect on the production of erythritol by L. oenos. Preaeration of a suspension of nongrowing cells of L. oenos resulted in 30% less erythritol and in 70% more glycerol formed during the anaerobic metabolism of glucose. The anaerobic production of erythritol from glucose was also found in growing cultures of L. oenos, although to a smaller extent. PMID:16348738

  1. A dual-tuned transceive resonator for (13) C{(1) H} MRS: two open coils in one.

    PubMed

    Yahya, Atiyah; De Zanche, Nicola; Allen, Peter S

    2013-05-01

    Proton-decoupled, (13) C nuclear MRS experiments require a RF coil that operates at the Larmor frequencies of both (13) C and (1) H. In this work, we designed, built and tested a single-unit, dual-tuned coil based on a half-birdcage open coil design. It was constructed as a low-pass network with a resonant trap in series with each leg. Traps are tuned in alternate legs such that the two resonant modes arise from currents on alternate legs. The coil performance was compared with that of a dual-tuned coil consisting of two proton surface coils operating in quadrature and a single surface coil for (13) C transmission and reception. The half-birdcage coil was shown to produce a more homogeneous RF field at each frequency and was more sensitive to a (13) C signal arising from regions further from the coil surface. The applicability of the coil in vivo was demonstrated by acquiring a proton decoupled, natural abundance (13) C glycogen signal from the calf of a normal volunteer.

  2. Measurement of δ13C values of soil amino acids by GC-C-IRMS using trimethylsilylation: a critical assessment.

    PubMed

    Rubino, Mauro; Milin, Sylvie; D'Onofrio, Antonio; Signoret, Patrick; Hatté, Christine; Balesdent, Jérôme

    2014-01-01

    In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). We used non-proteinogenic amino acids to show that the extraction-derivatization-analysis procedure provides a reliable method to measure δ(13)C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following: production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives; a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion; different TMS-C δ(13)C for di-, tri- and tetra-TMS derivatives. For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ(13)C values with a total average uncertainty of 1.3 ‰. We conclude that trimethylsilyl derivatives are only suitable for determining the (13)C incorporation in amino acids within experiments using (13)C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.

  3. Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas

    DTIC Science & Technology

    2014-08-01

    and combat support vehicles, ships, and aircraft, the adoption of natural gas —whether as compressed natural gas (CNG) or liquefied natural gas (LNG...tacticaldefensemedia.com16 | DoD Power & Energy Fall 2014 For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas By Bret...Strogen and Patrick Lobner Abundance and Utility Fueling the Force Natural Gas M ilitary energy strategists often recount the British Royal Navy’s decision

  4. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  5. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  6. Solid state (13)C NMR analysis of human gallstones from cancer and benign gall bladder diseases.

    PubMed

    Jayalakshmi, K; Sonkar, Kanchan; Behari, Anu; Kapoor, V K; Sinha, Neeraj

    2009-09-01

    Natural abundance (13)C cross polarized (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) analysis of human gall bladder stones collected from patients suffering from malignant and benign gall bladder disease was carried out which revealed different polymorphs of cholesterol in these stones. All gall bladder stones in present study had cholesterol as their main constituent. (13)C CP-MAS NMR analysis revealed three forms of cholesterol molecules in these stones, which are anhydrous form, monohydrate crystalline with amorphous form and monohydrate crystalline form. Our study revealed that stones collected from patients associated with chronic cholecystitis (CC) disease have mostly different polymorph of cholesterol than stones collected from patients associated with gall bladder cancer (GBC). Such study will be helpful in understanding the mechanism of formation of gallstones which are associated with different gall bladder diseases. This is the first study by solid state NMR revealing different crystal polymorphism of cholesterol in human gallstones, extending the applicability of (13)C CP-MAS NMR technique for the routine study of gallstones.

  7. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGES

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; ...

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  8. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.

    PubMed

    Fernandez, Irene; González-Prieto, Serafin J; Cabaneiro, Ana

    2005-01-01

    Pine forest plantations of Pinus pinaster Ait. and P. sylvestris L. located in Galicia, NW Spain, were selected to study the 13C/12C-isotopic fingerprint in wood core samples in order to find possible relationships between the delta(13)C at natural abundance levels and the quality of the standing tree mass. For each pine species, 24 forests growing on acidic soils were studied: half developed over granite and half over schists. Two dominant trees from each plot, corresponding to all possible combinations of forest stands with high or low site index and with adults or young trees, were drilled at the basal part of trunks using a Pressler drill to obtain tree ring samples. The C-isotopic compositions of the litter and the soil organic matter from different soil depths were also determined and statistically significant correlations between these values and the 13C content of the wood were observed. Despite internal variations due to the influence of site index, tree age and parent material, the isotopic fingerprint of P. pinaster wood (mean value delta13C=-26.2+/-0.8 per thousand) significantly differed (P<0.001) from that of P. sylvestris (mean value delta13C=-24.6+/-0.7 per thousand). Relationships between the quality of the stand and the C-isotopic composition of the wood were observed, high quality stands having trees more 13C-depleted than low quality ones. A high correlation between wood delta13C and site index values for P. pinaster stands (r=-0.667, P<0.001) was found, this correlation being even clearer when only P. pinaster growing over schists (r=-0.833, P<0.001) are considered. Again, the correlation between the site index and the wood delta13C of young P. pinaster trees is higher when plots over granite or schists are separately considered. A similar fact occurs for adult P. sylvestris trees from schists stands, high quality specimens being 13C-depleted compared with low quality ones. On the other hand, 13C natural abundance of wood from P. sylvestris

  9. Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with (13)C-encoded natural S1P as internal standard.

    PubMed

    Mirzaian, Mina; Wisse, Patrick; Ferraz, Maria J; Marques, André R A; Gabriel, Tanit L; van Roomen, Cindy P A A; Ottenhoff, Roelof; van Eijk, Marco; Codée, Jeroen D C; van der Marel, Gijsbert A; Overkleeft, Herman S; Aerts, Johannes M

    2016-08-01

    We developed a mass spectrometric procedure to quantify sphingosine-1-phosphate (S1P) in biological materials. The use of newly synthesized (13)C5 C18-S1P and commercial C17-S1P as internal standards rendered very similar results with respect to linearity, limit of detection and limit of quantitation. Caution is warranted with determination of plasma S1P levels. Earlier it was reported that S1P is elevated in plasma of Fabry disease patients. We investigated this with the improved quantification. No clear conclusion could be drawn for patient plasma samples given the lack of uniformity of blood collection and plasma preparation. To still obtain insight, plasma and tissues were identically collected from α-galactosidase A deficient Fabry mice and matched control animals. No significant difference was observed in plasma S1P levels. A significant 2.3 fold increase was observed in kidney of Fabry mice, but not in liver and heart. Comparative analysis of S1P in cultured fibroblasts from normal subjects and classically affected Fabry disease males revealed no significant difference. In conclusion, accurate quantification of S1P in biological materials is feasible by mass spectrometry using the internal standards (13)C5 C18-S1P or C17-S1P. Significant local increases of S1P in the kidney might occur in Fabry disease as suggested by the mouse model.

  10. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  11. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  12. Plant characteristics associated with natural enemy abundance at Michigan native plants.

    PubMed

    Fiedler, A K; Landis, D A

    2007-08-01

    Habitat management is a type of conservation biological control that focuses on increasing natural enemy populations by providing them with plant resources such as pollen and nectar. Insects are known to respond to a variety of plant characteristics in their search for plant-provided resources. A better understanding of the specific characteristics used by natural enemy insects in selecting these resources could greatly improve efficiency in screening plants for habitat management. We examined 5 previously tested and widely recommended resource plants and 43 candidate plants to test whether the number and type of natural enemies and herbivores at each plant were predicted by plant characteristics including: period of peak bloom, floral area, maximum flower height, hue, chroma, and corolla size. Natural enemy abundance increased with week of peak bloom and greater floral area across all plants tested. Ordination of plant characteristics indicated that increasing floral area, period of peak bloom, maximum flower height, and decreasing corolla width grouped together into a single principal component. Both natural enemy and herbivore abundance increased significantly with the principal component for this set of characteristics, but the relationship with herbivore abundance was weaker. These results indicate that, for a given time of the season, selection of plants with the largest floral area has potential to increase natural enemy abundance in habitat management plantings and streamline plant selection for habitat management.

  13. Comparative absorption of [13C]glucose and [13C]lactose by premature infants.

    PubMed

    Murray, R D; Boutton, T W; Klein, P D; Gilbert, M; Paule, C L; MacLean, W C

    1990-01-01

    Oxidation of orally administered [13C]glucose and [13C]lactose and fecal recovery of malabsorbed substrates were determined in two groups of premature infants. Eighteen studies were performed with six infants at Johns Hopkins Hospital (JHH); 24 studies were performed with nine infants at Columbus Children's Hospital (CCH). The two groups differed in that JHH infants had shorter gestations but were older when studied. Fecal 13C loss after [13C]glucose administration did not differ between the two groups. Compared with glucose, the metabolism of lactose appeared to involve more malabsorption and colonic fermentation in JHH infants than in CCH infants and resulted in higher fecal losses of substrate carbon. Maturation appeared to involve increased proximal intestinal absorption and greater retention of absorbed carbohydrate. Simultaneous absorption of substrate from the small and large intestine may limit the usefulness of breath tests for 13C in the premature infant.

  14. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  15. Pursuing structure in microcrystalline solids with independent molecules in the unit cell using 1H- 13C correlation data

    NASA Astrophysics Data System (ADS)

    Harper, James K.; Strohmeier, Mark; Grant, David M.

    2007-11-01

    The 1H- 13C solid-state NMR heteronuclear correlation (HETCOR) experiment is demonstrated to provide shift assignments in certain powders that have two or more structurally independent molecules in the unit cell (i.e. multiple molecules per asymmetric unit). Although this class of solids is often difficult to characterize using other methods, HETCOR provides both the conventional assignment of shifts to molecular positions and associates many resonances with specific molecules in the asymmetric unit. Such assignments facilitate conformational characterization of the individual molecules of the asymmetric unit and the first such characterization solely from solid-state NMR data is described. HETCOR offers advantages in sensitivity over prior methods that assign resonances in the asymmetric unit by 13C- 13C correlations and therefore allows shorter average analysis times in natural abundance materials. The 1H- 13C analysis is demonstrated first on materials with known shift assignments from INADEQUATE data (santonin and Ca(OAc) 2 phase I) to verify the technique and subsequently is extended to a pair of unknown solids: (+)-catechin and Ca(OAc) 2 phase II. Sufficient sensitivity and resolution is achieved in the spectra to provide assignments to one of the specific molecules of the asymmetric unit at over 54% of the sites.

  16. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy.

    PubMed

    Leftin, Avigdor; Molugu, Trivikram R; Job, Constantin; Beyer, Klaus; Brown, Michael F

    2014-11-18

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.

  17. FTIR and NDIR spectroscopies as valuable alternatives to IRMS spectrometry for the δ(13)C analysis of food.

    PubMed

    Pironti, Concetta; Proto, Antonio; Camin, Federica; Cucciniello, Raffaele; Zarrella, Ilaria; Motta, Oriana

    2016-11-01

    The (13)C/(12)C carbon isotope ratio is a chemical parameter with many important applications in several scientific area and the technique of choice currently used for the δ(13)C determination is the isotope ratio mass spectrometry (IRMS). This latter is highly accurate (0.1‰) and sensitive (up to 0.01‰), but at the same time expensive and complex. The objective of this work was to assess the reliability of FTIR and NDIRS techniques for the measurement of carbon stable isotope ratio of food sample, in comparison to IRMS. IRMS, NDIRS and FTIR were used to analyze samples of food, such as oil, durum, cocoa, pasta and sugar, in order to determine the natural abundance isotopic ratio of carbon in a parallel way. The results were comparable, showing a close relationship among the three techniques. The main advantage in using FTIR and NDIRS is related to their cheapness and easy-to-operate in comparison to IRMS.

  18. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  19. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    PubMed

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  20. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  1. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and

  2. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  3. Changes in Natural Abundance Carbon Stable isotopes of Human Blood and Saliva After 24 Days of Controlled Carbohydrate Supplementation

    NASA Astrophysics Data System (ADS)

    Kraft, R. A.; Jahren, A. H.; Baer, D. J.; Caballero, B.

    2008-12-01

    the δ13C value of their blood and saliva relative to baseline: blood clot was enriched by 0.27‰; blood serum by 0.50‰ and saliva by 1.12‰. We believe this overall enrichment resulted from a 13C-enriched bulk diet (δ13C = - 20.42‰) relative to the subjects free-living diet. Evidence for this derives from inspection of foods within the bulk diet provided, compared to published profiles of the typical American diet. We will discuss possible complicating factors, such as differential absorption and metabolism of the supplements according to solubility and caloric value. These results are encouraging for the development of a δ13C blood serum biomarker that, in the company of other tests, could be used to indicate a change in carbohydrate intake. Bray, G.A., Nielsen, S.J. and Popkin, B.M., 2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 79: 537-543. Havel, P.J., 2005. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition Reviews, 63(5): 133-157. Tilman D., 1998. The greening of the green revolution. Nature, 396:211-212.

  4. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  5. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways

    PubMed Central

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  6. Increased natural mortality at low abundance can generate an Allee effect in a marine fish.

    PubMed

    Kuparinen, Anna; Hutchings, Jeffrey A

    2014-10-01

    Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.

  7. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  8. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  9. The relative importance of resources and natural enemies in determining herbivore abundance: thistles, tephritids and parasitoids.

    PubMed

    Walker, Matthew; Hartley, Susan E; Jones, T Hefin

    2008-09-01

    1. The relative importance of host-plant resources and natural enemies in influencing the abundance of insect herbivores was investigated in potted plant and natural population experiments, using tephritid (Diptera: Tephritidae) flies, their host plant, creeping thistle Cirsium arvense, and their Hymenoptera parasitoids. 2. Experimental manipulation of host-plant quality (i.e. levels of host-plant nutrients) and resource availability (i.e. the number of buds) increased tephritid abundance. There was no evidence that the seed-feeding tephritid fly Xyphosia miliaria preferentially oviposited on fertilized C. arvense. 3. At low thistle densities, X. miliaria showed a constant rate of resource exploitation. At higher thistle densities, a threshold was detected, above which additional buds were not attacked. 4. Parasitism attack was variable across host (tephritid) densities but levels of parasitism were consistently higher on the fertilized thistles. 5. Experimental manipulation of host-plant quality and resource availability (quantity) not only directly affects the tephritid population but also, indirectly, leads to high rates of parasitism. Both chemical and physical characteristics of host plants affect the performance of natural enemies. 6. Both top-down and bottom-up forces act to influence tephritid abundance, with bottom-up influences appearing to be the most important.

  10. Effects of abundance on infection in natural populations: field voles and cowpox virus.

    PubMed

    Begon, Michael; Telfer, Sandra; Burthe, Sarah; Lambin, Xavier; Smith, Matthew J; Paterson, Steve

    2009-03-01

    Detailed results on the dynamics of cowpox virus infection in four natural populations of the field vole, Microtus agrestis, are presented. Populations were sampled every 4 weeks (8 weeks in mid-winter) for 6 years. The purpose was to examine the relationships between overall or susceptible host abundance (N, S) and both the number of infected hosts (I) and the prevalence of infection (I/N). Overall, both I and I/N increased with N. However, evidence for a threshold abundance, below which infection was not found, was at best equivocal in spite of the wide range of abundances sampled. Cross-correlation analyses reflected annual and multi-annual cycles in N, I, S and I/N, but whereas N was most strongly correlated with contemporary values of I and I/N, in the case of S, the strongest correlations were with values 1 to 2 months preceding the values of I and I/N. There was no evidence for a 'juvenile dilution effect' (prevalence decreasing with abundance as new susceptibles flush into the population) and only weak evidence of a time-delayed effect of abundance on the number infected. We argue that these effects may occur only in systems with characteristics that are not found here. Transfer function analyses, which have been neglected in epidemiology, were applied. These models, with ln(S) as the input parameter, in spite of their simplicity, could be linked closely to conventional formulations of the transmission process and were highly effective in predicting the number infected. By contrast, transfer function models with ln(N) as the input parameter were less successful in predicting the number infected and/or were more complex and more difficult to interpret. Nonetheless, overall, we contend that while monitoring numbers susceptible has most to offer, monitoring overall abundance may provide valuable insights into the dynamics of infection.

  11. Are δ13C values of n-alkanes affected by atmospheric CO2 concentrations? Results from a free-air CO2 enrichment (FACE) experiment.

    NASA Astrophysics Data System (ADS)

    Sandquist, D. R.; Williams, D. G.; Shuman, B. N.; Kim, S.; Chen, J.; Macdonald, C.

    2015-12-01

    Compound-specific carbon isotope (δ13C) analyses of leaf waxes (i.e., n-alkanes) can be linked to large-scale shifts in vegetation, such as dominant taxa, functional types, life-forms and photosynthetic pathways that are usually coupled with environmental changes in climate. However using these δ13C values to interpret finer-scale ecosystem properties, including climate attributes such as CO2 concentrations, is difficult owing to uncertainty in the magnitude of internal biosynthetic fractionations that determine the δ13C of waxes relative to that of bulk leaf material. We investigated the composition, abundance and δ13C of n-alkanes in the aboveground biomass of a C4 grass and a C3 grass exposed to experimentally controlled CO2 at ambient [490ppm] and elevated [630ppm] levels within natural grassland in Wyoming. The δ13C values of bulk tissues were predictably different based on the C3 and C4 photosynthetic pathways, but the difference between bulk tissue and n-alkanes (ɛlipid), for both C29 and C31, was consistently greater in the C4 grass. The magnitudes of these ɛlipid values were large (- 7‰ to -15‰) relative to those found in most other studies. CO2 concentration of the growing environment also had a significant effect on n-alkane δ13C values, with consistently higher values of ~ 2‰ under elevated CO2 found in both species and in both a wet and a dry year. These results underscore the importance of recognizing potential abiotic effects on leaf wax δ13C values, in addition to the biotic drivers their variation, when interpreting climate from leaf-wax biomarkers of terrestrial ecosystems.

  12. The Galactic R Coronae Borealis Stars: The C2 Swan Bands, the Carbon Problem, and the 12C/13C Ratio

    NASA Astrophysics Data System (ADS)

    Hema, B. P.; Pandey, Gajendra; Lambert, David L.

    2012-03-01

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C2 Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C2 bands are used to derive the 12C abundance, and the (1, 0) 12C13C band to determine the 12C/13C ratios. The carbon abundance derived from the C2 Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the "carbon problem." In principle, the carbon abundances obtained from C2 Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C2 carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the 12C/13C ratios are discussed in light of the double degenerate and the final flash scenarios.

  13. THE GALACTIC R CORONAE BOREALIS STARS: THE C{sub 2} SWAN BANDS, THE CARBON PROBLEM, AND THE {sup 12}C/{sup 13}C RATIO

    SciTech Connect

    Hema, B. P.; Pandey, Gajendra; Lambert, David L. E-mail: pandey@iiap.res.in

    2012-03-10

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C{sub 2} Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C{sub 2} bands are used to derive the {sup 12}C abundance, and the (1, 0) {sup 12}C{sup 13}C band to determine the {sup 12}C/{sup 13}C ratios. The carbon abundance derived from the C{sub 2} Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C{sub 2} Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C{sub 2} bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C{sub 2} carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the {sup 12}C/{sup 13}C ratios are discussed in light of the double degenerate and the final flash scenarios.

  14. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  15. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    PubMed

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  16. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  17. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.

    PubMed

    Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S

    2017-04-01

    CO2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of (14)C ((14)C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of (14)C-labeled soil organic carbon ((14)C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, (14)C-SOC level, and (14)C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO2-fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.

  18. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  19. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  20. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    SciTech Connect

    Johnson, G.V. )

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  1. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  2. Tracing metabolic pathways of lipid biosynthesis in ectomycorrhizal fungi from position-specific 13C-labelling in glucose.

    PubMed

    Scandellari, Francesca; Hobbie, Erik A; Ouimette, Andrew P; Stucker, Valerie K

    2009-12-01

    Six position-specific (13)C-labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of (13)C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid (13)C enrichment was: C6 (approximately 31%) > C5 (approximately 25%) > C1 (approximately 18%) > C2 (approximately 18%) > C3 (approximately 8%) > C4 (approximately 1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl-CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.

  3. Earthworm eco-physiological characteristics and quantification of earthworm feeding in vermifiltration system for sewage sludge stabilization using stable isotopic natural abundance.

    PubMed

    Li, Xiaowei; Xing, Meiyan; Yang, Jian; Dai, Xiaohu

    2014-07-15

    Previous studies showed that the presence of earthworm improves treatment performance of vermifilter (VF) for sewage sludge stabilization, but earthworm eco-physiological characteristics and effects in VF were not fully investigated. In this study, earthworm population, enzymatic activity, gut microbial community and stable isotopic abundance were investigated in the VF. Results showed that biomass, average weight, number and alkaline phosphatase activity of the earthworms tended to decrease, while protein content and activities of peroxidase and catalase had an increasing tendency as the VF depth. Earthworm gut microbial communities were dominated by Gammaproteobacteria, and the percentages arrived to 76-92% of the microbial species detected. (15)N and (13)C natural abundance of the earthworms decreased with operation time, and increased as the VF depth. Quantitative analysis using δ(15)N showed that earthworm feeding and earthworm-microorganism interaction were responsible for approximately 21% and 79%, respectively, of the enhanced volatile suspended solid reduction due to the presence of earthworm. The finding provides a quantitative insight into how earthworms influence on sewage sludge stabilization in vermifiltration system.

  4. Reconstruction of δ 13C of chemocline CO 2 (aq) in past oceans and lakes using the δ 13C of fossil isorenieratene

    NASA Astrophysics Data System (ADS)

    van Breugel, Yvonne; Schouten, Stefan; Paetzel, Matthias; Ossebaar, Jort; Sinninghe Damsté, Jaap S.

    2005-06-01

    High abundances of the diaromatic carotenoid isorenieratene derived from photosynthetic green sulfur bacteria (Chlorobiaceae) were found just below the chemocline in an anoxic fjord in Norway, throughout the annual cycle. The stable carbon isotope composition of this carotenoid co-varied with the δ 13C of CO 2 (aq) and is independent of the CO 2 and isorenieratene concentration. This constant isotopic fractionation ɛp of isorenieratene versus CO 2, 4 ± 1‰, was subsequently used in the reconstruction of δ 13C of CO 2 at the chemocline in ancient oceans and lakes. These reconstructions indicate that δ 13C of CO 2 at the chemocline is often influenced by isotopically light CO 2, formed by remineralization of organic matter. This process can, depending on the depth and stability of the chemocline, also effect the isotopic composition of the phytoplankton and, thus, isotopic records of sedimentary inorganic and organic carbon.

  5. Temporal δ13C records from bottlenose dolphins (Tursiops truncatus) reflect variation in foraging location and global carbon cycling

    NASA Astrophysics Data System (ADS)

    Rossman, S. L.; Barros, N. B.; Ostrom, P. H.; Gandhi, H.; Wells, R. S.

    2010-12-01

    With four decades of data on a population of bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay (SB), The Sarasota Dolphin Research Program offers an unparalleled platform for ground-truthing stable isotope data and exploring bottlenose dolphin ecology in a natural setting. We explored carbon isotope value fidelity to habitat utilization by comparing δ13C data from whole teeth and muscle to the individual dolphin's proclivity towards foraging in seagrass beds based on observational data. We then examined variation in habitat use based on temporal isotope records. Whole tooth protein isotope values do not show a significant correlation with the observed percentage of foraging in seagrass habitat. In contrast, δ13C values from muscle showed a significant positive relationship with the observational data. Differences in the degree of tissue turn over may account for this distinction between tooth and muscle. Dolphin teeth consist of annually deposited layers that are inert once formed. Thus, the isotopic composition of protein in annuli reflect foraging at the time of deposition. In addition to incorporating variation associated with differences in foraging over the lifetime of the individual, whole tooth isotope values are confounded because a disproportionate amount of tooth protein derives from the first few years of life. Given the turnover time of muscle tissue, isotope values reflect diet over the past several months. From 1991 to 2008, muscle δ13C values showed a significant decline, -13.5‰ to -15.1‰.This time period encompasses a state wide net fishing ban (1995) however other factors such as a series of red tide harmful algal blooms, a decline in predators, increases in shallow water boat traffic and an increase in string ray abundance may also contribute to the temporal isotope trend. To examine changes in dolphin foraging habitat further back in time we analyzed the tip of crown of the tooth which records the isotopic signal from the

  6. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  7. Measurement at the field scale of soil delta13C and delta15N under improved grassland.

    PubMed

    Dixon, E R; Blackwell, M S A; Dhanoa, M S; Berryman, Z; de la Fuente Martinez, N; Junquera, D; Martinez, A; Murray, P J; Kemp, H F; Meier-Augenstein, W; Duffy, A; Bol, R

    2010-03-15

    Variations in natural abundance of carbon (C) and nitrogen (N) stable isotopes are widely used as tools for many aspects of scientific research. By examining variations in the ratios of heavy to light stable isotopes, information can be obtained as to what physical, chemical and biological processes may be occurring. The spatial heterogeneity of soil delta(15)N- and delta(13)C-values across a range of scales and under different land use have been described by a number of researchers and the natural abundances of the C and N stable isotopes in soils have been found to be correlated with many factors including hydrology, topography, land use, vegetation cover and climate. In this study the Latin square sampling +1 (LSS+1) sampling method was compared with a simple grid sampling approach for delta(13)C and delta(15)N measurement at the field scale. A set of 144 samples was collected and analysed for delta(15)N and delta(13)C from a 12 x 12 grid (in a 1 ha improved grassland field in south-west England). The dimension of each cell of the grid was approximately 11 x 6 m. The 12 x 12 grid was divided into four 6 x 6 grids and the LSS+1 sampling technique was applied to these and the main 12 x 12 grid for a comparison of sample means and variation. The LSS+1 means from the 12 x 12 grid and the four 6 x 6 grids compared well with the overall grid mean because of the low variation within the field. The LSS+1 strategy (13 samples) generated representative samples from the 12 x 12 grid, and hence would be an acceptable method for sampling similar plots for the measurement of mean isotopic composition.

  8. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  9. Understanding the Nature of Stellar Chemical Abundance Distributions in Nearby Stellar Systems

    NASA Astrophysics Data System (ADS)

    Lee, Duane Morris

    Since stars retain signatures of their galactic origins in their chemical compositions, we can exploit the chemical abundance distributions that we observe in stellar systems to put constraints on the nature of their progenitors. In this thesis, I present results from three projects aimed at understanding how high resolution spectroscopic observations of nearby stellar systems might be interpreted. The first project presents one possible explanation for the origin of peculiar abundance distributions observed in ultra-faint dwarf satellites of the Milky Way. The second project explores to what extent the distribution of chemical elements in the stellar halo can be used to trace Galactic accretion history from the birth of the Galaxy to the present day. Finally, a third project focuses on developing an input optimization algorithm for the second project to produce better estimates of halo accretion histories. In conclusion, I propose some other new ways to use statistical models and techniques along with chemical abundance distribution data to uncover galactic histories.

  10. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  11. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    PubMed

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very

  12. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  13. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change.

  14. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.

    PubMed

    Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F

    2010-04-01

    In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study

  15. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology.

    PubMed

    Gannes, L Z; Martínez del Rio, C; Koch, P

    1998-03-01

    Chemical, biological, and physical processes lead to distinctive "isotopic signatures" in biological materials that allow tracing of the origins of organic substances. Isotopic variation has been extensively used by plant physiological ecologists and by paleontologists, and recently ecologists have adopted the use of stable isotopes to measure ecosystem patterns and processes. To date, animal physiological ecologists have made minimal use of naturally occurring stable isotopes as tracers. Here we provide a review of the current and potential uses of naturally occurring stable isotopes in animal physiological ecology. We outline the physical and biological processes that lead to variation in isotopic abundance in plants and animals. We summarize current uses in animal physiological ecology (diet reconstruction and animal movement patterns), and suggest areas of research where the use of stable isotopes can be fruitful (protein balance and turnover and the allocation of dietary nutrients). We argue that animal physiological ecologists can benefit from including the measurement of naturally occurring stable isotopes in their battery of techniques. We also argue that animal physiologists can make an important contribution to the emerging field of stable isotopes in biology by testing experimentally the plethora of assumptions upon which the techniques rely.

  16. Hyperpolarized 13C Metabolic MRI of the Human Heart

    PubMed Central

    Lau, Justin Y.C.; Chen, Albert P.; Geraghty, Benjamin J.; Perks, William J.; Roifman, Idan; Wright, Graham A.; Connelly, Kim A.

    2016-01-01

    Rationale: Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. Objective: To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. Methods and Results: Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. Conclusions: These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. PMID:27635086

  17. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  18. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  19. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance.

    PubMed

    Werner, Roland A; Rossmann, Andreas; Schwarz, Christine; Bacher, Adelbert; Schmidt, Hanns-Ludwig; Eisenreich, Wolfgang

    2004-10-01

    The biosynthetic pathway of gallic acid in leaves of Rhus typhina is studied by oxygen isotope ratio mass spectrometry at natural oxygen isotope abundance. The observed delta18O-values of gallic acid indicate an 18O-enrichment of the phenolic oxygen atoms of more than 30 per thousand above that of the leaf water. This enrichment implies biogenetical equivalence with oxygen atoms of carbohydrates but not with oxygen atoms introduced by monooxygenase activation of molecular oxygen. It can be concluded that all phenolic oxygen atoms of gallic acid are retained from the carbohydrate-derived precursor 5-dehydroshikimate. This supports that gallic acid is synthesized entirely or predominantly by dehydrogenation of 5-dehydroshikimate.

  20. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled ((13)C, (15)N) glycine to test for direct uptake by dominant grasses.

    PubMed

    Streeter, T C; Bol, R; Bardgett, R D

    2000-01-01

    It is becoming increasingly apparent that soil amino acids are a principal source of nitrogen (N) for certain plants, and especially those of N-limited environments. This study of temperate upland grasslands used glycine-2-(13)C-(15)N and ((15)NH4)(2)SO(4) labelling techniques to test the hypothesis that plant species which dominate 'unimproved' semi-natural grasslands (Festuca-Agrostis-Galium) are able to utilise amino acid N for growth, whereas those plants which dominate 'improved' grasslands (Lolium-Cynosurus), that receive regular applications of inorganic fertiliser, use inorganic N forms as their main N source. Data from field experiments confirmed that 'free' amino acids were more abundant in 'unimproved' than 'improved' grassland and that glycine was the dominant amino acid type (up to 42% of total). Secondly, the injection of representative amounts of glycine-2-(13)C-(15)N (4.76 and 42.86 mM) into intact soil cores from the two grassland types provided evidence of direct uptake of glycine by plants, with both (15)N and (13)C being detected in plant material of both grasslands. Finally, a microcosm experiment demonstrated no preferential uptake of amino acid N by the grasses which dominate the grassland types, namely Holcus lanatus, Festuca rubra, Agrostis capillaris from the 'unimproved' grassland, and Lolium perenne from the 'improved' grassland. Again, both (13)C and (15)N were detected in all grass species suggesting uptake of intact glycine by these plants.

  1. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-09

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  2. Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model

    PubMed Central

    Flori, Alessandra; Liserani, Matteo; Frijia, Francesca; Giovannetti, Giulio; Lionetti, Vincenzo; Casieri, Valentina; Positano, Vincenzo; Aquaro, Giovanni Donato; Recchia, Fabio A.; Santarelli, Maria Filomena; Landini, Luigi; Ardenkjaer-Larsen, Jan Henrik; Menichetti, Luca

    2014-01-01

    Dissolution-Dynamic Nuclear Polarization (dissolution-DNP) for Magnetic Resonance (MR) Spectroscopic Imaging has recently emerged as a novel technique for non invasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intra-cellular short-chain fatty acid, we focused on [1-13C]acetate as a promising candidate for a chemical probe to study myocardial metabolism of beating heart. Dissolution-DNP procedure of Na[1-13C]acetate for in vivo cardiac applications with 3T MR scanner was optimized in pigs during bolus injection of doses up to 3 mmoles. The Na[1-13C]acetate formulation was characterized by a liquid-state polarization of 14.2% and T1Eff in vivo of 17.6 ± 1.7 s. In vivo Na[1-13C]acetate kinetic displayed a bimodal shape: [1-13C]acetyl carnitine (AcC) was detected in a slice covering the cardiac volume, and the signal of 13C-acetate and 13C-AcC was modeled using the total Area Under the Curve (AUC) for kinetic analysis. A good correlation was found between the ratio AUC(AcC)/AUC(acetate) and the apparent kinetic constant of metabolic conversion kAcC/r1 from [1-13C]acetate to [1-13C]AcC. Our study proved the feasibility and limitations of administration of large doses of hyperpolarized [1-13C]acetate with dissolution DNP to study by MR spectroscopy the myocardial conversion of [1-13C]acetate in [1-13C]acetyl-carnitine generated by acetyltransferase in healthy pigs. PMID:25201079

  3. Thermal Degradation studies of nitroplasticized estane 5703 utilizing [sup 13] C enriched model polymers.

    SciTech Connect

    Wrobleski, Debra A.; Langlois, D. A.; Orler, E. B.; Schoonover, J. R.; Osborn, J. C.; Small, J. H.

    2002-01-01

    Predicting the lifetime of PBX 9501 is critical to assurance of the reliability of the nuclear weapons stockpile. Ln support of the Lifetime Prediction Model, we have been investigating the physical and chemical aging processes that can potentially affect the lifetime of PBX 9501. Surveillance data of stockpile PBX 9501 binder have shown a decrease in Estane molecular weight as a fiinction of age. Estane is a poly(ester urethane) consisting of poly(buly1ene adipate) as the flexible soft segment and 4,4{prime}-methylenediphenyl-1,1{prime}-diisocyanate (MDI) chain extended with 1,4-butanediol (BDO) as the rigid hard segment efforts have focused on chemical reactions that may cause chain scission of Estane through hydrolytic degradation of the polyester soft segments. Thermal aging of Estane in the absence of water shows no signs of hydrolytic degradation, whereas, appearance of high molecular weight species has been observed for Estane aged at elevated temperatures in the presence of nitroplasticizer. These high molecular weight species are most likely due to branching reactions that eventually leads to formation of an insoluble, cross-linked gel. While the mechanisms of hydrolytic degradation of polyesters has been addressed, the degradations reactions of poly(ester urethane) (PESU) in the presence of NP are not well understood. We have prepared a series of isotopically enriched PESU model compounds chemically similar to Estane for aging experiments in order to understand possible cross-linking mechanisms. Changes in physical properties are observed with less than 1% chemical cross-linking. Isotopic enrichment of 13C from 1.1 % natural abundance to 100% improves the sensitivity of spectroscopic techniques so that small quantities of degradation products can be observed. Because degradation reaction mechanisms of importance may occur at the hard segment portion of the polymer, we have prepared 13C PESU with 13C labeled at the methylene carbon. These model polymers

  4. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  5. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-01

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (~110,700 S m-1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  6. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability

    PubMed Central

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-01-01

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m−1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials. PMID:27819652

  7. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  8. On the nature of sn stars. I. A detailed abundance study

    NASA Astrophysics Data System (ADS)

    Saffe, C.; Levato, H.

    2014-02-01

    The sn stars were first discoved by Abt & Levato when studying the spectral types in different open clusters. These stars present sharp Balmer lines, sharp metallic lines (C II, Si II, Ca II, Ti II, Fe II), and broad coreless He I lines. Some of the sn stars seem to be related to CP stars. Initially Abt & Levato proposed a shell-like nature to explain the sn stars, although this scenario was subsequently questioned. There is no general agreement about their origin. We aim to derive abundances for a sample of 9 stars, including sn and non-sn stars, to determine the possible relation between sn and CP stars and compare their chemical abundances. That most sn stars belong to open clusters allows us to search for a possible relation with fundamental parameters, including the age and rotation. We also study the possible contribution of different effects to the broad He I lines observed in these stars, such as Stark broadening and the possible He-stratification. Effective temperature and gravity were estimated by Strömgren photometry and then refined by requiring ionization and excitation equilibrium of Fe lines. We derived the abundances by fitting the observed spectra with synthetic spectra using an iterative procedure with the SYNTHE and ATLAS9 codes. We derived metallic abundances of 23 different chemical elements for 9 stars and obtained low projected rotational velocities for the sn stars in our sample (vsini up to 69 km s-1). We also compared 5 stars that belong to the same cluster (NGC 6475) and show that the sn characteristics appear in the 3 stars with the lower rotational velocity. However, the apparent preference of sn stars for objects with the lower vsini values should be taken with caution due to the small number of objects studied here. We analysed the photospheric chemical composition of sn stars and show that approximately ~40% of them display chemical peculiarities (such as He-weak and HgMn stars) within a range of temperature of 10 300 K-14 500 K

  9. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect

    NASA Astrophysics Data System (ADS)

    Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Zhao, Jian-xin

    2017-02-01

    Many factors influence the seasonal changes in δ13C levels in coral skeletons; consequently, the climatic and environmental significance of such changes is complicated and controversial. However, it is widely accepted that the secular declining trend of coral δ13C over the past 200 years reflects the changes in the additional flux of anthropogenic CO2 from the atmosphere into the surface oceans. Even so, the centennial-scale variations, and their significance, of coral δ13C before the Industrial Revolution remain unclear. Based on an annually resolved coral δ13C record from the northern South China Sea, the centennial-scale variations of coral δ13C over the past millennium were studied. The coral δ13C and total solar irradiance (TSI) have a significant positive Pearson correlation and coupled variation during the Medieval Warm Period and Little Ice Age, when natural forcing controlled the climate and environment. This covariation suggests that TSI controls coral δ13C by affecting the photosynthetic activity of the endosymbiotic zooxanthellae over centennial timescales. However, there was a decoupling of the coral skeletal δ13C and TSI during the Current Warm Period, the period in which the climate and environment became linked to anthropogenic factors. Instead, coral δ13C levels have a significant Pearson correlation with both the atmospheric CO2 concentration and δ13C levels in atmospheric CO2. The correlation between coral δ13C and atmospheric CO2 suggests that the oceanic 13C Suess effect, caused by the addition of increasing amounts of anthropogenic 12CO2 to the surface ocean, has led to the decoupling of coral δ13C and TSI at the centennial scale.

  10. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments.

    PubMed

    Webster, Gordon; O'Sullivan, Louise A; Meng, Yiyu; Williams, Angharad S; Sass, Andrea M; Watkins, Andrew J; Parkes, R John; Weightman, Andrew J

    2015-02-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments.

  11. Emission of highly 13C-depleted methane from an upland blanket mire

    NASA Astrophysics Data System (ADS)

    Bowes, Helen L.; Hornibrook, Edward R. C.

    2006-02-01

    Rates and δ13C values of CH4 flux are reported from an upland blanket mire (Blaen Fign) situated in Wales UK. The δ13C values of CH4 flux were similar from Sphagnum and vascular flora dominated areas despite flux rates being an order of magnitude greater from the latter. Methane flux was 13C-depleted relative to belowground CH4, indicating that transport occurred predominately via passive diffusion through vascular flora and that pore water diffusion and ebullition contributed little to CH4 flux. The strong influence of vascular flora abundance on CH4 flux strength suggests that any factors altering vegetation assemblages in blanket mires will likely impact CH4 emission rates. Methane flux from Blaen Fign was highly 13C-depleted compared to emissions from minerotrophic wetlands, suggesting that δ13C values may be useful for tracing CH4 flux from blanket mires and other types of ombrogenous peatlands to the global CH4 budget.

  12. Tracing the biosynthetic source of essential amino acids in marine turtles using delta13C fingerprints.

    PubMed

    Arthur, Karen E; Kelez, Shaleyla; Larsen, Thomas; Choy, C Anela; Popp, Brian N

    2014-05-01

    Plants, bacteria, and fungi produce essential amino acids (EAAs) with distinctive patterns of delta13C values that can be used as naturally occurring fingerprints of biosynthetic origin of EAAs in a food web. Because animals cannot synthesize EAAs and must obtain them from food, their tissues reflect delta13C(EAA) patterns found in diet, but it is not known how microbes responsible for hindgut fermentation in some herbivores influence the delta13C values of EAAs in their hosts' tissues. We examined whether distinctive delta13C fingerprints of hindgut flora are evident in the tissues of green turtles (Chelonia mydas), which are known to be facultative hindgut fermenters. We determined delta13C(EAA) values in tissues of green turtles foraging herbivorously in neritic habitats of Hawaii and compared them with those from green, olive ridley, and loggerhead turtles foraging carnivorously in oceanic environments of the central and southeast Pacific Ocean. Results of multivariate statistical analysis revealed two distinct groups that could be distinguished based on unique delta13C(EAA) patterns. A three-end-member predictive linear discriminant model indicated that delta13C(EAA) fingerprints existed in the tissues of carnivorous turtles that resembled patterns found in microalgae, which form the base of an oceanic food web, whereas herbivorous turtles derive EAAs from a bacterial or seagrass source. This study demonstrates the capacity for delta13C fingerprinting to establish the biosynthetic origin of EAAs in higher consumers, and that marine turtles foraging on macroalgal diets appear to receive nutritional supplementation from bacterial symbionts in their digestive system.

  13. Determination of 13C isotopic enrichment of glutathione and glycine by gas chromatography/combustion/isotope ratio mass spectrometry after formation of the N- or N,S-ethoxycarbonyl methyl ester derivatives.

    PubMed

    Tea, Illa; Ferchaud-Roucher, Véronique; Küster, Alice; Darmaun, Dominique; Robins, Richard J

    2007-01-01

    The depletion of glutathione (GSH) reported in very-low-birth-weight infants is implicated in several pathologies, especially if deficiency occurs during foetal development. The cause of this depletion is suggested to be modification of GSH turnover. To probe the role of GSH, a reliable non-invasive method adapted to very-low-birth-weight infants is required. In this paper, we report the preparation of the N,S-ethoxycarbonyl methyl ester derivatives of GSH and glycine and their application to the measurement of (13)C/(12)C ratios at natural abundance in erythrocyte samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The technique allowed the determination of (13)C/(12)C ratios at natural abundance with a precision <3% and within-day and between-day variabilities both <4%. The method is able to determine accurately low (13)C-enrichments in GSH (0.00241 to 0.00753 Atom Percent Excess) in erythrocyte extracts following incubation with (13)C-glycine at low specific enrichment (approx. 1.5 atom %). Excellent agreement was obtained between the calculated GSH fractional synthesis rate (FSR) in human adult blood (approx. 300% day(-1)) using the low-enrichment (13)C-glycine/GC/C/IRMS protocol and that using highly enriched (13)C-glycine (99 atom %)/GC/MS with the same derivative. The GC/C/IRMS method was shown to be suitable to measure the in vitro GSH FSR (200-660% day(-1)) in human venous and arterial blood from the umbilical cord. This approach provides a good tool for studying the turnover of GSH in vitro in infants, allowing both the use of minimal amounts of tracer and negligible perturbation of endogenous precursor pools.

  14. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2013-10-01

    reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI...reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is... cancer and normal tissues were obtained from nephrectomy specimens and sliced using Krumdieck slicer. With a precision gauge micrometer, the slice

  15. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  16. Development of an LC-MS/MS method for the determination of endogenous cortisol in hair using (13)C3-labeled cortisol as surrogate analyte.

    PubMed

    Binz, Tina M; Braun, Ueli; Baumgartner, Markus R; Kraemer, Thomas

    2016-10-15

    Hair cortisol levels are increasingly applied as a measure for stress in humans and mammals. Cortisol is an endogenous compound and is always present within the hair matrix. Therefore, "cortisol-free hair matrix" is a critical point for any analytical method to accurately quantify especially low cortisol levels. The aim of this project was to modify current methods used for hair cortisol analysis to more accurately determine low endogenous cortisol concentrations in hair. For that purpose, (13)C3-labeled cortisol, which is not naturally present in hair (above 13C natural abundance levels), was used for calibration and comparative validation applying cortisol versus (13)C3-labeled cortisol. Cortisol was extracted from 20mg hair (standard sample amount) applying an optimized single step extraction protocol. An LC-MS/MS method was developed for the quantitative analysis of cortisol using either cortisol or (13)C3-cortisol as calibrators and D7-cortisone as internal standard (IS). The two methods (cortisol/(13)C3-labeled cortisol) were validated in a concentration range up to 500pg/mg and showed good linearity for both analytes (cortisol: R(2)=0.9995; (13)C3-cortisol R(2)=0.9992). Slight differences were observed for limit of detection (LOD) (0.2pg/mg/0.1pg/mg) and limit of quantification (LOQ) (1pg/mg/0.5pg/mg). Precision was good with a maximum deviation of 8.8% and 10% for cortisol and (13)C3-cortisol respectively. Accuracy and matrix effects were good for both analytes except for the quality control (QC) low cortisol. QC low (2.5pg/mg) showed matrix effects (126.5%, RSD 35.5%) and accuracy showed a deviation of 26% when using cortisol to spike. These effects are likely to be caused by the unknown amount of endogenous cortisol in the different hair samples used to determine validation parameters like matrix effect, LOQ and accuracy. No matrix effects were observed for the high QC (400pg/mg) samples. Recovery was good with 92.7%/87.3% (RSD 9.9%/6.2%) for QC low and

  17. Enrichment of natural (15)N abundance during soil N losses under 20years of continuous cereal cropping.

    PubMed

    Jones, Andrew R; Dalal, Ram C

    2017-01-01

    It is generally accepted that the enrichment of natural (15)N abundance in soil over time is reflective of historic N cycling and loss, but this process in cropping soils is not yet clear. In this study, we identified an enrichment gradient of natural (15)N abundance during 20-year chronosequence of cereal cropping on Alfisols in southwest Queensland, Australia, that have no history of fertilisation. We demonstrate that the increase in soil (15)N abundance is explained by isotopic fractionation of (15)N during organic N mineralisation and nitrification, which lead to isotopically heavier ammonium retained in the soil and isotopically lighter soil nitrate taken up and removed by seasonal crops during harvest. Here we present a framework for natural (15)N isotopic fractionation co-occurring with N losses during long-term cultivation.

  18. Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes

    SciTech Connect

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Z.

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  19. Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Zhi

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  20. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; ...

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  1. Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method

    NASA Technical Reports Server (NTRS)

    Horvitz, M. A.; Schoeller, D. A.

    2001-01-01

    The doubly labeled water method for measuring total energy expenditure is subject to error from natural variations in the background 2H and 18O in body water. There is disagreement as to whether the variations in background abundances of the two stable isotopes covary and what relative doses of 2H and 18O minimize the impact of variation on the precision of the method. We have performed two studies to investigate the amount and covariance of the background variations. These were a study of urine collected weekly from eight subjects who remained in the Madison, WI locale for 6 wk and frequent urine samples from 14 subjects during round-trip travel to a locale > or = 500 miles from Madison, WI. Background variation in excess of analytical error was detected in six of the eight nontravelers, and covariance was demonstrated in four subjects. Background variation was detected in all 14 travelers, and covariance was demonstrated in 11 subjects. The median slopes of the regression lines of delta2H vs. delta18O were 6 and 7, respectively. Modeling indicated that 2H and 18O doses yielding a 6:1 ratio of final enrichments should minimize this error introduced to the doubly labeled water method.

  2. Linking Biogeochemistry to Microbial Diversity Using New 13C Approaches

    NASA Astrophysics Data System (ADS)

    Baggs, E. M.

    2005-12-01

    The use of 13C enables us to overcome uncertainties associated with soil C processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, for example CH4 oxidation by direct measurement of 13C-CH4 and 13C-CO2. This overcomes uncertainties associated with reliance on changes in net CH4 emission, which may have compromised some earlier studies as both methanogenesis and CH4 oxidation may occur simultaneously in soil, providing significant advances in our understanding of the process of CH4 oxidation. These stable isotope techniques can be combined with molecular techniques (analysis of gene expression, stable isotope probing (SIP)) to relate the measured process to the microbial populations responsible. Here we will give a synthesis of results from experiments in which we applied 13C-CH4 to accurately determine CH4 oxidation rates in soils, and also present results of 13C-SIP from which we can identify the key players in the microbial population that are using the applied 13C substrate. With the 13C-CH4 technique we were able to provide direct evidence of inhibition of CH4 oxidation following fertiliser application (50-300 kg N ha-1) that was less under elevated pCO2, and evidence for anaerobic CH4 oxidation occurring in soil at 75% soil water filled pore space that would not have been apparent from changes in net CH4 emissions. 13C-SIP both through plants (using 13C-CO2) and directly into soil (using 13C-methane and -organic substrates) has revealed how key players in C utilisation vary under different soil conditions, for example, under improved and unimproved grasslands.

  3. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  4. Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    Huang, Min; Garrett, Graham E.; Birlirakis, Nicolas; Bohé, Luis; Pratt, Derek A.; Crich, David

    2012-08-01

    Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions, resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem, primary 13C kinetic isotope effects have now been determined for the formation of β- and α-manno- and glucopyranosides using a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental and computed values are indicative of associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides, the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of analogous experiments to other glycosylation systems should shed further light on their mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity.

  5. Dissecting the Mechanisms of a Class of Chemical Glycosylation Using Primary 13C Kinetic Isotope Effects

    PubMed Central

    Huang, Min; Garrett, Graham E.; Birlirakis, Nicolas; Bohé, Luis

    2012-01-01

    Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem primary 13C kinetic isotope effects now have been determined for the formation of β- and α-manno- and glucopyranosides by a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental values concur with those computed for associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of comparable experiments to other glycosylation systems should shed further light on their glycosylation mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity. PMID:22824899

  6. Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin

    USGS Publications Warehouse

    Martin, B.A.; Saiki, M.K.

    2005-01-01

    We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray-Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinnaandPoecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes. This study also documented evidence of predation by mudsuckers on pupfish. These findings support the contention of many resource managers that pupfish populations are adversely influenced by ecological interactions with nonnative fishes. ?? Springer 2005.

  7. (15)N natural abundance in plants of the Amazon River floodplain and potential atmospheric N2 fixation.

    PubMed

    Martinelli, L A; Victoria, R L; Trivelin, P C O; Devol, A H; Richey, J E

    1992-07-01

    The(15)N natural abundance values of various Amazon floodplain (várzea) plants was investigated. Samples of young leaf tissues were collected during three different periods of the river hydrography (low water, mid rising water and high water) and during one period in the Madeira River (high water). A large variation of(15)N abundance was observed, both among the different plant types and between the different flood stages. This variation probably, reflected, in part, the highly variable nature of the floodplain, sometimes dry and oxygenated and at other times inundated and anaerobic and, in part, changes in plant nitrogen metabolism. Comparison of the nitrogen isotopic composition of leguminous plants with that of non-leguminous plants showed that, on average, the(15)N abundance was lower in the legumes than non-legumes, suggesting active N-fixation. Also, the(15)N natural abundance in aquatic grasses of the generaPaspalum, was in general, lower than the(15)N abundance of aquatic grasses of the generaEchinochloa. As both of these grasses grow in the same general habitat, it appears thatPaspalum grasses may also be nitrogen fixers.

  8. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  9. A robust method for ammonium nitrogen isotopic analysis in freshwater and seawater at natural abundance levels

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Altabet, M. A.; Wu, T.; Hadas, O.

    2006-12-01

    Natural ammonium N isotopic abundance has been increasingly used in studies of marine and freshwater biogeochemistry. However, current methods are time-consuming, subject to interference from DON, and not reliable at low concentrations. Our new method for determining the δ15N of ammonium overcomes these difficulties by employing the oxidation of ammonium to nitrite followed by conversion of nitrite to nitrous oxide. In the first step, ammonium is quantitatively oxidized by hypobromite at pH~12. After the addition of sodium arsenite to consume excess hypobromite, yield is verified by colorimetric NO2-measurement using sulfanilamide and naphthyl ethylenediamine (NED). Nitrite is further reduced to N2O by a 1:1 sodium azide and acetic acid buffer solution using previously established procedures. Buffer concentration can be varied according to sample matrix to ensure that a reaction pH between 2 and 4 is reached. The product nitrous oxide is then isotopically analyzed using a continuous flow purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. Reliable δ15N values (±0.31‰) are obtained over a concentration range of 0.5 μM to 20 μM using 20 ml volumes of either fresh or seawater samples. Reagent blanks are very low, about 0.05 μM. There is no interference from any of the nitrogen containing compounds tested except short chain aliphatic amino acid (i.e. glycine) which typically are not present at sufficiently high environmental concentrations to pose a problem.

  10. Natural abundance deuterium nuclear magnetic resonance spectroscopy: Study of the biosynthesis of monoterpenes

    SciTech Connect

    Leopold, M.F.

    1990-01-01

    Deuterium NMR spectroscopy at natural abundance (D NMR-na) is a new technique for exploring the biosynthesis of small molecules such as monoterpenes. The analysis of relative site-specific deuterium integration values is an effective means of measuring isotope effects, and examining the regio- and stereochemistry of biosynthetic reactions. The deuterium integration values of linalyl acetate and limonene isolated from the same source were consistent and showed that proton abstraction from the postulated {alpha}-terpinyl cation intermediate to form limonene is regioselective from the methyl derived from the Cs methyl of the precursor, geranyl diphosphate. This regiochemistry was observed in limonene samples from different sources and the measured primary kinetic isotope effect ranged from 0.25 to in excess of 100 (no deuterium was removed within experimental error). Various {alpha}- and {beta}-pinene samples were isolated and D NMR-na analysis showed evidence of isotopically sensitive partitioning of the pinylcation in the formation of these products. This spectral analysis supported published radiolabeling studies but did not require synthesis of substrates or enzyme purification. The formation of 3-carene occurs without isomerization of the double bond which was previously postulated. The olefinic deuterium of the bicyclic compound was traced to the depleted deuterium at C{sub 2} of isopentyl diphosphate by D NMR-na data and this supported unpublished radiolabeling studies. Study of irregular monoterpenes, chrysanthemyl acetate and lyratyl acetate, showed partitioning of dimethylallyl diphosphate (DMAPP) by chrysanthemyl cyclase. The {alpha}-secondary kinetic isotope effect of 1.06-1.12, obtained from relative deuterium integration values, suggested that S{sub N}1 ionization of one molecule of DMAPP is the first step in the condensation reaction.

  11. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  12. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  13. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  14. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  15. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed.

  16. An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose

    NASA Astrophysics Data System (ADS)

    Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

    1999-11-01

    A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

  17. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance.

    PubMed

    Al Shweiki, Mhd Rami; Mönchgesang, Susann; Majovsky, Petra; Thieme, Domenika; Trutschel, Diana; Hoehenwarter, Wolfgang

    2017-04-07

    We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.

  18. Random isotopolog libraries for protein perturbation studies. 13C NMR studies on lumazine protein of Photobacterium leiognathi.

    PubMed

    Illarionov, Boris; Lee, Chan Yong; Bacher, Adelbert; Fischer, Markus; Eisenreich, Wolfgang

    2005-11-25

    [graph: see text] Lumazine proteins of luminescent bacteria are paralogs of riboflavin synthase which are devoid of catalytic activity but bind the riboflavin synthase substrate, 6,7-dimethyl-8-ribityllumazine, with high affinity and are believed to serve as optical transponders for bioluminescence emission. Lumazine protein of Photobacterium leiognathi was expressed in a recombinant Escherichia coli host and was reconstituted with mixtures (random libraries) of 13C-labeled isotopologs of 6,7-dimethyl-8-ribityllumazine or riboflavin that had been prepared by biotransformation of [U-(13)C6]-, [1-(13)C1]-, [2-(13)C1]-, and [3-(13)C1]glucose. 13C NMR analysis of the protein/ligand complexes afforded the assignments of the 13C NMR chemical shifts for all carbon atoms of the protein-bound ligands by isotopolog abundance editing. The carbon atoms of the ribityl groups of both ligands studied were shifted up to 6 ppm upon binding to the protein. Chemical shift modulation of the side chain and chromophore carbon atoms due to protein/ligand interaction is discussed on the basis of the sequence similarity between lumazine protein and riboflavin synthase.

  19. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  20. The 13C Neutron Source and s-Processing in AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, Oscar; Busso, Maurizio; Palmerini, Sara; La Cognata, Marco

    The main component of the s-process accounts for about 50% of elements heavier than Kr, through n-captures occurring in asymptotic giant branch (AGB) stars, where the 13C(α, n)16O reaction is the main neutron source. Its activation below the convective envelope at third dredge-up (TDU) and its efficiency are still matters of debate, as: (i) the astrophysical factor is affected by a broad resonance near the reaction threshold and (ii) mixing mechanisms to locally produce 13C were so far mimicked mainly parametrically. We discuss both problems and, in particular, we adopt one of the recent model proposed for producing 13C and based on an exact multi-D analytical solution of MHD equations, where magnetic buoyancy induces partial mixing at the envelope border. The resulting distribution of 13C is used, together with our upgraded prescription for the reaction rate, to reproduce solar abundances through AGB models. It can account for the chemical evolution of s-elements and for the s/(C/O) ratios in low-metallicity post-AGB stars.

  1. Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C

    PubMed Central

    Sanchez-Bragado, Rut; Molero, Gemma; Reynolds, Matthew P.; Araus, Jose Luis

    2014-01-01

    During grain filling in C3 cereals, the shoot (particularly the flag leaf) and the ear are believed to play major roles as sources of assimilates. However, both the cost and the intrusive nature of most of the methodologies available to investigate this have prevented conclusive results being obtained. This study compared the carbon isotope composition (δ13C) in its natural abundance in mature kernels with the δ13C of the water-soluble fraction of the peduncle, glumes, and awns to assess the relative contribution of the shoot (understood as the whole set of photosynthetic organs below the peduncle) and ear to grain filling in a set of highly productive wheat lines from the International Maize and Wheat Improvement Center, Mexico, under good agronomic conditions. In overall terms, the contribution of the ear was greater in comparison with that of the shoot. The specific contribution of the flag leaf blade to grain filling was also assessed by comparing the δ13C of grains with the δ13C of the water-soluble fraction of the flag leaf and the awns. The contribution of the flag leaf was minor, ranging between 3 and 18%. Complementary analyses performed such as gas-exchange rates and the accumulated water-soluble carbohydrates in both organs and light intercepted by the canopy at different strata suggested that the ear has a photosynthetic capacity at least comparable to that of the flag leaf. In this sense, selection for a higher contribution of ear photosynthesis to grain yield in breeding programmes could be addressed with the use of stable isotopes. PMID:25053645

  2. A new method for the identification of the origin of natural products. Quantitative /sup 2/H NMR at the natural abundance level applied to the characterization of anetholes

    SciTech Connect

    Martin, G.J.; Martin, M.L.; Mabon, F.; Bricont, J.

    1982-05-05

    We have shown by high-field /sup 2/H NMR spectrometry at the natural abundance level that very spectacular differences exist in the interal distribution of /sup 2/H in organic molecules. This phenomenon has been exemplified in particular by the case of ethyl and vinyl derivatives. We show in this study of various anethole samples the potential of this new method as a very powerful tool for the characterization and identification of natural products from different origins.

  3. Interactions between natural-occurring landscape conditions and land use influencing the abundance of riverine smallmouth bass, micropterus dolomieu

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.

    2011-01-01

    This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.

  4. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  5. High-Resolution Infrared Spectra of the ν_1 Fundamental Bands of 13C Mono-Substituted Propyne in a Supersonic Slit Jet

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfeng; Doney, Kirstin D.; Linnartz, Harold

    2014-06-01

    In the past few decades, many high-resolution spectroscopic studies have been dedicated to the C-H stretch vibrations in propyne (CH_3-C≡CH), aiming to understand the intramolecular vibrational redistribution in isolated small hydrocarbons. In this talk, we present the sensitive detection of the ν_1 (acetylenic C-H stretch) fundamental bands of the three 13C mono-substituted isotopologues of propyne. The infrared absorption spectra are recorded using continuous-wave cavity ring-down spectroscopy (CRDS) in combination with a supersonic jet expansion of propyne/argon gas mixtures. A 0.05x30 mm slit nozzle is used in the present experiment to realize an effective rotational cooling to ≈14 K and a reduced Doppler width of ≈90 MHz. The high sensitivity of CRDS allows us to detect the three 13C isotopologues in their 1.1% natural abundance. Different infrared band intensities of ν_1 are found for the three isotopologues. Detailed rotational analyses of the experimental spectra are performed to derive effective spectroscopic constants for the upper ν_1 vibrational state. The 13C-substitution effect of the near/non-resonant perturbations to ν_1 of propyne is discussed. In addition, more accurate infrared data of 12C-propyne, including the ν_1 fundamental band, are also obtained from our experimental spectra.

  6. Is the Multicolored Asian Ladybeetle, Harmonia axyridis, the Most Abundant Natural Enemy to Aphids in Agroecosystems?

    PubMed Central

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J.; Haubruge, Eric; Verheggen, François J.

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  7. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  8. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    SciTech Connect

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.

  9. Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis.

    PubMed

    Zencak, Zdenek; Klanova, Jana; Holoubek, Ivan; Gustafsson, Orjan

    2007-06-01

    Progress in source apportionment of priority combustion-derived atmospheric pollutants can be made by an inverse approach to inventory emissions, namely, receptor-based compound class-specific radiocarbon analysis (CCSRA) of target pollutants. In the present study, CCSRA of the combustion-derived polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere of the countries of the former republic of Yugoslavia was performed. The carbon stable isotope composition (delta13C) of PAHs varied between -27.68 and -27.19 per thousand, whereas delta14C values ranged from -568 per thousand for PAHs sampled in Kosovo to -288 per thousand for PAHs sampled in the Sarajevo area. The application of an isotopic mass balance model to these delta14C data revealed a significant contribution (35-65%) from the combustion of non-fossil material to the atmospheric PAH pollution, even in urban and industrialized areas. Furthermore, consistency was observed between the isotopic composition of PAHs obtained by high-volume sampling and those collected by passive sampling. This encourages the use of passive samplers for CCSRA applications. This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action.

  10. Source apportionment of atmospheric PAHs in the Western Balkans by natural abundance radiocarbon analysis

    SciTech Connect

    Zdenek Zencak; Jana Klanova; Ivan Holoubek; Oerjan Gustafsson

    2007-06-01

    Progress in source apportionment of priority combustion-derived atmospheric pollutants can be made by an inverse approach to inventory emissions, namely, receptor-based compound class-specific radiocarbon analysis (CCSRA) of target pollutants. In the present study, CCSRA of the combustion-derived polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere of the countries of the former republic of Yugoslavia was performed. The carbon stable isotope composition ({delta}{sup 13}C) of PAHs varied between -27.68 and -27.19{per_thousand}, whereas {Delta}{sup 14}C values ranged from -568{per_thousand} for PAHs sampled in Kosovo to -288{per_thousand} for PAHs sampled in the Sarajevo area. The application of an isotopic mass balance model to these {Delta}{sup 14}C data revealed a significant contribution (35-65%) from the combustion of non-fossil material to the atmospheric PAH pollution, even in urban and industrialized areas. Furthermore, consistency was observed between the isotopic composition of PAHs obtained by high-volume sampling and those collected by passive sampling. This encourages the use of passive samplers for CCSRA applications. This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action. 36 refs., 1 fig., 3 tabs.

  11. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  12. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  13. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  14. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, we investigated the distribution of the low abundant proteins that are involved in soybean seed development in four wild and twelve cultivated soybean genotypes. We found proteomic variation of these proteins within and...

  15. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and

  16. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2.

    PubMed

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-06-03

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.

  17. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis

    PubMed Central

    Tout, Jessica; Siboni, Nachshon; Messer, Lauren F.; Garren, Melissa; Stocker, Roman; Webster, Nicole S.; Ralph, Peter J.; Seymour, Justin R.

    2015-01-01

    Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2–3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2–3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems. PMID:26042096

  18. δ 13C response surface resolves humidity and temperature signals in trees

    NASA Astrophysics Data System (ADS)

    Edwards, T. W. D.; Graf, W.; Trimborn, P.; Stichler, W.; Lipp, J.; Payer, H. D.

    2000-01-01

    Stem cellulose of bean plants ( Vicia faba) grown under controlled conditions exhibits inverse linear carbon-isotope reactions to changes in both relative humidity (RH) and temperature (T), readily mappable as a planar δ 13C response surface in RH-T space. The analogous response surface for annual late-wood cellulose δ 13C from a field calibration using fir trees ( Abies alba) in the Black Forest, southern Germany, also supports resolution of independent δ-RH and δ-T effects. The response of cellulose δ 13C to RH and T derived from this new calibration differs markedly from estimates based on univariate linear regression analysis: The sensitivity of δ 13C to RH is stronger than that inferred previously ( c. -0.17‰/% vs. -0.12‰/%, respectively), whereas the δ-T coefficient is weaker and reversed in sign ( c. -0.15‰/K vs. +0.36‰/K). This new perspective on the coupled influence of moisture and temperature changes on tree-ring cellulose δ 13C helps to unify divergent observations about carbon-isotope signals in trees, especially the broad range of apparent δ-T relations obtained in calibration studies, which are often used as paleoclimate transfer functions. Although this highlights the large potential uncertainties surrounding paleoclimate reconstruction based solely on δ 13C data, coupling of the carbon-isotope response-surface approach with equivalent response surfaces for hydrogen or oxygen isotopes may afford new opportunities for investigating the nature of past climate variability and change from tree-ring sequences.

  19. δ(13)C values of some succulent plants from Madagascar.

    PubMed

    Winter, Klaus

    1979-01-01

    δ(13)C values were determined in 20 succulents from Madagascar. The values were indicative of Crassulacean Acid Metabolism in 10 species of the Didiereaceae, 4 species of the Euphorbiaceae, 2 species of the Crassulaceae and 1 species of the Cucurbitaceae. The Didiereaceae and Euphorbiaceae studied are major components of a high biomass xerophytic flora in the semi-arid southwest and south of Madagascar. Three species of the Euphorbiaceae with succulent stems and non-succulent leaves, which were cultivated outdoors in the Tananarive Botanic Garden, showed C3 like δ(13)C values for both leaves and stems. δ(13)C values of leaf and stem material from a similar species, collected in the south of Madagascar, indicated Crassulacean Acid Metabolism.

  20. {sup 13}C relaxation in an RNA hairpin

    SciTech Connect

    King, G.C. |; Akratos, C.; Xi, Z.; Michnica, M.J.

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  1. Optical hyperpolarization and inductive readout of 31P donor nuclei in natural abundance single crystal 29Si

    NASA Astrophysics Data System (ADS)

    Alexander, Thomas; Haas, Holger; Deshpande, Rahul; Gumann, Patryk; Cory, David

    2016-05-01

    We optically polarize and inductively detect 31P donor nuclei in single crystal silicon at high magnetic fields (6 . 7T). Samples include both natural abundance 29Si and an isotopically purified 28Si sample. We observe dipolar order in the 29Si nuclear spins through a spin-locking measurement. This provides a means of characterizing spin transport in the vicinity of the 31P donors.

  2. Direct evaluation of in situ biodegradation in Athabasca oil sands tailings ponds using natural abundance radiocarbon.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang

    2013-09-17

    Compound-specific stable (δ(13)C) and radiocarbon (Δ(14)C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. Algal-specific PLFAs were absent at three of the four sites investigated, and δ(13)CPLFA values were generally within ~3‰ of that reported for oil sands bitumen (~-30‰), suggesting that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. Δ(14)CPLFA values ranged from -906 to -586‰ and pointed to significant uptake of fossil carbon, particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively heavier Δ(14)C values found in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population. Since the main carbon pools in tailings sediment were essentially "radiocarbon dead" (i.e., Δ(14)C ~ -1000‰), the principal source for this relatively modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential utilization of the minor amount of younger and presumably more labile material present in systems otherwise dominated by petroleum carbon has important implications for remediation strategies, since it implies that organic contaminants may persist long after reclamation has begun. Alternatively, this young organic matter could play a vital and necessary role in supporting the microbial utilization of fossil carbon via cometabolism or priming processes.

  3. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  4. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  5. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    SciTech Connect

    Cobb, Alyssa K.; Pudritz, Ralph E. E-mail: pudritz@physics.mcmaster.ca

    2014-03-10

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  6. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  7. Metabolic flux analysis using 13C peptide label measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  8. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  9. Modeling of the 2007 JET ^13C migration experiments

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.; Likonen, J.; Hakola, A.; Coad, J. P.; Widdowson, A.; Koivuranta, S.; Hole, D. E.; Rubel, M.

    2010-11-01

    Using the last run day of the 2007 JET experimental campaign, ^13CH4 was introduced repeatedly from the vessel top into a single plasma type (H-mode, Ip= 1.6 MA, Bt= 1.6 T). Similar experiments were performed in 2001 (vessel top into L-Mode) and 2004 (outer divertor into H-Mode). Divertor and wall tiles were removed and been analysed using secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) to determine the ^13C migration. ^13C was observed to migrate both to the inner (largest deposit), outer divertor (less) , and the floor tiles (least). This paper reports the EDGE2D/NIMBUS based modelling of the carbon migration. The emphasis is on the comparison of the 2007 results with the 2001 results where both injections were from the machine top but ELMs were present in 2007 but not present in 2001. The ELMs seemed to cause more ^13C re-erosion near the inner strike point. Also of interest is the difference in the Private Flux Region deposits where the changes in divertor geometry between 2004 and 2007 caused differences in the deposits. In 2007, the tilting of the load bearing tile caused regions of the PFR to be shadowed from the inner strike point which were not shadowed in 2004, indicating ^13C neutrals originated from the OSP.

  10. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  11. First airborne samples of a volcanic plume for δ13C of CO2 determinations

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Lopez, Taryn M.

    2016-04-01

    Volcanic degassing is one of the main natural sources of CO2 to the atmosphere. Carbon isotopes of volcanic gases enable the determination of CO2 sources including mantle, organic or carbonate sediments, and atmosphere. Until recently, this work required sample collection from vents followed by laboratory analyses. Isotope ratio infrared analyzers now enable rapid analyses of plume δ13C-CO2, in situ and in real time. Here we report the first analyses of δ13C-CO2 from airborne samples. These data combined with plume samples from the vent area enable extrapolation to the volcanic source δ13C. We performed our experiment at the previously unsampled and remote Kanaga Volcano in the Western Aleutians. We find a δ13C source composition of -4.4‰, suggesting that CO2 from Kanaga is primarily sourced from the upper mantle with minimal contributions from subducted components. Our method is widely applicable to volcanoes where remote location or activity level precludes sampling using traditional methods.

  12. (13)C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system.

    PubMed

    Liu, Chong; Nangle, Shannon N; Colón, Brendan C; Silver, Pamela A; Nocera, Daniel G

    2017-03-15

    Interfacing the CO2-fixing microorganism, Ralstonia eutropha, to the energy derived from hydrogen produced by water splitting is a viable approach to achieving renewable CO2 reduction at high efficiencies. We employ (13)C-labeling to report on the nature of CO2 reduction in the inorganic water splitting|R. eutropha hybrid system. Accumulated biomass in a reactor under a (13)C-enriched CO2 atmosphere may be sampled at different time points during CO2 reduction. Converting the sampled biomass into gaseous CO2 allows the (13)C/(12)C ratio to be determined by gas chromatography-mass spectrometry. After 2 hours of inoculation and the initiation of water splitting, the microbes adapted and began to convert CO2 into biomass. The observed time evolution of the (13)C/(12)C ratio in accumulated biomass is consistent with a Monod model for carbon fixation. Carbon dioxide produced by catabolism was found to be minimal. This rapid response of the bacteria to a hydrogen input and to subsequent CO2 reduction at high efficiency are beneficial to achieving artificial photosynthesis for the storage of renewable energy.

  13. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization

  14. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret

  15. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  16. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc, A [Santa Fe, NM

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  17. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  18. 12C/13C ratio in ethane on titan and implications for methane's replenishment.

    PubMed

    Jennings, Donald E; Romani, Paul N; Bjoraker, Gordon L; Sada, Pedro V; Nixon, Conor A; Lunsford, Allen W; Boyle, Robert J; Hesman, Brigette E; McCabe, George H

    2009-10-22

    The (12)C/(13)C abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(-1) from high spectral resolution ground-based observations. The value, 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The (12)C/(13)C ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(1), representing an enrichment of (12)C in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same (12)C/(13)C ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

  19. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    PubMed

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water.

  20. Quantification of 13C pyruvate and 13C lactate in dog blood by reversed-phase liquid chromatography-electrospray ionization mass spectrometry after derivatization with 3-nitrophenylhydrazine.

    PubMed

    Uran, Steinar; Landmark, Kristin Eitrem; Hjellum, Gro; Skotland, Tore

    2007-08-15

    Injection of hyperpolarized (13)C-labelled pyruvate ((13)C pyruvate) is under evaluation as an agent for medical metabolic imaging by measuring formation of (13)C lactate using magnetic resonance spectroscopy of the (13)C nuclei. A quantitative method for analysis of these (13)C-labelled substances in dog blood was needed as part of the development of this agent and we here describe a liquid chromatography-mass spectrometry method for that purpose. Immediately after blood collection, the blood proteins were precipitated using methanol added internal standard ([U-(13)C]pyruvate and [U-(13)C]lactate). Prior to analysis, the compounds were derivatized using 3-nitrophenylhydrazine. Following separation on a Supelco Discovery HS C18 column, (13)C pyruvate and (13)C lactate were detected using negative electrospray ionization mass spectrometry. Calibration standards (4.5-4500 microM (13)C pyruvate and 9-9000 microM (13)C lactate) and added internal standard were used to make the calibration curves, which were fitted to a non-linear equation y=a+bx+cx(2) and weighted with a weighting factor of 1/y(2). The analytical lower limit of quantification of (13)C pyruvate and (13)C lactate was 4.5 and 9 microM, respectively. The total precision of the method was below 9.2% for (13)C pyruvate and below 5.8% for (13)C lactate. The accuracy of the method showed a relative error less than 2.4% for (13)C pyruvate and less than 6.3% for (13)C lactate. The recoveries were in the range 93-115% for (13)C pyruvate and 70-111% for (13)C lactate. Both substances were stable in protein-free supernatant when stored for up to 3 weeks in a -20 degrees C freezer, during three freeze/thaw cycles, and when stored in an autosampler for at least 30 h.

  1. Thermal maturity of type II kerogen from the New Albany Shale assessed by 13C CP/MAS NMR.

    PubMed

    Werner-Zwanziger, Ulrike; Lis, Grzegorz; Mastalerz, Maria; Schimmelmann, Arndt

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance.

  2. A comparison between shell-based δ13C values from an extratropical setting (Gulf of Maine, USA) and atmospheric δ13C values for intervals of the last millennium: insights on regional hydrography and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Wanamaker, A. D.; Kreutz, K. J.; Introne, D.; Beirne, E. C.

    2010-12-01

    To explore past changes in carbon dynamics in the Gulf of Maine, and to further evaluate the utility of stable carbon isotope ratios (δ13C) derived from the aragonitic shells of the marine bivalve Arctica islandica in global change studies, we compared annual shell δ13C values (N = 4; total of 333 years) with published atmospheric δ13C data (derived from ice cores [AD 1006 to AD 1978; N = 58 measurements] and instrumental series (AD 1981 to AD 2008; total of 28 years]) for intervals of the last millennium. Both datasets were modeled using an exponential function to highlight the low frequency trends in the data and to facilitate a relevant comparison. From AD 1000 to AD 1800, the modeled atmospheric δ13C series increased by 0.20 ‰ (change = 0.00025 ‰ per year), while modeled shell δ13C series decreased by 0.24 ‰ (change = -0.00030 ‰ per year). From AD 1800 to present, both modeled δ13C datasets decreased substantially due to the admixture of isotopically negative carbon derived from increased fossil fuel emissions. The magnitude of the change during this interval in the atmospheric pool was 2.0 ‰ (rate = - 0.0095 ‰ per year), whereas the change in the shell-based values was 1.1 ‰ (rate = - 0.0052 ‰ per year), approximately half of the change noted in the atmosphere. Remarkably, the rate of change in shell δ13C values during the last 200 years was 17 times faster than the previous 800 years. Although the long-term offset (range 8.9 - 8.5 ‰) between atmospheric and shell δ13C data was not constant from AD 1000 to AD 1800, the converging nature of the modeled data suggest that regional hydrographic conditions within the Gulf of Maine during the last millennium have also influenced the δ13C signature in the shells. We will explore some possible hydrographic mechanisms that might explain the divergence between atmospheric and shell-based δ13C values. Despite the noted difference in the atmospheric and shell-based δ13C records, it appears

  3. Imaging pH with hyperpolarized 13C.

    PubMed

    Gallagher, Ferdia A; Kettunen, Mikko I; Brindle, Kevin M

    2011-10-01

    pH is a fundamental physiological parameter that is tightly controlled by endogenous buffers. The acid-base balance is altered in many disease states, such as inflammation, ischemia and cancer. Despite the importance of pH, there are currently no routine methods for imaging the spatial distribution of pH in humans. The enormous gain in sensitivity afforded by dynamic nuclear polarization (DNP) has provided a novel way in which to image tissue pH using MR, which has the potential to be translated into the clinic. This review explores the advantages and disadvantages of current pH imaging techniques and how they compare with DNP-based approaches for the measurement and imaging of pH with hyperpolarized (13)C. Intravenous injection of hyperpolarized (13)C-labeled bicarbonate results in the rapid production of hyperpolarized (13)CO(2) in the reaction catalyzed by carbonic anhydrase. As this reaction is close to equilibrium in the body and is pH dependent, the ratio of the (13)C signal intensities from H(13)CO(3)(-) and (13)CO(2), measured using MRS, can be used to calculate pH in vivo. The application of this technique to a murine tumor model demonstrated that it measured predominantly extracellular pH and could be mapped in the animal using spectroscopic imaging techniques. A second approach has been to use the production of hyperpolarized (13)CO(2) from hyperpolarized [1-(13)C]pyruvate to measure predominantly intracellular pH. In tissues with a high aerobic capacity, such as the heart, the hyperpolarized [1-(13)C]pyruvate undergoes rapid oxidative decarboxylation, catalyzed by intramitochondrial pyruvate dehydrogenase. Provided that there is sufficient carbonic anhydrase present to catalyze the rapid equilibration of the hyperpolarized (13)C label between CO(2) and bicarbonate, the ratio of their resonance intensities may again be used to estimate pH, which, in this case, is predominantly intracellular. As both pyruvate and bicarbonate are endogenous molecules they

  4. Neutron production by a 13C thick target irradiated by 20 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Vakhtin, D.; Plokhoi, V.; Alyakrinskiy, O.; Barbui, M.; Brandenburg, S.; Dendooven, P.; Cinausero, M.; Kandiev, Ya.; Kettunen, H.; Khlebnikov, S.; Lyapin, V.; Penttilä, H.; Prete, G.; Rizzi, V.; Samarin, S.; Tecchio, L. B.; Trzaska, W. H.; Tyurin, G.

    2008-10-01

    Neutron production using an enriched 13C carbon converter has been measured during the design study of the italian RIB facility SPES. Energy and angular distributions of neutrons emitted by bombarding a 13C target of stopping length with protons in the range of 20 to 90 MeV have been measured by time-of-flight and activation and compared with the prediction of a Monte Carlo code developed at Snezhinsk. At the proton energy of 100 MeV, firstly envisaged for SPES, the gain with respect to a natural C target is less than a factor of two, while yields still compare well with those for 40 MeV deuterons on natural carbon adopted by SPIRAL-II. At energies near 30 MeV the 13C thick target is definitely more prolific than the target of natural carbon, but both yields with protons are clearly lower than the one with deuterons. At the energy of 20 MeV envisaged for a first stage of SPES it might be more efficient to irradiate the uranium target with protons rather than using the two-stage method with converter.

  5. Single shot three‐dimensional pulse sequence for hyperpolarized 13C MRI

    PubMed Central

    Wang, Jiazheng; Wright, Alan J.; Hu, De‐en; Hesketh, Richard

    2016-01-01

    Purpose Metabolic imaging with hyperpolarized 13C‐labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single‐shot three‐dimensional (3D) imaging sequence and demonstrate its capability to generate 13C MR images in tumor‐bearing mice injected with hyperpolarized [1‐13C]pyruvate. Methods The pulse sequence acquires a stack‐of‐spirals at two spin echoes after a single excitation pulse and encodes the kz‐dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral‐spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13C‐labeled metabolites. Results A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3 × 2 s was achieved in tumor images of hyperpolarized [1‐13C]pyruvate and [1‐13C]lactate acquired in vivo. Higher resolution in the z‐direction, with a different k‐space trajectory, was demonstrated in measurements on a thermally polarized [1‐13C]lactate phantom. Conclusion The pulse sequence is capable of imaging hyperpolarized 13C‐labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740–752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26916384

  6. Interpreting the 13C / 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Xu, Jiaping; Lee, Xuhui; Xiao, Wei; Cao, Chang; Liu, Shoudong; Wen, Xuefa; Xu, Jingzheng; Zhang, Zhen; Zhao, Jiayu

    2017-03-01

    Observations of atmospheric CO2 mole fraction and the 13C / 12C ratio (expressed as δ13C) in urban airsheds provide constraints on the roles of anthropogenic and natural sources and sinks in local and regional carbon cycles. In this study, we report observations of these quantities in Nanjing at hourly intervals from March 2013 to August 2015, using a laser-based optical instrument. Nanjing is the second largest city located in the highly industrialized Yangtze River Delta (YRD), eastern China. The mean CO2 mole fraction and δ13C were (439.7 ± 7.5) µmol mol-1 and (-8.48 ± 0.56) ‰ over this observational period. The peak monthly mean δ13C (-7.44 ‰, July 2013) was 0.74 ‰ higher than that observed at Mount Waliguan, a WMO (World Meteorological Organization) baseline site on the Tibetan Plateau and upwind of the YRD region. The highly 13C-enriched signal was partly attributed to the influence of cement production in the region. By applying the Miller-Tans method to nighttime and daytime observations to represent signals from the city of Nanjing and the YRD, respectively, we showed that the 13C / 12C ratio of CO2 sources in the Nanjing municipality was (0.21 ± 0.53) ‰ lower than that in the YRD. Flux partitioning calculations revealed that natural ecosystems in the YRD were a negligibly small source of atmospheric CO2.

  7. Coral 13C/12C records of vertical seafloor displacement during megathrust earthquakes west of Sumatra

    NASA Astrophysics Data System (ADS)

    Gagan, Michael K.; Sosdian, Sindia M.; Scott-Gagan, Heather; Sieh, Kerry; Hantoro, Wahyoe S.; Natawidjaja, Danny H.; Briggs, Richard W.; Suwargadi, Bambang W.; Rifai, Hamdi

    2015-12-01

    The recent surge of megathrust earthquakes and tsunami disasters has highlighted the need for a comprehensive understanding of earthquake cycles along convergent plate boundaries. Space geodesy has been used to document recent crustal deformation patterns with unprecedented precision, however the production of long paleogeodetic records of vertical seafloor motion is still a major challenge. Here we show that carbon isotope ratios (δ13C) in the skeletons of massive Porites corals from west Sumatra record abrupt changes in light exposure resulting from coseismic seafloor displacements. Validation of the method is based on the coral δ13C response to uplift (and subsidence) produced by the March 2005 Mw 8.6 Nias-Simeulue earthquake, and uplift further south around Sipora Island during a M ∼ 8.4 megathrust earthquake in February 1797. At Nias, the average step-change in coral δ13C was 0.6 ± 0.1 ‰ /m for coseismic displacements of +1.8 m and -0.4 m in 2005. At Sipora, a distinct change in Porites microatoll growth morphology marks coseismic uplift of 0.7 m in 1797. In this shallow water setting, with a steep light attenuation gradient, the step-change in microatoll δ13C is 2.3 ‰ /m, nearly four times greater than for the Nias Porites. Considering the natural variability in coral skeletal δ13C, we show that the lower detection limit of the method is around 0.2 m of vertical seafloor motion. Analysis of vertical displacement for well-documented earthquakes suggests this sensitivity equates to shallow events exceeding Mw ∼ 7.2 in central megathrust and back-arc thrust fault settings. Our findings indicate that the coral 13C /12C paleogeodesy technique could be applied to convergent tectonic margins throughout the tropical western Pacific and eastern Indian oceans, which host prolific coral reefs, and some of the world's greatest earthquake catastrophes. While our focus here is the link between coral δ13C, light exposure and coseismic crustal deformation, the

  8. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction.

    PubMed

    Dunn, Philip J H; Honch, Noah V; Evershed, Richard P

    2011-10-30

    Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values.

  9. Short-term d13C changes in cultivated soils from Mexico

    NASA Astrophysics Data System (ADS)

    Lounejeva, E.; Etchevers, J.; Morales Puente, P.; Cienfuegos Alvarado, E.; Sedov, S.; Solleiro, E.; Hidalgo, C.

    2007-05-01

    (generally less than -20%o). The common feature for the soils under the Traditional and Traditional improved treatments was a C3 enrichment of the superficial SOM component compared to the underlying layers as a consequence of the dominance of the cultivated C3 species. A similar but more accentuated negative shift is also observed in the SOM from the forest soil (non-cultivated soil d13C -25.2), so the interpretation is uncertain. In the Traditional Organic treatment a clear and perceptible increment of d13C in the SOM carbon signature was observed. This was attributed mainly to the fact that cows manure may contain a lot of C4 coming from feedstuff rich in corn grain that is provided to the animals during grass shortage periods . However, the maize crop introduced in the rotation during the 3rd year had no major effect on the tepetates carbon isotopic signature. The stable isotopic carbon data corresponding to a short period (4 years) of observation in uniformly managed soil ecosystems showed that d13C changed due to the quality of the residues (relative abundance of C3/C4 species) incorporated to the SOC, but this memory is susceptible to undergo changes in the short term and could be rapidly reversed as a consequence of crop management.

  10. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  11. New method for estimating bacterial cell abundances in natural samples by use of sublimation.

    PubMed

    Glavin, Daniel P; Cleaves, H James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L

    2004-10-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  12. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  13. Galactose oxidation using (13)C in healthy and galactosemic children.

    PubMed

    Resende-Campanholi, D R; Porta, G; Ferrioli, E; Pfrimer, K; Ciampo, L A Del; Junior, J S Camelo

    2015-03-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-(13)C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate (13)CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-(13)C-galactose to all children. The molar ratios of (13)CO2 and (12)CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of (13)C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  14. 13C NMR of Nephila clavipes major ampullate silk gland.

    PubMed

    Hijirida, D H; Do, K G; Michal, C; Wong, S; Zax, D; Jelinski, L W

    1996-12-01

    The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.

  15. Inferring the nature of anthropogenic threats from long-term abundance records.

    PubMed

    Shoemaker, Kevin T; Akçakaya, H Resit

    2015-02-01

    Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much-needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long-term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long-term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real-world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real-world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land-use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of

  16. Millimeter and submillimeter wave spectra of 13C methylamine

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.

    2016-03-01

    Context. Methylamine (CH3NH2) is a light molecule of astrophysical interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. Aims: In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945 GHz. Methods: The spectrum of 13C methylamine was recorded using conventional absorption spectrometers. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group-theoretical high-barrier tunneling Hamiltonian that was developed for methylamine. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. Results: In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950 GHz with J ≤ 50 and Ka ≤ 20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5 × 1014 cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic

  17. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing

    NASA Astrophysics Data System (ADS)

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-01

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M⊙ ≲ 3), where the main neutron source is the 13C(α, n)16O reaction. This last reaction is activated from locally produced 13C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the 13C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing 13C reservoirs of several 10-3 M⊙. The ensuing 13C-enriched zone has an almost flat profile, while only a limited production of 14N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large 13C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  18. s-PROCESSING IN AGB STARS REVISITED. II. ENHANCED {sup 13}C PRODUCTION THROUGH MHD-INDUCED MIXING

    SciTech Connect

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-20

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M{sub ⊙} ≲ 3), where the main neutron source is the {sup 13}C(α, n){sup 16}O reaction. This last reaction is activated from locally produced {sup 13}C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the {sup 13}C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing {sup 13}C reservoirs of several 10{sup −3} M{sub ⊙}. The ensuing {sup 13}C-enriched zone has an almost flat profile, while only a limited production of {sup 14}N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large {sup 13}C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  19. Characterization of covalent protein conjugates using solid-state sup 13 C NMR spectroscopy

    SciTech Connect

    Garbow, J.R.; Fujiwara, Hideji; Sharp, C.R.; Logusch, E.W. )

    1991-07-23

    Cross-polarization magic-angle spinning (CPMAS) {sup 13}C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an {alpha}-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state {sup 13}C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.

  20. Determination of 15N/14N and 13C/12C in Solid and Aqueous Cyanides

    USGS Publications Warehouse

    Johnson, C.A.

    1996-01-01

    The stable isotopic compositions of nitrogen and carbon in cyanide compounds can be determined by combusting aliquots in sealed tubes to form N2 gas and CO2 gas and analyzing the gases by mass spectrometry. Free cyanide (CN-aq + HCNaq) in simple solutions can also be analyzed by first precipitating the cyanide as copper(II) ferrocyanide and then combusting the precipitate. Reproducibility is ??0.5??? or better for both ??15N and ??13C. If empirical corrections are made on the basis of carbon yields, the reproducibility of ??13C can be improved to ??0.2???. The analytical methods described herein are sufficiently accurate and precise to apply stable isotope techniques to problems of cyanide degradation in natural waters and industrial process solutions.

  1. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    PubMed

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  2. A thalium-doped sodium iodide well counter for radioactive tracer applications with naturally-abundant 40K

    NASA Astrophysics Data System (ADS)

    Parker, Andrew J.; Boxall, Colin; Joyce, Malcolm J.; Schotanus, Paul

    2013-09-01

    The use of a thallium-doped sodium-iodide well-type scintillation detector for the assay of the low-activity radioisotope 40K, in open-source potassium chloride aqueous solutions, is described. The hazards, safety concerns and radiowaste generation associated with using open-source radioactive isotopes can present significant difficulties, the use of hot cells and escalated costs in radioanalytical laboratory research. A solution to this is the use of low-hazard alternatives that mimic the migration and dispersion characteristics of notable fission products (in this case 137Cs). The use of NaI(Tl) as a detection medium for naturally-abundant levels of 40K in a range of media is widespread, but the use of 40K as a radioactive tracer has not been reported. The use of such low-activity sources is often complicated by the ability to detect them efficiently. In this paper a scintillator detector designed to detect the naturally-abundant 40K present in potassium chloride in tracer applications is described. Examples of the use of potassium chloride as a tracer are given in the context of ion exchange and electrochemical migration studies, and comparisons in performance are drawn from literature with hyper pure germanium semiconductor detectors, which are more commonly utilised detectors in high-resolution counting applications.

  3. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  4. The Vendian-Cambrian δ 13C record, North Iran: evidence for overturning of the ocean before the Cambrian Explosion

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroto; Matsumoto, Ryo; Kakuwa, Yoshitaka; Hamdi, Bahaeddin; Zibaseresht, Hamid

    Continuous fossilliferous successions across the Precambrian/Cambrian (PC/C) boundary in the Elburz Mountains of Northern Iran show a remarkable negative δ 13C excursion just below the PC/C boundary. High concentrations of manganese, phosphorus, barium, and high abundances of fossil phytoplankton, and black shale coincide with the excursion. Worldwide stratigraphic correlation shows that the isotopic anomaly is a global event. The initial Metazoan diversification, coupled with 13C enrichment, occurs stratigraphically just above the excursion. We propose the following scenario for oceanic environmental changes before the Cambrian Faunal Explosion based on new data from Iran: A global warm climate following the last Precambrian glaciation resulted in a generally stagnant oceanic condition, so that surface water was oxic; deep water was dysoxic, depleted in 13C, and enriched in nutrients. Massive upwelling of deep water (vertical advection of nutrients and 13C-depleted CO 2) caused enhanced phytoplankton productivity and a sharp drop in δ 13C in shallow water carbonate and organic carbon. We conclude that latest Cryptozoic overturning of ocean stratification preceded the Cambrian Explosion.

  5. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  6. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  7. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate.

    PubMed

    Josan, Sonal; Park, Jae Mo; Hurd, Ralph; Yen, Yi-Fen; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2013-12-01

    Hyperpolarized (13)C MRS allows the in vivo assessment of pyruvate dehydrogenase complex (PDC) flux, which converts pyruvate to acetyl-coenzyme A (acetyl-CoA). [1-(13)C]pyruvate has been used to measure changes in cardiac PDC flux, with demonstrated increase in (13)C-bicarbonate production after dichloroacetate (DCA) administration. With [1-(13)C]pyruvate, the (13)C label is released as (13 CO2 /(13)C-bicarbonate, and, hence, does not allow us to follow the fate of acetyl-CoA. Pyruvate labeled in the C2 position has been used to track the (13)C label into the TCA (tricarboxylic acid) cycle and measure [5-(13)C]glutamate as well as study changes in [1-(13)C]acetylcarnitine with DCA and dobutamine. This work investigates changes in the metabolic fate of acetyl-CoA in response to metabolic interventions of DCA-induced increased PDC flux in the fed and fasted state, and increased cardiac workload with dobutamine in vivo in rat heart at two different pyruvate doses. DCA led to a modest increase in the (13)C labeling of [5-(13)C]glutamate, and a considerable increase in [1-(13)C]acetylcarnitine and [1,3-(13)C]acetoacetate peaks. Dobutamine resulted in an increased labeling of [2-(13)C]lactate, [2-(13)C]alanine and [5-(13)C]glutamate. The change in glutamate with dobutamine was observed using a high pyruvate dose but not with a low dose. The relative changes in the different metabolic products provide information about the relationship between PDC-mediated oxidation of pyruvate and its subsequent incorporation into the TCA cycle compared with other metabolic pathways. Using a high dose of pyruvate may provide an improved ability to observe changes in glutamate.

  8. THz spectroscopy and first ISM detection of excited torsional states of 13C-methyl formate

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Carvajal, M.; Tercero, B.; Kleiner, I.; López, A.; Cernicharo, J.; Motiyenko, R. A.; Huet, T. R.; Guillemin, J. C.; Margulès, L.

    2014-08-01

    Context. An astronomical survey of interstellar molecular clouds needs a previous analysis of the spectra in the microwave and sub-mm energy range of organic molecules to be able to identify them. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of rotational spectra. These constants can be used to predict the transitions frequencies very precisely that were not measured in the laboratory. Aims: We present the experimental study and its theoretical analysis for two 13C-methyl formate isotopologues to detect these two isotopologues for the first time in their excited torsional states, which lie at 130 cm-1 (200 K) in Orion-KL. Methods: New spectra of HCOO13CH3 (13C2) methyl formate were recorded with the mm- and submm-wave spectrometer in Lille from 50 to 940 GHz. A global fit for vt = 0 and 1 was accomplished with the BELGI program to reproduce the experimental spectra with greater accuracy. Results: We analysed 5728 and 2881 new lines for vt = 0 and 1 for HCOO13CH3. These new lines were globally fitted with 846 previously published lines for vt = 0. In consequence, 52 parameters of the RAM Hamiltonian were accurately determined and the value of the barrier height (V3 = 369.93168(395) cm-1) was improved. We report the detection of the first excited torsional states (vt = 1) in Orion-KL for the 13C2 and 13C1 methyl formate based on the present analysis and previously published data. We provide column densities, isotopic abundances, and vibrational temperatures for these species. Conclusions: Following this work, accurate prediction can be provided. This permits detecting 135 features of the first excited torsional states of 13C-methyl formate isotopologues in Orion-KL in the 80-280 GHz frequency range, without missing lines. Full Table A.1 and the IRAM spectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568

  9. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  10. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  11. Rapid, storm-induced changes in the natural abundance of sup 15 N in a planktonic ecosystem, Chesapeake Bay, USA

    SciTech Connect

    Montoya, J.P.; McCarthy, J.J. ); Horrigan, S.G. )

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN), and two species of zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of {sup 15}N ({delta} {sup 15}N) in the major dissolved and planktonic pools of nitrogen suggested that the {delta}{sup 15}N of PN was largely determined by isotopic fractionation during uptake of NH{sub 4}{sup +} by phytoplankton. Averaged over the transect as a whole, the {delta}{sup 15}N of the herbivorous calanoid copepod Acartia tonsa was 4.1% higher than that of the PN, while the {delta}{sup 15}N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4% higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH{sub 4}{sup +} into the surface layer of the bay. In combination with ancillary physical, chemical, and biological data, these changes in {delta}{sup 15}N provided estimates of the isotopic fractionation factor for NH{sub 4}{sup +} uptake by phytoplankton ({alpha} = 1.0065-1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in {delta}{sup 15}N observed during this cruise, the relative distribution of {sup 15}N between trophic levels was preserved: during the second transect, the difference in {delta}{sup 15}N between Acartia tonsa and PN was 3.6%, and the difference in {delta}{sup 15}N between Mnemiopsis leidyi and PN was 7.3%. These results demonstrate that the natural abundance of {sup 15}N can change dramatically on a time scale of days, and that time-series studies of the natural abundance of {sup 15}N can be a useful complement to studies using tracer additions of {sup 15}N to document nitrogen transformations in planktonic ecosystems.

  12. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    PubMed

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  13. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2

    PubMed Central

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B.; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-01-01

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection. PMID:26039789

  14. Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis.

    PubMed

    Mairinger, Teresa; Steiger, Matthias; Nocon, Justyna; Mattanovich, Diethard; Koellensperger, Gunda; Hann, Stephan

    2015-12-01

    For the first time an analytical work flow based on accurate mass gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS) with chemical ionization for analysis providing a comprehensive picture of (13)C distribution along the primary metabolism is elaborated. The method provides a powerful new toolbox for (13)C-based metabolic flux analysis, which is an emerging strategy in metabolic engineering. In this field, stable isotope tracer experiments based on, for example, (13)C are central for providing characteristic patterns of labeled metabolites, which in turn give insights into the regulation of metabolic pathway kinetics. The new method enables the analysis of isotopologue fractions of 42 free intracellular metabolites within biotechnological samples, while tandem mass isotopomer information is also accessible for a large number of analytes. Hence, the method outperforms previous approaches in terms of metabolite coverage, while also providing rich isotopomer information for a significant number of key metabolites. Moreover, the established work flow includes novel evaluation routines correcting for isotope interference of naturally distributed elements, which is crucial following derivatization of metabolites. Method validation in terms of trueness, precision, and limits of detection was performed, showing excellent analytical figures of merit with an overall maximum bias of 5.8%, very high precision for isotopologue and tandem mass isotopomer fractions representing >10% of total abundance, and absolute limits of detection in the femtomole range. The suitability of the developed method is demonstrated on a flux experiment of Pichia pastoris employing two different tracers, i.e., 1,6(13)C2-glucose and uniformly labeled (13)C-glucose.

  15. Natural landscape and stream segment attributes influencing the distribution and relative abundance of riverine smallmouth bass in Missouri

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.; Sowa, S.P.; Annis, G.

    2007-01-01

    Protecting and restoring fish populations on a regional basis are most effective if the multiscale factors responsible for the relative quality of a fishery are known. We spatially linked Missouri's statewide historical fish collections to environmental features in a geographic information system, which was used as a basis for modeling the importance of landscape and stream segment features in supporting a population of smallmouth bass Micropterus dolomieu. Decision tree analyses were used to develop probability-based models to predict statewide occurrence and within-range relative abundances. We were able to identify the range of smallmouth bass throughout Missouri and the probability of occurrence within that range by using a few broad landscape variables: the percentage of coarse-textured soils in the watershed, watershed relief, and the percentage of soils with low permeability in the watershed. The within-range relative abundance model included both landscape and stream segment variables. As with the statewide probability of occurrence model, soil permeability was particularly significant. The predicted relative abundance of smallmouth bass in stream segments containing low percentages of permeable soils was further influenced by channel gradient, stream size, spring-flow volume, and local slope. Assessment of model accuracy with an independent data set showed good concordance. A conceptual framework involving naturally occurring factors that affect smallmouth bass potential is presented as a comparative model for assessing transferability to other geographic areas and for studying potential land use and biotic effects. We also identify the benefits, caveats, and data requirements necessary to improve predictions and promote ecological understanding. ?? Copyright by the American Fisheries Society 2007.

  16. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    NASA Astrophysics Data System (ADS)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  17. Late Ordovician land plant spore 13C fractionation records atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Nelson, D. M.; Pearson, A.; Wellman, C.

    2008-12-01

    Molecular systematics and spore wall ultrastructure studies indicate that late Ordovician diad and triad fossil spores were likely produced by plants most closely related to liverworts. Here, we report the first δ13C estimates of Ordovician fossil land plant spores, which were obtained using a spooling wire micro-combustion device interfaced with an isotope-ratio mass spectrometer (Sessions et al., 2005, Analytical Chemistry, 77, 6519). The spores all originate from Saudi Arabia on the west of Gondwana and date to before (Cardadoc, ca. 460 Ma), during (443Ma) and after (Llandovery, ca. 440Ma) the Hirnantian glaciation. We use these numbers along with marine carbonate δ13C records to estimate atmospheric CO2 by implementing a theoretical model that captures the strong CO2-dependency of 13C fractionation in non-vascular land plants (Fletcher et al., 2008, Nature Geoscience, 1, 43). Although provisional at this stage, reconstructed CO2 changes are consistent with the Kump et al. (2008) (Paleo. Paleo. Paleo. 152, 173) 'weathering hypothesis' whereby pre-Hirnantian cooling is caused by relatively low CO2 (ca. 700ppm) related to enhanced weathering of young basaltic rocks during the early phase of the Taconic uplift, with background values subsequently rising to around double this value by the earliest Silurian. Further analyses will better constrain atmospheric CO2 change during the late Ordovician climatic perturbation and address controversial hypotheses concerning the causes and timing of the Earth system transition into an icehouse state.

  18. 13C metabolic flux analysis in complex systems.

    PubMed

    Zamboni, Nicola

    2011-02-01

    Experimental determination of in vivo metabolic rates by methods of (13)C metabolic flux analysis is a pivotal approach to unravel structure and regulation of metabolic networks, in particular with microorganisms grown in minimal media. However, the study of real-life and eukaryotic systems calls for the quantification of fluxes also in cellular compartments, rich media, cell-wide metabolic networks, dynamic systems or single cells. These scenarios drastically increase the complexity of the task, which is only partly dealt by existing approaches that rely on rigorous simulations of label propagation through metabolic networks and require multiple labeling experiments or a priori information on pathway inactivity to simplify the problem. Albeit qualitative and largely driven by human interpretation, statistical analysis of measured (13)C-patterns remains the exclusive alternative to comprehensively handle such complex systems. In the future, this practice will be complemented by novel modeling frameworks to assay particular fluxes within a network by stable isotopic tracer for targeted validation of well-defined hypotheses.

  19. Deconvolution of the tree ring based delta/sup 13/C record

    SciTech Connect

    Peng, T.; Broecker, W.S.; Freyer, H.D.; Trumbore, S.

    1983-04-20

    We assumed that the tree-ring based /sup 13/C//sup 12/C record constructed by Freyer and Belacy (1983) to be representative of the fossil fuel and forest-soil induced /sup 13/C//sup 12/C change for atmospheric CO/sub 2/. Through the use of a modification of the Oeschger et al. ocean model, we have computed the contribution of the combustion of coal, oil, and natural gas to this observed /sup 13/C//sup 12/C change. A large residual remains when the tree-ring-based record is corrected for the contribution of fossil fuel CO/sub 2/. A deconvolution was performed on this residual to determine the time history and magnitude of the forest-soil reservoir changes over the past 150 years. Several important conclusions were reached. (1) The magnitude of the integrated CO/sub 2/ input from these sources was about 1.6 times that from fossil fuels. (2) The forest-soil contribution reached a broad maximum centered at about 1900. (3) Over the 2 decade period covered by the Mauna Loa atmospheric CO/sub 2/ content record, the input from forests and soils was about 30% that from fossil fuels. (4) The /sup 13/C//sup 12/C trend over the last 20 years was dominated by the input of fossil fuel CO/sub 2/. (5) The forest-soil release did not contribute significantly to the secular increase in atmospheric CO/sub 2/ observed over the last 20 years. (6) The pre-1850 atmospheric p2 values must have been in the range 245 to 270 x 10/sup -6/ atmospheres.

  20. A deconvolution of the tree ring based δ13C record

    NASA Astrophysics Data System (ADS)

    Peng, Tsung-Hung; Broecker, Wallace S.; Freyer, Hans D.; Trumbore, Susan

    1983-04-01

    We assumed that the tree-ring-based 13C/12C record constructed by Freyer and Belacy (1983) to be representative of the fossil fuel and forest-soil induced 13C/12C change for atmospheric CO2. Through the use of a modification of the Oeschger et al. ocean model, we have computed the contribution of the combustion of coal, oil, and natural gas to this observed 13C/12C change. A large residual remains when the tree-ring-based record is corrected for the contribution of fossil fuel CO2. A deconvolution was performed on this residual to determine the time history and magnitude of the forest-soil reservoir changes over the past 150 years. Several important conclusions were reached. (1) The magnitude of the integrated CO2 input from these sources was about 1.6 times that from fossil fuels. (2) The forest-soil contribution reached a broad maximum centered at about 1900. (3) Over the 2 decade period covered by the Mauna Loa atmospheric CO2 content record, the input from forests and soils was about 30% that from fossil fuels. (4) The 13C/12C trend over the last 20 years was dominated by the input of fossil fuel CO2. (5) The forest-soil release did not contribute significantly to the secular increase in atmospheric CO2 observed over the last 20 years. (6) The pre-1850 atmospheric ?values must have been in the range 245 to 270×10-6 atmospheres.

  1. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  2. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  3. The feasibility of using delta15N and delta13C values for discriminating between conventionally and organically fertilized pepper (Capsicum annuum L.).

    PubMed

    Flores, Pilar; Fenoll, José; Hellín, Pilar

    2007-07-11

    A greenhouse experiment was conducted to determine the feasibility of using leaf and fruit delta15N and delta13C values to discriminate between conventionally and organically fertilized peppers, when conventional management involves the application of organic amendment for soil preparation. All of the treatments involved adding horse manure to the soil before applying different rates of synthetic N fertilizers: 0 (T1 and T2), 150 (T3), and 300 kg ha(-1) (T4). The difference between T1 and T2 was that no synthetic fertilizer had been applied to plot T1 during the 5 years prior to the experiment. Significant differences were found in the delta15N values of leaves and fruit from the plants grown under organic or mixed fertilization. The results indicate the possibility of using 15N natural abundance as an indicator of fertilization management. On the other hand, delta13C values did not contribute any additional information for discriminating between the organically and the synthetically and organically fertilized peppers.

  4. Contributions of root and shoot derived-C to soil organic matter throughout an agricultural soil profile assessed by compound-specific 13C analysis

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie

    2010-05-01

    The turnover of soil organic matter (SOM) is generally studied in the topsoil horizons, where the highest concentrations of organic carbon (OC) are found. Subsoils, although containing lower amounts of organic carbon compared to topsoils, greatly contribute to the total carbon stocks within a soil profile. An increase in SOM aliphaticity was observed during SOM degradation, and also down the soil profile, suggesting that the stable pool of SOM is enriched in aliphatic structures. These alkyl-C structures might mainly derive from cutins and suberins, two biomacromolecules, which contain biomarkers specific for shoot and root plant biomass. The aim of this study was to use cutin and suberin structural units to follow the incorporation of plant biomass originating from roots and shoots throughout an agricultural soil profile. We measured the 13C natural abundance of root and shoot biomarkers in samples taken from 15 to 105 cm depth in a C3/C4 chronosequence. After 9 years of maize (C4) cropping, the distribution of root biomarkers (diacids) significantly changed and their concentration increased compared to the wheat (CC3) soil. The largest increase was observed at 60-75 cm where diacids reached up to 134 ?g/gOC compared to 23 ?g/gOC in the wheat soil. Higher inputs from maize root biomass are also suggested by an average 13C enrichment of the root markers in the maize compared to the wheat soil.

  5. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate

    PubMed Central

    Bastiaansen, Jessica A. M.; Merritt, Matthew E.; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  6. Micron-scale intra-ring analyses of δ13C in early Eocene Arctic wood from Ellesmere Island

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L.

    2009-12-01

    Early Eocene (ca. 53 Ma) fossil assemblages on Ellesmere Island (75 oN paleolatitude), provide rich information about the plant and animal life of the lush polar ecosystems of the time. Fossil wood recovered from Ellesmere Island is abundant and not permineralized; however, morphological features such as growth rings and resin canals have been obliterated by compression. We report on exceptionally high-resolution intra-ring analyses of δ13C within fossil wood, sampled at ~30 micron intervals across several centimeters of wood sample. Clear patterns in systematic seasonal increases and decreases in wood δ13C allowed us to identify at least 5 annual cycles in the wood. The patterns of increase and decrease in δ13C were consistent with patterns observed for evergreen wood, and distinct from the deciduous patterns we have observed for Metasequoia fossil wood from the middle Eocene (ca. 45 Ma) Arctic site on Axel Heiberg Island. We believe that the high point in the δ13C value of wood seen in each cycle corresponds to the highest environmental temperatures during the annual cycle, as has been seen for modern evergreens (e.g., Barbour et al., 2002). Modern studies have also noted that high temperature periods are correlated with the highest vapor-pressure and soil-water deficits of the annual cycle; these environmental factors would cause the plant to change its discrimination during photosynthesis. We will discuss the relatively low amplitude of δ13C fluctuations (0.5-1.0 ‰) clearly defined by Ellesmere fossil wood, in comparison to observations on modern common evergreens (2.0-4.0 ‰), and speculate that this difference implies greatly dampened seasonal temperature fluctuations in Eocene polar environments, relative to today. Barbour M.M., Walcroft A.S., Farquhar G.D., 2002, Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment: v. 25, p. 1483-1499.

  7. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California

    USGS Publications Warehouse

    Hein, J.R.; Normark, W.R.; McIntyre, B.R.; Lorenson, T.D.; Powell, C.L.

    2006-01-01

    Methane and hydrogen sulfide vent from a cold seep above a shallowly buried methane hydrate in a mud volcano located 24 km offshore southern California in?? 800 m of water. Bivalves, authigenic calcite, and methane hydrate were recovered in a 2.1 m piston core. Aragonite shells of two bivalve species are unusually depleted in 13C (to -91??? ??13C), the most 13C-depleted shells of marine macrofauna yet discovered. Carbon isotopes for both living and dead specimens indicate that they used, in part, carbon derived from anaerobically oxidized methane to construct their shells. The ??13C values are highly variable, but most are within the range -12??? to -91???. This variability may be diagnostic for identifying cold-seep-hydrate systems in the geologic record. Authigenic calcite is abundant in the cores down to ???1.5 m subbottom, the top of the methane hydrate. The calcite is depleted in 13C (??13C = -46??? to -58???), indicating that carbon produced by anaerobically oxidized methane is the main source of the calcite. Methane sources include a geologic hydrocarbon reservoir from Miocene source rocks, and biogenic and thermogenic degradation of organic matter in basin sediments. Oxygen isotopes indicate that most calcite formed out of isotopic equilibrium with ambient bottom water, under the influence of gas hydrate dissociation and strong methane flux. High metal content in the mud volcano sediment indicates leaching of basement rocks by fluid circulating along an underlying fault, which also allows for a high flux of fossil methane. ?? 2006 Geological Society of America.

  8. Improved ground state and ν12 = 1 state rovibrational constants for ethylene-13C2 (13C2H4)

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.

    2014-05-01

    The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-13C2 (13C2H4) was recorded in the frequency range of 1350-1550 cm-1 with unapodized resolution of 0.0063 cm-1. Improved upper state (ν12 = 1) rovibrational constants consisting of three rotational, five quartic and five sextic constants were derived by assigning and fitting 1731 infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00030 cm-1. More higher-order upper state (ν12 = 1) constant were derived in the present analysis than previously reported. Improved ground state rovibrational constants were also determined from the fit of 1104 ground state combination differences (GSCD) with a root-mean-square deviation of 0.00029 cm-1. The A-type ν12 band centered at 1436.65409 ± 0.00002 cm-1 has a calculated inertial defect Δ12 is 0.242896 ± 0.000007 μÅ2. No indications of perturbation were found in the analysis of the band.

  9. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by (13)C metabolic flux analysis.

    PubMed

    Gonzalez, Jacqueline E; Long, Christopher P; Antoniewicz, Maciek R

    2017-01-01

    Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no (13)C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated (13)C-MFA using the optimal tracers [1,2-(13)C]glucose, [1,6-(13)C]glucose, [1,2-(13)C]xylose and [5-(13)C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-(13)C]glucose and [U-(13)C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.

  10. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Battle, M. O.; Langenfelds, R. L.; Steele, L. P.; Curran, M.; Bender, M.; White, J. W. C.; Jenk, T. M.; Blunier, T.; Francey, R. J.

    2013-08-01

    We present new measurements of δ13C of CO2 extracted from a high-resolution ice core from Law Dome (East Antarctica), together with firn measurements performed at Law Dome and South Pole, covering the last 150 years. Our analysis is motivated by the need to better understand the role and feedback of the carbon (C) cycle in climate change, by advances in measurement methods, and by apparent anomalies when comparing ice core and firn air δ13C records from Law Dome and South Pole. We demonstrate improved consistency between Law Dome ice, South Pole firn, and the Cape Grim (Tasmania) atmospheric δ13C data, providing evidence that our new record reliably extends direct atmospheric measurements back in time. We also show a revised version of early δ13C measurements covering the last 1000 years, with a mean preindustrial level of -6.50‰. Finally, we use a Kalman Filter Double Deconvolution to infer net natural CO2 fluxes between atmosphere, ocean, and land, which cause small δ13C deviations from the predominant anthropogenically induced δ13C decrease. The main features found from the previous δ13C record are confirmed, including the ocean as the dominant cause for the 1940 A.D. CO2 leveling. Our new record provides a solid basis for future investigation of the causes of decadal to centennial variations of the preindustrial atmospheric CO2 concentration. Those causes are of potential significance for predicting future CO2 levels and when attempting atmospheric verification of recent and future global carbon emission mitigation measures through Coupled Climate Carbon Cycle Models.

  11. 13C Metabolomics: NMR and IROA for Unknown Identification

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Wang, Bing; Garrett, Timothy J.; Edison, Arthur S.

    2016-01-01

    Abstract: Background Isotopic Ratio Outlier Analysis (IROA) is an untargeted metabolomics method that uses stable isotopic labeling and LC-HRMS for identification and relative quantification of metabolites in a biological sample under varying experimental conditions. Objective We demonstrate a method using high-sensitivity 13C NMR to identify an unknown metabolite isolated from fractionated material from an IROA LC-HRMS experiment. Methods IROA samples from the nematode Caenorhabditis elegans were fractionated using LC-HRMS using 5 repeated injections and collecting 30 sec fractions. These were concentrated and analyzed by 13C NMR. Results We isotopically labeled samples of C. elegans and collected 2 adjacent LC fractions. By HRMS, one contained at least 2 known metabolites, phenylalanine and inosine, and the other contained tryptophan and an unknown feature with a monoisotopic mass of m/z 380.0742 [M+H]+. With NMR, we were able to easily verify the known compounds, and we then identified the spin system networks responsible for the unknown resonances. After searching the BMRB database and comparing the molecular formula from LC-HRMS, we determined that the fragments were a modified anthranilate and a glucose modified by a phosphate. We then performed quantum chemical NMR chemical shift calculations to determine the most likely isomer, which was 3’-O-phospho-β-D-glucopyranosyl-anthranilate. This compound had previously been found in the same organism, validating our approach. Conclusion We were able to dereplicate previously known metabolites and identify a metabolite that was not in databases by matching resonances to NMR databases and using chemical shift calculations to determine the correct isomer. This approach is efficient and can be used to identify unknown compounds of interest using the same material used for IROA. PMID:28090435

  12. Millimeter and submillimeter wave spectra of 13C-glycolaldehydes

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2013-01-01

    Context. Glycolaldehyde (CH2OHCHO) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. Astronomical surveys of interstellar molecules, such as those available with the very sensitive ALMA telescope, require preliminary laboratory investigations of the microwave and submillimeter-wave spectra of molecular species including new isotopologs - to identify these in the interstellar media. Aims: To achieve the detection of the 13C isotopologs of glycolaldehyde in the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. Methods: The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945 GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with an accuracy of 30 kHz up to 700 GHz and of 50 kHz above 700 GHz. We analyzed the spectra with a standard Watson Hamiltonian. Results: About 10 000 new lines were identified for each isotopolog. The spectroscopic parameters were determined for the ground- and the three lowest vibrational states up to 945 and 630 GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. Conclusions: The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A96

  13. 1H and 13C NMR signal assignments of a novel Baeyer-Villiger originated diterpene lactone.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Gunatilaka, A A Leslie; Boaventura, Maria Amélia D

    2006-02-01

    A highly rearranged novel dilactone was the single product isolated from Baeyer-Villiger oxidation of a norketone prepared from grandiflorenic acid, a natural kaurane diterpene. The complete 1H and 13C NMR assignment is presented for this novel compound that showed discrete in vitro antibacterial activity.

  14. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance.

    PubMed

    Eldegard, Katrine; Sonerud, Geir A

    2009-05-07

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry).

  15. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides.

    PubMed

    Villegas, Myriam E; Vila, Jorge A; Scheraga, Harold A

    2007-02-01

    The dependence of the (13)C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel beta-sheet model peptide represented by the amino acid sequence Ac-(Ala)(3)-X-(Ala)(12)-NH(2) where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel beta-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the (13)C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel beta-sheet, there is (i) good agreement between computed and observed (13)C(alpha) and (13)C(beta) chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed (13)C(alpha) and (13)C(beta) chemical shifts as a function of chi(1) for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed (13)C(alpha) chemical shifts on chi(xi) (with xi > or = 2) compared to chi(1) for eleven out of seventeen residues. Our results suggest that predicted (13)C(alpha) and (13)C(beta) chemical shifts, based only on backbone (phi,psi) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.

  16. Effects of weed cover composition on insect pest and natural enemy abundance in a field of Dracaena marginata (Asparagales: Asparagaceae) in Costa Rica.

    PubMed

    Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J

    2014-04-01

    Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.

  17. Ursodeoxycholic acid treatment of hepatic steatosis: a (13)C NMR metabolic study.

    PubMed

    Nunes, Patrícia M; Jones, John G; Rolo, Anabela P; Palmeira, Carlos M M; Carvalho, Rui A

    2011-11-01

    Ursodeoxycholic acid (UDCA) is commonly used for the treatment of hepatobiliary disorders. In this study, we tested whether a 4-week treatment with this bile acid (12-15 mg/kg/day) could improve hepatic fatty acid oxidation in obese Zucker rats - a model for nonalcoholic fatty liver disease and steatosis. After 24 h of fasting, livers were perfused with physiological concentrations of [U-(13) C]nonesterified fatty acids and [3-(13) C]lactate/[3-(13) C]pyruvate. Steatosis was associated with abundant intracellular glucose, lactate, alanine and methionine, and low concentrations of choline and betaine. Steatotic livers also showed the highest output of glucose and lactate. Glucose and glycolytic products were mostly unlabeled, indicating active glycogenolysis and glycolysis after 24 h of fasting. UDCA treatment resulted in a general amelioration of liver metabolic abnormalities with a decrease in intracellular glucose and lactate, as well as their output. Hepatic betaine and methionine were also normalized after UDCA treatment, suggesting the amelioration of anti-oxidative defenses. Choline levels were not affected by the bile acid, which may indicate a deficient synthesis of very-low-density lipoproteins. The percentage contribution of [U-(13) C]nonesterified fatty acids to acetyl-coenzyme A entering the tricarboxylic acid (TCA) cycle was significantly lower in livers from Zucker obese rats relative to control rats: 23.1 ± 4.9% versus 44.1 ± 2.7% (p < 0.01). UDCA treatment did not alter significantly fatty acid oxidation in control rats, but improved significantly oxidation in Zucker obese rats to 46.0 ± 6.1% (p > 0.05), comparable with control group values. The TCA cycle activity subsequent to fatty acid oxidation was reduced in steatotic livers and improved when UDCA was administered (0.24 ± 0.04 versus 0.37 ± 0.05, p = 0.05). We further suggest that the mechanism of action of UDCA is either related to the activity of the

  18. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  19. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Benitez-Nelson, Bryan C.; Montluçon, Daniel B.; Prahl, Fredrick G.; McNichol, Ann P.; Xu, Li; Repeta, Daniel J.; Eglinton, Timothy I.

    2013-03-01

    Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3‰ to -37.5‰) and Δ14C values (-204‰ to +2‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30‰ and -34‰) and a relatively narrow range of Δ14C values (-45‰ to -150‰; HPLC-based measurement) that were similar to, or younger than, bulk OM (-195‰ to -137‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ˜500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source

  20. Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of 13C-GLYCOLALDEHYDE

    NASA Astrophysics Data System (ADS)

    Haykal, Imane; Margulès, Laurent; Huet, Therese R.; Motiyenko, Roman; Guillemin, J.-C.

    2011-06-01

    Glycolaldehyde has been identified in interstellar sources. The relative abundance ratios of the three isomers (acetic acid) : (glycolaldehyde) : (methylformate) were estimated . The detection of 13C_1 and 13C_2 isotopomers of methylformate has been recently reported in Orion, as a result of the detailled labororatory spectroscopic study. Therefore the spectroscopy of the 13C isotopomers of glycolaldehyde is investigated in laboratory in order to provide data for an astronomical search. The instrument ALMA will certainly be a good instrument to detect them. Up to now, only the microwave spectra of 13CH_2OH-CHO and of CH_2OH-13CHO have been observed several years ago in the 12-40 GHz range. Spectra of both species are presently recorded in Lille in the 150-950 GHz range with the new submillimetre-wave spectrometer based on harmonic generation of a microwave synthesizer source, using only solid-state devices, and coupled to a cell of 2.2 m length The absolute accuracy of the line positions is better than 30 KHz. The rotational structure of the ground state and of the three first excited vibrational states has been observed. Two 13C enriched samples were used. The analysis is in progress. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054 J. M. Hollis, S. N. Vogel, L. E. Snyder, et al., Astrophys. J. 554(2001) L81 R. A. H. Butler, F. C. De Lucia, D. T Petkie, et al., Astrophys. J. Supp. 134 (2001) 319 M. T. Beltran, C. Codella, S. Viti, R. Niri, R. Cesaroni, Astrophys. J. 690 (2009) L93. M. Carjaval, L. Margulès, B. Tercero et al., Astron. Astrophys. 500 (2009) 1109. K.-M. Marstokk and H. Møllendal, J. Mol. Struct. 16 (1973) 259. R. A. Motiyenko, L. Margulès, E. A. Alekseev et al., J. Mol. Spectrosc. 264 (2010) 94.

  1. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    PubMed

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  2. Neutron yield of thick 12C and 13C targets with 20 and 30 MeV deuterons

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Fadil, M.; Gorelov, D.; Jones, P.; Ngcobo, P. Z.; Sorri, J.; Trzaska, W. H.

    2016-12-01

    The neutron yield of thick targets of carbon, natural and enriched in 13C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a 12C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a 13C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the 12C and 13C targets.

  3. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  4. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny.

    PubMed

    Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Huignard, Christophe; Aydinlis, Zackarie; Fonteny, Charlotte; Priault, Pierrick; Fresneau, Chantal; Lamothe-Sibold, Marlène; Streb, Peter; Terwilliger, Valery J

    2016-04-01

    The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes. As such data on C4 plants are scarce and contradictory, we investigated apparent respiratory fractionations of carbon and their possible causes in different organs of maize plants during early ontogeny. As in the C3 plants, leaf-respired CO2 was (13)C enriched whereas root-respired CO2 was (13)C depleted relative to their putative sources. In contrast to the findings for C3 plants, however, not only root- but also leaf-respired CO2 became more (13)C depleted during ontogeny. Leaf-respired CO2 was highly (13)C enriched just after light-dark transition but the enrichment rapidly decreased over time in darkness. We conclude that (i) although carbon isotopic fractionations in C4 maize and leguminous C3 crop roots are similar, increasing phosphoenolpyruvate-carboxylase activity during maize ontogeny could have produced the contrast between the progressive (13)C depletion of maize leaf-respired CO2 and (13)C enrichment of C3 leaf-respired CO2 over time, and (ii) in both maize and C3 leaves, highly (13)C enriched leaf-respired CO2 at light-to-dark transition and its rapid decrease during darkness, together with the observed decrease in leaf malate content, may be the result of a transient effect of light-enhanced dark respiration.

  5. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  6. Reaction cross sections for. nu. sup 13 C r arrow e sup minus sup 13 N and. nu. sup 13 C r arrow. nu. prime sup 13 C sup * for low energy neutrinos

    SciTech Connect

    Fukugita, M. ); Kohyama, Y.; Kubodera, K.; Kuramoto, T. )

    1990-04-01

    Cross sections for {nu}+{sup 13}C reactions are calculated both for charged- and neutral-current reactions in order to estimate the efficiency of a {sup 13}C target as a solar neutrino detector. The relevant transition matrix elements are obtained using the semiphenomenological effective-operator approach for {ital p}-shell nuclei.

  7. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground

    NASA Astrophysics Data System (ADS)

    Krevor, S.; Perrin, J.; Esposito, A.; Rella, C.; Benson, S. M.

    2009-12-01

    A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to detect and characterize an intentional leakage of CO2 from an underground pipeline at the ZERT experimental facility in Bozeman, Montana. Rapid (~1 hour) walking surveys of the entire 100m x 100m site were collected using this mobile, real-time instrument. The resulting concentration and 13C isotopic abundance maps were processed using simple yet powerful analysis techniques, permitting not only the identification of specific leakage locations, but providing the ability to distinguish petrogenic sources of CO2 from biogenic sources. At the site an approximately 100-meter horizontal well has been drilled below an alfalfa field at a depth between 1-3 meters below the surface. The well has perforations along the central 70 meters of the well. The overlying strata are highly permeable sand, silt, and topsoil. The flora consists generally of long grasses and was cut to a height of less than 6 inches before the start of the experiment. For 30 days starting July 15, 2009, CO2 was injected at a rate of 0.2 tonnes per day. The injection rate is designed to simulate leakage from a mature storage reservoir at an annual rate of between .001 and .01%. The isotopic composition of the gas from the tank is at δ13C signature of approximately -52‰, far more negative than either atmospheric (approx. -8‰) or CO2 from soil respiration (approx. -26‰) at the site. The CO2 isotopic and concentration measurements were taken with a Picarro WS-CRDS analyzer with 1/8” tubing connected to a sampling inlet. Simultaneous with CO2 concentrations (including 13C), position data was logged using a GPS receiver. Datapoints are taken around every second. The analyzer was powered using batteries and housed in a conventional garden cart. The surveys consisted of traverses of the site along the length of the pipeline and extending out 100 meters on either

  8. δ13C Degassing Dynamics of a Young Volcanic Center, Cerro Negro, Nicaragua

    NASA Astrophysics Data System (ADS)

    Lucic, G.; Stix, J.; Wing, B. A.; Muñoz, A.; Ibarra, M.; Sherwood Lollar, B.; Lacrampe-Couloume, G.

    2011-12-01

    Measurement of gas-phase δ13C values above active volcanic centers has the potential for monitoring magma dynamics associated with degassing and recharge events above subduction zones. The strong isotopic partitioning between C in the gas and melt, and C isotopic differences among magmas enables degassed CO2 to give insight into processes happening deep underground. Cerro Negro volcano in Nicaragua is an ideal center for detecting such magma interactions due to its rich history of volcanic activity and unusual eruption style. It is a subduction-driven, basaltic cinder cone that erupts on average once every 20 years with light to moderate intensity explosive eruptions (Volcanic Explosivity Index: 1-3) commonly accompanied by lava flows. Amid these eruptions are periods of extreme quiescence with very little seismic activity and gas emissions, suggesting rapid magmatic changes beneath the volcano. The brief lag time (on average 30 min). separating precursors and eruption supports this interpretation. In this study, we compare the isotopic composition of gas samples collected from fumaroles, fractures and other thermal areas on the volcano over a period of nearly 2 decades (1992-2011) in order to constrain the magmatic evolution beneath Cerro Negro. While the general systematics of the entire dataset are broadly consistent with degassing models for the natural evolution of CO2 and δ13C values, recent sampling campaigns suggest that new magma may be entering the system. Gases collected in January 2011 after 12 years of quiescence reveal CO2 concentrations ranging from 1-100%, with δ13C values varying from -1.5% to -10.4% with a mean of -3.3±0.28 % for 32 samples. Only limited spatial variability is present in this dataset: inner crater mean δ13C = -4.0±0.12 %, outer crater (-2.4±0.46 %), flanks (-4.4±0.26 %), and thermal areas to the N (-3.5±0.24 %) and SE (-2.5±0.25 %). Based on previous work, a lack of substantial spatial variation in δ values is

  9. Factors Driving the Abundance of Ixodes ricinus Ticks and the Prevalence of Zoonotic I. ricinus-Borne Pathogens in Natural Foci

    PubMed Central

    Fernández-de-Mera, Isabel G.; Acevedo, Pelayo; Gortázar, Christian; de la Fuente, José

    2012-01-01

    Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance. PMID:22286986

  10. Measurement of position-specific 13C isotopic composition of propane at the nanomole level

    NASA Astrophysics Data System (ADS)

    Gilbert, Alexis; Yamada, Keita; Suda, Konomi; Ueno, Yuichiro; Yoshida, Naohiro

    2016-03-01

    We have developed a novel method for analyzing intramolecular carbon isotopic distribution of propane as a potential new tracer of its origin. The method is based on on-line pyrolysis of propane followed by analysis of carbon isotope ratios of the pyrolytic products methane, ethylene and ethane. Using propane samples spiked with 13C at the terminal methyl carbon, we characterize the origin of the pyrolytic fragments. We show that the exchange between C-atoms during the pyrolytic process is negligible, and thus that relative intramolecular isotope composition can be calculated. Preliminary data from 3 samples show that site-preference (SP) values, defined as the difference of δ13C values between terminal and sub-terminal C-atom positions of propane, range from -1.8‰ to -12.9‰. In addition, SP value obtained using our method for a thermogenic natural gas sample is consistent with that expected from theoretical models of thermal cracking, suggesting that the isotope fractionation associated with propane pyrolysis is negligible. The method will provide novel insights into the characterization of the origin of propane and will help better understand the biogeochemistry of natural gas deposits.

  11. Abundance of non-native crabs in intertidal habitats of New England with natural and artificial structure

    PubMed Central

    Lovely, Christina M.; Judge, Michael L.

    2015-01-01

    Marine habitats containing complex physical structure (e.g., crevices) can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate type (sand vs. rock) and the presence or absence of artificial structure (mesh grow-out bags used in aquaculture, ∼0.5 m2 with 62 mm2 mesh openings). The Asian shore crab, Hemigrapsus sanguineus, and small individuals of the green crab, Carcinus maenas, were observed only in the treatments of rocks and mesh bag plus rocks. Most green crabs were small (<6 mm in carapace width) whereas H. sanguineus occurred in a wide range of sizes. In the second experiment, 3 levels of oyster-shell treatments were established using grow-out bags placed on a muddy sand substrate in the low intertidal zone: mesh grow-out bags without shells, grow-out bags with oyster shells, and grow-out bags containing live oysters. Replicate bags were deployed weekly for 7 weeks in a randomized complete block design. All crabs collected in the bags were juvenile C. maenas (1–15 mm carapace width), and numbers of crabs differed 6-fold among treatments, with most crabs present in bags with live oysters (29.5 ± 10.6 m−2 [mean ± S.D.]) and fewest in bags without shells (4.9 ± 3.7 m−2). Both C. maenas and H. sanguineus occurred in habitats with natural structure (cobble rocks). The attraction of juvenile C. maenas to artificial structure consisting of plastic mesh bags containing both oyster shells and living oysters could potentially impact oyster aquaculture operations. PMID:26401456

  12. Abundance of non-native crabs in intertidal habitats of New England with natural and artificial structure.

    PubMed

    Lovely, Christina M; O'Connor, Nancy J; Judge, Michael L

    2015-01-01

    Marine habitats containing complex physical structure (e.g., crevices) can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate type (sand vs. rock) and the presence or absence of artificial structure (mesh grow-out bags used in aquaculture, ∼0.5 m(2) with 62 mm(2) mesh openings). The Asian shore crab, Hemigrapsus sanguineus, and small individuals of the green crab, Carcinus maenas, were observed only in the treatments of rocks and mesh bag plus rocks. Most green crabs were small (<6 mm in carapace width) whereas H. sanguineus occurred in a wide range of sizes. In the second experiment, 3 levels of oyster-shell treatments were established using grow-out bags placed on a muddy sand substrate in the low intertidal zone: mesh grow-out bags without shells, grow-out bags with oyster shells, and grow-out bags containing live oysters. Replicate bags were deployed weekly for 7 weeks in a randomized complete block design. All crabs collected in the bags were juvenile C. maenas (1-15 mm carapace width), and numbers of crabs differed 6-fold among treatments, with most crabs present in bags with live oysters (29.5 ± 10.6 m(-2) [mean ± S.D.]) and fewest in bags without shells (4.9 ± 3.7 m(-2)). Both C. maenas and H. sanguineus occurred in habitats with natural structure (cobble rocks). The attraction of juvenile C. maenas to artificial structure consisting of plastic mesh bags containing both oyster shells and living oysters could potentially impact oyster aquaculture operations.

  13. Natural Abundance 43Ca NMR as a Tool for Exploring Calcium Biomineralization: Renal Stone Formation and Growth

    SciTech Connect

    Bowers, Geoffrey M.; Kirkpatrick, Robert J.

    2011-12-07

    Renal stone diseases are a global health issue with little effective therapeutic recourse aside from surgery and shock-wave lithotripsy, primarily because the fundamental chemical mechanisms behind calcium biomineralization are poorly understood. In this work, we show that natural abundance 43Ca NMR at 21.1 T is an effective means to probe the molecular-level Ca2+ structure in oxalate-based kidney stones. We find that the 43Ca NMR resonance of an authentic oxalate-based kidney stone cannot be explained by a single pure phase of any common Ca2+-bearing stone mineral. Combined with XRD results, our findings suggest an altered calcium oxalate monohydrate-like Ca2+ coordination environment for some fraction of Ca2+ in our sample. The evidence is consistent with existing literature hypothesizing that nonoxalate organic material interacts directly with Ca2+ at stone surfaces and is the primary driver of renal stone aggregation and growth. Our findings show that 43Ca NMR spectroscopy may provide unique and crucial insight into the fundamental chemistry of kidney stone formation, growth, and the role organic molecules play in these processes.

  14. Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment.

    PubMed

    Pons, Thijs L; Perreijn, Kristel; van Kessel, Chris; Werger, Marinus J A

    2007-01-01

    * Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.

  15. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-03

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  16. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  17. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    SciTech Connect

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treated mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.

  18. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  19. New optical analyzer for 13C-breath test

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich

    2008-04-01

    Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.

  20. Stable isotope ratio (13C/12C) mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Cabaneiro, A.

    2014-02-01

    Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM), also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained) of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels) since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  1. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  2. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-06

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  3. δ13C values of soil organic matter in semiarid grassland with mesquite (Prosopis) encroachment in southeastern Arizona

    USGS Publications Warehouse

    Biggs, Thomas H.; Quade, Jay; Webb, Robert H.

    2002-01-01

    Over the past century, C3 woody plants and trees have increased in abundance in many semiarid ecosystems, displacing native C4 grasses. Livestock grazing, climatic fluctuations, and fire suppression are several reasons proposed for this shift. Soil carbon isotopic signatures are an ideal technique to evaluate carbon turnover rates in such ecosystems. On the gunnery ranges of Fort Huachuca in southeastern Arizona, study sites were established on homogeneous granitic alluvium to investigate the effects of fire frequency on δ13C values in surface soil organic matter (SOM). These ranges have had no livestock grazing for 50 years and a well-documented history of fires. Prosopis velutina Woot. (mesquite) trees have altered SOM δ13C pools by the concentration of plant nutrients and the addition of isotopically light litter. These soil carbon changes do not extend beyond canopy margins. Elevated total organic carbon (TOC), plant nutrient (N and P) concentrations, and depleted SOM δ13C values are associated with C3Prosopis on an unburned plot, which enables recognition of former Prosopis-occupied sites on plots with recent fire histories. Elevated nutrient concentrations associated with former Prosopis are retained in SOM for many decades. Surface SOM δ13C values indicate the estimated minimum turnover time of C4-derived carbon beneath large mature Prosopis is about 100–300 years. In contrast, complete turnover of original C3 carbon to C4 carbon under grasslands is estimated to take a minimum of 150–500 years. Our study confirms that C4 grass cover has declined over the past 100 years, although isolated C3 trees or shrubs were not uncommon on the historic C4-dominated grasslands. We find evidence in surface soil layers for a modern C3 plant expansion reflected in the substantial shift of SOM δ13C values from C4 grasses to C3 shrublands.

  4. Laboratory measurements and analysis for two molecules of astrophysical interest: 13C-ethanol and n-butyl cyanide

    NASA Astrophysics Data System (ADS)

    Walters, A.; Ordu, M.; Bouchez, A.; Muller, H.; Nuñez, M.; Lewen, F.; Bottinelli, S.; Schlemmer, S.

    2011-05-01

    Ethanol is a complex organic molecule (COM), observed principally in hot core regions in the interstellar medium (e.g. Sgr B2, W51M, Orion KL, G34.3+0.15). The 13C isotopologues have not been identified in the ISM and prior to this work only scarce low-frequency laboratory data were available. Absorption spectra of both 13C isotopologues of ethanol were recorded at Cologne. We measured around 350 lines for the trans configuration of each of the two 13C isotopologues: CH_3^13CH_2OH and ^13CH_3CH_3OH. Measurements were taken in the range 80-600 GHz and a few lines between 700-800 GHz. A comparison between the abundance of the 12C and both 13C species in the ISM could give valuable clues as to the formation of this COM. Furthermore, 13C-ethanol is a potential line pollutant in particular for high-sensitivity instruments such as ALMA. We are currently investigating possible candidates for an astronomical detection of these species. n-propyl cyanide is one of the largest molecules detected in the massive star forming region Sgr B2. The next stage in complexity is n-butyl cyanide CH_3 (CH_2) _3CN for which very high-resolution laboratory data was available (1) but only up to 22 GHz. We hence decided to measure the spectrum between 75 and 130 GHz in order to make accurate predictions over the frequency band of ground-based instruments. Measurements were taken in Cologne using a new solid-state double-pass cell with total path of 44m. We assigned around 3000 transitions corresponding to three conformers (anti-anti, gauche(CN end)-anti, anti-gauche(methyl end) in fits including the lower-frequency hyperfine split data. Lines of the gauche-gauche conformer are also present in the spectra.

  5. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    USGS Publications Warehouse

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  6. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  7. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  8. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  9. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  10. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  11. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  12. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1-13C]pyruvate MRS studies by infusion of glucose, insulin and potassium.

    PubMed

    Lauritzen, Mette Hauge; Laustsen, Christoffer; Butt, Sadia Asghar; Magnusson, Peter; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan Henrik; Åkeson, Per

    2013-11-01

    A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized (13)C-labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β-oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [(13)C]bicarbonate signal in cardiac hyperpolarized [1-(13)C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1-(13)C]pyruvate. No [(13)C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [(13)C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [(13)C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [(13)C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle.

  13. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  14. Chlorophyll a specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-07-01

    We determined the isotopic composition of chlorophyll a in periphytic algae attached to a streambed substrate (periphyton). The samples were collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, pure aquatic primary producer (Cladophora sp.) and terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Mayfly larva, Epeorus latifolium), suggesting that periphyton δ13C values do not faithfully trace carbon transfer between primary producers and primary consumers. Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October), but were close to the Δ14C value for dissolved inorganic carbon (DIC) (-217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  15. Prominent bacterial heterotrophy and sources of 13C-depleted fatty acids to the interior Canada Basin

    NASA Astrophysics Data System (ADS)

    Shah, S. R.; Griffith, D. R.; Galy, V.; McNichol, A. P.; Eglinton, T. I.

    2013-11-01

    In recent decades, the Canada Basin of the Arctic Ocean has experienced rapidly decreasing summer sea ice coverage and freshening of surface waters. It is unclear how these changes translate to deeper waters, particularly as our baseline understanding of organic carbon cycling in the deep basin is quite limited. In this study, we describe full-depth profiles of the abundance, distribution and carbon isotopic composition of fatty acids from suspended particulate matter at a seasonally ice-free station and a semi-permanently ice-covered station. Fatty acids, along with suspended particulate organic carbon (POC), are more concentrated and 13C-enriched under ice cover than in ice-free waters. But this influence, apparent at 50 m depth, does not propagate downward below 150 m depth, likely due to the weak biological pump in the central Canada Basin. Branched fatty acids have δ13C values that are similar to suspended POC at all depths and are more 13C-enriched than even-numbered saturated fatty acids at depths above 3000 m. These are likely to be produced in situ by heterotrophic bacteria incorporating organic carbon that is isotopically similar to total suspended POC. Below surface waters, there is also the suggestion of a source of saturated even-numbered fatty acids which could represent contributions from laterally advected organic carbon and/or from chemoautotrophic bacteria. At 3000 m depth and below, a greater relative abundance of long-chain (C20-24), branched and unsaturated fatty acids is consistent with a stronger influence of re-suspended sedimentary organic carbon. At these deep depths, two individual fatty acids (C12 and iso-C17) are significantly depleted in 13C, allowing for the possibility that methane oxidizing bacteria contribute fatty acids, either directly to suspended particulate matter or to shallow sediments that are subsequently mobilized and incorporated into suspended particulate matter within the deep basin.

  16. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  17. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  18. The use of 13C labeling to enhance the sensitivity of 13C solid-state CPMAS NMR to study polymorphism in low dose solid formulations.

    PubMed

    Booy, Kees-Jan; Wiegerinck, Peter; Vader, Jan; Kaspersen, Frans; Lambregts, Dorette; Vromans, Herman; Kellenbach, Edwin

    2005-02-01

    (13)C labeling was used to enhance the sensitivity of (13)C solid-state NMR to study the effect of tabletting on the polymorphism of a steroidal drug. The steroidal drug Org OD 14 was (13)C labeled and formulated into tablets containing only 0.5-2.5% active ingredient. The tablets were subsequently studied by solid-state (13)C CPMAS NMR. The crystalline form present in tablets could readily be analyzed in tablets. No change in crystalline form was observed as a result of formulation or in subsequent stability studies. Solid-state NMR in combination with (13)C labeling can, in suitable cases, be used as a strategy to study the effect of formulation on the polymorphism of low dose drugs.

  19. Estimation of biological nitrogen fixation by black locust in short-rotation forests using natural 15N abundance method

    NASA Astrophysics Data System (ADS)

    Veste, M.; Böhm, C.; Quinckenstein, A.; Freese, D.

    2012-04-01

    The importance of short rotation forests and agroforestry systems for woody biomass production for bioenergy will increase in Central Europe within the next decades. In this context, black locust (Robinia pseudoacacia) has a high growth potential especially at marginal, drought-susceptible sites such as occur in Brandenburg State (Eastern Germany). As a pioneer tree species black locust grows under a wide range of site conditions. The native range of black locust in Northern America is classified by a humid to sub-humid climate with a mean annual precipitation of 1020 to 1830 mm. In Central and Eastern Europe, this species is cultivated in a more continental climate with an annual precipitation often below 600 mm. Therefore, black locust is known to be relatively drought tolerant compared to other temperate, deciduous tree species. Because of its N2-fixation ability black locust plays generally an important role for the improvement of soil fertility. This effect is of particular interest at marginal sites in the post-mining landscapes. In order to estimate the N2-fixation potential of black locust at marginal sites leaf samples were taken from black locust trees in short rotation plantations planted between 1995 and 2007 in post-mining sites south of Cottbus (Brandenburg, NE Germany). The variation of the natural 15N abundance was measured to evaluate the biological nitrogen fixation. The nitrogen derived from the atmosphere can be calculated using a two-pool model from the quotient of the natural 15N abundances of the N2-fixing plant and the plant available soil N. Because representatively determining the plant available soil N is difficult, a non-N2-fixing reference plant growing at the same site with a similar root system and temporal N uptake pattern to the N2-fixing plant is often used. In our case we used red oak (Quercus rubra) as a reference. The average nitrogen content in the leaves of black locust ranged from 3.1% (C/N 14.8) in 15 years old trees to 3

  20. Methods for metabolic evaluation of prostate cancer cells using proton and 13C HR-MAS spectroscopy and [3-13C] pyruvate as a metabolic substrate

    PubMed Central

    Levin, Yakir S.; Albers, Mark J.; Butler, Thomas N.; Spielman, Daniel; Peehl, Donna M.; Kurhanewicz, John

    2009-01-01

    Prostate cancer has been shown to undergo unique metabolic changes associated with neoplastic transformation, with associated changes in citrate, alanine, and lactate concentrations. 13C HR-MAS spectroscopy provides an opportunity to simultaneously investigate the metabolic pathways implicated in these changes by using 13C labeled substrates as metabolic probes. In this work, a method to reproducibly interrogate metabolism in prostate cancer cells in primary culture was developed using HR-MAS spectroscopy. Optimization of cell culture protocols, labeling parameters, harvesting, storage, and transfer was performed. Using [3-13C] pyruvate as a metabolic probe, 1H and 13C HR-MAS spectroscopy were used to quantify the net amount and fractional enrichment of several labeled metabolites that evolved in multiple cell samples from each of five different prostate cancers. Average enrichment across all cancers was 32.4±5.4% for [3-13C] alanine, 24.5±5.4% for [4-13C] glutamate, 9.1±2.5% for [3-13C] glutamate, 25.2±5.7% for [3-13C] aspartate, and 4.2±1.0% for [3-13C] lactate. Cell samples from the same parent population demonstrated reproducible fractional enrichments of alanine, glutamate, and aspartate to within 12%, 10%, and 10%, respectively. Furthermore, the cells produced a significant amount of [4-13C] glutamate, which supports the bioenergetic theory for prostate cancer. These methods will allow further characterization of metabolic properties of prostate cancer cells in the future. PMID:19780158

  1. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    SciTech Connect

    Gopher, A.; Lapidot, A. ); Vaisman, N. ); Mandel, H. )

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  2. Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill.

    PubMed

    Chanton, Jeffrey; Zhao, Tingting; Rosenheim, Brad E; Joye, Samantha; Bosman, Samantha; Brunner, Charlotte; Yeager, Kevin M; Diercks, Arne R; Hollander, David

    2015-01-20

    In 2010, the Deepwater Horizon accident released 4.6–6.0 × 10(11) grams or 4.1 to 4.6 million barrels of fossil petroleum derived carbon (petrocarbon) as oil into the Gulf of Mexico. Natural abundance radiocarbon measurements on surface sediment organic matter in a 2.4 × 10(10) m(2) deep-water region surrounding the spill site indicate the deposition of a fossil-carbon containing layer that included 1.6 to 2.6 × 10(10) grams of oil-derived carbon. This quantity represents between 0.5 to 9.1% of the released petrocarbon, with a best estimate of 3.0–4.9%. These values may be lower limit estimates of the fraction of the oil that was deposited on the seafloor because they focus on a limited mostly deep-water area of the Gulf, include a conservative estimate of thickness of the depositional layer, and use an average background or prespill radiocarbon value for sedimentary organic carbon that produces a conservative value. A similar approach using hopane tracer estimated that 4–31% of 2 million barrels of oil that stayed in the deep sea settled on the bottom. Converting that to a percentage of the total oil that entered into the environment (to which we normalized our estimate) converts this range to 1.8 to 14.4%. Although extrapolated over a larger area, our independent estimate produced similar values.

  3. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  4. Quantifying nitrogen process rates in a constructed wetland using natural abundance stable isotope signatures and stable isotope amendment experiments.

    PubMed

    Erler, Dirk V; Eyre, Bradley D

    2010-01-01

    This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.

  5. Plant and Soil Natural Abundance delta-15N: Indicators of Nitrogen Cycling in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Lovett, G. M.; Weathers, K.; Arthur, M. A.

    2002-12-01

    We examined the potential use of natural abundance 15N of plants and soils as an indicator of forest nitrogen (N) cycling rates within the Catskill Mountains, NY. These watersheds receive among the highest rates of N deposition in the northeastern United States and are beginning to show signs of N saturation. Many studies have shown a link between increased N cycling rates and 15N enrichment of soil and plant pools. Faster rates of N cycling processes, especially nitrification, lead to fractionation of 14/15N, creating N products that are relatively depleted in 15N. This can lead to enrichment of soil pools, as lighter 14N is lost from the system via leaching or denitrification. Plant N pools can become increasingly enriched as they take up 15N-enriched soil N. Despite similar amounts of N deposition across the Catskill Mountains, forests dominated by different tree species appear to vary in the amount of N retained or lost to nearby streams. To determine if plant and soil 15N could be used as indicators of N cycling rates, we collected foliage, wood, litterfall, organic and mineral soil, and fine roots from single species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine roots and soil 15N were highest within sugar maple stands (p<0.05). Sugar maple soils also had the highest rates of net nitrification and N leaching. Therefore, soil 15N appears to correlate with forest N retention and loss. However, 15N enrichment was highest within foliage, litterfall and wood of beech trees (p<0.05). The decoupling between foliage 15N and N cycling, as well as between 15N of foliage and fine roots, illustrates that it may not be possible to use a single plant pool as an indicator of N cycling rates.

  6. Stimulated Raman scattering-active isotopically pure 12C and 13C diamond crystals: A milestone in the development of diamond photonics

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Ral'chenko, V. G.; Yoneda, H.; Bol'shakov, A. P.; Inyushkin, A. V.

    2016-09-01

    Isotopically pure 12C and 13C diamonds are synthesized by chemical vapor deposition and impulsive stimulated Raman scattering in these crystals is investigated. The thermal conductivity of 12C isotopically pure damond and natC diamond with natural isotopic composition is measured. Phonon-nondegenerate Stokes lasing based on the χ(3) nonlinearity in the 12C, 13C, and natC diamond "triad" is attained, which opens a new stage in the development of diamond photonics.

  7. Utilization of shallow-water seagrass detritus by Carribbean deep-sea macrofauna: δ 13C evidence

    NASA Astrophysics Data System (ADS)

    Suchanek, Thomas H.; Williams, Susan L.; Ogden, John C.; Hubbard, Dennis K.; Gill, Ivan P.

    1985-02-01

    Three dives were made using the DSRV Alvin in the deep-sea basin north of St. Croix, Virgin Islands. Detrital seagrasses and macrofaunal distributions at 2455 to 3950 m depth were assessed quantitatively. Counts of the manatee grass Syringodium filiforme ( ca. 5 to 100 blades m -2) contrasted sharply with those of the turtle grass Thalassia testudinum ( ca. 0.1 to 2.0 blades m -2), reflecting an abundance proportional to previously reported export rates of the same species from Tague Bay, a nearby shallow source lagoon. Of the macrofaunal consumers that could potentially utilize this detrital nutrient source, three species of holothurians ( Mesothuria verrilli, Psychropotes semperiana, and Benthodytes linqua) and two species of sea urchins ( Hygrosoma petersi and Salencidaris profundi) were collected and/or observed. Gut content analyses revealed that all three holothurians deposit-feed on sediment and at least one species of sea urchin ( H. petersi) feeds almost exclusively on Syringodium. Carbon: nitrogen analyses of naturally occurring abyssal Thalassia detritus showed very low nitrogen content (0.21% N) and a high C:N ratio (214.8), thus yielding a loo nutritional value. Fresh Thalassia blades held in a litter bag experiment (by R. D. Turner) at 3950 m changed little in nitrogen content and C:N ratio after four years. A comparison was made of the stable carbon isotope ratios of 13C: 12C for abyssal seagrass detritus and other potential carbon sources with those for tissues from the holothurian and urchin consumers. The results indicate that a significant proportion of the nutrition of both groups is derived from detrital seagrasses either by direct consumption (sea urchins) or indirectly by deposit-feeding on sediments enriched by decomposed seagrasses (holothurians).

  8. Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs

    NASA Astrophysics Data System (ADS)

    Rakotondranary, S. Jacques; Struck, Ulrich; Knoblauch, Christian; Ganzhorn, Jörg U.

    2011-11-01

    Madagascar provides some of the rare examples where two or more primate species of the same genus and with seemingly identical niche requirements occur in sympatry. If congeneric primate species co-occur in other parts of the world, they differ in size in a way that is consistent with Hutchinson's rule for coexisting species, or they occupy different ecological niches. In some areas of Madagascar, mouse lemurs do not follow these "rules" and thus seem to violate one of the principles of community ecology. In order to understand the mechanisms that allow coexistence of sympatric congeneric species without obvious niche differentiation, we studied food composition of two identical sized omnivorous mouse lemur species, Microcebus griseorufus and M. murinus with the help of stable isotope analyses ( δ 15N and δ 13C). The two species are closely related sister species. During the rich season, when food seems abundant, the two species do not differ in their nitrogen isotope composition, indicating that the two species occupy the same trophic level. But they differ in their δ 13C values, indicating that M. griseorufus feeds more on C4 and CAM (Crassulacean-acid-metabolism) plants than M. murinus. During the lean season, M. murinus has lower δ 15N values, indicating that the two species feed at different trophic levels during times of food shortage. Hybrids between the two species showed intermediate food composition. The results reflect subtle differences in foraging or metabolic adaptations that are difficult to quantify by traditional observations but that represent possibilities to allow coexistence of species.

  9. Local deposition of 13C tracer in the JET MKII-HD divertor

    NASA Astrophysics Data System (ADS)

    Likonen, Jari; Airila, M. I.; Coad, J. P.; Hakola, A.; Koivuranta, S.; Ahonen, E.; Alves, E.; Barradas, N.; Widdowson, A.; Rubel, M.; Brezinsek, S.; Groth, M.; JET-EFDA Contributors

    2013-07-01

    Migration and deposition of 13C have been investigated at JET by injecting 13C-labelled methane at the outer divertor base at the end of the 2009 campaign. The 13C deposition profile was measured with enhanced proton scattering (EPS) and secondary ion mass spectrometry (SIMS) techniques. A strong toroidal deposition band for 13C was observed experimentally on each of the analysed four outer divertor floor tiles. In addition, 13C was also found on the vertical edge of load bearing tile (LBT) and at the bottom of the LBT tile facing the puffing hole. Local 13C migration in the vicinity of the injection location was modelled by the ERO code. The ERO simulations also produced the strong toroidal 13C deposition band but there is strong deposition also on the vertical edge of the LBT tile and elsewhere on the horizontal part of the outer divertor floor tile.

  10. Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy.

    PubMed Central

    Sherry, A D; Malloy, C R; Roby, R E; Rajagopal, A; Jeffrey, F M

    1988-01-01

    High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia. PMID:3178775

  11. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  12. 13C MRS of Human Brain at 7 Tesla Using [2-13C]Glucose Infusion and Low Power Broadband Stochastic Proton Decoupling

    PubMed Central

    Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun

    2015-01-01

    Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936

  13. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  14. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  15. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions.

    PubMed

    Zhu, Renbin; Liu, Yashu; Li, Xianglan; Sun, Jianjun; Xu, Hua; Sun, Liguang

    2008-11-01

    Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the

  16. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  17. Apportioning carbon sources of authigenic carbonate of extremely 13C-depleted foraminifera from the western North Pacific sediments: Implication from the coupled 13C and 14C isotopic mass balance approach

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Ohkushi, K.; Ahagon, N.; Kimoto, K.; Inagaki, F.; Shibata, Y.

    2005-12-01

    Recently, Uchida et al. (G-cubed, 2004) and Ohkushi et al. (G-cubed, 2005) interprete /delta 13C variations of planktonic and benthic foraminifera found in Last Glacial sediments in off Shimokita Peninsula and Tokachi as evidence for periodic releases of methane, arising from the dissociation of methane hydrate, and its subsequent oxidation in bottom- and/or surface-water environments. According to recent observations of anomalous bottom-simulating reflections, northwest Pacific marginal sediments around Japan main islands bear large abundances of methane hydrate. In this study, analyzed piston cores (42° 21.42' N, 144° 13.36' E) at a water depth 1066-m was retrieved from the off Tokachi continental slope in the Oyashio current region, where recently is found to bear immense amounts of methane hydrate. The piston core covered past 22 ka with high-resolution. Here we showed that carbon isotope signals indicated that planktonic and benthic foraminifera in several glacial sediment layers in the core were highly depleted in13 C; both the planktonic and benthic foraminiferal /delta 13C values ranged from about -10/permil to -2/permil. Most foraminiferal tests in these horizons were brown as a result of postdepositional alteration. Foraminiferal oxygen isotopes fluctuated abnormally in the glacial sediment layers, showing small (about 0.5/permil) positive shifts relative to normal glacial values. We attributed the positive shifts to authigenic carbonate formation in the foraminiferal tests. In order to decipher the relation between foraminifera carbon isotopic signal and methane release from the seafloor, we have apportioned carbon sources (methane from methane hydrate or not) of foraminiferal carbon isotopic anomalies using dual mass balance isotopic model (14C/ 12C and 13C/ 12C). It has been suggested that sulfate-dependent anaerobic methane oxidation (AOM) dominates carbon oxidation and attendant authigenic carbonate precipitation to foraminifera. To this assumption

  18. Targeted 13C enrichment of lipid and protein pools in the body reveals circadian changes in oxidative fuel mixture during prolonged fasting: a case study using Japanese quail.

    PubMed

    McCue, Marshall D; Amaya, James A; Yang, Alice S; Erhardt, Erik B; Wolf, Blair O; Hanson, David T

    2013-12-01

    Many animals undergo extended periods of fasting. During these fasts, animals oxidize a ratio of macronutrients dependent on the nutritional, energetic, and hydric requirements of the fasting period. In this study, we use Japanese quail (Coturnix coturnix japonica), a bird with natural intermediate fasting periods, to examine macronutrient use during a 6d fast. We raised groups of quail on isotopically labeled materials ((13)C-1-leucine, (13)C-U-glucose, or (13)C-1-palmitic acid) with the intent of labeling specific macronutrient/tissue pools in each treatment, and then traced their use as fuels by measuring the δ(13)C values of breath CO2. Based on changes in δ(13)C values during the fast, it appears that the carbohydrate label,(13)C-U-glucose, was largely incorporated into the lipid pool and thus breath samples ultimately reflected lipid use rather than carbohydrate use. In the lipid treatment, the (13)C-1-palmitic acid faithfully labeled the lipid pool and was reflected in the kinetics δ(13)C values in breath CO2 during the fast. Endogenous lipid oxidation peaked after 24h of fasting and remained constantly elevated thereafter. The protein label,(13)C-1-leucine, showed clear diurnal periods of protein sparing and degradation, with maximal rates of protein oxidation occurring at night and the lowest rates occurring during the day time. This stable isotope tracer method provides a noninvasive approach to study the nutrient dynamics of fasting animals and should provide new insights into how different types of animals use specific nutrient pools during fasting and possibly other non-steady physiological states.

  19. [The use of the [13C]/[12C] ratio for the assay of the microbial oxidation of hydrocarbons].

    PubMed

    Ziakun, A M; Kosheleva, I A; Zakharchenko, V N; Kudriavtseva, A I; Peshenko, V A; Filonov, A E; Boronin, A M

    2003-01-01

    The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (delta 13C = -44.6 +/- 0.2@1000) were characterized by the isotope effects delta 13CCO2 = -50.2 +/- 0.4@1000, delta 13Cbiom = -46.6 +/- 0.4@1000 and delta 13Cexo = -41.5 +/- 0.4@1000, respectively. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (delta 13C = -21 +/- 0.4@1000) were characterized by the isotope effects delta 13CCO2 = -24.1 +/- 0.4@1000, delta 13Cbiom = -19.2 +/- 0.4@1000 and delta 13Cexo = -19.1 +/- 0.4@1000, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the enviroment is discussed.

  20. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  1. How Reliable is the Bulk δ13C value of Soil Organic Matter in Paleovegetational Reconstruction?

    NASA Astrophysics Data System (ADS)

    Sanyal, P.; Rakshit, S.

    2015-12-01

    Carbon isotope ratios of soil/paleosol organic matter (δ13CSOM) have been used to reconstruct abundance of C3-C4 plants survived in the landscape as the δ13C value of C3 (-27‰) and C4 (-12.5 ‰) plants are distinctly different. In an attempt to reconstruct the abundance of C3 and C4 plants, δ13CSOM have been measured from three soil profiles developed on flood plain of the Gangetic plain, Mohanpur, West Bengal, India. Satellite images reveal that the investigated sediments have been deposited in an oxbow lake setting of the river Ganges. The total organic carbon content of the profile ranges from 0.9% to 0.1%. The δ13CSOM values mostly range from -19.2‰ to -22‰ except a rapid positive excursions of ~5‰ at 1.5 m depth showing enriched value (-14.2‰) in all the three profiles. Based on mass balance calculation using the δ13C values of C3 and C4 plants, the δ13CSOM in the Gangetic plain indicate presence of both C3 and C4 plants in the floodplain. However, characterization of alkanes separated from lipids extracted from the same soil organic matter reveals dominant preferences in short carbon chain (C14, C16, C18, C20) with a little preferences for higher chain (C29, C31, C33). Interestingly, n-alkanes at 1.5 m depth shows very high concentration in short chain n-alkanes. Since the lower chain n-alkane represents aquatic productivity or intense bacterial decomposition and higher chain indicates the contribution from C3-C4 plants, the data from the investigated sedimentary profile shows contribution mostly from aquatic vegetation with a little contribution from terrestrial plants. This implies that before using bulk δ13CSOM value for reconstruction of C3-C4 plants from soil/paleosol, characterization (molecular level) of soil organic matter is required

  2. Meta-analysis reveals that seed-applied neonicotinoids and pyrethroids have similar negative effects on abundance of arthropod natural enemies

    PubMed Central

    Tooker, John F.

    2016-01-01

    Background Seed-applied neonicotinoids are widely used in agriculture, yet their effects on non-target species remain incompletely understood. One important group of non-target species is arthropod natural enemies (predators and parasitoids), which contribute considerably to suppression of crop pests. We hypothesized that seed-applied neonicotinoids reduce natural-enemy abundance, but not as strongly as alternative insecticide options such as soil- and foliar-applied pyrethroids. Furthermore we hypothesized that seed-applied neonicotinoids affect natural enemies through a combination of toxin exposure and prey scarcity. Methods To test our hypotheses, we compiled datasets comprising observations from randomized field studies in North America and Europe that compared natural-enemy abundance in plots that were planted with seed-applied neonicotinoids to control plots that were either (1) managed without insecticides (20 studies, 56 site-years, 607 observations) or (2) managed with pyrethroid insecticides (eight studies, 15 site-years, 384 observations). Using the effect size Hedge’s d as the response variable, we used meta-regression to estimate the overall effect of seed-applied neonicotinoids on natural-enemy abundance and to test the influence of potential moderating factors. Results Seed-applied neonicotinoids reduced the abundance of arthropod natural enemies compared to untreated controls (d = −0.30 ± 0.10 [95% confidence interval]), and as predicted under toxin exposure this effect was stronger for insect than for non-insect taxa (QM = 8.70, df = 1, P = 0.003). Moreover, seed-applied neonicotinoids affected the abundance of arthropod natural enemies similarly to soil- or foliar-applied pyrethroids (d = 0.16 ± 0.42 or −0.02 ± 0.12; with or without one outlying study). Effect sizes were surprisingly consistent across both datasets (I2 = 2.7% for no-insecticide controls; I2 = 0% for pyrethroid controls), suggesting little moderating influence of

  3. Pentose cycling and the distribution of 13C in trehalose during glucogenesis from 13C-labelled substrates in an insect.

    PubMed

    Thompson, S N; Scales, V M; Bochardt, D B

    1995-07-26

    Redistribution of 13C in trehalose (Tre) due to pentose cycling was observed in vivo in Manduca sexta during glucogenesis from [3-13C]alanine (Ala) and [2-13C]glycerol (Gly). The extent of cycling was affected by dietary composition. Larvae maintained on a low-carbohydrate diet (LCD) exhibited approximately 13% cycling, while those on a complete-balanced diet (CBD) or low-fat diet (LFD) displayed much higher rates of cycling. Significant incorporation of 13C via reversal of the non-oxidative phase was evident on all diets but was greatest on the CBD and LFD. In contrast to conclusions from previous studies with insects, the present results indicate that under normal conditions the pentose pathway is not the principal source of triose phosphates for oxidative catabolism during larval development.

  4. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Astrophysics Data System (ADS)

    Sunshine, J. M.; Pieters, C. M.

    1993-05-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  5. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.

    1993-01-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  6. Evaluating North Sea carbon sources using radiogenic (224Ra and 228Ra) and stable carbon isotope (DI13C) tracers

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Paetsch, Johannes; Clargo, Nikki

    2015-04-01

    In the North Sea, much uncertainty still exists regarding the role of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) in the overall biogeochemical cycling of the system. The stable carbon isotope signature of dissolved inorganic carbon (δ13C-DIC) is a common tool for following transformations of carbon in the water column and identifying carbon sources and sinks. Here, analyses of the first basin-wide observations of δ13C-DIC reveal that a balance between biological production and respiration, as well as a freshwater input near the European continental coast, predominantly control surface distributions in the North Sea. A strong relationship between the biological component of DIC (DICbio) and δ13C-DIC is then used to quantify the metabolic DIC flux associated with changes in the carbon isotopic signature. Correlations are also found between δ13C-DIC and naturally-occurring Radium isotopes (224Ra and 228Ra), which have well-identified sources from the seafloor and coastal boundaries. The relationship between δ13C-DIC and the longer-lived 228Ra isotope (half-life = 5.8 years) is used to derive a metabolic DIC flux from the European continental coastline. 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (TA) compared to the more conventional use of salinity as a tracer. Coastal alkalinity inputs are calculated using relationships with 228Ra, and ratios of DIC and TA suggest denitrification as the main metabolic pathway for the formation of these coastal inputs. Finally, coastal TA inputs are translated into inputs of protons to quantify their impact on the buffering capacity of the Southern North Sea.

  7. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.

    PubMed

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov

    2015-09-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth.

  8. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  9. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples.

    PubMed

    Gilbert, Alexis; Silvestre, Virginie; Robins, Richard J; Tcherkez, Guillaume; Remaud, Gérald S

    2011-07-01

    Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.

  10. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose.

    PubMed

    Moran, Nancy Engelmann; Rogers, Randy B; Lu, Chi-Hua; Conlon, Lauren E; Lila, Mary Ann; Clinton, Steven K; Erdman, John W

    2013-08-15

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched (13)C-lycopene for human bioavailability and metabolism studies. To enhance the (13)C-enrichment and yields of labelled lycopene from the hp-1 tomato cell line, cultures were first grown in (13)C-glucose media for three serial batches and produced increasing proportions of uniformly labelled lycopene (14.3±1.2%, 39.6±0.5%, and 48.9±1.5%) with consistent yields (from 5.8 to 9 mg/L). An optimised 9-day-long (13)C-loading and 18-day-long labelling strategy developed based on glucose utilisation and lycopene yields, yielded (13)C-lycopene with 93% (13)C isotopic purity, and 55% of isotopomers were uniformly labelled. Furthermore, an optimised acetone and hexane extraction led to a fourfold increase in lycopene recovery from cultures compared to a standard extraction.

  11. HYPERPOLARIZED 13C MAGNETIC RESONANCE AND ITS USE IN METABOLIC ASSESSMENT OF CULTURED CELLS AND PERFUSED ORGANS

    PubMed Central

    Lumata, Lloyd; Yang, Chendong; Ragavan, Mukundan; Carpenter, Nicholas; DeBerardinis, Ralph J.; Merritt, Matthew E.

    2016-01-01

    Diseased tissue is often characterized by abnormalities in intermediary metabolism. Observing these alterations in situ may lead to an improved understanding of pathological processes and novel ways to monitor these processes non-invasively in human patients. Although 13C is a stable isotope safe for use in animal models of disease as well as human subjects, its utility as a metabolic tracer has largely been limited to ex vivo analyses employing analytical techniques like mass spectrometry or nuclear magnetic resonance spectroscopy. Neither of these techniques is suitable for non-invasive metabolic monitoring, and the low abundance and poor gyromagnetic ratio of conventional 13C make it a poor nucleus for imaging. However, the recent advent of hyperpolarization methods, particularly dynamic nuclear polarization (DNP), make it possible to enhance the spin polarization state of 13C by many orders of magnitude, resulting in a temporary amplification of the signal sufficient for monitoring kinetics of enzyme-catalyzed reactions in living tissue through magnetic resonance spectroscopy or magnetic resonance imaging. Here we review DNP techniques to monitor metabolism in cultured cells, perfused hearts, and perfused livers, focusing on our experiences with hyperpolarized [1-13C]pyruvate. We present detailed approaches to optimize the DNP procedure, streamline biological sample preparation, and maximize detection of specific metabolic activities. We also discuss practical aspects in the choice of metabolic substrates for hyperpolarization studies, and outline some of the current technical and conceptual challenges in the field, including efforts to use hyperpolarization to quantify metabolic rates in vivo. PMID:26358902

  12. Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing

    PubMed Central

    Hanajima, Dai; Aoyagi, Tomo; Hori, Tomoyuki

    2015-01-01

    Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition process, while decayed bacterial cells can serve as readily digested substrates for other microbial populations. In this study, we investigated the active bacterial species responsible for the assimilation of dead bacterial cells and their components in aerated pig manure slurry by using 13C-labeled bacterial biomass probing. After 3 days of forced aeration, 13C-labeled and unlabeled dead Escherichia coli cell suspensions were added to the slurry. The suspensions contained 13C-labeled and unlabeled bacterial cell components, possibly including the cell wall and membrane, as well as intracellular materials. RNA extracted from each slurry sample 2 h after addition of E. coli suspension was density-resolved by isopycnic centrifugation and analyzed by terminal restriction fragment length polymorphism, followed by cloning and sequencing of bacterial 16S rRNA genes. In the heavy isotopically labeled RNA fraction, the predominant 13C-assimilating population was identified as belonging to the genus Acholeplasma, which was not detected in control heavy RNA. Acholeplasma spp. have limited biosynthetic capabilities and possess a wide variety of transporters, resulting in their metabolic dependence on external carbon and energy sources. The prevalence of Acholeplasma spp. was further confirmed in aerated pig manure slurry from four different pig farms by pyrosequencing of 16S rRNA genes; their relative abundance was ∼4.4%. Free-living Acholeplasma spp. had a competitive advantage for utilizing dead bacterial cells and their components more rapidly relative to other microbial populations, thus allowing the survival and prevalence

  13. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground

    NASA Astrophysics Data System (ADS)

    Krevor, Samuel; Benson, Sally; Rella, Chris; Perrin, Jean-Christophe; Esposito, Ariel; Crosson, Eric

    2010-05-01

    The surface monitoring of CO2 over geologic sequestration sites will be an essential tool in the monitoring and verification of sequestration projects. Surface monitoring is the only tool that currently provides the opportunity to detect and quantify leakages on the order of 1000 tons/year CO2. Near-surface detection and quantification can be made complicated, however, due to large temporal and spatial variations in natural background CO2 fluxes from biological processes. In addition, current surface monitoring technologies, such as the use of IR spectroscopy in eddy covariance towers and aerial surveys, radioactive or noble gas isotopic tracers, and flux chamber gas measurements can generally accomplish one or two of the necessary tasks of leak detection, identification, and quantification, at both large spatial scales and high spatial resolution. It would be useful, however, to combine the utility of these technologies so that a much simplified surface monitoring program can be deployed. Carbon isotopes of CO2 provide an opportunity to distinguish between natural biogenic CO2 fluxes from the ground and CO2 leaking from a sequestration reservoir that has ultimate origins in a process giving it a distinct isotopic signature such as natural gas processing. Until recently, measuring isotopic compositions of gases was a time-consuming and expensive process utilizing mass-spectrometry, not practical for deployment in a high-resolution survey of a potential leakage site at the surface. Recent developments in commercially available instruments utilizing wavelength scanned cavity ringdown spectroscopy (WS-CRDS) and Fourier transform infrared spectroscopy (FT-IR) have made it possible to rapidly measure the isotopic composition of gases including the 13C and 12C isotopic composition of CO2 in a field setting. A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to rapidly detect and

  14. On-site analysis of d13C- and dD-CH4 by laser spectroscopy for the allocation of source processes

    NASA Astrophysics Data System (ADS)

    Eyer, Simon; Tuzson, Béla; Popa, Elena; van der Veen, Carina; Röckmann, Thomas; Brand, Willi A.; Fisher, Rebecca; Lowry, David; Nisbet, Euan G.; Brennwald, Matthias S.; Harris, Eliza; Emmenegger, Lukas; Fischer, Hubertus; Mohn, Joachim

    2015-04-01

    Analysis of the most abundant methane isotopologues 12CH4, 13CH4 and 12CH3D can be used to disentangle source/sink processes (Fischer et al. 2008) and to develop target oriented reduction strategies. Isotopic analysis of CH4 is accomplished by isotope-ratio mass-spectrometry (IRMS) and more recently by mid-infrared laser spectroscopy. For high precision measurements in ambient air, however, both techniques rely on preconcentration of the target gas (Eyer et al. 2014). We developed a field-deployable analyser for real-time, on-site analysis of CH4 isotopologues which is based on a dual quantum cascade laser absorption spectrometer (QCLAS) in combination with an innovative preconcentration technique named trace gas extractor (TREX). The core part of the 19 ″ rack-mounted preconcentration unit is a highly efficient adsorbent trap attached to the cold end of a Stirling cooler. The system achieves preconcentration factors >500. For fast desorption and optimal heat management, the trap is decoupled from the cooler during desorption. The QCLAS has been developed based on a previously described instrument (Tuzson 2010). It comprises two cw-QC laser sources combined and coupled into an astigmatic multipass absorption cell with 76 m optical path. The developed technique reaches an unsurpassed precision of 0.1‰ for d13C-CH4 and <0.5‰ for dD-CH4 at 600 s spectral averaging. The potential of the new analytical system for field applications has been shown in June 2014, where the system has achieved an overall repeatability of 0.19‰ for d13C and 1.7‰ for dD-CH4 for repeated target gas measurements. Compatibility of TREX - QCLAS with flask sampling - IRMS for analysis of ambient CH4 fulfilled the extended WMO/GAW compatibility goals of 0.2‰ for d13C-CH4 and 5‰ for dD-CH4. References: Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L., Chappellaz, J., Spahni, R., Blunier, T., Leuenberger, M., Stocker, T. F. (2008) Nature 452: 864-867. Eyer, S

  15. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3.

    PubMed

    Zhang, Hong-Liang; Cao, Hang; Yang, Zhan-Qing; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Guo, Bin; Yue, Zhan-Peng

    2017-03-01

    Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.

  16. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  17. 13C-NOESY-HSQC with Split Carbon Evolution for Increased Resolution with Uniformly Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Baur, Matthias; Gemmecker, Gerd; Kessler, Horst

    1998-06-01

    Two new pulse sequences are presented for the recording of 2D13C-HSQC and 3D13C-NOESY-HSQC experiments, containing two consecutive carbon evolution periods. The two periods are separated by az-filter which creates a clean CxHz-quantum state for evolution in the second period. Each period is incremented (in anon-constant-time fashion) only to the extent that the defocusing of carbon inphase magnetization throughJ-coupling with neighboring carbons remains insignificant. Therefore,13C homonuclearJ-couplings are rendered ineffective, reducing the loss of signal and peak splitting commonly associated with long13C evolution times. The two periods are incremented according to a special acquisition protocol employing a13C-13C gradient echo to yield a data set analogous to one obtained by evolution over the added duration of both periods. The spectra recorded with the new technique on uniformly13C-labeled proteins at twice the evolution time of the standard13C-HSQC experiment display a nearly twofold enhancement of resolution in the carbon domain, while maintaining a good sensitivity even in the case of large proteins. Applied to the IIAManprotein ofE. coli(31 kDa), the13C-HSQC experiment recorded with a carbon evolution time of 2 × 8 ms showed a 36% decrease in linewidths compared to the standard13C-HSQC experiment, and theS/Nratio of representative cross-peaks was reduced to 40%. This reduction reflects mostly the typical loss of intensity observed when recording with an increased resolution. The13C-NOESY-HSQC experiment derived from the13C-HSQC experiment yielded additional NOE restraints between resonances which previously had been unresolved.

  18. Modelling urban δ13C variations in the Greater Toronto Area

    NASA Astrophysics Data System (ADS)

    Pugliese, S.; Vogel, F. R.; Murphy, J. G.; Worthy, D. E. J.; Zhang, J.; Zheng, Q.; Moran, M. D.

    2015-12-01

    Even in urbanized regions, carbon dioxide (CO2) emissions are derived from a variety of biogenic and anthropogenic sources and are influenced by atmospheric transport across borders. As policies are introduced to reduce the emission of CO2, there is a need for independent verification of emissions reporting. In this work, we aim to use carbon isotope (13CO2 and 12CO2) simulations in combination with atmospheric measurements to distinguish between CO2 sources in the Greater Toronto Area (GTA), Canada. This is being done by developing an urban δ13C framework based on existing CO2 emission data and forward modelling using a chemistry transport model, CHIMERE. The framework is designed to use region specific δ13C signatures of the dominant CO2 sources together with a CO2 inventory at a fine spatial and temporal resolution; the product is compared against highly accurate 13CO2 and 12CO2 ambient data. The strength of this framework is its potential to estimate both locally produced and regionally transported CO­2. Locally, anthropogenic CO­2 in urban areas is often derived from natural gas combustion (for heating) and gasoline/diesel combustion (for transportation); the isotopic signatures of these processes are significantly different (approximately d13CVPDB = -40 ‰ and -26 ‰ respectively) and can be used to infer their relative contributions. Furthermore, the contribution of transported CO2 can also be estimated as nearby regions often rely on other sources of heating (e.g. coal combustion), which has a very different signature (approximately d13CVPDB = -23 ‰). We present an analysis of the GTA in contrast to Paris, France where atmospheric observations are also available and 13CO2 has been studied. Utilizing our δ13C framework and differences in sectoral isotopic signatures, we quantify the relative contribution of CO2 sources on the overall measured concentration and assess the ability of this framework as a tool for tracing the evolution of sector

  19. Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico.

    PubMed

    Armenta, R; Martínez, A M; Chapman, J W; Magallanes, R; Goulson, D; Caballero, P; Cave, R D; Cisneros, J; Valle, J; Castillejos, V; Penagos, D I; García, L F; Williams, T

    2003-06-01

    The impact of commonly used organophosphate (chlorpyrifos, methamidophos), carbamate (carbaryl), and pyrethroid (cypermethrin) insecticides on insect natural enemies was compared with that of a nucleopolyhedrovirus (Baculoviridae) of Spodoptera frugiperda (J. E. Smith) (Lepidoptera Noctuidae) in maize grown in southern Mexico. Analyses of the SELECTV and Koppert Side Effects (IOBC) databases on the impact of synthetic insecticides on arthropod natural enemies were used to predict approximately 75-90% natural enemy mortality after application, whereas the bioinsecticide was predicted to have no effect. Three field trails were performed in mid- and late-whorl stage maize planted during the growing season in Chiapas State, Mexico. Synthetic insecticides were applied at product label recommended rates using a manual knapsack sprayer fitted with a cone nozzle. The biological pesticide was applied at a rate of 3 x 10(12) occlusion bodies (OBs)/ha using identical equipment. Pesticide impacts on arthropods on maize plants were quantified at intervals between 1 and 22 d postapplication. The biological insecticide based on S. frugiperda nucleopolyhedrovirus had no adverse effect on insect natural enemies or other nontarget insect populations. Applications of the carbamate, pyrethroid, and organophosphate insecticides all resulted in reduced abundance of insect natural enemies, but for a relatively short period (8-15 d). Pesticide applications made to late-whorl stage maize resulted in lesser reductions in natural enemy populations than applications made at the mid-whorl stage, probably because of a greater abundance of physical refuges and reduced spray penetration of late-whorl maize.

  20. Lowest bending mode of 13C-substituted C3 and an experimentally derived structure

    NASA Astrophysics Data System (ADS)

    Breier, Alexander A.; Büchling, Thomas; Schnierer, Rico; Lutter, Volker; Fuchs, Guido W.; Yamada, Koichi M. T.; Mookerjea, Bhaswati; Stutzki, Jürgen; Giesen, Thomas F.

    2016-12-01

    The ν2 lowest bending mode of linear C3 and of all its 13C-substituted isotopologues was recorded using a terahertz-supersonic jet spectrometer in combination with a laser ablation source. Sixty-five ro-vibrational transitions between 1.8 and 1.9 THz have been assigned to linear 12C12C12C, 12C12C13, 12C13C12C, 13C13C12C, 13C12C13C, and 13C13C13. For each isotopologue, molecular parameters were obtained and the C-C-bond length was derived experimentally. All results are in excellent agreement with recent ab initio calculations [B. Schröder and P. Sebald, J. Chem. Phys. 144, 044307 (2016)]. The new measurements explain why the interstellar search for singly substituted 12C12C13C has failed so far. A spectral line list with recommended transition frequencies based on global data fits is given to foster future interstellar detections.

  1. Biokinetics of (13)C in the human body after oral administration of (13)C-labeled glucose as an index for the biokinetics of (14)C.

    PubMed

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of (13)C in the human body after oral administration of (13)C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for (13)C as an index of the committed dose of the radioisotope (14)C. After administration of (13)C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic (13)C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for (13)C/(12)C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the (13)C administered was excreted in breath, whereas  <2% was excreted in urine and feces. In the other pathway, the excretion rate constant in the compartment with the longest residence time stretched to hundreds of days but the rate constant for each subject was not statistically significant (P value  >  0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for (13)C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of (13)C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and

  2. Diamond growth from subducted carbon implied by correlated δ18O-δ13C variations in diamonds and garnet inclusions

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Stachel, T.; Harris, J. W.

    2011-12-01

    Much of our knowledge of the deep-Earth carbon cycle is derived from studies of diamond. The sources of carbon in the mantle and the mechanisms of transport and precipitation as diamond, however, are not entirely understood. Due to the chemical purity of diamond, scientific effort has focussed on syngenetic mineral inclusions and their relationship to their diamond hosts. For example, it is well known that, on a worldwide scale, diamonds with eclogitic inclusions have a distinct δ13C distribution when compared to more abundant peridotitic diamonds. Eclogitic diamonds have a distribution that extends from mantle-like δ13C values (ca. -5%), to very light carbon (<-20%). Strong 13C depletion has been explained by either invoking subducted organic carbon, or through high temperature isotopic fractionation of mantle carbon. Here we report high-precision SIMS δ18O measurements (2σ±< 0.3%) of eclogitic garnet inclusions in diamonds from the Damtshaa mine (Orapa cluster, Botswana). The δ13C values of the host diamond were determined to have a wide range (-4.4% to -18%; Deines et al. 2009; Lithos v.112 p776). From 15 inclusions, the δ18O variations range from +4.8 to +8.8 %. The relative 18O abundances are negatively correlated with the δ13C of the host diamonds, suggesting a link between high δ18O host rocks and low δ13C diamonds. Although fractionation of δ13C values is possible at high temperature, δ18O values are susceptible only to very small high temperature fractionations. For example, Cartigny et al. (2001, EPSL v.185 p85) suggested that CO2 degassing from a carbonate-bearing melt prior to diamond precipitation may be responsible for a δ13C distribution of eclogitic diamonds worldwide that is skewed to 13C depleted compositions. Our data place new constraints on that model. Depending on the C/O ratio of the melt, CO2 degassing will either have a negligible effect on the δ18O of the residual melt, or (at high C/O) induce a positive correlation between

  3. Environmental controls over methanol production, emission, and δ13C values from Lycopersicon esculentum

    NASA Astrophysics Data System (ADS)

    Oikawa, P.; Giebel, B. M.; Mak, J. E.; Riemer, D. D.; Swart, P. K.; Lerdau, M.

    2009-12-01

    Phytogenic methanol is the dominant source of methanol to the atmosphere, where it is the second most abundant organic compound. Beyond methanol’s role in atmospheric chemistry, it is an indicator of plant function and is linked to plant wound response. Methanol emissions are considered to be a by-product of cell wall expansion and, more specifically, the demethylation of pectin by pectin methylesterase (PME) in cell walls. Production of methanol was investigated in mature and immature tomato Lycopersicon esculentum via measurement of methanol flux, foliar PME activity, and methanol extraction from leaf, root, and stem tissues. δ13C values for mature and immature methanol emissions were also measured using a GC-IRMS system. Environmental control over methanol production and emission was studied by changing temperature and light while holding stomatal conductance constant. As seen previously, mature leaf methanol emissions were significantly less than immature emissions. Surprisingly, preliminary results suggest mature leaf methanol production to be similar to immature leaves, indicating an enhanced metabolic sink for methanol in mature leaves. These data enhance our understanding of methanol production, a term which is not well constrained in current methanol flux models.

  4. Prominent bacterial heterotrophy and sources of 13C-depleted fatty acids to the interior Canada Basin

    NASA Astrophysics Data System (ADS)

    Shah, S. R.; Griffith, D. R.; Galy, V.; McNichol, A. P.; Eglinton, T. I.

    2013-04-01

    In recent decades, the Canada Basin of the Arctic Ocean has experienced rapidly decreasing summer sea ice coverage and freshening of surface waters. It is unclear how these changes translate to depth, particularly as our baseline understanding of organic carbon cycling in the deep basin is limited. In this study, we describe full-depth profiles of the abundance, distribution and carbon isotopic composition of fatty acids from suspended particulate matter at a seasonally ice-free station and a semi-permanently ice-covered station. Fatty acids, along with suspended particulate organic carbon (POC), are more concentrated under ice cover than in ice-free waters. But this influence, apparent at 50 m depth, does not propagate downward below 150 m depth, likely due to the weak biological pump in the central Canada Basin. Branched fatty acids have δ13C values that are similar to suspended POC at all depths and are 13C-enriched compared to even-numbered saturated fatty acids at depths above 3000 m. These are likely to be produced in situ by heterotrophic bacteria incorporating organic carbon that is isotopically similar to total suspended POC. A source of saturated even-numbered fatty acids is also suggested below surface waters which could represent contributions from laterally advected organic carbon or from chemoautotrophic bacteria. At 3000 m depth and below, a greater relative abundance of long-chain (C20-24), branched and unsaturated fatty acids is consistent with a stronger influence of re-suspended sedimentary organic carbon on benthic particulate matter. At these deep depths, two individual fatty acids (C12 and iso-C17) are significantly depleted in 13C, allowing for the possibility that methane oxidizing bacteria contribute fatty acids, either directly to suspended particulate matter or to shallow sediments that are subsequently mobilized and incorporated into suspended particulate matter within the deep basin.

  5. Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Hatté, Christine; Pastor, Lucie; Thiry, Yves; Siclet, Françoise; Balesdent, Jérôme

    2016-12-01

    Understanding hydrogen dynamics in soil organic matter is important to predict the fate of 3H in terrestrial environments. One way to determine hydrogen fate and to point out processes is to examine the isotopic signature of the element in soil. However, the non-exchangeable hydrogen isotopic signal in soil is complex and depends on the fate of organic compounds and microbial biosyntheses that incorporate water-derived hydrogen. To decipher this complex system and to understand the close link between hydrogen and carbon cycles, we followed labeled hydrogen and labeled carbon throughout near-natural soil incubations. We performed incubation experiments with three labeling conditions: 1 - 13C2H double-labeled molecules in the presence of 1H2O; 2 - 13C-labeled molecules in the presence of 2H2O; 3 - no molecule addition in the presence of 2H2O. The preservation of substrate-derived hydrogen after 1 year of incubation (ca. 5 % in most cases) was lower than the preservation of substrate-derived carbon (30 % in average). We highlighted that 70 % of the C-H bonds are broken during the degradation of the molecule, which permits the exchange with water hydrogen. Added molecules are used more for trophic resources. The isotopic composition of the non-exchangeable hydrogen was mainly driven by the incorporation of water hydrogen during microbial biosynthesis. It is linearly correlated with the amount of carbon that is degraded in the soil. The quantitative incorporation of water hydrogen in bulk material and lipids demonstrates that non-exchangeable hydrogen exists in both organic and mineral-bound forms. The proportion of the latter depends on soil type and minerals. This experiment quantified the processes affecting the isotopic composition of non-exchangeable hydrogen, and the results can be used to predict the fate of tritium in the ecosystem or the water deuterium signature in organic matter.

  6. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR.

    PubMed

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack.

  7. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    PubMed

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s.

  8. Precise Observations of the 12C/13C Ratios of HC3N in the Low-mass Star-forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-12-01

    Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore their anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 ± 0.02:1.35 ± 0.03:86.4 ± 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and {{{C}}}2{{{{H}}}2}+. The average 12C/13C ratio for HC3N is 77 ± 4, which may be only slightly higher than the elemental 12C/13C ratio. Dilution of the 13C isotope in HC3N is not as significant as that in CCH or c-C3H2. We have also simultaneously observed the DCCCN and HCCC15N lines and derived the isotope ratios [DCCCN]/[HCCCN] = 0.0370 ± 0.0007 and [HCCCN]/[HCCC15N] = 338 ± 12.

  9. Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from δ 13C and Δ 14C values of in situ phospholipid fatty acids and carbon sources

    NASA Astrophysics Data System (ADS)

    Mills, Christopher T.; Amano, Yuki; Slater, Gregory F.; Dias, Robert F.; Iwatsuki, Teruki; Mandernack, Kevin W.

    2010-07-01

    Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ 13C and Δ 14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7 c, cy17:0, and 18:1ω7 c. A PLFA biomarker for type II methanotrophs, 18:1ω8 c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH 4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8 c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ 14C values determined for type II methanotroph PLFAs in the sedimentary (-861‰) and granite (-867‰) waters were very similar to the Δ 14C values of dissolved inorganic carbon (DIC) in each water (˜-850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH 4 produced by the reduction of DIC. In contrast, δ 13C values of type II PLFAs in the sedimentary (-93‰) and granite (-60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13C values (˜-95‰) for each water. The δ 13C PLFA values (-28‰ to -45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic

  10. Metabolism of hyperpolarized [1‐13C]pyruvate through alternate pathways in rat liver

    PubMed Central

    Moreno, Karlos X.; Wang, Jian‐Xiong; Fidelino, Leila; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.

    2016-01-01

    The source of hyperpolarized (HP) [13C]bicarbonate in the liver during metabolism of HP [1‐13C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [13C]bicarbonate during metabolism of HP [1‐13C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The 13C NMR of HP [13C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non‐hyperpolarized [2,3‐13C]pyruvate. 13C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [13C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well‐fed rats, the appearance of HP [13C]bicarbonate exclusively reflects decarboxylation of HP [1‐13C]pyruvate via pyruvate dehydrogenase. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26836042

  11. Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver.

    PubMed

    Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong; Fidelino, Leila; Merritt, Matthew E; Sherry, A Dean; Malloy, Craig R

    2016-04-01

    The source of hyperpolarized (HP) [(13)C]bicarbonate in the liver during metabolism of HP [1-(13)C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [(13)C]bicarbonate during metabolism of HP [1-(13)C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The (13)C NMR of HP [(13)C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non-hyperpolarized [2,3-(13)C]pyruvate. (13)C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [(13)C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well-fed rats, the appearance of HP [(13)C]bicarbonate exclusively reflects decarboxylation of HP [1-(13)C]pyruvate via pyruvate dehydrogenase.

  12. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    PubMed

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  13. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  14. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.

  15. T(2) relaxation times of (13)C metabolites in a rat hepatocellular carcinoma model measured in vivo using (13)C-MRS of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Yen, Yi-Fen; Le Roux, Patrick; Mayer, Dirk; King, Randy; Spielman, Daniel; Tropp, James; Butts Pauly, Kim; Pfefferbaum, Adolf; Vasanawala, Shreyas; Hurd, Ralph

    2010-05-01

    A single-voxel Carr-Purcell-Meibloom-Gill sequence was developed to measure localized T(2) relaxation times of (13)C-labeled metabolites in vivo for the first time. Following hyperpolarized [1-(13)C]pyruvate injections, pyruvate and its metabolic products, alanine and lactate, were observed in the liver of five rats with hepatocellular carcinoma and five healthy control rats. The T(2) relaxation times of alanine and lactate were both significantly longer in HCC tumors than in normal livers (p < 0.002). The HCC tumors also showed significantly higher alanine signal relative to the total (13)C signal than normal livers (p < 0.006). The intra- and inter-subject variations of the alanine T(2) relaxation time were 11% and 13%, respectively. The intra- and inter-subject variations of the lactate T(2) relaxation time were 6% and 7%, respectively. The intra-subject variability of alanine to total carbon ratio was 16% and the inter-subject variability 28%. The intra-subject variability of lactate to total carbon ratio was 14% and the inter-subject variability 20%. The study results show that the signal level and relaxivity of [1-(13)C]alanine may be promising biomarkers for HCC tumors. Its diagnostic values in HCC staging and treatment monitoring are yet to be explored.

  16. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    USGS Publications Warehouse

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, p